Atmos. Chem. Phys., 9, 9109241Q 2009 iy —* -

www.atmos-chem-phys.net/9/9101/2009/ Atmospherlc
© Author(s) 2009. This work is distributed under Chemls_try
the Creative Commons Attribution 3.0 License. and Physics

Comment on
“Quantitative performance metrics for stratospheric-resolving
chemistry-climate models” by Waugh and Eyring (2008)

V. Grewe and R. Sausen

Deutsches Zentruniif Luft- und Raumfahrt, Institutifr Physik der Atmospére, Oberpfaffenhofen,
82230 Wessling, Germany

Received: 15 May 2009 — Published in Atmos. Chem. Phys. Discuss.: 26 June 2009
Revised: 23 November 2009 — Accepted: 25 November 2009 — Published: 1 December 2009

Abstract. This comment focuses on the statistical limi- high potential for these grades to be insignificant. This im-
tations of a model grading, as applied by D. Waugh andplies that the grades given by WEQ8 can not be interpreted
V. Eyring (2008) (WE08). The gradg is calculated for a by the reader. We further show that the inclusion of confi-
specific diagnostic, which basically relates the difference ofdence intervals into the grading approach is necessary, since
means of model and observational data to the standard deviatherwise even a perfect model may get a low grade.

tion in the observational dataset. We performed Monte Carla
simulations, which show that this method has the potential to
lead to large 95%-confidence intervals for the grade. More-
over, the difference between two model grades often has to b

very large to become statistically significant. Since the con- _ .
fidence intervals were not considered in detail for all diag-Waugh and Eyring (2008) (WEO8) applied a set of perfor-

nostics, the grading in WEQ8 cannot be interpreted, withoutance metrics to climate-chemistry models (CCMs) aiming

further analysis. The results of the statistical tests performe&"t quantifying their al,o'l'ty to reproduce key processes rell-
in WEO8 agree with our findings. However, most of those evant for stratospheric ozone. These performance metrics
’ are used to calculate a quantitative measure of performance,

tests are based on special cases, which implicitely assum de. Th q loved to illustrate the abil
that observations are available without any errors and that€- @ grade. These grades are employed to fllustrate the abil-

the interannual variability of the observational data and the't of individual models to simulate individual processes and

model data are equal. Without these assumptions, the 95042 identify general deficiencie; in mode_lling.key Processes.
confidence intervals become even larger. Hence, the cascz,l—,he_Se _grades are further applied to We'ght md_lVlduaI CCM
where we assumed perfect observations (ignored errors), prd)-rOJeCt'Ons of th_e ozone layer to derive a weighted multi-
vides a good estimate for an upper boundary of the threshoIdTnOdeI mgan projection. )

below that a grade becomes statistically significant. Exam- 1here is no doubt that the general approach, i.e. the model
ples have shown that the 95%-confidence interval may eveifalidation and grading, provides an important contribution
span the whole grading interval [0, 1]. Without consider- to scientific questions regarding stratosphen_c ozone. How-
ing confidence intervals, the grades presented in WEO8 d§Ver the approach relies on the way the grading is performed
not allow to decide whether a model result significantly de- and hence requires a statistical sound definition of the grad-

viates from reality. Neither in WEO8 nor in our comment it ing. Although the authors have discussed some statistical
is pointed out, which of the grades presented in WEQS in-

considerations, these considerations do not have any impli-
hibits such kind of significant deviation. However, our anal- ¢&tions on the grading, e.g. no confidence interval for the

ysis of the grading method demonstrates the unacceptabl?rading value is_ given. Moreover, gffects Iikg uncertainties
in the observational data are not included in most of the

gradings: the grading formula (details see below) includes

Correspondence tdv. Grewe a parametebops Which is defined for some diganostics as
BY

(volker.grewe@dlr.de) the interannual variability and for others as an uncertainty
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due to the measurement. However, this does not replace the The first point summarizes all uncertainties associated
need for consideration of confidence intervals. Our resultswith the measurement techniques, e.g., the precision of a
suggest that even the qualitative results, obtained in WEO8neasurement. The second one is more related to the process-
will change drastically when these effects are included in theing of the measured data to derive the physical quantity, e.g.,
grading. retrieval algorithms. The third one describes an uncertainty,
In the next section, we are addressing the questions relatedhich is related to the temporal and spatial coverage of the
to errors in model and observational data: “What statisticalmeasurements. The sampling of data by satellite measure-
implications do these errors have on a model grading?” andnents might be restricted to clear sky conditions, a certain
“What statistical implications do they have on the difference local time or a latitude-longitude-time relation. If vertical
of two model grades?”. In Sect. 3, we define the generalprofiles or certain height information are used, these might
statistical terms, which we use. In Sect. 4, we present exonly represent a certain height region, weighted with a kernel
amples, which are aimed to clarify the shortcomings of thefunction, or the vertical localisation is given within an uncer-
grading. In Sect. 5 the implications for a grading are dis-tainty range, only. These three types of uncertainties describe
cussed, when statistical significance levels are included iran uncertainty which is related to an observation for a certain
the grading approach. This illustrates the difference betweemmrea and time period. For simplicity reasons let us assume
the information on model performances presented in WEO&hat the observations are given with a mean valggs and

and the statistically sound information. an uncertainty range expressed by a standard deviajjtn
Note that a bias also may occur, which complicates the whole
) ] picture.
2 Whatis a grading? In the case of a quality assessment of climate-chemistry

