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Abstract. We present the first near global upper tropospheric
distribution of formic acid (HCOOH) observed from space
using solar occultation measurements from the Fourier trans-
form spectrometer (FTS) on board the Atmospheric Chem-
istry Experiment (ACE) satellite. Using a new set of spec-
troscopic line parameters recently published for formic acid
by Vander Auwera et al. (2007) and Perrin and Vander Auw-
era (2007), we have retrieved the concentrations of HCOOH
between 5 km and the tropopause for ACE-FTS observations
from February 2004 to September 2007. We observe a sig-
nificant seasonal dependence for the HCOOH concentrations
related to vegetation growth and biomass burning. We esti-
mate an emission ratio of 0.0051±0.0015 for HCOOH rela-
tive to CO for tropical South American fires using a selected
set of data for September 2004. Results from the balloon-
borne MkIV Fourier transform spectrometer are also pre-
sented and compared with the ACE measurements.

1 Introduction

Formic acid is one of the more abundant organic acids in the
atmosphere. As a very soluble species, formic acid is found
in the atmosphere as a gas and as a solute in water droplets
as well as the formate anion in aerosol particles (Talbot et
al., 1988). Formic and acetic acids are responsible for most
of the acidity in rain water in isolated regions. Formic acid
plays an important role in controlling pH-dependent chem-
ical reactions in clouds (Keene and Galloway, 1986, 1988;
Jacob, 1986).

Correspondence to:G. Gonźalez Abad
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Our understanding of the sources and sinks of atmospheric
formic acid is still very incomplete (Khare et al., 1999), but
sources include direct anthropogenic emissions (e.g. motor
exhaust) (Talbot et al., 1988; Kawamura et al., 1985), soil
(Sanhueza and Andreae, 1991), biomass burning emissions
(Talbot et al., 1988; Coheur et al., 2007), vegetation (Jacob
and Wofsy, 1988; Talbot et al., 1990; Schafer et al., 1992),
isoprene oxidation (Rasmussen and Khalil, 1988; Keene and
Galloway, 1986), olefin ozonolysis (Hatakeyama et al., 1981;
Horie et al., 1994), aqueous phase oxidation of formalde-
hyde (Chameides and Davis, 1983) and gas phase reaction
of HCHO with HO2 as well as some peroxy radical reac-
tions (Atkinson et al., 2006; Su et al., 1979; Madronich and
Calvert, 1990). The most important sinks are dry and wet de-
position as well as reaction with OH (Sanhueza et al., 1996;
Baboukas et al., 2000; Rinsland et al., 2004). As wet depo-
sition is by far the most important sink, the lifetime of the
HCOOH in the troposphere is very variable (Hartmann et al.,
1991). Radojevic and Harrison (1992) estimate that the life-
time of HCOOH is quite short, ranging from hours to a few
days. In the free troposphere, the lifetime of formic acid can
be substantially longer because of the relatively slow reaction
with OH.

Formic acid has been measured in the free troposphere
by in situ airborne Fourier transform infrared spectroscopy
(FTIR) (Yokelson et al., 1999; Goode et al., 2000) and
tunable infrared laser differential absorption spectroscopy
(TILDAS) by Herndon et al. (2007) who obtained a value
of about 10 ppbv for a fire plume. Infrared solar spectra
have been used in the ground-based detection of HCOOH
by Rinsland et al. (2004) reporting concentrations between
0.31–0.80 ppbv as well as in previous observations by Rins-
land et al. (2006, 2007) and Coheur et al. (2007) using ACE
satellite data. The concentrations reported in these studies
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Figure 1. Extravortex occultations for the period February 2004 to September 2007.317

Each red cross represents the location of an occultation.318
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Fig. 1. Extravortex occultations for the period February 2004 to
September 2007. Each red cross represents the location of an oc-
cultation.

where 3.13, 0.82 and 0.49 ppbv for fire plumes, respectively.
Remedios et al. (2007) observed the signature of HCOOH
thermal emission using spectra from the MIPAS-B2 balloon
instrument, a limb-viewing FTIR.

The first-space based observations of HCOOH using ACE
data were published by Rinsland et al. (2006). They retrieved
formic acid in biomass burning plumes and found strongly
enhanced concentrations of up to 2 ppb. From 14 profiles
they determined that typical background values are 0.31 ppb
in the 110-300 hPa range in the free troposphere for southern
middle latitudes. They also calculated an emission factor for
HCOOH at tropical middle latitudes of 1.99±1.34 g kg−1.
Rinsland et al. used line parameters for theυ6 mode of
formic acid as provided by HITRAN 2004 (Rothman et al.,
2004). In our work, we extend the retrievals to the entire
global dataset of ACE measurements using an improved set
of formic acid line parameters. We also calculate the emis-
sion factor for southern tropical biomass burning plumes, and
compare our results with Rinsland et al. (2006). We compare
our retrievals with observations made by the MkIV balloon-
borne FTS.

