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Abstract. The vertical distribution of ice crystals in Arctic
boundary-layer mixed-phase (ABM) clouds was investigated
by airborne remote-sensing and in situ measurements during
the Arctic Study of Tropospheric Aerosol, Clouds and Ra-
diation (ASTAR) campaign in March and April 2007. In-
formation on the spectral absorption of solar radiation by
ice and liquid water cloud particles is derived from airborne
measurements of solar spectral radiation reflected by these
clouds. It is shown by calculation of the vertical weighting
function of the measurements that the observed absorption of
solar radiation is dominated by the upper cloud layers (50%
within 200 m from cloud top). This vertical weighting func-
tion is shifted even closer to cloud top for wavelengths where
absorption by ice dominates. On this basis an indicator of
the vertical distribution of ice crystals in ABM clouds is de-
signed.

Applying in situ measured microphysical properties, the
cloud-top reflectivity was calculated by radiative transfer
simulations and compared to the measurements. It is found
that ice crystals near cloud top (mixed-phase cloud top layer)
are necessary to reproduce the measurements at wavelengths
where absorption by ice dominates. The observation of
backscatter glories on the cloud top generally indicating liq-
uid water droplets does not contradict the postulated presence
of ice crystals. Radiative transfer simulations reproduce the
observed glories even if the cloud top layer is of mixed-phase
character.

Correspondence to:A. Ehrlich
(a.ehrlich@uni-leipzig.de)

1 Introduction

Because of low temperatures Arctic boundary-layer mixed-
phase (ABM) clouds consisting of both supercooled liquid
water droplets and solid ice crystals simultaneously are com-
mon. Such clouds have been observed and investigated dur-
ing numerous Arctic field experiments (Cober et al., 2001;
Turner et al., 2003; Korolev et al., 2003; Boudala et al.,
2004; McFarquhar and Cober, 2004; Shupe et al., 2008a). As
Shupe and Intrieri(2004) have shown, ABM clouds are the
most important contributors to the Arctic surface radiation
budget. Their radiative impact is highly variable and depends
on surface albedo, aerosol particle concentration, cloud water
content, cloud particle size and thermodynamic phase (Curry
et al., 1996; Shupe and Intrieri, 2004; Ehrlich et al., 2008b).
Therefore, an understanding of the physical processes that
control the nucleation and spatial distribution of ice crystals
and liquid water droplets in such clouds is needed.

A simplified scheme of ABM clouds is presented byHar-
rington et al.(1999) in which the coexistence of ice and liq-
uid water relies on the balance between the nucleation rate
of liquid water droplets and ice crystals, ice crystal growth
rate, and removal of ice nuclei by precipitating ice crystals.
The persistence of updrafts responsible for the formation of
liquid water droplets by condensation is ensured by radia-
tive cooling at cloud top and heat release of the open sea. In
this scheme liquid water droplet nucleation is most efficient
within updrafts at cloud top and exceeds the ice crystal nucle-
ation rate. This process leads to the typical vertical structure
of ABM clouds with a cloud top layer dominated by liquid
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water and a layer dominated by ice and precipitating ice crys-
tals below (e.g.,Pinto, 1998; Shupe et al., 2006; McFarquhar
et al., 2007).

This simplified scheme is modified by a number of factors
which need to be maintained in equilibrium to assure the per-
sistence of such clouds. Even slight changes (e.g. an increase
of the ice crystal nucleation rate or a decrease of the ice crys-
tal sedimentation rate) may result in a complete glaciation of
the cloud as shown byHarrington et al.(1999). A glaciation
will shorten the life time and alter the radiative properties of
these clouds significantly. In this regard ice crystal properties
and ice nuclei play a crucial role by controlling the ice crystal
concentration. However, nucleation, growth, and sedimenta-
tion of ice crystals are still not well understood which leads
to discrepancies between observed and simulated ice crystal
number concentrations (e.g.,Morrison et al., 2008; Fan et al.,
2008). As a consequence, results of cloud-resolving dynam-
ical models are highly sensitive to the parameterizations of
these processes as shown by, e.g.,Harrington et al.(1999);
Morrison et al.(2005); Prenni et al.(2007). Morrison et al.
(2005) analyzed the importance of different ice production
processes whileHarrington et al.(1999) investigated the de-
pendence of the life time of ABM clouds on temperature,
ice crystal number concentration, and ice crystal shape and
found that the concentration of ice nuclei is the most deter-
mining parameter. An increase of the ice nuclei concentra-
tion results in a rapid glaciation of the cloud and reduces its
life time. The concentration of cloud condensation nuclei
which typically ranges magnitudes above ice nuclei concen-
trations has a minor impact.

These uncertainties in simulations of ABM clouds suggest
that information on ice crystal properties is needed. Espe-
cially the vertical distribution of ice crystals will help to iden-
tify ice nucleation processes that are associated with distinct
cloud layers (e.g. evaporation freezing at cloud top and cloud
base).

Ground-based remote sensing of Arctic clouds and in situ
measurements of ice crystal microphysical properties such as
ice crystal size, number concentration and shape have been
conducted for many years. For example, parameterizations
of the ice volume fraction (ratio of ice to total water con-
tent) as a function of cloud temperature have been obtained
from in situ measurements byBoudala et al.(2004); Ko-
rolev et al.(2003). From ground-based remote-sensing in-
struments it could be shown that even though the cloud top of
ABM clouds is dominated by liquid water, ice crystals exist
throughout the clouds with a maximum in lower cloud layers
(Shupe et al., 2006, 2008a,b; de Boer et al., 2009). This was
confirmed byMcFarquhar et al.(2007) who investigated the
vertical distribution of ice crystals by in situ measurements.
However, due to limitations in time and/or space, in situ mea-
surements and ground-based measurements can only give a
snapshot of the complexity of Arctic clouds (Lawson et al.,
2001; Cober et al., 2001; McFarquhar et al., 2007; Gayet
et al., 2009). To globally and continuously derive informa-

tion on ice crystal properties, remote-sensing technologies on
board of satellites or long-range aircraft have to be applied.

The relative contribution of individual cloud layers to the
overall retrieval of cloud properties from remote sensing was
investigated byPlatnick(2000). He found for vertically in-
homogeneous liquid water clouds that the vertical weighting
function (VWF) for cloud-top reflectivity measurements has
a maximum at the cloud top layer with an optical thickness
less than 2. The calculated VWFs strongly depend on so-
lar zenith angle and the wavelength applied for the retrieval
(1600 nm, 2200 nm or 3700 nm). The greater the absorp-
tion and the solar zenith angle, the larger is the maximum
of the VWF and the closer this maximum is located to cloud
top. These spectral differences in the VWFs at four different
spectral bands of the Moderate Resolution Imaging Spectro-
radiometer (MODIS) were utilized byChang and Li(2002,
2003) and recently byChen et al.(2008) to estimate the verti-
cal variation of cloud droplet effective diameter from remote
sensing for liquid water clouds.

In this study we present a similar method to characterize
the vertical distribution of ice crystals in ABM clouds. Air-
borne measurements of solar spectral cloud reflectivity and
in situ data of cloud microphysical properties were utilized
in combination with radiative transfer simulations. The mea-
surements were performed during the Arctic Study of Tropo-
spheric Aerosol, Clouds and Radiation (ASTAR) 2007 cam-
paign in the vicinity of Svalbard (78◦ N, 15◦ E).