. B . models a further uncertainty has to be regarded in addition,
Generally, a grading means “How well does a test object rep- . L : :

. N . namely climate variability. Because of the interannual vari-
resent a certain reference value?”. It consists of two parts

a test of the object against a reference value and a rela@bnny, a climatological mean value can only be determined

tion between the outcome of the test and a grade. Tha\{\/lthm a confidence interval. Here we assume that this vari-

> Gxactly what e 1t o setences of h abstact oy €4 b SUSSSet by & endars ceuentl e |
Waugh and Eyring (WEO8 in the following) is about: “A set : '

. . . . Gaussian distributed, which is in many cases not correct,
of performance metrics is applied to stratospheric-resolving

chemistry-climate models (CCMs) to quantify their ability €.g. .for .Northern Hemlspherg temperatures. Note that Fhe
: application of t-statistics also implicitely assumes a Gaussian
to reproduce key processes relevant for stratospheric 0ZONG: it ition

The same metrics are used to assign a quantitative measure . o
To summarize, all of these uncertainties limit the accuracy

of performance (“grade”) to each model-observations ... ) : : )
. T . _tp which a climatological value from any observation can be
So there are two basic questions: “When does a test objec . o . :
etermined. The uncertainties and errors are discussed in

represent the reference value?” and “How to derive a grad . . e
. EO8 and the grading approach includes a variability mea-
from a difference between the test value and the reference o ) ) 2
" Sure, which is based on either the interannual variability or
value?”. . .
It is important to separate these two questions. It is nec2 measurement uncertainty. In Fig. 5 of WEO8 the uncer-
P P q : tainty of the grade with respect to the used observational data

essary to find a_method dealing with either guestion. .Th'.sset (ECMWEF versus UKMO) has been impressively demon-
is one of the main reasons, why the methodology applied in

WEOQ8 does not provide the information it was designed for. strated._ However, t hesg findings are not systgmatlcally In-
cluded in the grading, i.e., from a grade 0.2 it cannot be

determined, whether the grade is low because the model is
incorrect or the observational data are badly estimated.
Figure 1 gives an illustration for the comparison of two

In this case the test objects are results from climate-chemistrgtO year model data sets (blue and green) and a 10 year ob-
models and the reference value is a certain observation. ~ servational data set (red). All are produced with computer
The reference value itself is not precisely known, basicallygenerated random numbers for Gaussian distribution (black

2.1 When is a model result representing an
observation?

for four reasons: line) with expectation 0 and standard deviation 1. Note that
this example neglects any uncertainties in the observational
1. uncertainties in measurement techniques, data, i.eo3 =0 and just takes into account an interannual
o variability.
2. uncertainties in methodology, In this example the underlying probability distribution is

identical for the “model” and “observational” data. Hence

model and the reality are identical, implying that the model
4. representativity for a climatological value. is representing the reality perfectly. However, the 10 realisa-
tions for either “model run” and the “observations” differ.

3. representativity for a certain region and time, and
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The conclusion from this example is that from both, the 05

observational data and the model data, the underlying prob- ' Observation nL
Model X  +
Model Y

ability distributions have to be estimated and comparedina § 04
statistical manner. This implies that at first a decision hasto € 3
be made on the accuracy of the statements. l.e. what is the2

error that is tolerated in the decisions or in the uncertainty of ‘% 0.2
the grade. Then the estimates for the probability distributions & ¢ 1
have to be compared and a decision can be made whether th@ 8
model represents the reality or not. Note that in the example 5 0
the assumed distribution is Gaussian, the estimates for theg 0.1
expectation (which is 0 in the example) is the sample mean &
value (differing from zero) and for the standard deviation the
sample standard deviation of the data.