2 Measurements

The Atmospheric Chemistry Experiment (ACE) is a Cana-
dian satellite that was launched by NASA in August 2003.
The primary ACE instrument is a high spectral resolution
(0.02 cm−1) Fourier transform spectrometer (FTS) operat-
ing from 2.2 to 13.3µm (750–4400 cm−1). Working pri-
marily in solar occultation, the satellite provides altitude pro-
file information (typically 5–100 km) for temperature, pres-
sure, and volume mixing ratios for numerous molecules of
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Figure 2. Comparison of ACE data and MkIV FTS observations. The individual336

profiles obtained in balloon flights by MkIV fall within one standard deviation of the337

ACE occultation average for the same season and geographical region.338
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Fig. 2. Comparison of ACE data and MkIV FTS observations. The
individual profiles obtained in balloon flights by MkIV fall within
one standard deviation of the ACE occultation average for the same
season and geographical region.

atmospheric interest between the latitudes 85◦ N and 85◦ S
(Bernath et al., 2005).

The HCOOH retrievals reported in this paper are a re-
search data product. Retrievals for the molecule were not
available in the most recent dataset for the ACE-FTS (ver-
sion 2.2). The retrieval approach used was the same global-fit
least-squares approach employed for ACE-FTS version 2.2
processing (Boone et al., 2005). Version 2.2 pressures
and temperatures were used in the analysis. The ACE-
FTS HCOOH retrievals use the Q-branch of theυ6 mode
near 1105 cm−1, with a microwindow of width 10 cm−1 cen-
tered at 1105.6 cm−1. The altitude range for the retrievals
extends from 5 to 20 km. Interferers in the spectral window
(retrieved simultaneously with HCOOH) are H2O, H18

2 O,
H17

2 O, HDO, CO2, O3, OO18O, O18OO, CH4, CH3D, CFC-
12, HCFC-22, and HFC-134a, with separate volume mixing
ratio (VMR) profiles retrieved for different isotopologues of
a given molecule. Figure 7 shows an example of a spectrum
calculated with the forward model, an observed ACE spec-
trum and the residuals for the occultation ss6168.

The spectroscopic data for HCOOH used in the retrievals
were from Vander Auwera et al. (2007) and Perrin and
Vander Auwera (2007), and have been adopted for HI-
TRAN 2008 (Rothman et al., 2009). The new line param-
eters improve the quality of the retrievals, yielding smaller
fitting residuals in the least-squares analysis than those
achieved using the HCOOH spectroscopic parameters from
HITRAN 2004 (Rothman et al., 2005). The line inten-
sities changed by nearly a factor of two compared to the
values given in HITRAN 2004 because Vander Auwera et
al. (2007) more carefully determined the concentration of the
monomer and dimer in their sample. The retrieved formic
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Figure 3. Average HCOOH profiles for the year 2005 in 10 degree latitude bins.358
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Fig. 3. Average HCOOH profiles for the year 2005 in 10 degree
latitude bins.

acid concentrations therefore decrease by nearly a factor of
two using the new line parameters. The errors in a single typ-
ical VMR profile retrieval are dominated by statistical errors,
which are about 50% from 5–10 km in tropical regions and
deteriorate at higher altitudes and towards the poles.

Almost 12 000 occultations (11 942) recorded between
February 2004 and September 2007 have been considered
in our study. They have been filtered using derived meteoro-
logical products (DMPs) (Manney et al., 2007) to remove all
occultations inside or on the edge of a polar vortex. Occul-
tations in the polar vortices have perturbed profiles because
of descent by the cold, isolated air. The high inclination
SCISAT orbit (74◦ to the equator) (Bernath, 2006) provides
a large number of occultations at high latitudes so the poten-
tially perturbed occultations were simply discarded. The oc-
cultations were classified using potential vorticity values de-
rived from the Met Office analyses (Swinbank and O’Neill,
1994; Swinbank et al., 2002; Davies et al., 2005) in a sim-
ilar approach to that adopted by Nassar et al. (2005). The
remaining 9178 extravortex occultations were filtered to re-
move anomalous values (e.g. large negative VMRs) and con-
centrations with very large estimated errors. The locations of
the resulting 8125 occultations are plotted in Fig. 1.

