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Abstract. A cloud resolving model (CRM) is used to inves-
tigate the formation of orographic cirrus clouds in the cur-
rent and future climate. The formation of cirrus clouds de-
pends on a variety of dynamical and thermodynamical pro-
cesses, which act on different scales. First, the capability of
the CRM in realistically simulating orographic cirrus clouds
has been tested by comparing the simulated results to aircraft
measurements of an orographic cirrus cloud. The influence
of a warmer climate on the microphysical and optical proper-
ties of cirrus clouds has been investigated by initializing the
CRM with vertical profiles of horizontal wind, potential tem-
perature and equivalent potential temperature, respectively.
The vertical profiles are extracted from IPCC A1B simula-
tions for the current climate and for the period 2090–2099
for two regions representative for North and South America.
The influence of additional moisture in a future climate on
the propagation of gravity waves and the formation of oro-
graphic cirrus could be estimated. In a future climate, the in-
crease in moisture dampens the vertical propagation of grav-
ity waves and the occurring vertical velocities in the moist
simulations. Together with higher temperatures fewer ice
crystals nucleate homogeneously. Assuming that the rela-
tive humidity does not change in a warmer climate the spe-
cific humidity in the model is increased. This increase in
specific humidity in a warmer climate results in a higher ice
water content. The net effect of a reduced ice crystal number
concentration and a higher ice water content is an increased
optical depth. However, in some moist simulations dynam-
ical changes contribute to changes in the ice water content,
ice crystal number concentration and optical depth. For the
corresponding dry simulations dynamical changes are more
pronounced leading to a decreased optical depth in a future
climate in some cases.
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1 Introduction

Cirrus clouds have a strong influence on the radiative bud-
get of the earth. They can either cool or warm the Earth-
Atmosphere system depending on their microphysical prop-
erties like ice water content or ice crystal number concen-
tration. Generally, optically thick cirrus clouds exert a cool-
ing effect and optically thin clouds a warming effect. The
global net effect of cirrus clouds tends to warm the Earth-
Atmosphere-system (Chen et al., 2000). Our understanding
of the formation of cirrus clouds and their resulting micro-
physical and optical properties is crucial to predict changes
in the radiative budget in the future climate. However, as the
formation of cirrus clouds depends on very complex multi-
scale dynamical and microphysical processes, their forma-
tion and life cycle is not well known (Spichtinger et al.,
2005a,b). A significant part of the uncertainties in the
prediction of future climate in general circulation models
(GCM) arises from the representation of cirrus cloud for-
mation (Zhang et al., 2005). As in most GCMs only large
scale vertical velocities are calculated and the manifold dy-
namical processes which strongly influence the formation of
cirrus are not taken into account, the cirrus cloud amount is
underestimated in many GCMs and no reliable prediction of
a change in cirrus cloud cover is possible as the correct un-
derlying physical process is not taken into account. There are
only two parameterizations for GCMs (the HadAM3 and the
ECHAM5 model) available which at least take the formation
of orographic cirrus clouds into account (Dean et al., 2005;
Joos et al., 2008). Additionally, anthropogenic aerosols can
change the ice crystal number concentration and exert an
anthropogenic forcing comparable to the forcing on warm
clouds (Penner et al., 2009). An estimation of the influence
of a changing climate on the formation of (orographic) cirrus
and the radiative budget is still difficult.

In order to estimate the changes in orographic cirrus cloud
cover in a warmer climate, it is necessary to determine the
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key processes, which influence the formation of orographic
cirrus. Here, changes in the flow regime due to a change
in atmospheric stability caused by a change in the temper-
ature and moisture profiles, an increase of horizontal wind
speed especially in the upper troposphere and, of course, the
changes due to warmer temperatures have to be taken into ac-
count. There are several studies describing the influence of
moisture on the propagation of orographically excited gravity
waves (see e.g.Durran and Klemp(1983); Jiang(2003)). The
additional moisture weakens the atmospheric stability and
amplitudes of the gravity waves and thus the vertical veloci-
ties which strongly influence the ice crystal number concen-
tration. Additionally, the vertical wavelength is increased.
On the other hand, the increase in horizontal wind speed
leads to an increase of the amplitudes and vertical velocities
of the waves. In order to investigate the impact of these two
opposing effects, which we expect in a changing climate, we
present simulations with the non-hydrostatic anelastic model
EULAG (Prusa et al., 2008). As in this model a detailed
ice microphysical scheme is implemented (Spichtinger and
Gierens, 2009) it can be used in order to assess the dynami-
cal and thermodynamical changes in a future climate and its
influence on the formation of orographic cirrus clouds.

