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Abstract. This comment focuses on the statistical limi-
tations of a model grading, as applied by D. Waugh and
V. Eyring (2008) (WE08). The gradeg is calculated for a
specific diagnostic, which basically relates the difference of
means of model and observational data to the standard devia-
tion in the observational dataset. We performed Monte Carlo
simulations, which show that this method has the potential to
lead to large 95%-confidence intervals for the grade. More-
over, the difference between two model grades often has to be
very large to become statistically significant. Since the con-
fidence intervals were not considered in detail for all diag-
nostics, the grading in WE08 cannot be interpreted, without
further analysis. The results of the statistical tests performed
in WE08 agree with our findings. However, most of those
tests are based on special cases, which implicitely assume
that observations are available without any errors and that
the interannual variability of the observational data and the
model data are equal. Without these assumptions, the 95%-
confidence intervals become even larger. Hence, the case,
where we assumed perfect observations (ignored errors), pro-
vides a good estimate for an upper boundary of the threshold,
below that a grade becomes statistically significant. Exam-
ples have shown that the 95%-confidence interval may even
span the whole grading interval [0, 1]. Without consider-
ing confidence intervals, the grades presented in WE08 do
not allow to decide whether a model result significantly de-
viates from reality. Neither in WE08 nor in our comment it
is pointed out, which of the grades presented in WE08 in-
hibits such kind of significant deviation. However, our anal-
ysis of the grading method demonstrates the unacceptably
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high potential for these grades to be insignificant. This im-
plies that the grades given by WE08 can not be interpreted
by the reader. We further show that the inclusion of confi-
dence intervals into the grading approach is necessary, since
otherwise even a perfect model may get a low grade.

1 Introduction

Waugh and Eyring (2008) (WE08) applied a set of perfor-
mance metrics to climate-chemistry models (CCMs) aiming
at quantifying their ability to reproduce key processes rel-
evant for stratospheric ozone. These performance metrics
are used to calculate a quantitative measure of performance,
i.e. a grade. These grades are employed to illustrate the abil-
ity of individual models to simulate individual processes and
to identify general deficiencies in modelling key processes.
These grades are further applied to weight individual CCM
projections of the ozone layer to derive a weighted multi-
model mean projection.

There is no doubt that the general approach, i.e. the model
validation and grading, provides an important contribution
to scientific questions regarding stratospheric ozone. How-
ever, the approach relies on the way the grading is performed
and hence requires a statistical sound definition of the grad-
ing. Although the authors have discussed some statistical
considerations, these considerations do not have any impli-
cations on the grading, e.g. no confidence interval for the
grading value is given. Moreover, effects like uncertainties
in the observational data are not included in most of the
gradings: the grading formula (details see below) includes
a parameterσobs, which is defined for some diganostics as
the interannual variability and for others as an uncertainty
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due to the measurement. However, this does not replace the
need for consideration of confidence intervals. Our results
suggest that even the qualitative results, obtained in WE08
will change drastically when these effects are included in the
grading.

In the next section, we are addressing the questions related
to errors in model and observational data: “What statistical
implications do these errors have on a model grading?” and
“What statistical implications do they have on the difference
of two model grades?”. In Sect. 3, we define the general
statistical terms, which we use. In Sect. 4, we present ex-
amples, which are aimed to clarify the shortcomings of the
grading. In Sect. 5 the implications for a grading are dis-
cussed, when statistical significance levels are included in
the grading approach. This illustrates the difference between
the information on model performances presented in WE08
and the statistically sound information.

2 What is a grading?

Generally, a grading means “How well does a test object rep-
resent a certain reference value?”. It consists of two parts,
a test of the object against a reference value and a rela-
tion between the outcome of the test and a grade. That
is exactly what the first two sentences of the abstract of
Waugh and Eyring (WE08 in the following) is about: “A set
of performance metrics is applied to stratospheric-resolving
chemistry-climate models (CCMs) to quantify their ability
to reproduce key processes relevant for stratospheric ozone.
The same metrics are used to assign a quantitative measure
of performance (“grade”) to each model-observations ...”

So there are two basic questions: “When does a test object
represent the reference value?” and “How to derive a grade
from a difference between the test value and the reference
value?”.

It is important to separate these two questions. It is nec-
essary to find a method dealing with either question. This
is one of the main reasons, why the methodology applied in
WE08 does not provide the information it was designed for.

2.1 When is a model result representing an
observation?

In this case the test objects are results from climate-chemistry
models and the reference value is a certain observation.