The instrumentation of the aircraft and the observations
of spectral cloud-top reflectivity and microphysical proper-
ties are described in Sects.2 and3. The radiative transfer
simulations combining in situ and remote-sensing measure-
ments are discussed in Sect.4. Subsequently, the vertical
weighting function of remote-sensing measurements and the
inferred evidence of ice crystals at cloud top are investigated
in Sects.5 and6. Finally, visual observations of backscatter
glories above the investigated clouds are discussed in Sect.7.

2 Instrumentation

During ASTAR 2007 the POLAR 2 aircraft, owned by the
Alfred Wegener Institute for Polar and Marine Research
(AWI), Bremerhaven, Germany, was equipped to probe
clouds with airborne remote-sensing and in situ instruments.
The Airborne Mobile Aerosol Lidar (AMALi) and in situ in-
struments such as Polar Nephelometer, Cloud Particle Im-
ager (CPI), and Particle Measuring System (PMS) Forward
Scattering Spectrometer Probe (FSSP-100) have been de-
scribed in detail byLampert et al.(2009) and Gayet et al.
(2009), respectively.

The study presented here analyzes data from the Spec-
tral Modular Airborne Radiation measurement sysTem
(SMART-Albedometer,Wendisch et al., 2001; Bierwirth
et al., 2009). The specific configuration of the SMART-
Albedometer operated during ASTAR 2007 has been
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introduced in detail byEhrlich et al.(2008a). It provides
measurements of downwelling and upwelling spectral irradi-
ances (F↓

λ , F
↑

λ ) simultaneously with upwelling nadir spec-

tral radiance (I↑

λ ). These data were used to calculate spectral
cloud-top reflectivitysR in the wavelength range between
350 nm and 2150 nm by

R(λ) =
π sr ·I

↑

λ

F
↓

λ

. (1)

In this definitionF
↓

λ includes diffuse and direct solar ra-
diation and is measured with respect to a horizontal plane
F

↓

λ =F
↓

λ (cosθ) with θ being the solar zenith angle. The
spectral resolution ofR(λ) (full width at half maximum,
FWHM) amounts to 2–3 nm in the wavelength range 350–
950 nm and 9–16 nm forλ = 950–2150 nm wavelength.

3 Measurements

ABM clouds were observed during ASTAR-2007 (Ehrlich
et al., 2008a; Gayet et al., 2009) above the Greenland Sea.
Cold air outbreaks with northerly winds initiated extended
boundary-layer cloud fields. The convection above the rel-
atively warm open sea allowed the coexistence of ice and
liquid water in these clouds.

We focus on measurements conducted on 7 April 2007.
In situ measurements are obtained from two subsequent as-
cents and descents each of about 6 min duration. The cloud-
top reflectivity measurements have been conducted on the
same flight track about 10 min later. The horizontal leg was
performed at 1770 m altitude which was about 150 m above
cloud top. For this short time delay, advection can be ne-
glected considering the wide cloud field as shown by satellite
images. The reflectivity data have been averaged over a time
period of about 18 min. The temporal variation of the data
did not show a significant change of the cloud characteristics.
The data collected on this day have already been analyzed
with regard to their thermodynamic phase inEhrlich et al.
(2008a). During that day mixed-phase clouds were found to
be dominant as revealed by both in situ measurements and
SMART-Albedometer data.

3.1 In situ measurements

In situ measurements of microphysical and optical proper-
ties of the observed clouds have been presented byEhrlich
et al. (2008a). Mixed-phase clouds with similar properties
observed during ASTAR 2007 on 9 April are investigated by
Gayet et al.(2009) including a detailed discussion of mea-
surement uncertainties of the in situ probes applied here.

The vertical profiles of particle number concentration, ice
and liquid water content (IWC, LWC) and volumetric asym-
metry parameter〈g〉 obtained on 7 April 2007 are given in
Fig. 1 (similar to Fig. 2 inEhrlich et al., 2008a). Similar to
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Fig. 1. Profiles of microphysical measurements obtained on 7 April 2007 (partly identical to Figure 2 in Ehrlich et al., 2008a). Total particle
number concentration Ntot measured by FSSP and CPI are given in panel a; LWC and IWC in panel b. The volumetric asymmetry
parameter 〈g〉 obtained from the Polar Nephelometer is shown in panel c.

Fig. 2. Measured spectral cloud-top reflectivity R for ABM clouds observed on 7 April 2007. The measurement uncertainty is illustrated by
the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

Fig. 1. Profiles of microphysical measurements obtained on 7 April
2007 (partly identical to Fig. 2 inEhrlich et al., 2008a). Total parti-
cle number concentrationNtot measured by FSSP and CPI are given
in panel a; LWC and IWC in panel b. The volumetric asymmetry
parameter〈g〉 obtained from the Polar Nephelometer is shown in
panel c.

observations byGayet et al.(2009) on 9 April 2007, it was
found that the upper cloud layer (1600–1200 m altitude) was
dominated by liquid water droplets. This is indicated by the
Polar Nephelometer measuring high asymmetry parameters
(〈g〉 = 0.83–0.86) which are typical for spherical liquid water
droplets. The microphysical and optical properties of the liq-
uid water droplets are summarized in Table1. In total, liquid
water droplets have been observed between 800–1600 m with
an average LWC of 44 mg l−1 (maximum up to 240 mg l−1)
and a droplet effective diameter of 15 µm. This corresponds
to a liquid water path LWP of 35 g m−2 (LWP = LWC·1z).
The fractional liquid water optical thicknessτW was calcu-
lated from the volumetric extinction coefficientbext obtained
from in situ data (τ = bext·1z) and amounts toτW = 7.5.

The lower cloud part (800–1200 m altitude) contained a
significant amount of ice mass with an IWC of 43 mg l−1

(maximum up to 200 mg l−1). CPI measurements showed
that irregular crystals were the dominant shape in all cloud
layers. Ice water path IWP, fractional ice optical thick-
nessτI and ice crystal effective diameterDI

eff amount to
IWP = 17 g m−2, τI = 0.5 andDI

eff = 103 µm.
Ice crystals and liquid water droplets together result in a

total cloud optical thicknessτ = τW+τI = 8 and a total water
path TWP of 52 g m−2. Ice volume fractionfI=IWP/TWP
and ice optical fractionf ∗

I = τI/τ derived for the entire cloud
amount to 0.33 and 0.06, respectively.

Below 800 m altitude, precipitating ice crystals have been
observed down to the surface by CPI and visual on-board
observations.

A detailed discussion on potential sources of error of in
situ measurements in mixed-phase conditions is given by
Gayet et al.(2009) for observations similar those presented
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Fig. 1. Profiles of microphysical measurements obtained on 7 April 2007 (partly identical to Figure 2 in Ehrlich et al., 2008a). Total particle
number concentration Ntot measured by FSSP and CPI are given in panel a; LWC and IWC in panel b. The volumetric asymmetry
parameter 〈g〉 obtained from the Polar Nephelometer is shown in panel c.

Fig. 2. Measured spectral cloud-top reflectivity R for ABM clouds observed on 7 April 2007. The measurement uncertainty is illustrated by
the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

Fig. 2. Measured spectral cloud-top reflectivityR for ABM clouds observed on 7 April 2007. The measurement uncertainty is illustrated by
the gray area. In Panel b shows the refractive indexñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

Table 1. Microphysical and optical properties of the ABM cloud
observed on 7 April 2007 (Case A0). For the closure study the cloud
was divided into two sublayers, 800–1200 m and 1200–1600 m for
which liquid water is situated in both layers. The adjusted values are
used in the simulations of Case A where the cloud optical thickness
was scaled to the observed cloud-top reflectivity.

