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Abstract. It has been shown that lag-covariance based sta-
tistical measures, suggested by the Fluctuation Dissipation
Theorem (FDT), may allow estimation of climate sensitiv-
ity in a climate model. RecentlySchwartz(2007) has used
measures of the decay of autocorrelation in a global surface
temperature time series to estimate the real world climate
sensitivity. Here we use a simple climate model, and analy-
sis of archived coupled climate model output from the IPCC
AR4 runs, for which the climate sensitivity is known, to test
the utility of this approach. Our analysis of these archived
model output data show that estimates of climate sensitiv-
ity derived from century-long time scales typically grossly
underestimate the models’ true climate sensitivity. We ana-
lyze the behavior of the simple model with adjustable heat
capacity in two surface layers, subject to various stochastic
forcings and for various climate sensitivities, modulated by
albedo and water vapor feedbacks. We use our simple cli-
mate model to demonstrate:

1. that a much longer time series would be required to ac-
curately diagnose the earth’s climate sensitivity than is
presently available

2. that for shorter time series there is a systematic bias to-
wards underpredicting climate sensitivity,

3. that the addition of a second heat reservoir weakly
coupled to the first greatly reduces the decorrelation
timescale of short temperature time series produced by
the model, aggravating the tendency to underestimate
climate sensitivity, and
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4. that because of this it is possible to have a selection of
models in which the climate sensitivity is inversely re-
lated to the decorrelation time scale, as is true for the
IPCC models.

1 Introduction

An accurate determination of the earth’s climate sensitivity,
the expected mean surface temperature response to a dou-
bling of carbon dioxide concentration, has been the outstand-
ing problem in climate dynamics for the last several decades.
Leith (1975) andBell (1980) introduced the idea that the cli-
mate sensitivity of the earth or of a general circulation model
(GCM) could be predicted using the Fluctuation Dissipation
Theorem (FDT) (Callen and Green, 1952). The FDT states
that for systems near equilibrium, the rate at which anomalies
dissipate is related to the sensitivity of the system to a finite
change in forcing.Bell (1980) andCionni et al.(2004) were
able to show that global climate sensitivity could in fact be
predicted to useful accuracy for a simplified climate model
and for a highly complex chemical GCM, respectively, using
measures based on the FDT.Gritsun and Branstator(2007)
showed that the complex patterns of a GCM response to spa-
tially isolated heating could be predicted using the FDT, and
noted that long time series (∼100 years) were required for
accurate diagnosis of the response matrix. In addition, they
present a clear justification for the applicability of the FDT
to models of the atmospheric flow, and thus potentially to the
real climate system.Langen and Alexeev(2005) used the
FDT to predict the zonal mean response of a GCM to cli-
mate forcing, using 500 years of model output data.North et
al. (1993) andvon Storch(2004) considered the dissipation
of fluctuations in a GCM and discussed the applicability of
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the FDT to climate models. Great hopes have been staked
on the use of the FDT to diagnose sensitivity using satellite
infrared radiance data (Goody et al., 1998).

In all of these discussions, two aspects of the potential use
of the FDT for climate sensitivity diagnoses have been ne-
glected. First, there has been no explicit discussion of the
use of the FDT in the case where the heat capacity of the
system is uncertain. Second, there has been no thorough in-
vestigation of how the length of the time series needed for an
accurate diagnosis of climate sensitivity depends on the pa-
rameters (climate sensitivity, heat capacity, number of inde-
pendent variables) of the system. In this paper, we investigate
the practical usefulness of the FDT for the purpose of diag-
nosing climate sensitivity. To do so, we use an extremely
simple climate model that is nevertheless includes parame-
ters controlling climate sensitivity, heat capacity and internal
heat transports.

Recently, Schwartz (2007) has used analysis of lag-
autocorrelation of the global mean surface temperature time
series for the last 150 years, along with analysis of ocean
heat storage over the last 50 years, to simultaneously calcu-
late the earth’s effective heat capacity and climate sensitiv-
ity. Schwartz(2007) diagnosed a value of the climate sensi-
tivity (0.3 K W−1 m2) that was quite low compared to other
estimates of climate sensitivity (0.75 K W−1 m2). Schwartz
argued that the discrepancy was due to the models’ over-
estimate of the climate system’s decorrelation time scale, ar-
guing that while his results showed a decorrelation time scale
of about 5 years, climate models typically required some
30 years to fully adjust to a step change in climate forc-
ing. We will show that actual climate model time series typ-
ically show decorrelation time scales similar to that found
by Schwartz(2007) for observed global average surface air
temperature. Thus, application of Schwartz’s technique to
climate model output results in a substantial underestimate
of the climate models’ climate sensitivity. We will use a sim-
ple heuristic climate model to show how a model with a rela-
tively long adjustment time may nevertheless exhibit a short
decorrelation time-scale.