-0.2

2.2 When is a model better than another?

Model grades are used and will be used to rank modelsFig- 1. Three random experiments (red, blue, and green) with 10
Grades condense a complex context into a single numbefealisations each. A random number generator with with a Gaussian

However, as shown in Fid, every intercomparison can only distribution and an expectation of 0 and standard deviation 1 (black

s - : ine) is applied to generate these numbers. |.e. this represents reality
lead to a grade within a certain error range, which depend%E, — 0ands” = 1). The calculated sample mean valugs fx —

ona large number of parameters. Hence two m_odels UFig. 0.0345 jtmogy = —0.5998 11gpe— —0.2339) and sample standard
might get two very different grades, however with errorbars jayiations Gmodx = 0.3902 oimody = 1.234 5gps = 1.005) for the
that are so large that the grades themselves do not differ stanree realisations are shown on top of each row. The red one is taken
tistically. Therefore a grade itself is meaningless, unless ams an observational dataset, the other two as results from 2 model
estimate for the uncertainty is given. Two model results areexperiments. Hence the mean values of the observation, Model X
given (blue and green) in the example above (E)g.They  and Model Y will all converge to O (=expectation of the normal
are realisations (random samples) of the same random vargistribution) with increasing sample size.
able (X), which in this case has a normal distribution with
expectationE (X)=0 and standard deviatio$( X)=1 (N (O,
1)). However, their gradings differ: Model X has a grade of 3 Terms and definitions
0.77 and Model Y of 0.46, when applying Eq. (4) of WEOS:
In the following, X, Y, Z denote random variables repre-
_ | 1k Mimoderitobs jf L lmoderitobs <1 (1)  Senting a given diagnostic for two models “Model X" and
&= 0, else “Model Y” and observations. We are consideriNgrealisa-
tions of either Model X and Model Y, i.e. we have 2 samples,
where umodel and wops are the sample mean values of the X;,..., Xy, andYs,...,Yy, and a sampley, ..., Zy, for the
model sample and observational sample, respectivglyis observations with sample si2é.
the sample standard deviation of the observational data and \We assume that the random variables have normal dis-
ng a factor (here: 3 as in WEO08), which relates the differ- tributions, with expectations£(X), E(Y) and E(Z) and
ence of sample mean values of the observations and modekandard deviatiors(X), S(Y) and S(Z). To be consis-
data ton, times the sample standard deviation of the obsertent with WE08, we denote the sample meanX ¢f..., Xy,
vational data. This metric has been applied in earlier studiey;, ..., Yy, andZx1, ..., Zy @S/tmodx, Amody, aNduops Note
(Douglass et a)1999 Kawa et al, 1999. that in this case: is notthe expectation. In analogy, the sam-
Following WEQ8, Model Y would be better than Model X ple standard deviations are given dyodx, mody, anNdogps
in this example, i.e. this example clearly shows the limita- Further, we denot&” and $” the real expectation and real
tions of the grading methodology as applied in WEO8. In thestandard deviation, describing the real atmosphere. Hence a
following, terms and definitions are given. These form the model is perfect it (X)=FE" andS(X)=S" and observations
basis for a systematic analysis, which is performed to showare perfect ifE (Z)=E" andS(Z)=S".
that the example, given above, is not an extreme outlier, but Fyrther GX and GY denote random variables of the
arepresentative example. The methodology can also be usegading of Model X and Model Y, and X1,...,GXx and
as a basis for analysing further grading approaches. GY1,...,GYk are samples of the grades of Model X and Y,
respectively. The samples have a sample &zeach and
are calculated on the basis of samples of the random vari-
ablesX, Y and Z with sample sizesv for the models and
M for the observations. The sample mean values are given
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Table 1. Overview on the four statistical tests performed to determine thresholds for grades. Details are described irkSeud.Y3are

random variables representing 2 models &hd the random variable representing observations @kicandGY are the respective random
variables for the model grade#.(e) and S(e) denote the expectation and standard deviatih.and S” denote expectation and standard
deviation of the reality. The threshold are calculated by inverting the given equation and the underlying pdf is calculated with Monte-Carlo
simulations with the given conditions.

Information on the determination of the threshold

Ho Hypothesis Threshold Equations Conditions
Model differs from observations E(GX)=E(GZ)  g°°(p) P(GX <g%(p)=p E(X)=E(Z) S(X)=5(2)
Model differs from reality E(GX)=E(GZ) g"™@p) P(GX <g™@p)=p E(X)=E" S(X)=5"

2 Models differ (perfectobs.) E(GX)=E(GY) Ag(p) P(|GX—-GY|>Ag(p)=p EX)=EXY)SX)=S)
E(Z)=E" S(Z)=S"
2 Models differ (imperfect obs.) E(GX)=E(GY) Ag(p) P(IGX—GY|>Ag(p)=p EX)=EY) S(X)=S(Y)
E(Z)=E"+axS8" S(Z)=BxS"

by ugx andugy, i.e. ugx andugy are the mean values of Model Y are equal’ can be rejected and the alternative hy-
K grades of either Model X and Y witlv samples of the pothesis H: “Grades of Model X and Model Y are dif-
random variablest andY (models) and samples of the ferent” can be accepted. Hence we determine the thresh-
random variableZ (observational data). Note that for one old value Ag(p), where P(|GX — GY|>Ag(p))=p, with
specific model run (as in WEO08) the sample skeequals E(X)=E(Y) andS(X)=S(Y).