Measured Scaled
Case A0 Case A

Liquid water τW 7.5 16.9
800–1600 m LWP [g m−2] 34.7 78.0

LWC [mg l−1] 43.4 97.5
DW

eff [µm] 14.8 14.8

Ice τI 0.5 1.1
800–1200 m IWP [g m−2] 17.2 38.7

IWC [mg l−1] 42.5 96.8
DI

eff [µm] 102.7 102.7

Total τ 8.0 18.0
800–1600 m TWP [g m−2] 51.9 116.7

f ∗
I 0.06 0.06

fI 0.33 0.33

here. By comparison of Polar Nephelometer measurements
with scattering phase functions calculated from FSSP-100
cloud droplet size distributions it was found that shattering
of ice crystals is low in liquid-dominated cloud layers due
to low concentrations of large ice crystals (D>100µ m). In
ice-dominated layers with higher concentrations of large ice
crystals the measured LWC could likely be overestimated
due to shattering. Subsequently, the above given values of
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Fig. 3. Cloud geometries as used in the radiative transfer simulations for the cases A–F and for the simulations using the measured cloud
properties (Case A0).

Fig. 4. Simulated (Cases A0 and A) and measured spectral cloud-top reflectivity R (panel a). The measurement uncertainty is illustrated by
the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

Fig. 3. Cloud geometries as used in the radiative transfer simula-
tions for the cases A–F and for the simulations using the measured
cloud properties (Case A0).

fI andf ∗

I might be biased, which will be addressed in Sec-
tion 4.2.

3.2 Cloud-top reflectivity measurements

The spectral cloud-top reflectivity measured above the ob-
served cloud is shown in Fig.2a with its measurement un-
certainty indicated by the gray area. These data have al-
ready been presented byEhrlich et al.(2008a, Fig. 3). Be-
low 1300 nm wavelengthR is almost independent of wave-
length except for water vapor (λ = 920 nm andλ = 1130 nm)
and oxygen absorption bands (λ =762 nm). At longer wave-
lengths water vapor absorption is stronger (1350–1500 nm
and 1800–1950 nm) which significantly increases the mea-
surement uncertainties in these spectral ranges.

The properties of cloud particles like concentration and ef-
fective diameter strongly alter the cloud-top reflectivity. In
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general a higher particle concentration is linked to a higher
cloud optical thickness and increasesR almost independently
of wavelength. The particle effective diameter is an indirect
measure of the fraction of radiation which is absorbed by
clouds. The larger the effective diameter of the particles, the
higher is the absorbed fraction and the lower isR. Absorp-
tion due to the different cloud particles (hereinafter called
liquid water and ice absorption) is superimposed onR in the
spectral range above 1300 nm wavelength. This is indicated
by the imaginary part of the refractive indicesñi of liquid wa-
ter and ice in Fig.2b. The local minima of the measuredR
at λ = 1490 nm andλ = 1950 nm coincide with the maxima
of ñi (maximum absorption by cloud particles). These spec-
tral features in the data have been analyzed byEhrlich et al.
(2008a) to identify the cloud thermodynamic phase with two
different ice indices. The ice indices weight the ice and liquid
water absorption present in the spectral reflectivity measure-
ments. The spectral slope ofR in the wavelength range be-
tween 1550 nm and 1700 nm is utilized in the spectral slope
ice index IS. Principle components related to ice and liquid
water absorption are compared in the principle-components
ice index IP. For pure liquid water clouds, values of IS < 20
and IP < 1 are obtained. Strong ice absorption increases the
spectral features inR and increases both ice indices.

Ehrlich et al. (2008a) stated that these phase-
discriminating spectral features are most sensitive to
upper cloud layers. The cloud-top reflectivity presented here
leads to values of IS = 30 and IP = 2.3. Considering the
observed vertical structure of ABM clouds with liquid water
dominating the cloud top, the ice indices derived for these
clouds range slightly above values expected for clouds with
a liquid cloud top layer (IS< 20 and IP< 1).

Therefore, we have applied the measured microphysical
and radiative cloud properties in spectral radiative transfer
simulations with focus on the vertical structure of ABM
clouds.

4 Simulated cloud-top reflectivity

Solar spectral radiative transfer simulations are performed
with the libRadtran (Library for Radiative transfer) code by
Mayer and Kylling (2005) for the wavelength range from
300 nm to 2200 nm adapted to the spectral resolution of the
SMART-Albedometer. For the one-dimensional (1-D) simu-
lations the discrete ordinate solver DISORT version 2.0 by
Stamnes et al.(1988) is applied. The meteorological in-
put is similar to radiative transfer simulations presented by
Ehrlich et al. (2008a). Profiles of static air temperature,
relative humidity and static air pressure are obtained from
a radio sounding at Ny-̊Alesund/Svalbard (7 April 2007,
11:00 UTC). Corresponding to the observed marine clouds,
the spectral surface albedo is represented by measurements
above sea water obtained on 7 April (Ehrlich, 2009).

Spectral cloud optical properties (extinction coefficient,
single scattering albedo and scattering phase function) have
been calculated from optical properties of individual cloud
particles. Mie theory is applied for liquid water droplets.
Ice particles have been assumed to be column-shaped crys-
tals. The optical properties of columns are provided byYang
and Liou (1996). Columns do not perfectly suit the CPI
measurements which mostly identified irregular crystals in
the clouds. However, for the simulations presented here the
choice of particle shape is less important than the ice crys-
tal effective diameter. The impact of ice crystal shape on
the radiative transfer in mixed-phase clouds has been evalu-
ated byEhrlich et al.(2008b). They found that liquid water
droplets dominate the cloud optical properties. Ice crystal
shape effects are significant only for the presence of small
ice crystals,fI>0.5 and if the IWC is kept constant when
changing the ice crystal shape. For ice crystals of a size
similar to that observed in this study (DI

eff=103µm), shape
effects are lower than 1% for cloud reflectivity and transmit-
tivity. For cloud absorptivity which is relevant in this study
the simulations byEhrlich et al.(2008b) showed no measur-
able shape effect at all. This indicates that in the wavelength
range where ice absorption occurs, the predetermined effec-
tive diameter of cloud particles characterizes the absorption
independent of particle shape. Furthermore, for the reflectiv-
ity at visible wavelengths where absorption by cloud parti-
cles is negligible the scattering phase function characterizes
the scattering processes. However, the part of the ice crystal
scattering phase function relevant for the solar zenith angle
used in the simulation (θ0 = 71◦) is similar for different ice
crystal shapes.

4.1 Cloud optical thickness

Based on the in situ measurements the cloud was divided
into two vertical sublayers representing the observed verti-
cal structure of the clouds. The upper cloud layer (1200–
1600 m) contains only liquid water droplets, whereas the
lower cloud layer (800–1200 m) contains both liquid water
droplets and ice crystals. The assumption of a pure liquid
upper cloud layer is justified by the optical thickness of the
ice crystal population measured by the CPI which was less
than 0.03. Simulations not shown here reveal that this low ice
concentration alters the cloud reflectivity by less than 0.2 %
which is far below the measurement uncertainties. Thus ice
crystals in the upper cloud layer are neglected in the follow-
ing simulations. Figure3 illustrates the cloud model used for
the radiative transfer simulations (Case A0). The microphys-
ical and optical properties of each layer are given in Table1.