The reference value itself is not precisely known, basically
for four reasons:

1. uncertainties in measurement techniques,

2. uncertainties in methodology,

3. representativity for a certain region and time, and

4. representativity for a climatological value.

The first point summarizes all uncertainties associated
with the measurement techniques, e.g., the precision of a
measurement. The second one is more related to the process-
ing of the measured data to derive the physical quantity, e.g.,
retrieval algorithms. The third one describes an uncertainty,
which is related to the temporal and spatial coverage of the
measurements. The sampling of data by satellite measure-
ments might be restricted to clear sky conditions, a certain
local time or a latitude-longitude-time relation. If vertical
profiles or certain height information are used, these might
only represent a certain height region, weighted with a kernel
function, or the vertical localisation is given within an uncer-
tainty range, only. These three types of uncertainties describe
an uncertainty which is related to an observation for a certain
area and time period. For simplicity reasons let us assume
that the observations are given with a mean valueµobs and
an uncertainty range expressed by a standard deviationσ unc

obs.
Note that a bias also may occur, which complicates the whole
picture.

In the case of a quality assessment of climate-chemistry
models a further uncertainty has to be regarded in addition,
namely climate variability. Because of the interannual vari-
ability, a climatological mean value can only be determined
within a confidence interval. Here we assume that this vari-
ability can be expressed by a standard deviationσ iav

obs. We
further assume, unless stated otherwise, that the values are
Gaussian distributed, which is in many cases not correct,
e.g. for Northern Hemisphere temperatures. Note that the
application of t-statistics also implicitely assumes a Gaussian
distribution.

To summarize, all of these uncertainties limit the accuracy
to which a climatological value from any observation can be
determined. The uncertainties and errors are discussed in
WE08 and the grading approach includes a variability mea-
sure, which is based on either the interannual variability or
a measurement uncertainty. In Fig. 5 of WE08 the uncer-
tainty of the grade with respect to the used observational data
set (ECMWF versus UKMO) has been impressively demon-
strated. However, these findings are not systematically in-
cluded in the grading, i.e., from a grade 0.2 it cannot be
determined, whether the grade is low because the model is
incorrect or the observational data are badly estimated.

Figure 1 gives an illustration for the comparison of two
10 year model data sets (blue and green) and a 10 year ob-
servational data set (red). All are produced with computer
generated random numbers for Gaussian distribution (black
line) with expectation 0 and standard deviation 1. Note that
this example neglects any uncertainties in the observational
data, i.e.σ unc

obs=0 and just takes into account an interannual
variability.

In this example the underlying probability distribution is
identical for the “model” and “observational” data. Hence
model and the reality are identical, implying that the model
is representing the reality perfectly. However, the 10 realisa-
tions for either “model run” and the “observations” differ.
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The conclusion from this example is that from both, the
observational data and the model data, the underlying prob-
ability distributions have to be estimated and compared in a
statistical manner. This implies that at first a decision has to
be made on the accuracy of the statements. I.e. what is the
error that is tolerated in the decisions or in the uncertainty of
the grade. Then the estimates for the probability distributions
have to be compared and a decision can be made whether the
model represents the reality or not. Note that in the example
the assumed distribution is Gaussian, the estimates for the
expectation (which is 0 in the example) is the sample mean
value (differing from zero) and for the standard deviation the
sample standard deviation of the data.

2.2 When is a model better than another?

Model grades are used and will be used to rank models.
Grades condense a complex context into a single number.
However, as shown in Fig.1, every intercomparison can only
lead to a grade within a certain error range, which depends
on a large number of parameters. Hence two models (Fig.1)
might get two very different grades, however with errorbars
that are so large that the grades themselves do not differ sta-
tistically. Therefore a grade itself is meaningless, unless an
estimate for the uncertainty is given. Two model results are
given (blue and green) in the example above (Fig.1). They
are realisations (random samples) of the same random vari-
able (X), which in this case has a normal distribution with
expectationE(X)=0 and standard deviationS(X)=1 (N (0,
1)). However, their gradings differ: Model X has a grade of
0.77 and Model Y of 0.46, when applying Eq. (4) of WE08:

g =

{
1−

1
ng

|µmodel−µobs|
σobs

, if 1
ng

|µmodel−µobs|
σobs

≤ 1

0, else
(1)

whereµmodel and µobs are the sample mean values of the
model sample and observational sample, respectively.σobs is
the sample standard deviation of the observational data and
ng a factor (here: 3 as in WE08), which relates the differ-
ence of sample mean values of the observations and model
data tong times the sample standard deviation of the obser-
vational data. This metric has been applied in earlier studies
(Douglass et al., 1999; Kawa et al., 1999).