Foster et al.(2008), Knutti et al. (2008), Scafetta(2008),
and Schwartz(2008) also address the claims ofSchwartz
(2007). Knutti et al. (2008) compares predicted and real-
ized climate sensitivity in the AR4 GCM runs, whileScafetta
(2008) andFoster et al.(2008) use simplified a climate model
to simulate the ability of the FDT to estimate climate sen-
sitivity. They also concluded that the method ofSchwartz
(2007) would systematically underestimate climate sensitiv-
ity. The analysis of the impact of multiple heat capacities
presented here is unique to this study.

In Sect. 2 we review the use of lag-correlation analysis to
estimate climate sensitivity. In Sect. 3, we applySchwartz
(2007)’s method to the IPCC AR4 model runs, to test the
method on modeled climate systems whose climate sensi-
tivity is known. In Sects. 4 and 5 we introduce our simple
climate model and apply it to explain the systematic under-

estimate of climate sensitivity by the lag-correlation method.
These errors are due both to the inadequate length of the time
series involved, and to the assumption of a single heat capac-
ity for the climate system.

1.1 Fluctuation dissipation and climate sensitivity

To gain an intuitive understanding of the use of lag-
correlation techniques to estimate climate sensitivity, the
reader should imagine the climate system as a linear oscil-
lator. By observing unforced oscillations of the temperature,
we hope to estimate the response of the climate system to
a step change in climate forcing. We assume that the un-
forced fluctuations, though in reality driven by internal insta-
bilities, can be treated as though they were driven by random
fluctuations of the forcing. The system tends to return to its
equilibrium temperature because of the dominant blackbody
feedback, whereby an increase in temperature leads to an in-
crease in outgoing radiation, and thus a return to equilibrium.
In a system with large climate sensitivity, a small fluctuation
in the climate state leads to feedbacks that tend to reduce
the response of outgoing radiation to the climate perturba-
tion and slow the return of the system to equilibrium. On
the other hand, in a system with small climate sensitivity, the
same fluctuation in climate state causes feedbacks that tend
to hasten the return to equilibrium. Thus a time series of
surface temperature ought to show larger lag-autocorrelation
in the system with larger climate sensitivity, and smaller lag-
autocorrelation in the system with smaller climate sensitivity.

There are a number of reasons to suspect that this relation-
ship might not be so simple in the real world. The relative
importance of external and internal drivers of global temper-
ature is different at different time scales, and it is reason-
able to suppose that feedbacks might therefore act differently
at different time scales. For instance, interannual variations
of global mean surface temperature in the real climate sys-
tem are largely driven by internal oscillations of the system
(e.g. ENSO), where the mean temperature change is a small
residual of large and nearly compensating patterns of heat-
ing and cooling. In this case it is clear that any geographic
dependence in the strength of climate feedbacks might make
the global feedback have a different relationship to the global
temperature for these internally forced variations than for ex-
ternally forced climate change (e.g. by a secular trend in car-
bon dioxide concentration).

These concerns suggest that the FDT should be applied
to the climate system using a large state vector, containing
many climate relevant variables. IndeedDymnikov and Grit-
sun(2005) andMajda et al.(2005) have shown that the FDT
applies well to the fully non-linear systems represented by
climate models, andGritsun and Branstator(2007) have con-
firmed that the response of a GCM to a spatially constrained
climate forcing can be predicted in detail using the FDT on
a large state vector (approximately 1800 variables). Never-
theless, in this work we focus on the ability of the FDT to
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diagnose climate sensitivity using a single global tempera-
ture variable so that we can focus on the data requirements
for this diagnosis, and especially on the role of an unknown
heat capacity as an obstacle to accurate diagnosis.