367

Figure 4. Global HCOOH distribution for the year 2005, showing seasonal variations.368

369

370

371

372

373

374

Fig. 4. Global HCOOH distribution for the year 2005, showing
seasonal variations.

3 Balloon comparisons

The MkIV FTS records solar occultation spectra from a high
altitude balloon in the 650–5640 cm−1 spectral range at a
spectral resolution of 0.01 cm−1 (Toon, 1991). MkIV data
that were obtained in eight balloon flights carried out from
Ft. Sumner, New Mexico (34.4◦ N, 104.2◦ W) have been
used to compare with the ACE-FTS retrievals. These flights
were during the autumn turn-around period when the strato-
spheric float winds are light enough to permit long durations
(15–30 h) at float. The retrieved VMR profiles extend from
the cloud tops to the float altitude (∼38 km) at 2–3 km verti-
cal resolution. The MkIV retrieval uses the JPL-developed
GFIT algorithm as described by Sen et al. (1998). The
MkIV analysis used the same HCOOH absorption feature (at
1107 cm−1) as ACE, but with a slightly narrower window
(7 cm−1 wide). The spectroscopic parameters used in MkIV
retrievals are the same parameters that were used for ACE
retrievals from Vander Auwera et al. (2007) and Perrin and
Vander Auwera (2007). In Fig. 2 these data are plotted along
with the ACE-FTS average profile for the September, Octo-
ber, November season for 30◦ N–54◦ N and 85◦ W–115◦ W
(continental USA). The eight MkIV flights were made in

www.atmos-chem-phys.net/9/8039/2009/ Atmos. Chem. Phys., 9, 8039–8047, 2009
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Figure 5. Global HCOOH distribution for the period February 2004 to September376

2007.377
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Fig. 5. Global HCOOH distribution for the period February 2004 to
September 2007.
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Figure 6. HCOOH concentrations at 6.5 km altitude. Hot spots are likely associated385

with fire plumes.386
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Fig. 6. HCOOH concentrations at 6.5 km altitude. Hot spots are
likely associated with fire plumes.

Fig. 7. Calculated spectrum, observed spectrum and residuals for
occultation ss6168 at 9.81 km. Top spectrum has no HCOOH in the
calculated spectrum.

September from 1993 to 2007. Very few ACE occultations
are near New Mexico so we compare the average ACE profile
from the continental USA in the fall season with retrievals
from the MkIV flights (Fig. 2). One of the 18 ACE occul-
tations showed enhanced formic acid presumably because of
a biomass burning plume and it was excluded from the av-
erage. The agreement between ACE average and MkIV pro-
files was within one standard deviation (Fig. 2).

4 Global distributions, vertical profiles and emission
factor

The ACE profiles were averaged in 10◦ latitude bins for 2005
and for the February 2004 to September 2007 time periods.
The averages for 2005 are displayed in Fig. 3 and the nu-
merical values are available in supplementary Tables 1 and
2. Global tropospheric HCOOH distributions observed from
space are shown in Figs. 4 and 5. The data are split into
four seasons, SON (September, October, November), DJF

Atmos. Chem. Phys., 9, 8039–8047, 2009 www.atmos-chem-phys.net/9/8039/2009/
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Figure 8. GTE TRACE-A experiment compared with ACE data. In red is the HCOOH410

profile from ACE for the 5-15°S latitude bin. In black is a HCOOH median profile for411

the TRACE-A campaign of the Global Tropospheric Experiment, and one standard412

deviation is shown with error bars.  The ACE profile falls within one standard413

deviation of the median GTE TRACE-A profile.414
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Fig. 8. GTE TRACE-A experiment compared with ACE data. In
red is the HCOOH profile from ACE for the 5–15◦ S latitude bin.
In black is a HCOOH median profile for the TRACE-A campaign
of the Global Tropospheric Experiment, and one standard deviation
is shown with error bars. The ACE profile falls within one standard
deviation of the median GTE TRACE-A profile.

(December, January, February), MAM (March, April, May)
and JJA (June, July, August). Average concentrations for
2005 and for the period February 2004–September 2007 are
presented in Figs. 4 and 5, with numerical values in Tables 1
and 2. In these plots the seasonal variations are easy to
see. Enhancements of HCOOH concentrations are observed
at southern tropical latitudes for the SON biomass burning
season and the MAM growing season in the Northern Hemi-
sphere. High values are also seen in JJA in the Northern
Hemisphere, perhaps associated with boreal fires as well as
plant growth. On average the enhanced values are about
300 pptv.