Following WE08, Model Y would be better than Model X
in this example, i.e. this example clearly shows the limita-
tions of the grading methodology as applied in WE08. In the
following, terms and definitions are given. These form the
basis for a systematic analysis, which is performed to show
that the example, given above, is not an extreme outlier, but
a representative example. The methodology can also be used
as a basis for analysing further grading approaches.
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Fig. 1. Three random experiments (red, blue, and green) with 10
realisations each. A random number generator with with a Gaussian
distribution and an expectation of 0 and standard deviation 1 (black
line) is applied to generate these numbers. I.e. this represents reality
(Er

= 0 andSr
= 1). The calculated sample mean values (µmodX=

0.0345;µmodY = −0.5998;µobs= −0.2339) and sample standard
deviations (σmodX = 0.3902;σmodY = 1.234;σobs= 1.005) for the
three realisations are shown on top of each row. The red one is taken
as an observational dataset, the other two as results from 2 model
experiments. Hence the mean values of the observation, Model X
and Model Y will all converge to 0 (=expectation of the normal
distribution) with increasing sample size.

3 Terms and definitions

In the following, X, Y , Z denote random variables repre-
senting a given diagnostic for two models “Model X” and
“Model Y” and observations. We are consideringN realisa-
tions of either Model X and Model Y, i.e. we have 2 samples,
X1,...,XN , andY1,...,YN , and a sampleZ1,...,ZM for the
observations with sample sizeM.

We assume that the random variables have normal dis-
tributions, with expectationsE(X), E(Y ) and E(Z) and
standard deviationS(X), S(Y ) and S(Z). To be consis-
tent with WE08, we denote the sample means ofX1,...,XN ,
Y1,...,YN , andZ1,...,ZM asµmodX, µmodY, andµobs. Note
that in this caseµ is not the expectation. In analogy, the sam-
ple standard deviations are given byσmodX, σmodY, andσobs.
Further, we denoteEr andSr the real expectation and real
standard deviation, describing the real atmosphere. Hence a
model is perfect ifE(X)=Er andS(X)=Sr and observations
are perfect ifE(Z)=Er andS(Z)=Sr .

Further GX and GY denote random variables of the
grading of Model X and Model Y, andGX1,...,GXK and
GY1,...,GYK are samples of the grades of Model X and Y,
respectively. The samples have a sample sizeK each and
are calculated on the basis of samples of the random vari-
ablesX, Y andZ with sample sizesN for the models and
M for the observations. The sample mean values are given
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Table 1. Overview on the four statistical tests performed to determine thresholds for grades. Details are described in Sect. 3.X andY are
random variables representing 2 models and,Z is the random variable representing observations, andGX andGY are the respective random
variables for the model grades.E(•) andS(•) denote the expectation and standard deviation.Er andSr denote expectation and standard
deviation of the reality. The threshold are calculated by inverting the given equation and the underlying pdf is calculated with Monte-Carlo
simulations with the given conditions.

Information on the determination of the threshold
H0 Hypothesis Threshold Equations Conditions

Model differs from observations E(GX) = E(GZ) gobs(p) P (GX ≤ gobs(p)) = p E(X) = E(Z) S(X) = S(Z)

Model differs from reality E(GX) = E(GZ) greal(p) P (GX ≤ greal(p)) = p E(X)= Er S(X) = Sr

2 Models differ (perfect obs.) E(GX) = E(GY) 1g(p) P (|GX−GY | > 1g(p)) = p E(X) = E(Y ) S(X) = S(Y )

E(Z) = Er S(Z) = Sr

2 Models differ (imperfect obs.) E(GX) = E(GY) 1g(p) P (|GX−GY | > 1g(p)) = p E(X) = E(Y ) S(X) = S(Y )

E(Z)=Er
+α×Sr S(Z)=β×Sr

by µGX andµGY , i.e.µGX andµGY are the mean values of
K grades of either Model X and Y withN samples of the
random variablesX andY (models) andM samples of the
random variableZ (observational data). Note that for one
specific model run (as in WE08) the sample sizeK equals
1. The expectations of the random variableGX andGY are
E(GX) andE(GY).