1. The expectations of the random variabl& andGY are The statistical tests given in WEO08 (their Sect. 2.2)
E(GX)andE(GY). are special cases identical to those described above,

In the following, we introduce the statistical tests, per- With the assumptionsE(Z)=E" and S(Z)=S$" and
formed within this study. An overview can be found Omodx=0mody=00bs OUr analysis will show that there is no
in Table 1. A model is then statistically different from disagreement between our findings and the results presented
the observations, if the null hypothesis;H“Model and  in WEO8 with respect to the special cases. However, in gen-
observations have the same expectation” can be rejecte@fﬂ', the confidence intervals for the gradings are much Iarger
and the alternative hypothesis;H “Model and observa- than for these special cases. An inclusion of confidence lev-
tions are different’ can be accepted. For a model thatels into the grading will change the grading results drasti-
does not differ statistically from observational data, i.e. for cally.
E(X)=E(Z) andS(X)=S(Z), we determine the threshold
value g°PS(p) for which the probability that X <g°PS(p) is
p, i.e. P(GX<g%S(p))=p, wherep is the probability that
Ho is erroneously rejected. (We uge1% and 5% in the
following.) As an example, we consider one realisatibki;

of the random variablé; X, e.g. as in WEO8. We reject the | ot 5 assume that we have a perfect model and that we
null hypothesis and regard the model as statistically signifi-,,q perfectly the regarded diagnostic of the reality. Fur-
cantly different from the observations, if the gradiig1 of  ther we assume that the values of the individual years
Model X is smaller tharg*%(p). (here: N=M=10 years) have normal distributions. Since
A model is then considered imperfect, if the null hypothe- model and observations are considered to be perfect in
sis Hy: “Model and reality have the same expectations” is re- this case, the model’s and observational’s expectations and
jected and the alternative hypothesis “Model and reality havestandard deviations are equalE(X)=E(Z)=E"'=0 and
different expectations” is accepted. Hence we determine thg(x)=5(2)=5"=1.
threshold valug'3(p), whereP (G X <g"3(p))=p. The expectation of the grading (G X)) is then:
Note that these two tests seem to be very similar, however
they have different implications. They differ in the expecta- E(GX):l—}M 1—}w=1,
tion and standard variation of the random variablenvhich 3 82 3 5(2)
areE(Z) andS(Z) inthe first case and” andS” in the sec-  in general.
ond case. In general, observational data are erroneous, which we estimateE(GX) by means of a Monte Carlo simu-
means thatE(Z)#E" or S(Z)#S". This has an impact on  |ation. We performk =100 000 realisations o X. Each
the grading, which we will describe in detail below. has random samples af and Z with sample sizeV (=10).
Two model gradings are then statistically different, if The resulting probability density function is given in Fiy.
the null hypothesis bt “Grade of Model X and grade of The derived sample mean value for the gradingds=0.87

4 Examples

4.1 A perfect model and perfect observations

Atmos. Chem. Phys., 9, 910941Q 2009 www.atmos-chem-phys.net/9/9101/2009/
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(sinceK is largeugx already converged t6 (G X)) and the
median is 0.88. They hence differ remarkably from 1. Calcu-
lating the p=5% (1%) percentile from the frequency distri- Gaussian -
bution (Fig.2) gives a value 0§°°S(p)=g"?(p)=0.65 (0.5) Uniform
for this case.

For illustration purpose we additionally assume an uni-
form distribution of the random variablésandZ, with val- 4
ues between-1 and +1. The resulting pdf fo& X is the
blue line in Fig.2. It only slightly differs from the Gaussian
distribution.

Probability density distribution of g for a perfect model

PDF
w
T

4.2 A perfect model and imperfect observations 2 L

We know that observations have errors from measurement

techniques, from analysis and due to spatial sampling or cer- 1r

tain conditions under which the observations are derived.