We now formalize our treatment of the relationship be-
tween the lag-correlation and climate sensitivity for a purely
linear system. Our discussion follows that ofPenland and
Sardeshmukh(1995) (a more general treatment, resulting in
the same formula for predicting climate system response to
forcing from the lag covariance matrix of the system vari-
ables, is given inGritsun and Branstator, 2007). Consider a
linear system forced by white noise (ξ ) and a fixed forcing
f :

dx
dt

= Bx + ξ + f, (1)

A change inf from f0 to f1 will result in a change in the
long-term mean value ofx of (x̄1−x̄0)=−B−1(f1−f0)

−1.
Thus we call−B the sensitivity matrix.−B can be deter-
mined by observation of the lag-covariances of the system,
as follows:

B =
1

τ
ln Cxx(τ )C(0)−1, (2)

whereCxx(τ )=<x(t+τ)xT (t)>, andτ is an arbitrary time
lag. By taking the exponent of both sides of Eq.2, and then
integrating over all time lagsτ , one obtains∫

∞

0
exp(τB)dτ =

∫
∞

0
Cxx(τ )C(0)−1dτ (3)

or

− B−1
=

∫
∞

0
Cxx(τ )C(0)−1dτ, (4)

which is a form of the FDT. Note that no use is made in this
estimate of the white noise forcing,ξ , and that the sensitivity
is given in units of time: it is the time scale of the equiv-
alent restoring force of the system.Gritsun and Branstator
(2007), following Dymnikov and Gritsun(2005) andMajda
et al. (2005), have shown that the same result (i.e. that the
equilibrium response of the system to a sustained small per-
turbation can be calculated using the integrated lag covari-
ance of the unperturbed system) can be obtained for non-
linear systems as long as their probability density functions
are approximately gaussian. In any practical application of
the FDT to climate sensitivity diagnosis, we must be able to
write the controlling equations of the climate system so that
the climate forcing appears on the right hand side in units of
Kelvins per unit time.This requires independent knowledge
of the heat capacity of the climate system.

One can use either Eqs.2 or 4 to obtain B. Schwartz
(2007) used a scalar equivalent to Eq.1, to estimate the
decorrelation time scale for the time series of global mean
temperature,− 1

τ
ln r(τ ), wherer(τ ) is the autocorrelation of

x at lagτ , by plotting its value versusτ for lags of up to 20

years, and looking for a tendency of the value of the decorre-
lation time scale to asymptote to a fixed value asτ increased.
He combined this estimate with a separate estimate of global
heat capacity to produce his estimate of climate sensitivity.

Cionni et al.(2004) employed a method inspired by the
FDT, where instead of calculating the integral of the lag co-
variance matrix of the systemx, they calculated the integral
of the lag covariance of the systemx and the forcingξ :

− Best
−1

=

∫ τL

0
Rxξ (τ )dτ, (5)

whereBest is an estimate of the best-fitting linear operator
B, whose accurracy is limited by the finite length of the time
seriesx, and where

Rxξ (τ ) =

∫
∞

0
x(t + τ)ξ(t)T dt/

∫
∞

0
ξ(t)ξ(t)T dt. (6)

τL, the upper limit of integration in Eq.5 is the lag beyond
which no significant correlation is observed. One way to
choose a value for this variable is to integrate Eq.5 for a
sufficiently largeτL thatBest reaches a maximum, and then
begins to decrease.Cionni et al.(2004) accurately estimated
climate sensitivity based on a 10 year time series of model
output data from a GCM run with fixed sea surface temper-
ature and known forcings. In their study, diagnosis of effec-
tive heat capacity was not needed because only the small land
surface heat capacity contributed to the decorrelation time. In
the real world the task becomes more difficult, due to short
time series and a lack of accurate forcing information.

2 Application to IPCC AR4 model output

Here we apply the tools described above to test the abil-
ity of analysis based on lag-correlation of temperature time-
series, combined with estimation of global heat capacity by
the methods ofSchwartz(2007) to predict climate sensitivity
in the IPCC AR4 model runs. Figure1a shows the autocorre-
lation of the detrended global mean surface air temperature
as function of lag (in years) for 18 coupled model simula-
tions of the 20th century (the “20c3m” runs). The curve for
the GISS global mean surface air temperature (Hansen et al.,
1996) is shown in light blue, and is the same curve shown in
Schwartz(2007), Fig. 2c. Note the good agreement between
the GISS curve and the IPCC model curves. Figure1b shows
the decorrelation time scale,−

1
τ

ln r(τ ) for the same global
mean surface air temperature time series. Again, the light
blue curve showing the GISS observations falls well within
the range of the IPCC model lag autocorrelation curves. The
variability of the decorrelation time scale as a function of
lag for each model, and for the observed data are due to a
combination of random error associated with the relatively
short time series involved, and deviations from linearity of
the models. In the absence of much longer runs for each
model, we cannot distinguish the role of each. We obtain our
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Fig. 1. (a) Lag autocorrelation of global mean temperatures from
the GISS surface air temperature record (light blue), and from the
IPCC AR4 20th Century runs (black).(b) De-correlation timescale
τ/ ln(r(τ ))) for the time global mean time series, and the same
color-coding.