In the following, we introduce the statistical tests, per-
formed within this study. An overview can be found
in Table 1. A model is then statistically different from
the observations, if the null hypothesis H0: “Model and
observations have the same expectation” can be rejected
and the alternative hypothesis H1: “Model and observa-
tions are different” can be accepted. For a model that
does not differ statistically from observational data, i.e. for
E(X)=E(Z) andS(X)=S(Z), we determine the threshold
valuegobs(p) for which the probability thatGX≤gobs(p) is
p, i.e.P(GX≤gobs(p))=p, wherep is the probability that
H0 is erroneously rejected. (We usep=1% and 5% in the
following.) As an example, we consider one realisationGX1
of the random variableGX, e.g. as in WE08. We reject the
null hypothesis and regard the model as statistically signifi-
cantly different from the observations, if the gradingGX1 of
Model X is smaller thangobs(p).

A model is then considered imperfect, if the null hypothe-
sis H0: “Model and reality have the same expectations” is re-
jected and the alternative hypothesis “Model and reality have
different expectations” is accepted. Hence we determine the
threshold valuegreal(p), whereP(GX<greal(p))=p.

Note that these two tests seem to be very similar, however
they have different implications. They differ in the expecta-
tion and standard variation of the random variableZ, which
areE(Z) andS(Z) in the first case andEr andSr in the sec-
ond case. In general, observational data are erroneous, which
means thatE(Z)6=Er or S(Z)6=Sr . This has an impact on
the grading, which we will describe in detail below.

Two model gradings are then statistically different, if
the null hypothesis H0: “Grade of Model X and grade of

Model Y are equal” can be rejected and the alternative hy-
pothesis H1: “Grades of Model X and Model Y are dif-
ferent” can be accepted. Hence we determine the thresh-
old value1g(p), whereP(|GX − GY |>1g(p))=p, with
E(X)=E(Y ) andS(X)=S(Y ).

The statistical tests given in WE08 (their Sect. 2.2)
are special cases identical to those described above,
with the assumptionsE(Z)=Er and S(Z)=Sr and
σmodX=σmodY=σobs. Our analysis will show that there is no
disagreement between our findings and the results presented
in WE08 with respect to the special cases. However, in gen-
eral, the confidence intervals for the gradings are much larger
than for these special cases. An inclusion of confidence lev-
els into the grading will change the grading results drasti-
cally.

4 Examples

4.1 A perfect model and perfect observations

Let us assume that we have a perfect model and that we
know perfectly the regarded diagnostic of the reality. Fur-
ther we assume that the values of the individual years
(here: N=M=10 years) have normal distributions. Since
model and observations are considered to be perfect in
this case, the model’s and observational’s expectations and
standard deviations are equal:E(X)=E(Z)=Er

=0 and
S(X)=S(Z)=Sr

=1.
The expectation of the grading (E(GX)) is then:

E(GX)=1−
1

3

|E(X−Z)|

S(Z)
6=1−

1

3

|E(X)−E(Z)|

S(Z)
=1,

in general.
We estimateE(GX) by means of a Monte Carlo simu-

lation. We performK=100 000 realisations ofGX. Each
has random samples ofX andZ with sample sizeN (=10).
The resulting probability density function is given in Fig.2.
The derived sample mean value for the grading isµGX=0.87
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(sinceK is largeµGX already converged toE(GX)) and the
median is 0.88. They hence differ remarkably from 1. Calcu-
lating thep=5% (1%) percentile from the frequency distri-
bution (Fig.2) gives a value ofgobs(p)=greal(p)=0.65 (0.5)
for this case.

For illustration purpose we additionally assume an uni-
form distribution of the random variablesX andZ, with val-
ues between−1 and +1. The resulting pdf forGX is the
blue line in Fig.2. It only slightly differs from the Gaussian
distribution.

4.2 A perfect model and imperfect observations

We know that observations have errors from measurement
techniques, from analysis and due to spatial sampling or cer-
tain conditions under which the observations are derived.
They also have some uncertainties related to the represen-
tativity (e.g. Lary and Aulov, 2008).

Let us assume that (as above) the reality can be described
by an expectationEr and a standard deviationSr . If we had
perfect observations the sample mean valueµobs would be
close toEr , for a large number of observational data (M).
Let us now assume that the observational data have an error.
We express this error by an offset in the expectation and stan-
dard deviation:E(Z)=Er

+α×Sr andS(Z)=β×Sr . I.e. the
observations have an error expressed by a multiple (or frac-
tion) of the standard deviation, which is the interannual vari-
ability in the case of annual mean data.

