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Abstract. Ambient aerosols play an important role in atmo-
spheric processes affecting the human and natural environ-
ments. They affect air quality, reduce visibility, and induce
climate change by directly scattering and/or absorbing the
incoming solar radiation (Charlson et al., 1992; Kim et al.,
2006), or indirectly by acting as cloud condensation nuclei
(Hobbs, 1993). Aerosol particles are emitted from a variety
of anthropogenic and natural sources either directly into the
atmosphere or as secondary particles by gas-to-particle for-
mation process.

There is growing interest in studying and analysing the
mechanisms of formation of secondary particles. The devel-
opment of new instruments during the 1990s to measure the
particle size distribution of nanoparticles (<50 nm) has en-
abled scientists to observe the formation and growth of new
particles (see Kulmala et al. (2004) for review). Nucleation
events, that is, the appearance of a mode below 25–30 nm in
the particle number size distribution, known as “nucleation
mode” (e.g. Dal Maso et al., 2007; Tunved et al., 2003), usu-
ally in very large numbers, have been observed around the
world. For example, they have been reported in remote (e.g.
Tunved et al., 2003), urban (e.g. Jeong et al., 2004; Zhang et
al., 2004) and coastal areas (e.g. Vaattovaara et al., 2006) and
at various latitudes in the upper troposphere and the lower
stratosphere (Lee et al., 2003).

It has been shown that the probability of nucleation was
increased by elevated sulphur dioxide (SO2) concentrations
(Stanier et al., 2004). This gas is mainly emitted from
anthropogenic sources such as the combustion of sulphur-
containing fossil fuel (Stern, 2005). Therefore, aerosol nu-
cleation in the atmosphere would be expected to be enhanced
by human activities (see also Curtius (2006) for discussion).
In urban air, morning nucleation events have been found to
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be consistent with peaks in traffic (Jeong et al., 2004). In
contrast, in coastal environments, higher concentrations of
nucleation mode particles have been observed during en-
tries of clean air rather than of polluted air (O’Dowd et al.,
2002). This is also confirmed by a Finish study (Spracklen
et al., 2006), which found that particle concentrations in re-
mote continental regions are dominated by nucleated parti-
cles whereas in polluted continental regions are dominated
by primary particles.

This paper aims to analyse the frequency of and the atmo-
spheric conditions favourable for nucleation events at coastal
urban location in Brisbane, Australia, with a focus on the
contribution of vehicle emissions. Monitoring was con-
ducted during four campaigns of two weeks duration each,
and a campaign of four weeks duration, covering a total pe-
riod of 13 months. The objective was to investigate which
meteorological conditions enhanced the probability of nu-
cleation and to investigate any patterns in gaseous concen-
trations leading to the events to determine whether the local
traffic was a major source of secondary particles in the study
area.

1 Methods

1.1 Description of the sampling area

Figure 1 shows the sampling location. Monitoring was con-
ducted at the southern end of Fisherman’s Island, located at
the mouth of the Brisbane River, approximately 22 km NE of
the central business district of Brisbane, on the southeast cor-
ner of the state of Queensland. The island is approximately
70 m East of the mainland, and connected to it by a road and
rail corridor.

This site was selected because of the environmental diver-
sity in the area. The sampling point was located between
the road and railway line. The road and railway line follow
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Figure 1: Map of the sampling area.  

 Fig. 1. Map of the sampling area.

a straight almost north-south path in the vicinity of the site.
The sampling inlet was located in a flat area, 8 m east of the
centre line of the road, 12 m west of the centre of the rail-
way line and three metres above the ground surface. The
site is surrounded by mangrove swamps to the north, and the
Pacific Ocean to the east. An oil refinery is located in the
south-western quadrant, with its closest point approximately
500 m from the sampling area. The mouth of the Brisbane
River, on the west side of the sampling area, covers a width
of approximately 4 km separating the site from the Brisbane
airport and a small residential and industrial area. A seaport
facility occupies most of the island, and is located approxi-
mately 1 km north of the site. Due to the freight activity in
the area, traffic is dominated by diesel trucks.