best estimate of the model decorrelation time scale by finding
the lag for which the autocorrelation is less than zero, and av-
eraging the decorrelation time scale either over all lags up to
the lag with zero correlation, or over the three years prior to
that lag, whichever is greater. Using this method, the average
decorrelation time scale for the models is 8.3 yr, with a stan-
dard deviation of 4.5 yr, and a range of 2.8–18.5 yr. Thus,
Schwartz(2007)’s estimate of 5 yr falls in the range of the
model decorrelation time scales.

Following Schwartz(2007) we calculate the models’ ef-
fective heat capacity using two methods: by regressing the
global heat storage against the global temperature, and by
taking the ratio of the trends of heat storage and temperature.
Heat storage is obtained by integrating the global downward
flux of heat at the atmosphere’s lower boundary, which is the
sum of the latent and sensible heat fluxes, and the net down-
ward long and shortwave fluxes. Scatter plots of annual and
global mean heat storage anomaly versus annual and global
mean temperature anomaly are shown in Fig.2, offset from
zero mean for clarity. The light blue points refer the observed
ocean heat storage, and were taken by digitizing the lower
right panel of Fig. 4 inSchwartz(2007). That figure plots
GISS surface temperatures against ocean heat storage from
the surface to 3000 m from the Levitus data set (Levitus et
al., 2005), scaled upwards to account for the heat capacity
of land. As has been pointed out byForest et al.(2006), it
is apparent that the slope of the dependence of heat storage
on surface temperature (shown in light blue) for the observed
data is small (12 W yr m−2) compared to the range of values
found for the models. The average slope for the model data
is 90 W yr m−2 K−1, with a minimum of 10 W yr m−2 K−1,
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Fig. 2. Integrated net downward surface heat flux (in units of
W yr m−2) plotted versus global mean surface air temperature
anomaly. IPCC Models output data are shown in black as in Fig. 1,
with the GISS temperature andLevitus et al.(2005) heat storage fig-
ures taken by digitizing Fig. 4 ofSchwartz(2007), shown in light
blue.

and a standard deviation of 81 W yr m−2 K−1.
With these two quantities calculated, we can now, follow-

ing Schwartz(2007), make an estimate of the equilibrium cli-
mate sensitivity, and see how well it predicts the actual model
sensitivity. One difficulty with this procedure concerns the
definition of climate sensitivity. Since the theory underlying
the use of the decorrelation time scale to predict climate sen-
sitivity assumes small perturbations to the climate state, the
estimate ought to work best for a small climate forcing per-
turbation, such that state-dependent feedbacks are function-
ing near the unperturbed initial state. However, for reasons
of practical interest, climate models are generally run for fi-
nite periods using finite forcing. For the IPCC AR4 coupled
model runs, we can define climate sensitivity as either:

1. the full response of global mean surface air temperature
to a doubling of carbon dioxide, where the doubling oc-
curs over a period of 150 years, and the models are then
run for an additional 100 years allowing an approximate
equilibration,

2. as the transient response of global mean surface air tem-
perature during a 1 percent per year increase of carbon
dioxide, or

3. as the transient response of global mean surface air tem-
perature to one of several particular emission scenarios
in which a range of greenhouse gases increase mono-
tonically over the course of the model runs.

In Fig. 3, we show that these sensitivities are related
but different. Here, transient sensitivity of the models (in
K/100 yr) derived from a linear fit to the trend of global
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Fig. 3. Climate sensitivity from a linear fit to the first 50 years
of the IPCC AR4 runs with 1% per year increasing CO2 versus
climate sensitivity derived from the temperature difference between
the years 2100 and 2100 in the SRESa1b runs.

mean surface air temperature for the first 50 years of runs
with carbon dioxide increasing 1% yr−1 is compared with
climate sensitivity derived from the temperature difference
for the years 2000 to 2100 in the “SRESa1b” climate forc-
ing scenario. Among the nineteen models with output for
both experiments stored in the PCMDI archive, the corre-
lation coefficient of these two measures of climate sensi-
tivity is 0.57, indicating that important aspects of the cli-
mate system (whether the effective climate forcing due to
the imposed changes in greenhouse gas forcing, the climate
feedbacks or the effective heat capacities of different com-
ponents of the climate system) respond differently to these
two forcing scenarios. In the following discussion we will
present results comparing the climate sensitivity derived us-
ing the procedure ofSchwartz(2007) with the equilibrium
climate response of the models in the 1% yr−1 forcing sce-
nario. The reader should note however, that similar compar-
isons have been done with the SRESa1b-derived sensitivities,
with broadly similar results (not shown).