An uncertainty in the expectation (=α) of 50% to a fac-
tor of 3 of the standard deviation is a reasonable assumption,
as we will show by 2 examples in the following. For mid-
latitude (35◦ N–60◦ N) total ozone columns, the interannual
variability is in the range of 5% and the differences between
the various datasets (Ground-based, SBUV, NIWA, GOME)
are around 2–3%, which is around 50% of the interannual
standard deviation (see WMO (2006) p. 3.11) .Lary and
Aulov (2008) presented distributions of HCl measurements,
e.g. for January at 450 K to 590 K isentropic levels and be-
tween 49 and 61◦ N. Differences between 3 measurement
systems are around 0.3 ppbv, whereas the interannual vari-
ability for HALOE January values is in the order of 0.1 ppbv,
which gives a factor ofα=3.

Figure3 shows the mean values, 5% and 1% percentiles of
the grading parameter. The coordinate (0, 1) represents the
perfect observation, i.e., the example in Sect.4.1. Clearly,
the grading of the perfect model depends on the quality of
the observational data. An increasing error in the expecta-
tion and hence the sample mean value leads to a reduction
of the grading value. If the standard deviation in the obser-
vational data is lower than in reality, the grading value for
the perfect model is also reduced. Whereas the model gets a
better grading, if the standard deviation of the observation is
larger than in reality. The 5% and 1% percentiles (Fig.3, mid
and bottom) are decreasing to grading values of lower than
0.2, if either parameter has a 50% uncertainty. Hence, the
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Fig. 2. Probability density function for the random variableGX

(=grading) of a perfect model on the basis of perfect observations
for a Gaussian (red) and a uniform (blue) distribution (between−1
and +1).

case without errors in the observations or whenever error es-
timates are not available, gives a good estimate for an upper
boundary of the threshold (=left side of the confidence in-
terval) at which a grade becomes significantly different from
that of a perfect model.

To summarize, allowing a 1% error margin means that all
models with a grading of more than 0.1 have to be regarded
to be perfect, for most of the observational data qualities re-
garded in this example.

4.3 Two identical models

Here the difference of two model gradings is investigated,
i.e. we answer the question “Is Model X statistically different
from Model Y?” (see also Sect.3).

Let us first assume that we have perfect observations
and two identical, but imperfect models, with expecta-
tion E(X)=E(Y )=Er

+αmod×Sr and standard deviation
S(X)=S(Y )=βmod×Sr . (Both models are perfect for
αmod=0 andβmod=1.) The expectation of either model grad-
ing is identicalE(GX)=E(GY) and the difference of both
is 0.

In the example in Sect.4.2, the expectation and standard
deviation of the observations were overlaid with an error.
Here, the same error approach is applied to the 2 models.
The parametersαmod and βmod, are randomly chosen, but
equal for the models. They cover a deviation of maximum
2 timesSr . The parameter range is smaller than in the previ-
ous example and actually describes small values for current
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Fig. 3. Top: mean grading, i.e. expectation of the random variable
GX (=E(GX)) (top), 5%- (mid), and 1%-percentiles (bottom) for
a perfect model and imperfect observations. The error in the ob-
servations is defined by an offset in the expectation (y-axes) and a
multiple of the standard deviation (x-axis). The offset is a multiple
of the standard deviation.α=0 andβ=1 represents perfect obser-
vations.

CCMs. For each of the 2 parameters 23 parameter settings
were chosen in the given range. For each setting 10 000 iter-
ations (=K) were calculated to estimate the probability den-
sity function of the difference in the two model gradesGX

andGY , which add up to more than 5 million iterations. As
an illustration, Figure1 shows one such an iteration, with
N=M=10 values for the observations, and Model X and Y,
each, though for perfect models. The frequency distribution
of the 1% and 5% percentiles for the absolute difference in
the two model grades are shown in Fig.4. The mean 5%
and 1% percentiles of the absoute difference for all regarded
parameter settings are 0.33 and 0.42 (vertical lines). How-
ever, in 5% of the parameter settings 1% (5%) of the model
differences are larger than 0.65 (0.51). And in 1% of the pa-
rameter settings 1% (5%) of the differences are larger than
0.72 (0.55), defining the 1%- and 5%-percentiles.

In Fig. 4 (bottom) results are presented with inclusion
of imperfect observational data. The error is analogously
considered: E(Z)=Er

+αobs×Sr and S(Z)=βobs×Sr .
αobs,σobs,αmod,βmod are independently chosen in the range
[0.5, 2]. The results are similar to those with perfect obser-
vation, except that the confidence intervals are significantly
increasing. The distributions have longer tails.