1.2 Description of the instruments and monitoring pro-
cedure

Particle size distribution in the range 14-800 nm was mea-
sured with a TSI 3934 Scanning Mobility Particle Sizer
(SMPS). The SMPS consists of a TSI 3071A electrostatic
classifier (EC) and a TSI 3010 condensation particle counter
(CPC). The EC classifies particles according to size while
the CPC counts the number of particles in each size chan-
nels. An interfacing computer controls the process of mea-
surement and stores the data supplied by the counter. Mon-
itoring was conducted continuously at five-minute intervals
during the following campaigns: autumn 2006 (12 May–4
June), winter 2006 (18 August–3 September), spring 2006
(31 October–15 November), summer 2007 (12–31 January)
and autumn 2007 (23 May–1 June).

Other air quality parameters measured were NOx, and
SO2. NOx concentration was measured with an Ecotech
9841 NOx analyser, and SO2 concentration was measured
with an Ecotech 9850 SO2.

Meteorological conditions were measured with a Monitor
Sensors MS1 portable weather station. The weather station
monitored wind direction and speed as well as a range of

other meteorological variables including temperature, rela-
tive humidity, atmospheric pressure and solar radiation in-
tensity.

1.3 Preparation of the database for analysis

Generally, secondary particles are in the size range<30 nm
(Morawska et al., 2008). Therefore, the most important
marker of a nucleation event is a significant increase in the
concentration of these particles in the time series. Needless
to say, this increase is also reflected by the appearance of a
mode in this size range. Once a significant increase was iden-
tified, additional characteristics of the data such as traffic are
examined to rule out primary particle sources. This proce-
dure is similar to the one described by Stanier et al. (2004).

Due to limitations of the instrument, it was not possible to
measure particles<14 nm although the majority of these par-
ticles were expected to have formed below this limit. There-
fore, it was assumed that the new particles were formed much
earlier and grew principally by condensation mechanisms
reaching a measureable size. Although losses due to coagula-
tion were expected, most of these losses were likely to occur
through coagulation with particles above 50 nm. Therefore,
the appearance of a mode at<30 nm indicated that a substan-
tial number of new particles were formed allowing a signifi-
cant fraction to grow to a detectable size. This means that nu-
cleation events manifest themselves by an increase of particle
number concentration in the 14–30 nm size range (N14−30).
The first step was to divide the size distribution into 14–30,
30–50, 50–100, 100–300 and 300–800 nm and to calculate
the total concentration of particles in each size class through
the general formula:

Np−q = α

q∑
p

N(dp) (1)

WhereN(dp) is the number concentration in the size inter-
val dp + 1dp andα is a normalisation factor obtained from
the equation:

α = log10(dp + 1dp) − log10(dp) (2)

The SMPS data covered 64 channels per decade, evenly
spaced in the logarithmic scale. Calculation of the log dif-
ferences between consecutive size channels gave an average
α-value of 0.015625.

1.4 Data analysis techniques

To identify the increase in the concentration of the N14−30,
the difference between two successive observations was cal-
culated. In other words, the first-ordered difference of the
time series was obtained through the general equation:

∇Np−q(t) = Np−q(t) − Np−q(t − 1) (3)
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If ∇Np−q(t) is positive, then it indicates that a nucleation
event has likely occurred; if it is negative, then it indicates
that particle loss has occurred due to growth by coagulation
or condensation, or removal due to diffusion, dilution, evap-
oration or any other removal mechanism. To assist in the
interpretation of the results, contour plots were added.

To identify the preconditions for nucleation process, at-
mospheric conditions during the events were recorded. In
addition, hourly average NO, NO2 and SO2 concentrations
prior to and during the event were recorded and the differ-
ences were calculated. This was done to determine whether
any of these gases were particle precursors in the study area.
Also, wind direction data were divided into following wind
sectors (in degrees clockwise from N):

– Railway (35◦–125◦)

– Southern mangrove swamps (125◦–185◦)

– Refinery (185◦–215◦)

– Road (215◦–305◦)

– Port (305◦–35◦)

The analysis was done to identify the sources contributing
to nucleation.

2 Results

2.1 Mean variation of number size distribution

The diurnal patterns of mean variation in number size distri-
bution in each of the different campaigns are shown in Fig. 2.
The data were highly reliable (>95% in each campaign) and
all outliers were removed before plotting the results. The pat-
terns are in general different for each campaign although the
two autumn patterns are very similar. Due to the length of
the series, there is no enough evidence to conclude that there
is seasonality in the patterns. In most cases, particle number
peaks above 30 nm. Peaks below 30 nm are observed in the
winter campaign between 06:00 and 08:00 local time.