They also have some uncertainties related to the represen- 0 | . !

tativity (e.g. Lary and Aulov, 2008). 0 0.2 0.4 0.6 0.8 1
Let us assume that (as above) the reality can be described Grading G

by an expectatiot®” and a standard deviaticfi. If we had

perfect observations the sample mean valdgs would be kg 2 probability density function for the random variaklex

close toE”, for a large number of observational dafd)}  (=grading) of a perfect model on the basis of perfect observations
Let us now assume that the observational data have an errar a Gaussian (red) and a uniform (blue) distribution (betweén

We express this error by an offset in the expectation and stanand +1).

dard deviation’E(Z)=E"+axS" andS(Z)=8xS". l.e. the

observations have an error expressed by a multiple (or frac-

tion) of the standard deviation, which is the interannual vari- case without errors in the observations or whenever error es-

ability in the case of annual mean data. timates are not available, gives a good estimate for an upper
An uncertainty in the expectation=¢:) of 50% to a fac-  boundary of the threshold (=left side of the confidence in-

tor of 3 of the standard deviation is a reasonable assumptiorigrval) at which a grade becomes significantly different from

as we will show by 2 examples in the following. For mid- that of a perfect model.

latitude (35 N-6C N) total ozone columns, the interannual ~ To summarize, allowing a 1% error margin means that all

variability is in the range of 5% and the differences betweenmodels with a grading of more than 0.1 have to be regarded

the various datasets (Ground-based, SBUV, NIWA, GOME)to be perfect, for most of the observational data qualities re-

are around 2-3%, which is around 50% of the interannualgarded in this example.

standard deviation (see WMO (2006) p. 3.11) ary and

Aulov (2008 presented distributions of HCl measurements, 4.3 Two identical models

e.g. for January at 450K to 590 K isentropic levels and be-

tween 49 and 6IN. Differences between 3 measurement Here the difference of two model gradings is investigated,

systems are around 0.3 ppbv, whereas the interannual vari-e. we answer the question “Is Model X statistically different

ability for HALOE January values is in the order of 0.1 ppbv, from Model Y?” (see also Sec3).

which gives a factor of=3. Let us first assume that we have perfect observations
Figure3 shows the mean values, 5% and 1% percentiles ofand two identical, but imperfect models, with expecta-

the grading parameter. The coordinate (0, 1) represents théon E(X)=E(Y)=E"+amogxS” and standard deviation

perfect observation, i.e., the example in SdcL. Clearly,  S(X)=S(Y)=BmodxS". (Both models are perfect for

the grading of the perfect model depends on the quality ofemog=0 andBmog=1.) The expectation of either model grad-

the observational data. An increasing error in the expectaing is identicalE(GX)=E(GY) and the difference of both

tion and hence the sample mean value leads to a reductiois O.

of the grading value. If the standard deviation in the obser- In the example in Sec#.2, the expectation and standard

vational data is lower than in reality, the grading value for deviation of the observations were overlaid with an error.

the perfect model is also reduced. Whereas the model getsldere, the same error approach is applied to the 2 models.

better grading, if the standard deviation of the observation isThe parametersmog and Bmod, are randomly chosen, but

larger than in reality. The 5% and 1% percentiles (Bignid equal for the models. They cover a deviation of maximum

and bottom) are decreasing to grading values of lower thar? timesS”. The parameter range is smaller than in the previ-

0.2, if either parameter has a 50% uncertainty. Hence, th@us example and actually describes small values for current

www.atmos-chem-phys.net/9/9101/2009/ Atmos. Chem. Phys., 9, 91002009
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Mean Value CCMs. For each of the 2 parameters 23 parameter settings
‘ ; were chosen in the given range. For each setting 10 000 iter-
ations &K) were calculated to estimate the probability den-
sity function of the difference in the two model gradéX
andGY, which add up to more than 5 million iterations. As
an illustration, Figurel shows one such an iteration, with
N=M=10 values for the observations, and Model X and Y,
each, though for perfect models. The frequency distribution
of the 1% and 5% percentiles for the absolute difference in
the two model grades are shown in Fg. The mean 5%
and 1% percentiles of the absoute difference for all regarded
parameter settings are 0.33 and 0.42 (vertical lines). How-
ever, in 5% of the parameter settings 1% (5%) of the model
differences are larger than 0.65 (0.51). And in 1% of the pa-
rameter settings 1% (5%) of the differences are larger than

a Bias in Obs. [factor ofstd.dev.]

B Obs.error in std.dev _[factor of std.dev]

1% Confidence 0.72 (0.55), defining the 1%- and 5%-percentiles.

In Fig. 4 (bottom) results are presented with inclusion

of imperfect observational data. The error is analogously
considered: E(Z)=E"+agpsxS" and S(Z)=pBopsxS".
Qobs Tobs ®mod, Bmod are independently chosen in the range
[0.5, 2]. The results are similar to those with perfect obser-
vation, except that the confidence intervals are significantly
increasing. The distributions have longer tails.

This leads to the conclusion that based on their gradings,
two models are not distinguishable with these assumptions,
unless the difference is larger than 0.71 and 0.86 for perfect
and imperfect observational data, respectively.