This leads to the conclusion that based on their gradings,
two models are not distinguishable with these assumptions,
unless the difference is larger than 0.71 and 0.86 for perfect
and imperfect observational data, respectively.

To summarize, these examples demonstrate that the statis-
tical tests performed in WE08 are in agreement with our find-
ings, however for special cases only. They give a threshold
g∗

=0.7 for N=11, E(Z)=Er , S(Z)=Sr , andσobs=σmodX,
which roughly corresponds to our valuegreal(p=0.05)=0.65
for N=10,E(Z)=Er , S(Z)=Sr , howeverσobs6=σmodX.

Further they give a threshold value of 0.3 for a statisti-
cally significant difference in two model gradings at a 5%
significance level, with the assumptionsN = 11,E(Z)=Er ,
S(Z)=Sr , and σobs=σmodX=σmodY. Our correspond-
ing value is1greal(p=0.05)=0.33 for N=10, E(Z)=Er ,
S(Z)=Sr , howeverσobs 6= σmodX=σmodY.

The examples further show that the values for the spe-
cial cases analysed in WE08 are misleading and that an ad-
equate inclusion of observational errors change these thresh-
olds. Without any further analysis of the uncertainties in the
observational data, it cannot be decided whether a 95% con-
fidence interval spans 1/3 or the whole grading interval [0,
1].

5 Consequences for the grading

In the last section we have investigated the reliability of the
grading according to WE08. In this section we show its im-
plications on the overall grading picture, i.e. on their Figs. 2
and 4. Applying the same procedure as in the previous sec-
tions, we randomly defined 16 diagnostics and 13 models.

Atmos. Chem. Phys., 9, 9101–9110, 2009 www.atmos-chem-phys.net/9/9101/2009/



V. Grewe and R. Sausen: Comment on “Quantitative performance metrics” 9107

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1

 P
D

F

 Difference in g 

Probability density distribution of error in g(Model1)-g(Model2)

Konf95
konf99

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1

 P
D

F

 Difference in g 

Probability density distribution of error in g(Model1)-g(Model2)

Konf95
konf99

F
ig.

4.
P

ro
b

ab
ility

d
en

sity
d

istribu
tio

n
o

f
th

e
th

e
1

%
(g

reen
)

an
d

5
%

(red
)

p
ercen

tile
fo

r
th

e
ab

so
lu

te
d

ifferen
ce

o
f

tw
o

ran
d

o
m

variab
les|G

X
−

G
Y
|,

i.e.
th

e
d

ifferen
ce

in
th

e
g

rad
in

g
o

f
tw

o
im

p
erfect

bu
t

id
en

tical
m

o
d

els
fo

r
p

erfect
(to

p
)

an
d

im
p

erfect
(b

o
tto

m
)

o
b

servatio
n

s.
T

h
e

vertical
lin

es
sh

ow
th

e
exp

ectatio
n

o
fth

e
1

%
an

d
5

%
p

ercen
tiles.

23

Fig. 4. Probability density distribution of the the 1% (green) and
5% (red) percentile for the absolute difference of two random vari-
ables|GX−GY |, i.e. the difference in the grading of two imperfect
but identical models for perfect (top) and imperfect (bottom) obser-
vations. The vertical lines show the expectation of the 1% and 5%
percentiles.

We then compare two grading approaches: the first is iden-
tical to that in WE08 and the second maps this grading to a
0 to 1 scale, where 1 is defined by the 5%-percentile of the
grade from WE08. Any major qualitative differences occur-
ring between these gradings imply that the grading of WE08
is not sound. The diagnostics are based onM=N=5 to 40
years of data, the expectation and standard deviation of the
observations and models vary by randomly chosen factorsα,
β between 0.25 and 2 and 3, respectively. Hence the mod-
els have potentially a larger error than the observations. A

detailed description of the parameters is given in the supple-
ment material.

Figure 5 (left) shows the grading matrix in analogy to
WE08, but for our random models and observations. The
diagnostic 1 and 4 has for all models high grades, whereas
the diagnostic 13 and 16 leads to low grades for all mod-
els. For all of the diagnostics, we have calculated the 5%
percentile for the expected grade of a perfect model and the
given imperfect observations. Figure5 (right) shows in black
all grades, which do not differ significantly from reality. For
all other grades the distance of the grade to the confidence
interval is taken as a deviation from the grade 1. Therefore,
Fig. 5 (right) shows the significant model grades (s-grades),
where a s-grade 1 indicates a model, which is not distinguish-
able from reality for the respective diagnostic. And all mod-
els with a lower s-grade do differ significantly.