4.1.1 Unscaled

The cloud-top reflectivityR simulated with the measured
cloud optical properties (Case A0) is compared in Fig.4a to
measurements ofR (dashed black and green solid lines). The

www.atmos-chem-phys.net/9/9401/2009/ Atmos. Chem. Phys., 9, 9401–9416, 2009



9406 A. Ehrlich et al.: Ice crystals at top of Arctic mixed-phase clouds

14 TEXT: TEXT

800

1200

1550
1600
1650

A0 / A / B C F

A
lt
it
u

d
e

 [
m

]

D E

1300

Case

800

Liquid 

Water
Ice Mixed-Phase

Fig. 3. Cloud geometries as used in the radiative transfer simulations for the cases A–F and for the simulations using the measured cloud
properties (Case A0).

Fig. 4. Simulated (Cases A0 and A) and measured spectral cloud-top reflectivity R (panel a). The measurement uncertainty is illustrated by
the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

Fig. 4. Simulated (Cases A0 and A) and measured spectral cloud-top reflectivityR (panel a). The measurement uncertainty is illustrated by
the gray area. In Panel b shows the refractive indexñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

measurement uncertainty ofR is indicated by the gray area.
Especially at wavelengths shorter than 1800 nm the simula-
tions (dashed line) range below the measuredR and are out-
side the measurement uncertainties. This indicates that the
cloud optical thickness is underestimated by the in situ mea-
surements.

Beside uncertainties of the in situ instruments, cloud inho-
mogeneities cause problems for deriving representative cloud
optical properties. During the in situ probing several ar-
eas with low particle concentrations and low extinction co-
efficientsbext were sampled related to the undulating struc-
ture of the observed clouds. By averaging the measurements
over the total time when the Polar Nephelometer measured
considerable amounts of cloud particles (bext > 0.05 km−1)
the mean values ofbext underestimate the total cloud op-
tical thickness. Maximum values ofbext = 35 km−1 and
bext= 20 km−1 have been measured for liquid water droplets
by FSSP and Polar Nephelometer, respectively. In the thin
ice layer the extinction coefficient of the ice crystal popula-
tion amounts up tobext = 13 km−1 as measured by the CPI.
The underestimation of the cloud optical thickness due to
cloud inhomogeneities can be reduced by an extended sam-
pling time of the cloud. During ASTAR 2007 the clouds have
been probed during descents and ascents of the POLAR 2
with climbing rates of 200 m min−1 which reduces the sam-
pling time for individual vertical cloud layers even more.

4.1.2 Scaled

In order to adjust the results of the radiative transfer
simulations to the measuredR in the wavelength range
λ<1800 nm the cloud optical thickness is scaled in the fol-
lowing simulations. Therefore, the total liquid water droplet

and ice crystal concentrations are varied. The scaling was
applied by keeping cloud particle effective diameter,f ∗

I , and
fI unchanged. Microphysical and optical properties of the
scaled cloud (hereafter referred as Case A) are given in Ta-
ble 1. With τ = 18 the scaled total cloud optical thickness is
more than doubled compared to the values derived from the
in situ measurements.

The results of the radiative transfer simulations for Case A
are shown in Fig.4a as a solid black line. For wavelengths
less than 1400 nm the simulatedR ranges within the mea-
surement uncertainties. However, at wavelengths where ice
absorption is strong, as indicated by the imaginary refractive
index displayed in Fig.4b, the simulatedR is higher than
measured. This reveals that in the model cloud ice crystals
are too small or less ice crystals are present than indicated by
the remote-sensing measurements.

It has to be pointed out that the large factor betweenτ

derived from in situ measurements andτ derived from the
reflectivity measurements is reduced when the uncertainties
of the SMART-Albedometer are considered. Fitting the sim-
ulations to the lower boundary of the uncertainty range in
wavelengths below 1400 nm (not shown here) yieldsτ = 12.
However, further simulations have shown that the spectral
signature in the wavelength range of strong ice absorption
and thus the investigations shown below are not significantly
affected by the optical thickness of the cloud.

As shown byEhrlich et al.(2008a), the spectral slope ice
index IS and the principle-components ice index IP obtained
for this particular cloud are IS = 30 and IP = 2.3, respec-
tively. From the simulated cloud-top reflectivity (Case A)
values of IS = 13.4 and IP = 0.7 were calculated. These val-
ues are in the range which is derived for pure liquid water
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Table 2. Microphysical and optical properties of ABM clouds for cases B1–B6 characterized by different ice optical fractionsf ∗
I . The total

cloud optical thickness is scaled to gain a cloud-top reflectivity similar to the observations forλ < 1300 nm.

B1 B2 B3 B4 B5 B6

Liquid Water τW 18.0 16.2 14.0 9.6 6.0 0.0
800–1600 m LWP [g m−2] 83.0 74.7 64.6 44.3 27.7 0.0

LWC [mg l−1] 103.8 93.4 80.8 55.4 34.6 0.0

Ice τI 0.0 1.8 3.5 6.4 9.0 10.8
800–1200 m IWP [g m−2] 0.0 61.4 119.3 218.2 306.9 306.9

IWC [mg l−1] 0.0 153.5 298.3 545.5 767.3 767.3

Total τ 18.0 18.0 17.5 16.0 15.0 10.8
800–1600 m TWP [g m−2] 83.0 136.1 183.9 262.5 334.6 306.9

f ∗
I 0.00 0.10 0.20 0.40 0.60 1.00

fI 0.0 0.45 0.65 0.83 0.92 1.00

clouds, which is not surprising as the ice optical fraction
f ∗

I = 0.06 of the simulated cloud is close to zero. The uncer-
tainties of the measuredf ∗

I deduced from the simultaneous
FSSP and CPI measurements are addressed in the following
section.

4.2 Ice optical fraction

Based on the measured and scaled cloud optical properties of
Case A the ice optical fractionf ∗

I was varied between values
corresponding to pure liquid water clouds (f ∗

I = 0.0) and a
pure ice cloud (f ∗

I = 1.0). Microphysical and optical prop-
erties of the six simulated clouds with different ice optical
fraction referred as Case B1–B6 are given in Table2. Cloud
geometry and particle effective diameterDw

eff, DI
eff are iden-

tical to cloud Case A. Due to differences in the scattering
phase function of liquid water droplets and ice crystals, the
cloud-top reflectivity increases with increasingf ∗

I if the to-
tal cloud optical thickness is kept constant. In order to fitR

in the wavelength rangeλ<1300 nm to the measured values,
the total cloud optical thickness of Case B1–B6 was scaled
separately for each cloud.

The results of the radiative transfer simulations are given
in Fig. 5a. All simulations range between two extreme cases;
the pure liquid water cloud (B1, blue line) and the pure ice
cloud (B6, red line). Corresponding ice indicesIS and IP
calculated from the simulations are listed in Table3. The
comparison with the measured ice indices indicates that the
simulated cloud Case B5 withf ∗

I = 0.6 fits best to the mea-
surements.

However, in Fig.5a the analysis of the spectral structure of
R in the wavelength range dominated by ice and liquid water
absorption between 1400 nm and 2150 nm reveals that none
of the simulated cases match the measurements throughout
the entire wavelength range. For low ice optical fractions
f ∗

I <0.4 the ice crystal concentration is too low and the re-
sulting ice absorption is too weak to reproduce the observed

Table 3. Spectral slope ice index IS and principle-component ice in-
dex IP for the simulations of the clouds cases B1–B6. Additionally
the values obtained from the SMART-Albedometer measurements
are given.