To summarize, these examples demonstrate that the statis-
tical tests performed in WEOQS8 are in agreement with our find-
B Obs.eror in std.dev factor of std.dev] ings, however for special cases only. They give a threshold

5% Confidence g*=0.7 for N=11, E(Z)=E", S(Z)=S", andoobs=0modx,
which roughly corresponds to our valg&?\( p=0.05)=0.65
for N=10, E(Z)=E", S(Z)=S", howeveroopsAomodx-

Further they give a threshold value of 0.3 for a statisti-
cally significant difference in two model gradings at a 5%
significance level, with the assumptioNs=11, E(Z)=E",
S(Z)=S", and oops=0modx=0mody-  Our correspond-
ing value is Ag"®(p=0.05=0.33 for N=10, E(Z)=E’,
S(Z)=S", howeveroops# Omodx=0mody-

The examples further show that the values for the spe-
cial cases analysed in WEO8 are misleading and that an ad-
equate inclusion of observational errors change these thresh-
olds. Without any further analysis of the uncertainties in the
observational data, it cannot be decided whether a 95% con-

B Obs.error in std.dev [factor of std.dev] fidence interval spans 1/3 or the whole grading interval [O,

1].

Fig. 3. Top: mean grading, i.e. expectation of the random variable
GX (FE(GX)) (top), 5%- (mid), and 1%-percentiles (bottom) for
a perfect model and imperfect observations. The error in the ob5 Consequences for the grading
servations is defined by an offset in the expectation (y-axes) and a
multiple of the standard deviation (x-axis). The offset is a multiple In the last section we have investigated the reliability of the
of the standard deviationv=0 andg=1 represents perfect obser- grading according to WEQ8. In this section we show its im-
vations. plications on the overall grading picture, i.e. on their Figs. 2
and 4. Applying the same procedure as in the previous sec-
tions, we randomly defined 16 diagnostics and 13 models.

a Bias in Obs. [factor ofstd.dev.]

o Bias in Obs. [factor ofstd.dev.]

Atmos. Chem. Phys., 9, 9109241Q 2009 www.atmos-chem-phys.net/9/9101/2009/
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Probability density distribution of error in g(Model1)-g(Model2) detailed description of the parameters is given in the Supple'
4 : : : : . : ment material.
'ﬁgﬂgg’ Figure 5 (left) shows the grading matrix in analogy to
35| ] WEO08, but for our random models and observations. The
diagnostic 1 and 4 has for all models high grades, whereas
31 1 the diagnostic 13 and 16 leads to low grades for all mod-
els. For all of the diagnostics, we have calculated the 5%
251 T percentile for the expected grade of a perfect model and the
L L | given imperfect observations. Figuséright) shows in black
a all grades, which do not differ significantly from reality. For
15 | all other grades the distance of the grade to the confidence
interval is taken as a deviation from the grade 1. Therefore,
s | Fig. 5 (right) shows the significant model grades (s-grades),
where a s-grade 1 indicates a model, which is not distinguish-
05 | i able from reality for the respective diagnostic. And all mod-
els with a lower s-grade do differ significantly.
0 L ! ! ! ! ! This changes the picture of the grading considerably. For
0 02 04 o6 08 ! diagnostic 1, which is characterised by high grades, the
Difference in g . .
Probability density distribution of error in g(Model1)-g(Model2) s-grades are high, but half of the models are imperfect.
4 - - - - % S —— Whereas for diagnostic 2 many models have low grades, but
konf99 since the confidence interval is large, all models are not dis-
35 T tinguishable from reality and hence get a perfect s-grade of 1.
The quality of model 1 is similar to the other models with
3r i respect to the grade (Fi§, left). However, taking into ac-
count the confidence intervals for the grades, this model be-
25 by . . .
comes perfect with s-grades of 1 for all diagnostics. The
5 L L ] qualitative difference in the grading and statistical sound
. s-grade for our random models and observations implies that
151 _ the grades given in Fig. 2 in WEOQS are not reliable.
Figure6 shows for the diagnostic 7 the grades of all mod-
1} E els, comparable to Fig. 4 in WE08. We chose this diagnostic,
because it is one of those showing a variability among the
0.5 - 8 models in the grades and s-grades. We pick out model 1
and look for a significant difference to other models. Six
°— 02 " 08 o8 0 models (red) do not differ significantly from reality and from
Difference in g model 1. Although model 5 and 6 (grey) are significantly

different from reality, they do not differ significantly from

Fig. 4. Probability density distribution of the the 1% (green) and Model 1. Only the models 3, 7, 9, 11 (green) differ signif-
5% (red) percentile for the absolute difference of two random vari-icantly from model 1 and they also differ significantly from
ables|GX—GY|, i.e. the difference in the grading of two imperfect reality. Hence a ranking of the models, which is suggested
but identical models for perfect (top) and imperfect (bottom) obser-for a weighting of the multi-model mean is a quite difficult
vations. The vertical lines show the expectation of the 1% and 5%task, e.g. although the s-grades differ for model 1 and 5, both
percentiles. models do not differ statistically significant from reality.