This changes the picture of the grading considerably. For
diagnostic 1, which is characterised by high grades, the
s-grades are high, but half of the models are imperfect.
Whereas for diagnostic 2 many models have low grades, but
since the confidence interval is large, all models are not dis-
tinguishable from reality and hence get a perfect s-grade of 1.

The quality of model 1 is similar to the other models with
respect to the grade (Fig.5, left). However, taking into ac-
count the confidence intervals for the grades, this model be-
comes perfect with s-grades of 1 for all diagnostics. The
qualitative difference in the gradingg and statistical sound
s-grade for our random models and observations implies that
the grades given in Fig. 2 in WE08 are not reliable.

Figure6 shows for the diagnostic 7 the grades of all mod-
els, comparable to Fig. 4 in WE08. We chose this diagnostic,
because it is one of those showing a variability among the
models in the grades and s-grades. We pick out model 1
and look for a significant difference to other models. Six
models (red) do not differ significantly from reality and from
model 1. Although model 5 and 6 (grey) are significantly
different from reality, they do not differ significantly from
model 1. Only the models 3, 7, 9, 11 (green) differ signif-
icantly from model 1 and they also differ significantly from
reality. Hence a ranking of the models, which is suggested
for a weighting of the multi-model mean is a quite difficult
task, e.g. although the s-grades differ for model 1 and 5, both
models do not differ statistically significant from reality.

6 Conclusions

In the paper “Quantitative performance metrics for
stratospheric-resolving chemistry-climate models” by
Waugh and Eyring (2008) a method was introduced, which
converts the outcome of a diagnostic, i.e. a comparison of
climate-chemistry model data and observational data, into a
grade. A grading was applied to a number of diagnostics,
leading to an overall model grade, which was proposed to be
used as a weighting for a multi model mean.
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Fig. 5. Grading matrices for 13 random models and 16 random diagnostics for 2 different statistical interpretations of the grading Eq. (1).
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Fig. 6. Grading of the models for diagnostic 7. Horizontal lines
mark the 5% percentile for a perfect model (red) and for significant
difference of either model 2–13 to model 1 (blue). Models, which
do not differ significantly from reality at a 95% confidence level are
marked in red. Models, which significantly differ from model 1 are
marked in green. Models, which do not differ significantly from
model 1, but which differ significantly from reality are marked in
grey. Errorbars indicate the 95% confidence interval for the grading
difference to any other model, i.e. within these errorbars two models
are equal. The squares mark the s-grades.

In this comment, we focus on the statistical basis for the
grading, with two aspects, the statistical confidence in the
grade itself, and the possibility to statistically distinguish two
models with this grading. A summary is given in Table2.
Even if perfect observations could be performed, and a per-

fect model is applied, an expected grading of 0.87 is obtained
for a ten year dataset, the 99%-confidence interval for the
model’s grade is[0.5,1]. If we were not able to perform per-
fect observations, i.e. the observations have a bias in the order
of σobs, the interannual variability, then this confidence inter-
val is even enlarged to almost the whole range of the gradeg

[0.01,1].
Two models differ statistically, if their grades differ by

more than 0.33 and 0.42 for an assumed error of 5% and
1%. However, these are mean values for a range of possible
imperfect observational data. In 1% of the regarded errors
in observational data, a difference in the grade of more than
0.86 is needed to significantly distinguish two models. And
note that no answer is yet given on how much the models dif-
fer. If a statistical significant minimum difference (e.g. 0.1,
0.2, 0.3, ...) is regarded for the difference of two models, then
this requires confidence intervals for each chosen minimum
difference. Hence a ranking of the models is hardly possible,
and applicability for a multi-model mean is very limited.

In Fig. 2 in WE08 the grades of a number of models and
diagnostics are presented. The grading does not include any
uncertainty in the observational dataset for most performance
metrics. The parameterσobs in their formula describes either
an interannual variability or an uncertainty due to measure-
ments. In the first case the measurements are implicitely re-
garded as perfect. And hence those are comparable to the
example in Sect.4.1. This implies that all models with a
grade larger than 0.5 have to be regarded to be perfect. Lower
model grades indicate a significant difference to the obser-
vational data. This is a qualitative statement and a further
quantification on a statistically sound basis cannot be given.
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V. Grewe and R. Sausen: Comment on “Quantitative performance metrics” 9109

Table 2. Overview on the results from the Monte Carlo simulations. Imperfect observations are defined by an offset in the expectation and a
multiple in the standard deviation (Details see text).