B1 B2 B3 B4 B5 B6 Measured

IS 11.4 14.3 16.2 20.4 26.9 56.2 29.8
IP 0.5 0.8 1.0 1.5 2.2 5.0 2.3

minima ofR. These minima were present in the reflectivity
measurements at 1490 nm and 2000 nm wavelengths which
agrees with the maxima in the refraction indices of ice plot-
ted in Fig.5b. However, at wavelengths where ice absorption
is weaker (1600–1800 nm)R is in the range of the measure-
ment uncertainties of the measuredR for f ∗

I <0.4. The op-
posite is obtained for simulations withf ∗

I ≥0.4. For these
cases ice absorption is strong enough to reproduce the local
minima in the reflectivity measurements. However, increas-
ing ice absorption additionally reduces the cloud-top reflec-
tivity at wavelengths between 1600 nm and 1800 nm. In this
wavelength range the simulations withf ∗

I ≥0.4 fail to fit the
measuredR.

It seems that there has to be another parameter which al-
ters the spectral slope in the wavelength range dominated by
ice and liquid water absorption (1400–2200 nm). From ad-
ditional radiative transfer simulations using modified cloud
models (not shown here) it was found that neither the par-
ticle effective diameter of the ice crystals and liquid water
droplets nor the ice crystal shape are responsible for the ob-
served spectral pattern ofR. Therefore, in the following sec-
tion the vertical weighting function (VWF) of the cloud-top
reflectivity measurement is investigated.
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Fig. 5. Measured spectral cloud-top reflectivity R and simulated R for mixed-phase clouds of different f∗I (Case B1–B6). The measurement
uncertainty is illustrated by the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren
and Brandt, 2008).

Fig. 6. Vertical weighting function W (z) for the radiance measurements of the SMART-Albedometer with respect to absorption by the cloud
particles using the cloud Case A (panel a). The accumulated weighting is given in panel b.

Fig. 5. Measured spectral cloud-top reflectivityR and simulatedR for mixed-phase clouds of differentf ∗
I (Case B1–B6). The measurement

uncertainty is illustrated by the gray area. In Panel b shows the refractive indexñi of liquid water (Wieliczka et al., 1989) and ice (Warren
and Brandt, 2008).

5 VWF of reflectivity measurements

We applied the methods described byPlatnick(2000) to char-
acterize the vertical weighting of the reflectivity measure-
ments in the wavelength range dominated by ice and liquid
water absorption (1300–1800 nm).

Platnick (2000) proposed to use the maximum vertical
photon penetration as VWF ofR. It is argued that in a
cloud of optical thicknessτC the fractionPref of all reflected
photons that penetrate to a maximum depth betweenτ and
τ +1τ is represented by

Pref(τ ) =
R(τ +1τ)−R(τ)

R(τC)
. (2)

HereR(τ) is the reflectivity from the portion of the cloud
above the levelτ = τ(z) (i.e., calculated for a cloud layer
between cloud top andτ(z) with lower layers absent). Nor-
malizing with1τ the vertical weighting functionw(τ) is

w(τ) =
R(τ +1τ)−R(τ)

R(τC)
·

1

1τ
. (3)

To obtain a VWFW(z) in units of [% m−1] referring to the
geometrical thickness of the cloud, we convertedw(z) con-
sidering that1τ = bext(z) ·1z. By multiplying w(z) by the
vertical profile of the extinction coefficientbext(z) we obtain

W(z) = w(z) ·bext(z) ·100%. (4)

ThusW(z) gives the percentage contribution of each cloud
layer to the radiance observed above cloud top.

The vertical profile of the cloud-top reflectivityR used
to calculateW(z) is obtained from radiative transfer simu-
lations similar to those presented in Sect.4. The input for the

cloud layer is identical to Case A matching the observedR

at VIS wavelengths. According to the method described by
Platnick(2000), the surface reflectivity was set to zero. Thus
no multiple reflections between the surface and the cloud
layer occur in the simulations which ensures thatW(z) is
normalized between cloud basezbaseand cloud topztop by∫ ztop

zbase

W(z)dz = 1. (5)

As discussed byPlatnick(2000) for a low surface albedo
(measurements during ASTAR have shown values below
0.05 above open ocean), this assumption has no significant
impact onW(z). With the same argumentation, aerosol
which also scatters/reflects radiation below cloud base was
excluded from the simulations.

The calculatedW(z) for two wavelengths exemplary for
strong ice (1510 nm) and liquid absorption (1710 nm) are
given in Fig.6a. In Fig. 6b W(z) is accumulated over al-
titude starting with 0% at cloud top. For both wavelengths
the weighting shows the highest contribution for cloud lay-
ers close to cloud top at 1550 m altitude. The maximum val-
ues ofW(z) are found to be higher forλ = 1510 nm than for
λ = 1710 nm. With the higher values ofW(z) the cloud-top
reflectivity atλ = 1510 nm is dominated stronger by absorp-
tion by particles at cloud top thanR at λ = 1710 nm. There-
fore,R at λ = 1510 nm is more suitable to retrieve the parti-
cle size at cloud top.

A decrease ofW(z) with increasing cloud depth is ob-
served for both wavelengths. The accumulated weighting
(Fig. 6b) shows that 50% of the measured signal at 1710 nm
wavelength emanates from the cloud layer above 1410 m.

Atmos. Chem. Phys., 9, 9401–9416, 2009 www.atmos-chem-phys.net/9/9401/2009/
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Fig. 5. Measured spectral cloud-top reflectivity R and simulated R for mixed-phase clouds of different f∗I (Case B1–B6). The measurement
uncertainty is illustrated by the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren
and Brandt, 2008).

Fig. 6. Vertical weighting function W (z) for the radiance measurements of the SMART-Albedometer with respect to absorption by the cloud
particles using the cloud Case A (panel a). The accumulated weighting is given in panel b.

Fig. 6. Vertical weighting functionW(z) for the radiance measurements of the SMART-Albedometer with respect to absorption by the cloud
particles using the cloud Case A (panel a). The accumulated weighting is given in panel b.
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Fig. 7. Characteristic photon penetration depth characterizing the upper cloud layer related to 50 % of the measured signal (panel a). In
panel b the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008) is displayed.

Fig. 8. Measured and simulated spectral cloud-top reflectivity R for cases A, C and D (panel a). The measurement uncertainty is illustrated
by the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

Fig. 7. Characteristic photon penetration depth characterizing the
upper cloud layer related to 50% of the measured signal (panel a).
In panel b the refractive index̃ni of liquid water (Wieliczka et al.,
1989) and ice (Warren and Brandt, 2008) is displayed.

Only 10% correspond to the cloud layer below 1060 m. For
λ = 1510 nm a steeper slope is obtained (50% at 1440 m).

In this way a characteristic photon penetration depthz50
is determined for all wavelengths. It specifies the depth of
the cloud layer (measured from cloud top) which is related
to 50% of the measured reflectivity signal.z50 is shown in
Fig. 7 for the wavelength range 1300–1800 nm. The spectral
differences ofz50 are mostly due to absorption of radiation
within the cloud. At wavelengths dominated by water vapor
absorption (λ = 1350–1500) the minimum ofz50 with values
below 150 m is obtained. Between 1500 nm (high ice absorp-
tion) and 1700 nm (low ice absorption)z50 increases from
about 160 m to 195 m. This supports the assumption that
the observed absorption signal in the radiance measurements
for λ = 1490 nm emanates from layers close to cloud top
while the absorption observed at longer wavelengths about
1710 nm includes particles located at lower cloud layers.

These spectral differences in the VWF provide a tool
to retrieve information on the vertical distribution of the

cloud particle effective diameter, as described byChen et al.
(2007). In contrast toChen et al.(2007) the investigations
shown here are limited to a small wavelength range (1400–
1800 nm). However, this range includes one spectral maxi-
mum and one spectral minimum of ice and liquid water ab-
sorption and is covered by the SMART-Albedometer mea-
surements with sufficient spectral resolution to analyze these
spectral differences. Wavelengths where liquid water and ice
absorption are strong can be used to derive particle properties
at cloud top, whereas wavelengths with weaker absorption
give information on particles located at lower cloud layers.
Utilizing the spectral differences between the maxima of ice
and liquid water absorption, separate vertical profiles for ice
crystals and liquid water droplets can be derived.