In both autumn campaigns, the majority of the particles are
in the approximate range 30–120 nm. Throughout the day,
particle number peaks at around 50–70 nm reaching maxi-
mum concentrations between 12:00 and 15:00. High con-
centrations are also observed in the morning although they
are lower than those in the early afternoon.

During the winter campaign, there is greater variation in
number size distribution. The highest concentrations are
found between 07:00 and 09:00 peaking at around 20–30 nm,
and between 18:00 and 22:00, peaking at around 50–60 nm.
During the morning peak, there is a high concentration in the
ultrafine range thus indicating that the observed peak in the
nuclei mode can be explained by increased emissions.

The spring campaign follows a similar pattern to the win-
ter campaign although the peak concentrations are lower. A
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Figure 1: Daily variation in number size distribution during each of the five 

measurement campaigns. The values are based on the hourly averages. The 

contours represent the concentrations expressed as dN/dLogdP cm-3. 

 

 

 

 

 

 

Fig. 2. Daily variation in number size distribution during each of the
five measurement campaigns. The values are based on the hourly
averages. The contours represent the concentrations expressed as
dN /dLogdP cm−3.
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small peak at about 20 nm is observed between 07:00 and
09:00, reaching maximum concentrations at 08:00. Although
this peak is accompanied by high concentrations of larger
ultrafine particles, this peak appears to have another source
than the larger particles.

During the summer campaign, particle number peaks at
around 35–45 nm between 02:00 and 04:00, 60–80 nm be-
tween 06:00 and 10:00, and 40–50 nm between 15:00 and
19:00. The maximum concentrations are comparable to those
in the winter campaign although the pattern is visibly differ-
ent.

To assist in the interpretation of the daily pattern, aver-
age particle number concentration of the N14−30, N30−50,
N50−100, N100−300 and N300−800 were plotted against time of
the day (Fig. 3). With the exception of the summer campaign,
which shows fluctuations in number concentration through-
out the day, all size classes follow similar daily patterns peak-
ing at around 06:00–08:00. The highest values occur in win-
ter and the lowest occur in spring and summer.

With the exception of winter, throughout the day the ma-
jority of particles are in the range 30-300 nm. During the au-
tumn campaigns, the largest contributor to the particle num-
ber is the N50−100, followed by the N30−50 and N100−300 hav-
ing similar contributions. The contribution of the N14−30 is
visibly much lower, particularly in the autumn 2006 cam-
paign.

During the winter campaign, the N14−30 is the maxi-
mum contributor to the particle number between 05:00 and
11:00, reaching a maximum of approximately 7.0×103cm−3

at around 07:00. These peaks are characterised by rela-
tively high number concentrations in the range 30–100 nm,
reaching concentrations of about 10.0×103 cm3 (N30−50 and
N50−100 combined). For most of the rest of the day, the max-
imum contributor is the N50−100, followed by the N30−50.
Unlike the autumn campaigns, the N14−30 is a significant
contributor to the particle number, reaching concentrations
of about 3.0×103 cm−3.

In the spring, the maximum contributor is the N50−100
reaching maximum concentrations of 2.1×103 cm−3 be-
tween 05:00 and 08:00. The N30−50 is the second largest con-
tributor reaching a maximum of about 1.9×103 cm−3 dur-
ing these times. The corresponding N14−30 concentration
is about 1.5×103 cm−3, becoming the third largest contrib-
utor, but declining sharply after these hours, down to less
than 500 cm−3 at midday.

In summer, there are several fluctuations in number con-
centrations throughout the day, but the particle number is
generally dominated by the N30−50 reaching their maxima
at about 3.0×103 cm−3. For most of the day, the N50−100
remains the second largest contributor, with maximum con-
centrations of 2.5×103 cm−3 at around 06:00. The N14−30
is the third largest contributor, except between 08:00 and
09:00, where it is the largest with concentrations of about
2.0×103 cm−3, only slightly larger than the N50−100 concen-
tration.
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Figure 3: Daily variation in particle number concentration of size-fractionated 

submicrometre particles. The figures are based on 30-minute averages. 

 
Fig. 3. Daily variation in particle number concentration of size-
fractionated submicrometre particles. The figures are based on 30-
min averages.
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Table 1. Summary of conditions during nucleation events.