We then compare two grading approaches: the first is iden® €onclusions

tical to that in WEO08 and the second maps this grading to A the paper “Quantitative performance metrics for

0 to 1 scale, where 1 is defined by the 5%-percentile of the . : . . N
. o . stratospheric-resolving chemistry-climate models” by
grade from WEO08. Any major qualitative differences occur- ; . .
4 : : . Waugh and Eyring (2008) a method was introduced, which
ring between these gradings imply that the grading of WEO8 . L .
. ? : converts the outcome of a diagnostic, i.e. a comparison of
is not sound. The diagnostics are basedwwa N=5 to 40 : : . )
. - climate-chemistry model data and observational data, into a
years of data, the expectation and standard deviation of theé : : . .
. grade. A grading was applied to a number of diagnostics,
observations and models vary by randomly chosen factors leading to an overall model grade, which was proposed to be
B between 0.25 and 2 and 3, respectively. Hence the mod- g 9 ' prop

els have potentially a larger error than the observations. Aused as a weighting for a multi model mean.
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o b6 H EEE B EEEE HEEEEEEEEEENEEN 6
@ H N H N | AR EEENECEETN
e 8 [ | EEEEEEEEEEEEN 38
IS} HEEE H BN [ | HEEEEEEEEEEEER
S 10 H EH B [ ] | EEEEEE"EENRE 10
a EEEN [ | AEEEEEENENENNENENE
12 EfENENEEENE ENEEEEEEEEEEN 12
[ | [ ] | HEEEEEEEEEEEER
14 EEEE E B [ | ENEEEEEEEENEEN 14
[ 1 7 | [ 1 0 HEEEEEEEEEEEER
16 l“‘g“ —3 HEENENENNEEEEE 16
2 4 6 8 10 12 2 4 6 8 10 12
Model Mode

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Perfect Model
Grade/s—Grade

Fig. 5. Grading matrices for 13 random models and 16 random diagnostics for 2 different statistical interpretations of the grading Eq. (1).
Model performances and observational data are randomly defined, but equal for both grading interpretations. Left: Grading applied without
any further statistical considerations (as in WE08). Right: Grading with inclusion of 95% confidence intervals (s-grade). l.e. a model s-
grade equals 1, if the model grade is larger than the thresgfﬁa'((p), Tablel) for which a model that cannot be statistically significant
distinguished from reality. (See text for details).

Model grading for diagnostic 7 fect model is applied, an expected grading of 0.87 is obtained
. . . . . . for a ten year dataset, the 99%-confidence interval for the
25 L ) _Perfect model , . _
Imperfect model identical to model 1 model's grade i$0.5, 1]. If we were not able to perform per
Imperfect model different from sgrade  ® fect observations, i.e. the observations have a bias in the order
2r ™ Threshold for perfect model of oops the interannual variability, then this confidence inter-
reshold for model differing from model 1 —— A
val is even enlarged to almost the whole range of the ggade
g 1 roow1).
& L _l‘“ & & & e i Two models differ statistically, if their grades differ by
] *T B a 1 | more than 0.33 and 0.42 for an assumed error of 5% and
05 1%. However, these are mean values for a range of possible
J.l imperfect observational data. In 1% of the regarded errors
0 | | in observational data, a difference in the grade of more than
. . . . . 0.86 is needed to significantly distinguish two models. And
2 4 6 8 10 12 note that no answer is yet given on how much the models dif-

fer. If a statistical significant minimum difference (e.g. 0.1,
Fig. 6. Grading of the models for diagnostic 7. Horizontal lines 0.2, 0.3, ...) is regarded for the difference of two models, then
mark the 5% p?rcentile for a perfeCt model (red) and for Slgn|f|cantth|s requ”'es Confldence |ntervals for each Chosen m|n|mum
difference of either model 2—13 to model 1 (blue). Models, which difference. Hence a ranking of the models is hardly possible,
do not differ significantly from reality at a 95% confidence level are and applicability for a multi-model mean is very limited

marked in red. Models, which significantly differ from model 1 are . .
marked in green. Models, which do not differ significantly from In Fig. 2 in WEOS the grades of a number of models and

model 1, but which differ significantly from reality are marked in diagnostics are presented. The grading does not include any
grey. Errorbars indicate the 95% confidence interval for the gradinguncertainty in the observational dataset for most performance
difference to any other model, i.e. within these errorbars two modelgmetrics. The parametepysin their formula describes either
are equal. The squares mark the s-grades. an interannual variability or an uncertainty due to measure-
ments. In the first case the measurements are implicitely re-
garded as perfect. And hence those are comparable to the
In this comment, we focus on the statistical basis for theexample in Sect4d.1. This implies that all models with a
grading, with two aspects, the statistical confidence in thegrade larger than 0.5 have to be regarded to be perfect. Lower
grade itself, and the possibility to statistically distinguish two model grades indicate a significant difference to the obser-
models with this grading. A summary is given in Tal?le  vational data. This is a qualitative statement and a further
Even if perfect observations could be performed, and a perguantification on a statistically sound basis cannot be given.
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Table 2. Overview on the results from the Monte Carlo simulations. Imperfect observations are defined by an offset in the expectation and a
multiple in the standard deviation (Details see text).