Percentile
5% 1%

Model differs significantly from reality (perfect observations) g < 0.65 g < 0.50
Model differs significantly from reality (imperfect observations) g < 0.20 g < 0.01
Two models differ significantly (perfect observations) |1g| > 0.33 |1g| > 0.42
Two models differ significantly in 5% of perfect observations |1g| > 0.51 |1g| > 0.65
Two models differ significantly in 1% of perfect observations |1g| > 0.55 |1g| > 0.71
Two models differ significantly in 5% of imperfect observations|1g| > 0.52 |1g| > 0.69
Two models differ significantly in 1% of imperfect observations|1g| > 0.65 |1g| > 0.86

However, the observational data have uncertainties, which
should be accounted for. A thorough re-analysis of the grad-
ing would imply an estimate of the observational errors and
interannual variabilities of all used observational datasets,
which has not been performed. If only a 25% or 50% un-
certainty with respect to the standard deviation is taken into
account for the mean value and the standard deviation, then
the results for the random models presented here suggest that
without any further consideration of the measurement uncer-
tainties, we cannot decide whether most of the models pre-
sented in Fig. 2 in WE08 differ on a statistical basis. There
might indeed be cases where differences in grades are large
enough to assume that those differences are statistically sig-
nificant. But from the analysis performed so far we simply do
not know. It has to be noted that observational error estimates
are not available for all of the addressed parameters. Often
uncertainties from retrievals or uncertainties associated with
the representativity for a certain region and time are rarely
addressed. An educated guess might be necessary. Omis-
sion of such uncertainties because they are not known would
implicitely imply that these uncertainties are zero, which is
probably more unrealistic than an educated guess.

The statistical tests, which we performed are in agreement
with those performed in WE08. Their tests are however only
special cases, which assume perfect observations and that the
interannual variability in the observational data equals the in-
terannual variability in the model data. The generalisation
of the statistical test with the inclusion of observational er-
rors and differing interannual variability in the observational
and model data clearly shows a distinct difference in the re-
sults, e.g. grading confidence levels. Moreover the inclusion
of the statistical findings into the grading approach was not
performed in WE08, which limits the interpretation of the
results, since it is not clear, which gradings are statistical
significant or which model gradings differ statistically from
each other. I.e., the results presented in Fig. 2 in WE08, e.g.,
for the diagnostic Temp-Trop do not reflect the findings pre-
sented in Fig. 5c in WE08, showing the large dependency on
the observational dataset.

We have not addressed the comparability of the grades for
different diagnostics so far. If an observation has a very large
error, i.e. little valuable information can be drawn from this
observation the grade after WE08 would be large, ifσobs
refers to this uncertainty. On the other hand, if there is a very
accurate observation, already a rather small offset between
the model and the observation may result in a low grade. A
generalisation, e.g. which model bias in terms of multiple of
the interannual variability is tolerable, might not work. One
may decide in certain cases independently from the statistics,
which deviation from the observations should be tolerated.

A further challenge, which has not been addressed so far,
is the robustness of a multi-diagnostic grade. In this com-
ment, the grading properties were investigated on the basis
of one diagnostic, only. If more than one diagnostic is taken
into account, the variability of the individual grades has to be
combined somehow with the confidence intervals to provide
an overall model grade with an uncertainty range.

The evaluation of models is an important part of model de-
velopment. Multi-model approaches are the only way to ad-
dress questions, which are of high importance to politics and
society. Model grading helps to better understand model dif-
ferences and determine specific model shortcomings. Hence
a statistical sound grading is absolutely necessary. We pro-
pose a detailed verification of any further grading methodol-
ogy, e.g., on the basis of Monte Carlo simulations. And we
further strongly suggest not to consider a grading approach
in the way it was done for any further multi-modelling study.
In detail, we propose for any future grading (a) to either cal-
culate, estimate, or rely on expert judgement for all of the er-
rors 1–3 described in Sect. 2.1, as well as for the interannual
variability; (b) to include these uncertainties in the grading
approach such that if the model data cannot be statistically
distinguished from reality then and only then the grade is 1;
(c) to also include these uncertainties in the determination of
grades lower than 1 (e.g. 1−x), such that for a given signif-
icance level, model data and reality differ significantly by at
least a certain value, which corresponds to some valuex in
the grading.
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