The measurements ofR presented in Fig.4a showed that
for wavelengths belowλ = 1700 nm stronger absorption is
measured than shown by the simulations. The maximum
differences overlap with the ice absorption maximum (λ =

1490 nm). At wavelengths between 1700–1800 nm weaker
absorption is observed. Following the findings discussed
above, the strong absorption atλ = 1490 nm implies that ice
crystals of large effective diameter are present in the up-
per cloud layers. On the other hand, the high values ofR

between 1700–1800 nm wavelength indicate cloud particles
with smaller effective diameter at cloud top and at lower
cloud layers. This conclusion differs from the vertical dis-
tribution of ice crystals and liquid water droplets obtained by
the in situ measurements presented here. This may explain
the discrepancy between simulated and measured cloud-top
reflectivity.

6 Ice crystals at cloud top

The analysis of the VWF calculated for the radiance mea-
surements suggests that ice crystals might be present at
cloud top of the clouds observed on 7 April. The question
is where exactly the ice is situated. In general it can be
read from the calculated VWF in Fig.6a that all altitudes
whereW(λ = 1510 nm) is higher thanW(λ = 1710 nm) are
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Fig. 7. Characteristic photon penetration depth characterizing the upper cloud layer related to 50 % of the measured signal (panel a). In
panel b the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008) is displayed.

Fig. 8. Measured and simulated spectral cloud-top reflectivity R for cases A, C and D (panel a). The measurement uncertainty is illustrated
by the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

Fig. 8. Measured and simulated spectral cloud-top reflectivityR for cases A, C and D (panel a). The measurement uncertainty is illustrated
by the gray area. In Panel b shows the refractive indexñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

appropriate. At these altitudes the difference between the
SMART-Albedometer sensitivity to ice (λ = 1510 nm) and
liquid water absorption (λ = 1710 nm) are largest. Adding
ice crystals here will reduce the simulated cloud-top reflec-
tivity at λ = 1510 nm stronger than atλ = 1710 nm.

Therefore, the original cloud simulated with Case A was
modified in Case C–F (Fig.3) by adding ice crystals at cloud
top. For Case C the ice is distributed over the entire altitude
range (1300–1600 m) whereW(λ = 1510 nm) is higher than
W(λ = 1710 nm); in Case D the ice is concentrated in a thin
layer 1525–1575 m where the differences inW are strongest.
For Case E the thin ice layer is situated adjacent to cloud top
within the original cloud (mixed-phase cloud top); for Case
F a thin ice layer is added above cloud top as illustrated in
Fig. 3. The optical thickness of the thin ice layer was set to
0.5 in all cases with ice crystal effective diameter similar to
the ice layer at cloud base (DI

eff = 103 µm, column shape).
Due to adding the ice layer, the total optical thickness of the
cloud is adjusted toτ = 16.5 for Case C,τ = 16.0 for Case
D, τ = 15.0 for Case E andτ = 14.5 for Case F.

The spectral cloud-top reflectivityR simulated for the
cases C–F is shown in Figs.8 and9. In general, all cases
show a better agreement with the measurements compared to
the simulations presented above (cases A and B). For cases
D–F which have almost identical results these simulations
fit into the uncertainty range of the observedR at all wave-
lengths. Especially the spectral pattern in the wavelength
range dominated by ice and liquid water absorption is closer
to the measurements than simulations without additional ice
layer. This reveals that ice crystals situated at cloud top are
necessary to explain the observed absorption features with
strong absorption at 1490 nm and weak absorption at wave-
lengths about 1750 nm. The simulations of Case C show

a slight deviation at wavelengths of strong ice absorption
(λ≈1500 nm andλ≈2050 nm) which indicates that Case C
does suit the observed clouds less than Cases D–F. The ice
crystals are more likely situated in the altitude range with the
highest sensitivity of the reflectivity measurements (highest
W at about 1550 m) than homogeneously distributed over a
thicker layer. It has to be stated that this holds only for ice
crystals of large effective diameter which if added describe
the observed ice absorption in the measurements. Ice crys-
tals of small effective diameter in low concentration which
do not contribute as strongly to the ice absorption might be
located throughout the cloud.

From the in situ measurements of the microphysical cloud
properties no solid evidence of ice crystals in the uppermost
cloud layer was found. Of all 69 measurements obtained by
the Polar Nephelometer above 1500 m altitude, only 7 indi-
cated ice crystals with asymmetry parameters below 0.82 (cf.
Fig. 1). These measurements do not significantly alter the
volumetric asymmetry parameter (〈g〉 = 0.85) calculated for
this cloud layer. The CPI registered ice particles only at five
times in the data analyzed here. The measured low ice con-
centration is probably caused by the short sampling time in
this cloud layer which is limited due to performing ascents
and descents into the cloud instead of horizontal legs at a
fixed altitude. With a slightly varying cloud top height the
ice crystals might not be represented well in the measure-
ments. For individual profiles measured in the same cloud
field but not included in the analysis shown here (due to their
displacement to the remote sensing measurements) the CPI
sampled several large ice crystals at cloud top with up to
500–800µm maximum sizes. These ice crystals have been
mostly rimed particles (graupel) but could not be found in
all measured profiles. Furthermore, the horizontal variability
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Fig. 9. Measured and simulated spectral cloud-top reflectivity R for cases A, E and F (panel a). The measurement uncertainty is illustrated
by the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).
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Fig. 10. Photographs of backscatter glories at cloud top. The left photograph was taken from the POLAR 2 aircraft on 7 April, 11:05 UTC,
the right on 10 April, 11:31 UTC. The given ice indices IS and IP are derived from the SMART-albedometer measurements above these
clouds (Ehrlich et al., 2008a).

Fig. 11. Scattering phase function P(ϑ) at three different wavelengths representative for the blue (450 nm), green (550 nm) and red (600 nm)
color. The backscattering range between scattering angles ϑ = 175–180◦ is shown. In panel a P(ϑ) is given for the ice crystal population
(columns), in panel b for the liquid water droplet population used in the simulations.

Fig. 9. Measured and simulated spectral cloud-top reflectivityR for cases A, E and F (panel a). The measurement uncertainty is illustrated
by the gray area. In Panel b shows the refractive indexñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

of ABM clouds as shown byGayet et al.(2009) and the time
delay between in situ and remote-sensing measurements may
explain the different results of both methods.

In general it is expected that ice crystal size increases to-
wards cloud base due to crystal growth and aggregation (Mc-
Farquhar et al., 2007). Contrarily, in the simulations pre-
sented here large ice crystals are assumed to be of same size
at cloud top and cloud base. There are two reasons which
might explain this discrepancy with large ice crystals at cloud
top. First it has to be pointed out that the radiation measure-
ments always refer to the effective diameter and not to the
physical length of an ice crystal. As stated byMcFarquhar
and Heymsfield(1998) it is possible that ice crystals increase
in size but the effective diameter remains almost constant be-
cause the shape of the crystals changed. Ice crystals with ap-
proximately spherical shape have a higher effective diameter
(volume to cross section ratio) than ice crystals like plates
or dendrites of the same maximum size. The few CPI im-
ages collected at cloud top showed mostly rimed particles for
which the volume to cross section ratio is higher than for reg-
ular ice crystals observed at lower cloud layers. Additionally,
cloud dynamics may lift large ice crystals toward cloud top.
The free fall speed of graupel of 1 mm size is about 1 m s−1.
Such a vertical wind speed is compatible with dynamical pro-
cesses in such boundary layer clouds. Unfortunately ver-
tical wind speed was not measured on the POLAR 2 air-
craft. However, as shown byShupe et al.(2008b) for similar
clouds the large temperature difference between sea surface
and cloud layer causes updrafts up to 2.5 m s−1. In updraft re-
gions large ice crystals might be lifted again and distributed
at cloud top. Further investigations exceeding the focus of
this study will be necessary to address this hypothesis.