In order to determine the importance of the individual pro-
cesses, idealized simulations were carried out where changes
in the temperature profiles, the relative humidity with respect
to ice (RHi) and the position of the ice supersaturated layer
have been investigated. In order to determine the changes in
the microphysical and optical properties of orographic cirrus
in a future climate, simulations initialized with vertical pro-
files taken from IPCC simulations for the beginning and the
end of the 21st century were performed.

In Sect. 2 the model used for this study is introduced
briefly. In Sect.3 we show the model’s capability to sim-
ulate realistic orographic cirrus by comparing the results of a
simulation with in situ aircraft measurements. In Sect.4 we
present results of idealized simulations and discuss them and
in Sect.5 the results of the simulations initialized with IPCC
profiles are presented. In Sect.6 we summarize our work and
draw some conclusions.

2 Model description

For this study we use the anelastic, non-hydrostatic model
EULAG (Smolarkiewicz and Margolin, 1997; Prusa et al.,
2008; Grabowski and Smolarkiewicz, 2002). In the stan-
dard version of the model used for this study, a two-moment
bulk ice microphysics scheme is implemented and “moist”
dynamics and a coupling of dynamics and thermodynamics
is performed.

In the ice-microphysics scheme the ice classes correspond
to different nucleation processes (homogeneous and hetero-
geneous freezing) and include the processes of ice crystal
nucleation, depositional growth/evaporation and sedimenta-

tion. In our simulations only homogeneous freezing is con-
sidered as it can be assumed that the formation of orographic
cirrus is dominated by high vertical velocities and super-
saturations and that homogeneous freezing is the dominant
freezing mechanism (Kärcher and Str̈om, 2003). The homo-
geneous nucleation rate is parameterized according toKoop
et al. (2000). The background aerosol (sulfuric acid) is dis-
tributed log-normally with a modal radiusrm = 25 nm for
aqueous solution droplets and geometric standard deviation
σ = 1.4. InSpichtinger and Gierens(2009) it was found that
this setup gives reliable results for homogeneous nucleation
events. For a more detailed description of the ice micro-
physics scheme seeSpichtinger and Gierens(2009). For all
simulations shown in this study, a 2-dimensional (x-z plane)
model domain is used. The detailed model setup for each
simulation is described at the beginning of every chapter.

3 Model verification: simulation of the INCA-case

In order to show the model’s capability to represent the for-
mation of orographic cirrus clouds, measurements from the
INCA (Interhemispheric differences in cirrus properties from
anthropogenic emissions) campaign (Gayet et al., 2004) are
used as comparison. The INCA-campaign took place in
April 2000 over Punta Arenas, Chile and in October 2000
over Prestwick, Scotland, respectively. The measurements
used for this comparison were taken on the 5th of April 2000
between 18:00 and 19:00 UTC on a flight track at 53◦ S from
69.2◦ W to 76◦ W. During this flight, the vertical velocity,
ice crystal number concentration and ice water content in an
orographic cloud were measured. Vertical velocities were
measured with a five-hole probe only during constant alti-
tude flight sections. The accuracy of the vertical velocity
is estimated to be on the order of 0.1 m s−1 (Bögel and Bau-
mann, 1991). Ice particle concentrations were measured with
a combination of two instruments, the FSSP-300 and 2DC-C
optical probe onboard the DLR Falcon (Gayet et al., 2002,
2004). The particle concentrations used for this comparison
refer to the particle size range 3–800 micrometer in diameter.
Furthermore, residual particle measurement with the Coun-
terflow Virtual Impactor, CVI (Noone et al., 1993) have been
carried out.

In order to test the model’s capability to represent oro-
graphic cirrus clouds in a correct way, these measurements
are compared to a 2-dimensional simulation with the EU-
LAG model. As initial profiles we used the temperature and
wind data from the ECMWF (European Centre for Medium-
Range Weather Forecasts) Reanalyse data for the 5th of April
2000 at 18:00 UTC when the measurements were taken. Ad-
ditionally, a realistic topography from the National Geo-
graphical Data Centre (NGDC,Hastings et al.(1999)) is im-
plemented. Figure1 shows the initial profiles of tempera-
tureT (z), potential temperatureθ(z), horizontal wind speed
u(z) and pressurep(z), respectively. The wind direction is

Atmos. Chem. Phys., 9, 7825–7845, 2009 www.atmos-chem-phys.net/9/7825/2009/



H. Joos et al.: Orographic cirrus in a future climate 7827

Fig. 1. Initial vertical profiles of temperature T , potential temperature θ, horizontal wind speed u and pressure

p taken from the ECMWF Reanalyse data for the 5 April 2000 at 18 UTC at 53◦S and 78◦W.
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Fig. 1. Initial vertical profiles of temperatureT , potential temperatureθ , horizontal wind speedu and pressurep taken from the ECMWF
Reanalyse data for the 5th of April 2000 at 18:00 UTC at 53◦ S and 78◦ W.