In Fig.4a, we confirm that the estimates of global effective
heat capacity derived from regression of global heat storage
against global heat temperature in the 20c3m model runs are
reasonably well correlated (r=0.70) with the estimates de-
rived from the ratio of the trends of the two numbers. Heat
capacity is shown in units of equivalent mixed layer depth
(m), calculated by dividing the heat storage per unit area
by the heat capacity of 1 m3 of sea water. Having estab-
lished this, we proceed using the average of the two methods.
Figure4b shows the relationship between the decorrelation
time scale and the effective global heat capacity. Contrary to
the prediction of a linear, single heat reservoir theory of cli-
mate dynamics, the relationship is weak, and anticorrelated
(r=−0.48): models with large decorrelation time scales tend
to have small heat storage. When we compare decorrelation
time with model sensitivity derived from the mean differ-
ence between the first and last yen years of the IPCC AR4
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Fig. 4. (a)Scatter plot of heat capacity (in units of meters of sea wa-
ter) calculated for the IPCC AR4 twentieth century (20c3m) model
runs by direct correlation of heat storage and temperature versus
heat capacity calculated by the ratio of the trends of heat storage and
temperature over the 20th century.(b) Heat capacity from the mean
of the two methods used in (a) versus decorrelation time scale.(c)
Climate sensitivity derived from the mean difference of the first and
last ten years of the AR4 runs forced with a 1 percent per year in-
crease in CO2 versus decorrelation time scale.(d) Climate sensitiv-
ity predicted by the method of Schwartz (2007) from the IPCC AR4
20th century runs, versus actual climate sensitivity derived from the
1 percent per year to doubling of CO2 runs. Schwartz’s (2007) esti-
mate of climate sensitivity is indicated with the light blue line.

runs with 1 percent per year increases of CO2 (Fig. 4c),
the correlation is very weak and (r=−0.05). Finally we
compare this “true” climate model climate sensitivity with
the estimate of climate sensitivity calculated by dividing the
decorrelation timescale by the effective heat global heat ca-
pacity in the 20th century runs, as calculated bySchwartz
(2007). We find that the estimate of climate sensitivity
made by Schwartz (0.30 K W−1 m2) fall squarely within the
range of climate sensitivity derived from the IPCC AR4
models (mean=0.22 K W−1 m2, min=9.9×10−4 K W−1 m2,
max=1.8 K W−1 m2. When the estimated climate sensitivity
is compared with the actual climate sensitivity derived from
the equilibrated 1% per year increasing CO2 runs (Fig.4d),
the relationship is, again, weak (r=0.27).

These results show thatcontraSchwartz(2007), the decor-
relation time scale of the global mean temperature time se-
ries is not in conflict with the range of model estimates, but
that the global effective heat capacity is overestimated by the
great majority of the IPCC AR4 models. Since climate sensi-
tivity is predicted to be equal to the decorrelation time scale
divided by the ocean heat uptake, excessive heat uptake com-
bined with a realistic decorrelation timescale should lead the
models tounderestimateclimate sensitivity. However, the
fact that the models themselves do not obey this relationship
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(i.e. the ratio of decorrelation time scale over effective heat
capacity is poorly correlated with model climate sensitivity)
is a strong argument against the use of a single-variable ver-
sion of the FDT to estimate the earth’s climate sensitivity. In
the next two sections we use a very simple model of the cli-
mate system to explore why the theory might fail for climate
system models, and for the real climate system.

3 Model description

For simplicity and ease of integration, we make use of a
global mean climate model with a single atmospheric layer
and purely radiative interactions between the surface and the
atmosphere. The features needed include rapid integration,
an ability to simulate arbitrary climate sensitivity, and sim-
ulation of both radiative and dynamical energy fluxes. The
model includes two ocean mixed layers (upper and lower)
with an adjustable linear coupling, to simulate heat stor-
age in the ocean, a single atmospheric layer to account for
greenhouse warming, and gray-body radiation. Feedbacks
include a temperature-dependent atmospheric infrared emis-
sivity (intended to represent the water vapor feedback), and a
temperature-dependent surface albedo (intended to represent
ice-albedo and low cloud feedbacks). The model is forced
with modified red noise applied to either the solar variability
or the infrared emissivity.