Temp Press Rel Hum Solar Rad Wind Speed Wind N14−800 (Particles cm−3) N14−30 (Particles cm−3)

Date and Time ◦C KPa % W m−2 Km h−1 Sector Before During Change Before During Change

21-Aug-2006 10:10 3.17×104 1.44×104
−1.73×104 6.31×103 8.47×103 2.17×103

24-Aug-2006 20:10 19.5 102 72.3 48 8.3 Port 4.23×104 1.81×104
−2.42×104 2.39×103 1.03×104 7.95×103

30-Aug-2006 09:10 18.5 103 72.4 471 3.7 Refinery 2.52×104 2.04×104
−4.87×103 7.48×103 1.13×104 3.87×104

30-Aug-2006 19:10 19.1 103 67.7 48 19.6 Railway 318 2.59×103 2.27×103 74 2.13×103 2.05×103

31-Aug-2006 15:10 19.1 103 72.9 179 25.9 Railway 596 4.54×103 3.94×103 280 3.85×103 3.57×103

2-Sep-2006 08:10 18.0 103 77.9 347 4.4 Refinery 8.00×103 1.34×104 5.36×103 2.29×104 7.85×103 5.55×103

3-Sep-2006 10:10 21.6 103 60.8 741 7.4 Port 8.05×103 8.71×103 658 2.76×103 5.58×103 2.82×103

7-Nov-2006 19:20 21.7 102 59.8 48 12.1 Port 949 6.92×104 6.82×104 240 6.67×104 6.64×104

9-Nov-2006 12:20 21.0 102 62.6 708 21.0 Railway 3.26×104 1.58×103
−3.10×104 105 1.12×103 1.01×103

12-Jan-2007 19:15 24.5 101 62.1 48 17.1 Port 1.95×103 6.35×103
−1.32×104 502 3.35×103 2.85×103

14-Jan-2007 05:15 24.5 102 66.5 55 12.6 Railway 530 3.14×103 2.61×103 21.1 1.90×103 1.88×103

14-Jan-2007 08:15 25.4 102 60.4 438 12.4 Railway 1.47×103 1.08×104 9.35×103 422 5.66×103 5.24×103

14-Jan-2007 12:15 27.5 102 54.1 965 10.3 Port 2.18×103 2.02×103 -159 367 1.26×103 897
15-Jan-2007 04:15 24.4 102 57.6 47 5.3 Railway 439 9.37×103 8.93×103 19.1 5.51×103 5.49×103

15-Jan-2007 14:15 27.5 102 51.7 876 15.9 Railway 948 2.16×104 2.07×104 311 1.25×104 1.22×104

15-Jan-2007 18:15 25.7 102 55.7 75 16.8 Railway 1.03×103 1.73×103 703 59.0 956 897
16-Jan-2007 8:15 25.0 102 53.3 630 10.9 Railway 3.61×103 6.84×103 3.24×103 845 4.37×103 3.53×103

16-Jan-2007 21:15 24.7 102 60.0 46 21.5 Railway 2.28×104 5.17×103 -1.76×104 1.21×103 3.96×103 2.75×103

17-Jan-2007 02:15 23.0 102 60.8 46 5.3 Railway 903 8.22×103 7.32×103 29.3 5.11×103 5.08×103

17-Jan-2007 15:15 26.8 102 48.1 715 19.0 Railway 568 3.22×103 2.65×103 26.3 2.18×103 2.15×103

18-Jan-2007 06:15 24.3 102 59.8 167 12.8 Railway 3.78×104 2.09×103
−3.57×104 19.1 1.07×103 1.05×103

19-Jan-2007 13:15 26.2 102 55.3 916 13.7 Railway 300 5.27×103 4.97×103 9.05 3.17×103 3.16×103

19-Jan-2007 15:15 26.4 102 53.0 746 18.0 Railway 837 1.41×103 569 99.5 975 876
19-Jan-2007 20:15 24.6 102 56.8 46 14.4 Railway 7.91×104 4.59×103

−7.45×104 1.68×103 3.32×103 1.63×103

25-Jan-2007 11:15 28.8 102 60.2 1063 14.5 Port 4.07×103 1.47×104 1.06×104 1.28×103 7.71×103 6.43×103

To shed more light on the factors affecting the daily varia-
tion in particle number, average traffic numbers were plotted
against time of the day (Fig. 4). The traffic pattern is more
or less similar for the different seasons. There were prob-
lems of traffic data quality with the autumn 2006 campaign
and therefore the results cannot be considered representative
of the actual levels. Traffic volumes peak between 08:00 and
14:00, reaching levels between 120 vehicles h−1 in the winter
and 180 vehicles h−1 in the autumn 2007. The traffic pattern
reflects the level of commercial activity in the area, which is
high during the normal working hours.