The average formic acid profiles (Figs. 2–5) are generally
consistent with the very few published aircraft profiles of
formic acid. For example, average aircraft profiles from var-
ious locations are displayed in the modelling paper by Ito et
al. (2007). These profiles where obtained as part of the GTE

(Global Tropospheric Experiment) (Fishman et al. 1996, Tal-
bot et al., 1996). In Fig. 8a median profile obtained from
the TRACE-A campaign data together with an appropriate
ACE profile is presented. The good agreement between the
ACE data and the data obtained in the TRACE-A experiment
is evident. HCOOH concentrations are higher at lower alti-
tudes and often show a sharp decrease with altitude near our
lowest measured altitudes of 5–7 km, particularly in tropical
regions. These trends at lower altitudes agree with previ-
ous studies by Andreae et al. (1988) and Talbot et al. (1992)
who reported values in the boundary layer between 0.16 and
2.19 ppbv in tropical regions. Another interesting feature is
the observation of a background level of about 10 pptv at
high latitudes at 5 km altitude. Figure 6 illustrates this more
clearly by showing all observed values at 6.5 km in altitude.
A few hot spots with concentrations of up to 590 pptv are
present and are likely associated with fire plumes.

We calculate an HCOOH/CO emission ratio for 2004 trop-
ical South American fires following the approach of Yokel-
son et al. (1999) and Rinsland et al. (2006). A suitable sam-
ple of 14 occultations was used to calculate the background
levels of formic acid and carbon monoxide. Using two occul-
tations (sr6539 at 28◦ S, 165◦ E and sr6582 at 39◦ S, 169◦ W)
clearly associated with fires plumes we obtain an emission
VMR ratio of 0.0051±0.0015. The high concentrations of
CO, HCN and C2H6 in these occultations indicate that the
enhanced values are due to biomass burning. Figure 9 shows
the profiles of these three species in the two occultations.

Our value of 0.0051±0.0015 is consistent with the value
of 0.0114±0.0076 obtained by Rinsland et al. (2006), when
changes to the line parameters are taken into account. Con-
centrations as high as 0.843 ppbv were reported by Rinsland
et al. (2007) for plumes detected in boreal regions. We have
used occultation ss5129 to compare the values obtained by
Rinsland et al. (2006) with our new retrievals. Rinsland et
al. (2006) obtained a peak concentration of 0.844 ppbv and
our new peak value is 0.355 ppbv. As expected from the
change in line intensities, our result is about a factor of two
lower.

We have also calculated tracer-tracer correlations between
the concentrations of HCOOH and CO, HCN, C2H2, C2H6
and SF6 for occultations associated with biomass burning
plumes. High correlation coefficients with CO, HCN, C2H2,
C2H6 suggest that HCOOH production is particularly linked
with biomass burning. No correlation with SF6 indicates that
HCOOH has little industrial origin. We present these corre-
lations in Fig. 10; correlation coefficients (R2) are 0.69 for
CO, 0.60 for HCN, 0.72 for C2H2, 0.50 for C2H6 and 0.01
for SF6.

www.atmos-chem-phys.net/9/8039/2009/ Atmos. Chem. Phys., 9, 8039–8047, 2009
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Figure 9. HCOOH, CO, HCN and C2H6 profile concentrations for occultations sr6539419

and sr6582.420
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Fig. 9. HCOOH, CO, HCN and C2H6 profile concentrations for occultations sr6539 and sr6582.
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Figure 10. Tracer-tracer concentration correlations between HCOOH and CO, HCN,427
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Fig. 10. Tracer-tracer concentration correlations between HCOOH and CO, HCN, C2H2, C2H6 and SF6.

5 Summary and conclusion

The first near global tropospheric distribution of formic acid
(HCOOH) has been presented using data from the ACE satel-
lite. 8125 extravortex profiles were used for the period be-
tween February 2004 and September 2007. It has been pos-
sible to observe seasonal variations, and to relate these varia-
tions with the main sources of formic acid: biomass burning
and plant growth. Values up to 590 pptv have been observed
for individual profiles that are likely associated with biomass
burning plumes. Strongly enhanced formic acid concentra-
tions are seen at 5–7 km in the tropics at the lowest altitudes

that can be observed by ACE. An emission VMR ratio of
0.0051±0.0015 relative to CO was calculated for biomass
burning from tropical South American forests. ACE-FTS
observations are in good agreement with similar measure-
ments made by the balloon-borne MkIV FTS. Further work
has been started to compare ACE observations with the pre-
dictions of the GEOS-Chem chemical transport model.

www.atmos-chem-phys.net/9/8039/2009/ Atmos. Chem. Phys., 9, 8039–8047, 2009
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