The thermodynamic equations for the lower and upper
mixed layers and the atmosphere are:

Cs2
dTs2

dt
= −γ (Ts − Ts2) (7)

Cs

dTs

dt
=−γ (Ts2−Ts)+

1

4
S(1−εS)(1−α)−σT 4

s +εσT 4
a (8)

Ca

dTa

dt
=

1

4
εSS(1 + α) + εσT 4

s − 2εσT 4
a (9)

whereCs andCs2 are the heat capacities of the upper and
lower mixed layers,Ts andTs2 are their respective tempera-
tures,Ca andTa are the heat capacity and temperature of the
atmosphere,γ is the coupling time constant between the up-
per and lower mixed layers,S is the solar constant,εS is the
solar absorption of the atmosphere,α is the surface albedo,σ
is the Stefan-Boltzmann constant, andε is the infrared emis-
sivity of the atmosphere.

The atmospheric emissivity and the surface albedo are
subject to linear feedbacks on atmospheric and surface tem-
perature, respectively:

ε = ε0 + fε(Ta − Tε) + cεAε (10)

α = α0 + fα(Ts − Tα) (11)

whereε0 andα0 are the basic state emissivity and surface
albedo, respectively,Tε andTα are the basic state atmosphere
and surface temperatures, respectively, andfε andfα are the
feedback parameters.Aε is a red-noise forcing, andcα is a

constant that controls its magnitude. The solar constant can
also be forced with red noise:

S = S0 + cSAS, (12)

wherecS is a constant controlling the magnitude of the forc-
ing. Aε andAS are generated using:

xi+1 = βxi + r (13)

A =

[
x −

1

2(1 − β)

] √
1 − β2 (14)

where r is a random variable with a flat distribution over
the range [0 1],β is the parameter that determines the au-
tocorrelation of the red-noise forcing, and the scaling is per-
formed afterx has been calculated for as many time steps
as necessary. The autocorrelation of the resulting tempera-
ture time series will depend somewhat on the autocorrelation
of the forcing, however, we hold the autocorrelation of the
forcing fixed at 0.6 for a lag of one year for all the simula-
tions discussed here, so that the autocorrelation of the mod-
eled temperature variations changes only due to changes in
heat capacity, climate sensitivity, and the coupling of the two
heat reservoirs. The applicability of the FDT to this model is
demonstrated below.

Solving Eqs.7–9 for equilibrium conditions, with feed-
backs and stochastic forcing assumed to be zero yields

Ts =
4

√
S0[1 − α +

εS

2 (3α − 1 − εSα)]

σ(1 −
ε
2)

(15)

Ta =
4

√
1

2
T 4

s + εS

S0

4

1 + α − εSα

2εσ
(16)

Figure 5a shows the equilibrium climate sensitivity of
the surface temperature with respect to a change in the
solar constantS0 from 1360 W m−2 to 1370 W m−2 for
a range of feedback parameter settings. For this simple
model there is no ambiguity about “equilibrium”, since the
model can be run until energy balance is achieved to within
0.01 W m−2. Depending on the values of the parameter set-
tings, the climate sensitivity for this forcing varies from 0.04
to 1.6 K W−1 m2, where the surface temperature has been di-
vided by the change in solar forcing adjusted for albedo and
geometry,1S

4 (1−α).
Figure5b shows that as the feedback parameters increase,

the time required for the temperature to reach 90% of its
equilibrium value also increases. Figure5c confirms that,
as predicted by the FDT, the inverse log of the lag autocorre-
lation (−1/ ln r(1 yr)) increases with increasing climate sen-
sitvity. The autocorrelations are calculated for runs of 1600
years, with an ocean heat capacity equivalent to a mixed
layer depth of 25 m. All three of these variables – the ad-
justment time scale, the climate sensitivity, and the inverse
log lag-autocorrelation – are correlated with one another with
r=0.98. However, as shown in Fig.5d, the ratio of the ad-
justment time to the climate sensitivity is not constant, but
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Fig. 5. (a) Equilibrium climate sensitivity of the simple climate
model for a range of values of the feedback parametersfε andfα .
(b) Adjustment timescale (time to 90% of response) for the same
feedbacks.(c) −1/ ln r(1yr) for the model surface temperature time
series.(d) Ratio of climate sensitivity to adjustment time scale.

increases with increasing emissivity feedback, indicating a
feedback-dependent bias in the relationship between the cli-
mate sensitivity and the adjustment timescale. This bias is
due to the fact that the emissivity feedback parameter acts
on Ta , rather than onTs . For a lag-autocorrelation based
methodology to accurately predict the climate sensitivity, the
fluctuations of bothTa andTs would have to be observed.
Nevertheless, for a modest range of possible climate sensi-
tivities (e.g. over a factor of 3), the ratio of the climate sensi-
tivity to the adjustment time varies only by about 20%. The
more serious obstacles to the use of lag-autocorrelations to
predict sensitivity arise from the possibility of multiple heat
reservoirs, as we discuss in the next section.