Percentile
5% 1%
Model differs significantly from reality (perfect observations) g <0.65 g <050
Model differs significantly from reality (imperfect observations) g <0.20 g<0.01
Two models differ significantly (perfect observations) |Ag|>0.33 |Ag|>0.42

Two models differ significantly in 5% of perfect observations |[Ag| >0.51 |Ag|> 0.65
Two models differ significantly in 1% of perfect observations |Ag|>0.55 |Ag|>0.71
Two models differ significantly in 5% of imperfect observationgAg| > 0.52 |Ag| > 0.69
Two models differ significantly in 1% of imperfect observationgAg| > 0.65 |Ag|> 0.86

However, the observational data have uncertainties, which We have not addressed the comparability of the grades for
should be accounted for. A thorough re-analysis of the graddifferent diagnostics so far. If an observation has a very large
ing would imply an estimate of the observational errors anderror, i.e. little valuable information can be drawn from this
interannual variabilities of all used observational datasetspbservation the grade after WE08 would be largegdis
which has not been performed. If only a 25% or 50% un-refers to this uncertainty. On the other hand, if there is a very
certainty with respect to the standard deviation is taken intoaccurate observation, already a rather small offset between
account for the mean value and the standard deviation, thethe model and the observation may result in a low grade. A
the results for the random models presented here suggest thgéneralisation, e.g. which model bias in terms of multiple of
without any further consideration of the measurement uncerthe interannual variability is tolerable, might not work. One
tainties, we cannot decide whether most of the models premay decide in certain cases independently from the statistics,
sented in Fig. 2 in WEOQ8 differ on a statistical basis. Therewhich deviation from the observations should be tolerated.
might indeed be cases where differences in grades are large A further challenge, which has not been addressed so far,
enough to assume that those differences are statistically sigs the robustness of a multi-diagnostic grade. In this com-
nificant. But from the analysis performed so far we simply do ment, the grading properties were investigated on the basis
not know. It has to be noted that observational error estimatesf one diagnostic, only. If more than one diagnostic is taken
are not available for all of the addressed parameters. Ofteimto account, the variability of the individual grades has to be
uncertainties from retrievals or uncertainties associated wittcombined somehow with the confidence intervals to provide
the representativity for a certain region and time are rarelyan overall model grade with an uncertainty range.
addressed. An educated guess might be necessary. Omis-The evaluation of models is an important part of model de-
sion of such uncertainties because they are not known wouldelopment. Multi-model approaches are the only way to ad-
implicitely imply that these uncertainties are zero, which is dress questions, which are of high importance to politics and
probably more unrealistic than an educated guess. society. Model grading helps to better understand model dif-
The statistical tests, which we performed are in agreementerences and determine specific model shortcomings. Hence
with those performed in WE08. Their tests are however onlya statistical sound grading is absolutely necessary. We pro-
special cases, which assume perfect observations and that tese a detailed verification of any further grading methodol-
interannual variability in the observational data equals the in-ogy, e.g., on the basis of Monte Carlo simulations. And we
terannual variability in the model data. The generalisationfurther strongly suggest not to consider a grading approach
of the statistical test with the inclusion of observational er- in the way it was done for any further multi-modelling study.
rors and differing interannual variability in the observational In detail, we propose for any future grading (a) to either cal-
and model data clearly shows a distinct difference in the re-culate, estimate, or rely on expert judgement for all of the er-
sults, e.g. grading confidence levels. Moreover the inclusiorrors 1-3 described in Sect. 2.1, as well as for the interannual
of the statistical findings into the grading approach was notvariability; (b) to include these uncertainties in the grading
performed in WEOQS8, which limits the interpretation of the approach such that if the model data cannot be statistically
results, since it is not clear, which gradings are statisticaldistinguished from reality then and only then the grade is 1;
significant or which model gradings differ statistically from (c) to also include these uncertainties in the determination of
each other. l.e., the results presented in Fig. 2 in WE08, e.ggrades lower than 1 (e.g—k), such that for a given signif-
for the diagnostic Temp-Trop do not reflect the findings pre-icance level, model data and reality differ significantly by at
sented in Fig. 5¢c in WEO08, showing the large dependency oneast a certain value, which corresponds to some valure
the observational dataset. the grading.
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