To further assist in the interpretation of the results, aver-
age wind directions for each campaign were plotted (Fig. 5).
The graphs show that for both autumn campaign the wind ex-
hibits similar daily patterns of variation. During the autumn
and winter the wind originates predominantly from the south,
in other words, from the refinery and mangrove swamps sec-
tors. In spring, between 01:00 and 08:00, the wind originates
from the road and port sectors. During the summer, for most
of the day, the wind direction is from the railway sector.

2.2 Nucleation events

Table 1 provides a summary of the conditions observed dur-
ing nucleation events and the increase in the N14−30. Nu-
cleation events are defined as those where significant in-
creases in the N14−30 are greater than more than 50% in-
crease in total particle number. These events were fur-

ther classified as “weak”, “moderate” and “strong” fol-
lowing a criteria similar to the one used by Stanier et
al. (2004): dN14−30/dt<4000 cm−3 h−1 was classified as
weak, dN14−30/dt 4000–15 000 cm−3 h−1 was classified as
moderate, anddN14−30/dt>15 000 cm−3 was classified as
strong. In a similar manner to Stanier et al. (2004)
dN14−30/dt is the nucleation rate but the number of nuclei
clusters growing to a detectable size (i.e. above 14 nm).

Figure 6 provides samples of the evolution in particle size
distribution during the nucleation events. In order to provide
as much insight of the particle evolution during these events,
only the hours when nucleation was observed are shown. The
events showed similar patterns during each campaign. There-
fore, only two samples per campaign, randomly selected, are
shown. No nucleation was observed during the autumn cam-
paigns.

2.2.1 Conditions that favoured nucleation

The majority of the events took place in summer, followed
by winter and two events in spring. No events were regis-
tered during the autumn campaigns. Increases in the con-
centration of the N14−30 did not necessarily result in a sig-
nificant increase in total particle number. Air temperature
ranged from 18.5◦C to 28.8◦C with an average of 23.7◦C.
Solar radiation levels were high, ranging from 46 Wm−2 to
1063 Wm−2 and averaging 394 Wm−2. Based on the ob-
served data, a t-test was done to test the hypothesis that solar
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Figure 4: Daily variation in traffic intensity levels during each campaign.  
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Figure 1: Average daily variation in wind direction during each of the five 

measurement campaigns. The values were calculated from the average 

meridional (N-S) and zonal (E-W) wind components. 

 

 

Fig. 5. Average daily variation in wind direction during each of the
five measurement campaigns. The values were calculated from the
average meridional (N–S) and zonal (E–W) wind components.
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Figure 6: Samples of observed nucleation events during the times they were 

observed in the different campaigns. The contours represent the particle 

concentrations expressed as dN/dLogdP cm-3. Fig. 6. Samples of observed nucleation events during the times they were observed in the different campaigns. The contours represent the
particle concentrations expressed asdN /dLogdP cm−3.
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radiation levels were significantly higher in summer than in
winter. The test, however, proved that the difference was in-
significant (p = 0.340). This is not surprising since sampling
took place in a subtropical location, where the differences
in sunlight and cloud cover between summer and winter are
not as large as in more temperate climate. Relative humidity
ranged from 51.7% to 77.9% averaging 70.7% in winter and
56.9% in summer. In this case, the t-test showed significant
differences in relative humidity values (p<0.01).

Sometimes, the change in total concentration was negative
which indicates that nucleation events occur when the con-
centration of larger particles decreased. In most instances,
the change in the N14−30 was greater than the change in to-
tal concentration, indicating that the events were correctly
identified, in other words, the increases in N14−30 were no
associated with significant increases in the concentration of
the larger particles.

Table 2 shows the concentration of NO, NO2 and SO2 be-
fore and during the events. No clear or dominant pattern is
observed in the change of NO and NO2 concentrations. In
most cases, SO2 concentrations, declined during the events.
There were only a few exceptions, the most notable one in
19 January 2007 at 13:15, when the SO2 concentrations rose
12.9×10−2 ppb during the event.

3 Discussion

The size distribution of submicrometre particles in the size
range 14–800 nm was examined in order to investigate the
occurrence of nucleation events. The analysis was done by
analysing the evolution of the size distribution during each
day of the investigation, as well as the analysis of the time
series of the concentration of size-fractionated particles using
first-order differencing techniques.