4 Simple model results and sensitivity experiments

We now turn to the results of a series of experiments de-
signed to show how statistics like those used bySchwartz
(2007) can give misleading results about climate sensitivity.
Figure 6 shows the simple model’s response to changes in
the solar constant. In Fig.6a, the solar constant is increased
by step change of 10 W m−2. The feedback parameters are
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Fig. 6. (a) Response of the simple climate model to an instan-
taneous increase in the model solar constant for three different
cases: a single 25 m ocean mixed layer (blue), a single 1000 m
ocean mixed layer (green) and a 25 m ocean mixed layer coupled to
1000 m deeper mixed layer (red).(b) Response of the same model,
with the same color-coded configurations, to random fluctuations in
the solar forcing.

set tofε=0.002 K−1 andfα=0.002 K−1. Three settings for
heat capacity are compared: a single ocean mixed layer 25 m
deep, a single layer 1000 m deep, and an upper layer of 25 m
coupled to a lower layer of 1000 m, with a coupling constant
of 50 W m−2 K−1 s−1. Note that the adjustment time scale
of the coupled case is identical to that of the 1000 m mixed
layer case, except that there is an initial rapid approach to
equilibrium in the time scale of the upper 25 m layer before
the coupling between the layers acts to move the heat to the
lower layer. In Fig.6b, the solar constant varies randomly
for the same parameter settings. The rapid oscillations of the
coupled case indicates that the shallow upper mixed layer
controls the time scale of the response. This behavior sug-
gests that a diagnostic method based on decorrelation time
scale will have trouble distinguishing between a system with
low heat capacity on short time scales and one with low heat
capacity on all time scales.

Pursuing this thread of argument, we now applySchwartz
(2007)’s methodology to much longer synthetic time series,
in order to test its ability to extract the model’s true dynam-
ics from finite time series. Figure7 shows the lag autocor-
relationr(1t) for two model parameter settings. Figure7a
shows results for a single 25 m mixed layer. Figure7b shows
results for a 25 m mixed upper layer, and a 1000 m mixed
lower layer. In each case, the model was run for 10 000 years,
forced by white noise solar variability, and the time series
of annual meanTs was calculated. Red curves showr(1t)

calculated separately for 100 100-year chunks of data. The
black curve showsr(1t) calculated for the full 10 000 year
record. These results demonstrate two key points.
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Fig. 7. (a) Lag autocorrelation for a ten thousand-year run of the
simple model with a 25 m ocean mixed layer (black) and for a hun-
dred hundred-year subsamples of the same run (red).(b) As for (a),
for run with a 25 m ocean mixed layer coupled with a 1000 m lower
mixed layer.

First, the uncertainty with which one can establish the
value of the autocorrelation of a given 100 year time series
is not the relevant uncertainty for the calculation of climate
sensitivity. It is clear from panel Fig.7a that a single curve of
autocorrelation versus lag derived from a 100 year time series
can give only a poor estimate of the true curve. For instance,
while the autocorrelation curve derived from the 10 000 year
time series crosses zero at 10 years lag, the mean of the 100
year autocorrelation curves’ zero crossing is 8.4 years, with
a standard deviation of 5.7 years. Even for a model with a
single heat capacity, analysis of the lag-autocorrelation of
hundred year temperature time series results in both a large
negative bias in estimating the true decorrelation time scale
(−1t/ ln(r(τ ), averaged over lags from 8 to 12 years), and
large variance of the decorrelation time scale of randomly se-
lected hundred year segments. Thus, our simple model run
with a single heat capacity, and with parameters yielding real
decorrelation time scales ranging from 5 yr up to 25 yr, pro-
duces 100 year segments within a standard deviation of the
mean that have decorrelation time scales of 5 yr or less. In
particular, for a 25 yr decorrelation time scale, the expected
mean decorrelation time scale of a randomly selected 100 yr
segment is 15 yr, with a standard deviation of 10 yr. Thus, the
fact that the observed temperature time series of the last 50 yr
of global temperature exhibits a decorrelation time scale of
5 yr (Schwartz, 2007), means only that the true value could
be anywhere from 3 yr to 25 yr, and have the observed value
within a single standard deviation of the expected value.