7 Simulation of the backscatter glory

The backscatter glory is an optical phenomenon based on
single scattering processes and typical for spherical liquid
water droplets. The intensity variations of the reflected ra-
diation reflect the single scattering phase function of liquid
water droplets located at cloud top. Therefore, the observa-
tions of backscatter glories have been used, e.g., byGedzel-
man(2003); Mayer et al.(2004) to retrieve the cloud droplet
effective diameter.

During the measurement flights of ASTAR 2007 backscat-
ter glories have been observed frequently by eye and photo
camera. The photographs have not been taken systemat-
ically. However, two exemplary photographs taken on 7
April, 11:05 UTC (78◦ N, 11.5◦ E) and 10 April, 11:31 UTC
are shown in Fig.10. The ice indices measured above these
clouds (IS = 26.0/26.3 and IP = 1.9/2.9) are slightly lower
than for the cloud for which the closure study is conducted.
However, the values are higher than expected for pure liquid
water clouds (IS<20 and IP<1) and indicate the presence of
ice crystals at the same time the glories have been observed.

The presence of ice crystals at cloud top of the observed
clouds was also concluded in Sect.6. However, the obser-
vations of the backscatter glory put this finding into question
as the scattering phase functionP(ϑ) of ice crystals does not
exhibit this feature. Figure11 shows an extract ofP(ϑ) of
ice crystals (columns) and liquid water droplet populations
used in the simulations analyzed above. Displayed are three
wavelengthsλ = 450 nm,λ = 550 nm andλ = 600 nm repre-
sentative for the blue, green and red color of the visible solar
radiation.

For ice crystalsP(ϑ) increases with increasing scatter-
ing angle over the range of scattering angles considered
(Fig. 11a). This is related to the large particle size of
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Fig. 9. Measured and simulated spectral cloud-top reflectivity R for cases A, E and F (panel a). The measurement uncertainty is illustrated
by the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).
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Fig. 10. Photographs of backscatter glories at cloud top. The left photograph was taken from the POLAR 2 aircraft on 7 April, 11:05 UTC,
the right on 10 April, 11:31 UTC. The given ice indices IS and IP are derived from the SMART-albedometer measurements above these
clouds (Ehrlich et al., 2008a).

Fig. 11. Scattering phase function P(ϑ) at three different wavelengths representative for the blue (450 nm), green (550 nm) and red (600 nm)
color. The backscattering range between scattering angles ϑ = 175–180◦ is shown. In panel a P(ϑ) is given for the ice crystal population
(columns), in panel b for the liquid water droplet population used in the simulations.

Fig. 10. Photographs of backscatter glories at cloud top. The left photograph was taken from the POLAR 2 aircraft on 7 April, 11:05 UTC,
the right on 10 April, 11:31 UTC. The given ice indices IS and IP are derived from the SMART-albedometer measurements above these
clouds (Ehrlich et al., 2008a).
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Fig. 9. Measured and simulated spectral cloud-top reflectivity R for cases A, E and F (panel a). The measurement uncertainty is illustrated
by the gray area. In Panel b shows the refractive index ñi of liquid water (Wieliczka et al., 1989) and ice (Warren and Brandt, 2008).

a) April 7, 2007, 11:05 UTC

I
S 
= 26.0

I
P 
=   1.9

b) April 10, 2007, 11:31 UTC

I
S 
= 26.3

I
P 
=   2.9

Fig. 10. Photographs of backscatter glories at cloud top. The left photograph was taken from the POLAR 2 aircraft on 7 April, 11:05 UTC,
the right on 10 April, 11:31 UTC. The given ice indices IS and IP are derived from the SMART-albedometer measurements above these
clouds (Ehrlich et al., 2008a).

Fig. 11. Scattering phase function P(ϑ) at three different wavelengths representative for the blue (450 nm), green (550 nm) and red (600 nm)
color. The backscattering range between scattering angles ϑ = 175–180◦ is shown. In panel a P(ϑ) is given for the ice crystal population
(columns), in panel b for the liquid water droplet population used in the simulations.

Fig. 11.Scattering phase functionP(ϑ) at three different wavelengths representative for the blue (450 nm), green (550 nm) and red (600 nm)
color. The backscattering range between scattering anglesϑ = 175–180◦ is shown. In panel aP(ϑ) is given for the ice crystal population
(columns), in panel b for the liquid water droplet population used in the simulations.

DI
eff = 103 µm. The larger the particle size, the higher the

backscattering (ϑ = 180◦) which is mainly caused by spec-
ular reflection at the ice crystal surface. In addition to the
maximum atϑ = 180◦ liquid water droplets (Fig.11b) have
a slight secondary maximum ofP(ϑ) at aboutϑ = 178◦ for
550 nm and 600 nm wavelengths and at aboutϑ = 178.5◦ for
450 nm. This second maximum causes the increased inten-
sity of reflected radiation observed on the glory phenomena.
The shift of the maximum for the different wavelengths pro-
duces the color dispersion of the glories.

3-D Monte Carlo simulations have been performed to
simulate the backscatter glory. Applying the methods pre-
sented byMayer and Emde(2007) the angular distribution
of radiation scattered into the backscatter rangeϑ≥175◦

was calculated. Considering the solar zenith angle of 71◦

this corresponds to viewing zenith angles between 71◦ and
76◦. For the 3-D radiative transfer simulations the MYSTIC
code (Monte Carlo code for the physically correct tracing
of photons in cloudy atmospheres) embedded in thelibRad-
tran package was applied (Mayer, 1999, 2000, 2009). With

MYSTIC the backscattered radiance was calculated for the
flight altitude of 1800 m approximately 200 m above cloud
top. In the simulations the extension of the solar disk of 0.5◦

is considered. Therefore, the radiance distribution is convo-

luted with
√

θ2
S−(θ −θ0)2 whereθ0 is the solar zenith angle

specified for the center of the solar disk andθS the angu-
lar radius of the solar disk. The convolution causes a slight
smoothing of the resulting radiance distribution which is not
essential for the conclusions presented here but large enough
to be considered.

Finally, the radiances were converted to color (R,G,B)
values following the procedure recommended by the
Commission Internationale de l’Éclairage (CIE, CIE,
1986). The procedure is implemented in the C pro-
gram specrend.cprovided by CIE which was applied here
(http://www.fourmilab.ch/documents/specrend/).

The angular distribution of the R,G,B colors was calcu-
lated for the three clouds cases A, E and F. Values of R,G,B
normalized by the value at the backscattering angleϑ = 180◦

are shown in the left panels of Fig.12for a viewing geometry

Atmos. Chem. Phys., 9, 9401–9416, 2009 www.atmos-chem-phys.net/9/9401/2009/

http://www.fourmilab.ch/documents/specrend/


A. Ehrlich et al.: Ice crystals at top of Arctic mixed-phase clouds 9413

18 TEXT: TEXT

Fig. 12. Radiative transfer simulations of the angular distribution of spectral radiances of the backscattering region. Results are shown for
the three cases A, E and F. The left panels show the angular distribution converted into R,G,B colors. The visualization of the glory is given
in the right panels.