Most nucleation events took place for the wind direc-
tion from the railway sector, in other words, when the wind
moved towards the road. As mentioned earlier, traffic is dom-
inated by diesel vehicles and therefore when the wind origi-
nates from the road the particle number is dominated by the
50–100 nm size fraction. Hitchins et al. (2000) found that
when the wind moved towards the road, even at the clos-
est point, the total particle concentration was similar to the
background. Since passing of trains was rare, wind from the
railway sector is dominated by the background and therefore
this sector is associated with clean air masses. Sampling took
place in a marine environment and therefore the influence of
sea breeze is significant around the site, particularly at this
sector, which was the closest to the ocean.

There were a few events associated with wind blowing
from the port and the refinery sectors, and none from the
road. This is indicative of long range transport. Several
studies have shown that nucleation can occur more or less
uniformly in air masses that extend several kilometres (e.g.
Kulmala et al., 2001; O’Dowd et al., 2007). This means

that newly formed particles can grow to a detectable size (i.e.
14 nm) over several kilometres, despite dilution.

Figure 1 shows that the airport is located in the same sec-
tor as the road and therefore its influence on the data when
the wind blew from this sector might appear clear at first
glance. However, this effect was severely masked by the
dominance of traffic emissions due to the much closer prox-
imity between the road and sampling point. Furthermore,
research has shown that particle number concentration and
size distribution decrease with distance between the source
and measurement location (e.g. Hitchins et al., 2000) and
at about 300 m downwind from the source particle concen-
tration is undistinguishable from background concentrations
(Zhu et al., 2002a, b). Since the airport was located at a much
greater distance to the site, about 4 km, its contribution to the
observed measurements when the wind blew from this sector
was therefore negligible.

Even though the wind does not blow from the road dur-
ing nucleation events, for all campaigns, the N14−30 peaked
in the morning (Fig. 3) consistent with the peaks in traffic
during the morning rush hours (Fig. 4) and the wind blowing
close to the road sector (215◦-305◦) (Fig. 5). Then it drops in
concentration during the day as the wind moves away from
this sector. This peak coincides with the peaks in the other
size fractions and therefore reflects increased primary emis-
sions.

Global radiation has been identified to influence new par-
ticle production (Boy and Kulmala, 2002; O’Dowd et al.,
1999). Solar radiation levels are generally higher in sum-
mer and lower in winter and as a result American and Eu-
ropean studies have found nucleation events to be more fre-
quent in summer (e.g. Qian et al., 2007). Conversely, other
studies have found that nucleation events are less frequent
winter than in spring or autumn (e.g. Stanier et al., 2004) and
sometimes they are even absent during the winter (Wehner
and Wiedensohler, 2003). In contrast, a South Korean study
found that nucleation events occurred more frequently in
winter (Lee et al., 2008). The difference between the South
Korean study and the European and American studies is that
the South Korean study was done in a coastal environment
whereas those in Europe and the USA were conducted in ur-
ban areas.

In the present study, although it took place in a coastal
area, nucleation had a higher frequency in summer than in
winter, which is more consistent with the urban studies above
than with the coastal study in South Korea. Although this
may reflect the high traffic activity at the site, thereby sug-
gesting photochemical formation, the fact that none of them
took place when the wind blew from the road indicates that
they are not associated with traffic. These events were rarer
in spring and absent in the autumn campaigns.

The statistical test showed that the difference in solar radi-
ation levels during these events was almost the same between
summer and winter. Furthermore, many of these events were
observed at much lower radiation levels than those observed
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Table 2. Gaseous concentrations before and after nucleation events

Date and Time NO (pphm) NO2 (pphm) SO2 (×10−2 ppb)