Second, when the model has more than a single heat reser-
voir, autocorrelations based on a hundred year sample can
substantially underestimate both the true decorrelation time
scale and the adjustment timescale. This is clear from panel
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Fig. 8. (a) Response of the simple climate model to an instanta-
neous increase in the model solar constant for two different cases,
one with low climate sensitivity and a single 1000 m ocean mixed
layer, and one with high climate sensitivity and a 25 m mixed layer
coupled to a 333 m deep mixed layer.(b) Lag autocorrelations of
the surface temperature of the same two models, for 100 100-year
runs each.

Fig. 7b where the lag autocorrelation curve based on 10 000
years of data exceeds 95% of the curves based on 100 year
segments out to 30 years lag.

Finally we demonstrate how our simple model with a fast
surface heat reservoir coupled to a large deep heat reservoir
can fool the method of Schwartz (2007) into falsely rank-
ing the climate sensitivities of the model run for various pa-
rameter choices. In Fig.8, results in black are for parame-
ter choices that give high climate sensitivity (fα=fε=0.002,
Sensitivity: 0.4 K W−1 m2) and relatively weak coupling be-
tween the two mixed layers (Cs = 1 × 108J m−2K−1

(25 m), Cs2=1.3×109 J m−2 K−1(333 m), γ = 5 W m−2

K−1). Results in red are for parameter choices that
give low climate sensitivity (fα=fε=−0.01, Sensitiv-
ity: 0.1 K W−1 m2) and a single deep mixed layer
(Cs=1.3×109 J m−2 K−1 (333 m), γ=0 W m−2 K−1).

Panela shows the response of each model to a step change
in climate forcing. The high sensitivity, weakly coupled
model jumps up rapidly, but after the temperature difference
between the upper and lower mixed layers increases, the flux
of heat from the upper to the lower layer slows the temper-
ature rise until equilibrium is reached. The low sensitivity,
single mixed layer model approaches equilibrium at the same
constant e-folding rate. Panelb shows the lag autocorrelation
curves for 100 100-year segments of model output forced by
noise. The lag autocorrelation curves show higher autocorre-
lation for the low climate sensitivity model, just the opposite
of the result predicted bySchwartz(2007), even though the
climate sensitivities vary by a factor of 4. Thus, the low heat
capacity of the surface layer, which would quite irrelevant to
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the response of the model to slowly increasing climate forc-
ing, tricks the analysis method into predicting a small decor-
relation time scale, and a small climate sensitivity, because
of the short length of the observed time series. Only with a
longer time series would the long memory of the system be
revealed.

5 Discussion and conclusions

Some clear conclusions may be drawn from our work.

1. Although methods based on the FDT can produce pre-
cise, accurate estimates, given sufficient time, the time
required for accurate evaluation of model sensitivity is
in general several times longer than a model would re-
quire to come to equilibrium with a step-change in forc-
ing.

2. Estimates of climate sensitivity using real global mean
temperature variations are consistent with those using
output data from the 20c3m IPCC AR4 model runs.
There is no inconsistency between the model climate
sensitivities and the observed global mean tempera-
ture decorrelation timescales, as claimed bySchwartz
(2007).

3. Analysis of output from a simple climate model shows
that the existence of multiple heat capacities in a climate
system introduces systematic errors to the estimation of
decorrelation time scale from the temperature time se-
ries. This may largely account for the systematic un-
derestimate of IPCC model climate sensitivity by the
lag-correlation method.

4. The large variability of the estimated climate sensitivity
derived from these runs, even for multiple runs of the
same model, confirms our prediction that estimation of
climate sensitivity from a time series of a single variable
requires much longer climate records than exist for the
real world.

There is some prospect that improved diagnostic tech-
niques based on the FDT may allow accurate estimation of
climate sensitivity from climate fluctuations.Gritsun(2008)
points out that an estimate of a more complete response vec-
tor of the climate system, obtained by analyzing a much
larger state vector, might give better results. Alternatively,
better results might be obtained using a different method to
deal with the non-stationarity of the observed and modeled
time series, for instance by concentrating on shorter time
scale fluctuations during the winter season.
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