Fig. 12. Radiative transfer simulations of the angular distribution of spectral radiances of the backscattering region. Results are shown for
the three cases A, E and F. The left panels show the angular distribution converted into R,G,B colors. The visualization of the glory is given
in the right panels.

with the Sun in the back. The right panels show R,G,B im-
ages of the modeled glory, obtained by rotating the angular
distributions shown in the left panels. The rotation of the
simulations is justified as additional simulations showed that
the glory is symmetrical to the backscattering angle. In the
results simulated for the cloud dominated by liquid water at
cloud top (Case A) the backscatter glory is visible. Although
the simulations exhibit some noise, the normalized radiance
reflects the scattering phase function of liquid water droplets
(cf. Fig.11). The noise is due to the number of photons used
in the Monte Carlo radiative transfer simulations but is not
essential for the conclusions presented here. The wavelength

shift of the secondary maximum is only weak in the simula-
tions which results in the almost white color of the rotated
image. This is due to the broad number size distribution
of the liquid water droplets at cloud top used in the simu-
lations. As shown byMayer and Emde(2007) the colors
of the backscatter glory are less pronounced if broad droplet
size distributions are used. These findings are contrary to the
glory photographs presented in Fig.10 but may result from
the differences of the location of the in situ measurements
and the location where the photographs were taken.

For Case E where an ice layer ofτ = 0.5 is situated inside
the uppermost cloud layer the backscatter glory is weaker
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than in Case A, but still visible in the rotated R,G,B image.
Close to the backscattering angle the radiance is higher than
in Case A. This spot is caused by enhanced backscattering
by the ice crystals. In airborne observations this spot is cov-
ered by the shadow of the aircraft and hence is unobservable.
These results show that ice crystals of an optical thickness
less than 0.5 situated inside the liquid water layer (mixed-
phase cloud top, Case E) can reproduce the simultaneous ob-
servation of ice absorption and glory phenomena. The same
holds for Case C and D (not shown here) where the upper-
most cloud layer is less affected by ice crystals due to the
different cloud geometries. Thus a more pronounced glory is
obtained compared to Case E.

Contrarily, in Case F where the same ice layer is located
above the liquid water layer the backscatter glory was not re-
produced by the simulations. The angular distribution of the
radiance shows similar characteristics as the scattering phase
function of the ice crystals (cf. Fig.11). From this analysis it
is concluded that Case F does not suit the remote-sensing ob-
servation above ABM clouds obtained during ASTAR 2007.

8 Conclusions

Airborne measurements of cloud-top reflectivityR obtained
during the ASTAR 2007 campaign have been analyzed to
retrieve information on the vertical distribution of ice crys-
tals in ABM clouds. For this purpose, spectral radiative
transfer simulations ofR are performed and compared to
measuredR. The radiative transfer simulations based on
the microphysical properties obtained from in situ measure-
ments during ASTAR 2007 (Case A0) underestimateR over
the entire wavelength range by a factor of 1.5. This indi-
cates that the cloud optical thickness is underestimated by
the in situ measurements probably because of cloud inhomo-
geneities which bias the averaged cloud microphysical prop-
erties. With scaled cloud optical thickness (Case A) the ra-
diative transfer simulations still failed to reproduce the spec-
tral pattern ofR observed in the wavelength range dominated
by ice and liquid water absorption (1500–1800 nm). Varying
the ice optical fraction (Case B1–B6) did not improve the
results significantly.

Agreement within the measurement uncertainties between
measurements and simulations was obtained when an ice
layer of τ = 0.5 was added in the simulations at cloud top
where the reflectivity measurements are most sensitive to ice
absorption (Cases C–F). This suggests that ice crystals were
present in the upper layers of the observed clouds. Anal-
ysis of the in situ measurements could neither confirm nor
reject these results. In general these data showed a cloud
top dominated by liquid water droplets whereas ice crystals
are dominant at lower cloud levels similar to the observa-
tion by Gayet et al.(2009). The absence of ice crystals in
the in situ measurements at cloud top is probably due to the
flight strategy (vertical profiling) providing only short pas-

sages of this cloud layer and the horizontal variability of
ABM clouds as shown byGayet et al.(2009). However,
similar clouds have been investigated byMcFarquhar et al.
(2007); Shupe et al.(2006, 2008a) who observed ice crys-
tals throughout the entire clouds by in situ and ground-based
measurements. With the airborne remote-sensing techniques
presented in this study, these findings could be confirmed by
a third independent method.

Backscatter glories have been observed on top of the in-
vestigated clouds which generally indicates the presence of
liquid water droplets at cloud top. This observation was vali-
dated by 3-D radiative transfer simulations focusing on the
radiation within the backscatter region. Implementing ice
crystals directly within the uppermost cloud layer (Case E)
reproduced a weak but visible backscatter glory and explains
the observations. Situating the thin ice layer above the origi-
nal cloud (Case F) eliminated the backscatter glory.

These findings implicate that the presence of ice crystals
within the cloud top layer alter the radiative properties of
ABM clouds compared to values derived with the assump-
tion of homogeneously mixed clouds. The cooling of the
surface by such clouds due to enhanced reflection of solar
radiation (e.g.,Schweiger and Key, 1994; Dong and Mace,
2003; Ehrlich, 2009) might be stronger than calculated con-
sidering the enhanced side scattering of ice crystals. As the
terrestrial infrared radiative forcing is determined by cloud
temperature only and is almost unaffected by the vertical dis-
tribution of ice crystals, changes in the solar forcing propa-
gate directly into the net (sum of solar and terrestrial) cloud
forcing. The enhanced absorption by these ice crystals at so-
lar wavelengths will also bias the ice indices utilized to iden-
tify the cloud thermodynamic phase (Acarreta et al., 2004;
Ehrlich et al., 2008a). Compared to an upper cloud layer
dominated by liquid water, a mixed-phase layer close to the
top of ABM clouds biases the ice indices towards higher val-
ues.

The analysis of the spectral cloud-top reflectivity has
shown that the spectral information within the wavelength
range 1500–1800 nm is essential to retrieve information on
ice crystal properties. In this regard the VWF of the SMART-
Albedometer measurements was investigated using the meth-
ods described byPlatnick(2000). The VWFW(z) quanti-
fied the contribution of each cloud layer to the ice and liq-
uid water absorption reflected in the measurements ofR.
The vertical profile ofW(z) showed that the measured sig-
nal is dominated by absorption processes within the upper-
most cloud layers of less than 200 m thickness which is in
agreement with the findings presented byPlatnick (2000).
However,W(z) calculated for different wavelengths revealed
spectral differences of the vertical weighting of the measure-
ments. These differences result from the spectral pattern of
ice and liquid water absorption. Consequently, by analyz-
ing the spectral pattern of the measuredR information on the
vertical distribution of cloud particles can be retrieved.
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Similar investigations have been conducted, e.g., by
Chang and Li(2002, 2003) andChen et al.(2008) who used
four different wavelength bands of MODIS measurements
(1250 nm, 1650 nm, 2150 nm and 3750 nm) to retrieve the
vertical variation of cloud droplet effective diameter from re-
mote sensing. The investigations presented in this study sug-
gest that these methods are adaptive to high-resolution spec-
tral measurements of a small wavelength region as obtained
by the SMART-Albedometer. The only requirement is that
the measurements resolve changes in the spectral absorption
of ice and liquid water.
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