Before During Change Before During Change Before During Change

21-Aug-2006 10:10 0.232 0.192 −0.040 0.151 0.142 −0.010 10.8 6.23 −4.58
24-Aug-2006 20:10 0.137 0.135 −0.001 0.134 0.126 −0.007 2.95 2.44 −0.51
30-Aug-2006 09:10 0.236 0.204 −0.033 0.146 0.155 0.008 5.56 4.29 −1.27
30-Aug-2006 19:10 0.143 0.127 −0.015 0.131 0.125 −0.006 2.11 1.94 −0.17
31-Aug-2006 15:10 0.124 0.125 0.001 0.124 0.125 0.001 1.82 1.79−0.03
2-Sep-2006 08:10 0.161 0.155−0.006 0.134 0.133 0.000 2.94 2.72 −0.22
3/09/2006 10:10 0.136 0.138 0.002 0.133 0.131−0.002 4.12 3.25 −0.87
7-Nov-2006 19:20 0.131 0.138 0.008 0.127 0.124−0.003 1.88 1.94 0.06
9-Nov-2006 12:20 0.139 0.139 0.000 0.127 0.127 0.000 1.88 1.86−0.03
12-Jan-2007 19:15 0.134 0.122−0.012 0.130 0.130 −0.001 3.87 2.68 −1.19
14-Jan-2007 05:15 0.122 0.119−0.002 0.122 0.124 0.001 2.23 2.31 0.08
14-Jan-2007 08:15 0.128 0.130 0.001 0.123 0.123 0.000 2.38 2.22−0.16
14-Jan-2007 12:15 0.121 0.123 0.002 0.125 0.124−0.002 2.31 2.03 −0.28
15-Jan-2007 04:15 0.122 0.125 0.003 0.123 0.123 0.000 1.93 1.91−0.01
15-Jan-2007 14:15 0.124 0.125 0.001 0.124 0.126 0.002 1.77 1.58−0.19
15-Jan-2007 18:15 0.122 0.128 0.005 0.126 0.124−0.002 1.63 1.82 0.19
16-Jan-2007 08:15 0.132 0.119−0.014 0.131 0.130 −0.001 9.34 2.71 −6.63
16/01/2007 21:15 0.123 0.121 −0.002 0.131 0.128 −0.004 0.15 0.17 0.02
17-Jan-2007 02:15 0.123 0.152 0.029 0.127 0.133 0.006 2.05 2.28 0.23
17-Jan-2007 15:15 0.121 0.118−0.003 0.127 0.127 0.000 15.2 9.27 −5.95
18/01/2007 06:15 0.167 0.168 0.001 0.147 0.147 0.000 26.5 23.8−2.63
19-Jan-2007 13:15 0.123 0.119−0.004 0.417 0.211 −0.206 14.7 27.6 12.90
19-Jan-2007 15:15 0.122 0.118−0.005 0.135 0.126 −0.009 19.1 11.1 −8.05
19-Jan-2007 20:15 0.124 0.118−0.007 0.121 0.128 0.006 3.54 3.36 −0.17
25-Jan-2007 11:15 0.111 0.121 0.010 0.125 0.124−0.001

in East St. Louis (Qian et al., 2007). In that study, nucleation
was observed when the median solar radiation intensity was
680 W m−2 and no nucleation events were observed at below
450 W m−2 (Qian et al., 2007). In the present investigation,
nucleation events were observed even when solar radiation
intensity was as low as 46 W m−2. This compares well with
the conditions observed in coastal environments (e.g. Lee et
al., 2008). The occurrence of new particle production de-
pends not only on the presence of intense solar radiation but
also on the properties of the present air mass (Wehner and
Wiedensohler, 2003). Therefore, although the importance of
solar radiation upon new particle formation cannot be dis-
missed, there are other forces influencing the process, for ex-
ample, the type of environment.

This study found that new particle production took place
at relative humidity values of around 50% to 80% and air
temperatures of 18.0◦C to around 29◦C. The relative humid-
ity conditions for nucleation are similar to those reported by
O’Dowd et al. (2002) whilst the temperature in this study are
higher than those reported in that study. Micrometeorologi-
cal processes promote an increase in surface vapour flux by
providing additional water vapour, which increases the nu-
cleation probability along with possible nucleation precursor

species (O’Dowd et al., 2002). Similarly, increases in turbu-
lent fluctuations in temperature and humidity can also signif-
icantly increase the probability of nucleation (Easter and Pe-
ters, 1994; Pirjola et al., 2000; Nilsson and Kulmala, 1998).

Figure 6 shows that the events were of very short dura-
tion, lasting a maximum of 4 h. The typical “banana” shapes
observed in different studies (e.g. Boy and Kulmala, 2002;
Spracklen et al., 2006; Stanier et al., 2004) does not occur
here. This means that the burst of N15−30 followed by growth
was not observed and therefore these events were associated
with air masses of local origin. Park et al. (2008) observed
a similar phenomenon in the range 3–10 nm and hypothe-
sized that this occurred because in the event nucleation and
growth occurred above in the air and that subsequent verti-
cal mixing caused the grown particles to reach the sampling
point. They proposed this hypothesis after observing a grad-
ual growth pattern only after particles larger than 10 nm had
appeared. Although the lower size limit in our study was
14 nm, this hypothesis could be applied to this study pro-
vided that a growth pattern would be observed in the range
above 30 nm. However, this did not occur. No increases in
the number concentration of particles>30 nm were observed
after the events and the concentration of smaller particles
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dropped significantly after 2–4 h. The analysis of the daily
pattern of variation in size distribution and the concentration
of size-fractionated particles indicates that the particle num-
ber is dominated by the range 50–100 nm, which is consistent
with the size distribution observed for diesel exhaust emis-
sions (Morawska et al., 1998). This is not surprising since
the site is dominated by diesel traffic and sampling took place
very close to the road. The dominance of this size range has
the effect of increasing the available surface area. The pres-
ence of a high particle surface area prevents nucleation due
to diffusion of small particles and condensed material to the
surface of larger particles (e.g. Friedlander et al., 1991). This
led us to hypothesise that air masses associated with nucle-
ation events mixed quickly with emissions from the road. As
a result, nucleation events were rare and of very short dura-
tion.

Particle number concentration was higher in winter caused
by different meteorological conditions reducing the available
volume of air for their dispersion. The peak in their concen-
trations, with the exception of summer, occurred at around
06:00–09:00 consistent with increases in traffic volumes. Al-
though traffic levels peak at around midday, particle number
is lower than during the morning rush.

It was observed that often the formation of new parti-
cles was accompanied by decreases in the concentration of
larger particles. This is shown by the negative change in to-
tal concentration during the events even though the N14−30
increases significantly. Spracklen et al. (2006) showed that
significant reductions in primary particle emissions may lead
to an increase in total particle concentration because of the
coupling between particle surface area and the rate of new
particle formation. In the present study, new particle forma-
tion did not necessarily increase the total particle concentra-
tion.

Gaseous sulphuric acid has been identified as a key com-
pound for the formation and growth of new particles and
is formed by the reaction of SO2 with the hydroxyl radical
(Kerminen et al., 2004). Urban (e.g. Qian et al., 2007; Woo
et al., 2001) and coastal studies (Lee et al., 2008) found that
SO2 concentrations increased during nucleation events. In
contrast, this study found that with only some notable excep-
tions, SO2 concentrations declined during the events. No rea-
sonable explanation can be found for this discrepancy except
that in the present study nucleation events were associated
with cleaner air masses, or that the SO2 is being consumed
during nucleation.

4 Summary and conclusions

The evolution of particle size distribution in the range 14–
800 nm was analysed in order to determine the frequency of
nucleation events during four campaigns of two weeks dura-
tion and one campaign of four weeks, covering a total period
of 13 months.

This study found that nucleation events were rare and of
very short duration and did not contribute to large concen-
trations. The majority of the events took place in sum-
mer. There were no events during the autumn campaigns and
events in winter were more frequent than in spring. These
events occurred randomly independent of time of the day al-
though they were more frequent during the daylight hours.
During these events, there was no significant difference in so-
lar radiation levels. Therefore, the differences in occurrences
of nucleation between summer and winter are not explained
by differences in solar radiation levels.

In many cases, the formation of new particles did result
in significant reductions in the total particle concentration.
This is because there are differences in size distributions and
number concentrations between the road sector and the rail-
way sector. The road sector is dominated by diesel traffic and
therefore there is a much higher concentration of larger parti-
cles whereas the railway sector is mostly associated with the
background emissions largely influenced by sea breeze.

Nucleation occurred in most cases when the wind orig-
inated from the railway sector followed by the port sec-
tor. Trains passing by were a rare occurrence and therefore
train emissions had little influence in railway sector. No nu-
cleation was observed when the wind originated from the
road. Therefore, nucleation events were associated with and
cleaner air masses of local origin that mixed quickly with
road emissions after the events, causing them to be short-
lived. This was because more polluted air from the road was
associated with direct emissions of larger particles providing
a greater available surface area for condensation, thus reduc-
ing the probability of nucleation from this sector.

NO and NO2 did not play any role in nucleation. There
was no clear pattern of change in their concentrations during
nucleation events. In contrast, in most cases, SO2 concen-
trations declined during the events. The only plausible ex-
planation is that nucleation was favoured by cleaner air con-
ditions or that SO2 was being consumed during nucleation.
However, there were a few occasions when SO2 increased
therefore its role in nucleation is not very clear.
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