Fig. 2. Flow regime for the INCA case at 5 April 2000, 18 UTC initialized with the ECMWF profiles. Grey

lines denote lines of constant potential temperature and the colorbar indicates the vertical velocity in ms−1.

The black box shows the position of the supersaturated layer.
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the effect of moisture on the propagation of gravity waves, which would lead to a decrease in vertical

velocities. This is neglected here. On the other hand, as the airplane flies with ∼ 170 m s−1 it did

not necessarily reach to measure the highest occuring velocities. If all these restrictions are taken

into account, one can say that the model is quite able to represent the measured values (see fig. 3).130

The results for the ICNC and IWC also agree very well with the observation. Gayet et al. (2006)

stated that shattering of ice crystals leading to an overestimation of measured ICNC was unlikely as

different techniques were used. The comparison of the results obtained with the different techniques

showed little difference such that shattering can be ruled out for this case. Based on these results,

we assume that the model is able to simulate realistic vertical velocities and microphysical proper-135

5

Fig. 2. Flow regime for the INCA case on the 5th of April 2000,
18:00 UTC initialized with the ECMWF profiles. Grey lines denote
lines of constant potential temperature and the colorbar indicates
the vertical velocity in m s−1. The black box shows the position of
the supersaturated layer.

approximately 260◦. For simplicity we assumed a pure west
wind here.

In this simulation we used a horizontal model domain of
1000 km and 20 km in the vertical with a horizontal resolu-
tion dz = 1000 m and a vertical resolution dz = 50m. In all
simulations the dynamical time step isdt = 2.5 s and the mi-
crophysical time step isdtm = dt/10= 0.25 s. The model is
run for 5 h. In all simulations the Coriolis force is neglected.
Figure2 shows the result of the flow over the realistic topog-
raphy initialized with the ECMWF profiles aftert = 5 h.

The topography of the Andes induces gravity waves that
propagate through the whole troposphere. The maximum
and minimum vertical velocities amount to +8/−8 m s−1, re-

spectively. They occur in a height between 4 and 6 km.
According to the height of the flight, an ice supersaturated
region (ISSR) has been implemented in a height of 8500–
9500 m with an initial supersaturation of RHi = 130%. In or-
der to compare the simulation with the measurements, his-
tograms for the vertical velocity, ice crystal number concen-
tration (ICNC) and ice water content (IWC) are shown. The
temperatures measured during the flight lie between 230 K
and 226 K. Therefore, we selected the simulated values at
T = 226 K andT = 230 K for comparison. Additionally, the
distribution sampled over the whole ISSR is shown. The sim-
ulated values sampled over the 5 simulated hours are shown
in Fig. 3.

It can be seen that the model reproduces the distribution of
the measured variables remarkably well. The measured ver-
tical velocity is in the range between +1.8 and−1.8 m s−1.
In general, this can be reproduced well although the model
seems to overestimate the vertical velocities. This is due to
the 2-dimensional setup that leads to an overestimation of the
vertical velocity (Dörnbrack, 1998) and the effect of moisture
on the propagation of gravity waves, which would lead to a
decrease in vertical velocities. This is neglected here. On the
other hand, as the airplane flies with∼170 m s−1 it did not
necessarily reach to measure the highest occuring velocities.
If all these restrictions are taken into account, one can say
that the model is quite able to represent the measured values
(see Fig.3). The results for the ICNC and IWC also agree
very well with the observation.Gayet et al.(2006) stated that
shattering of ice crystals leading to an overestimation of mea-
sured ICNC was unlikely as different techniques were used.
The comparison of the results obtained with the different
techniques showed little difference such that shattering can
be ruled out for this case. Based on these results, we assume
that the model is able to simulate realistic vertical velocities
and microphysical properties of orographic cirrus clouds and
can thus be used for further investigations of orographic cir-
rus clouds with idealized simulations as described in the next
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Fig. 3. Comparison of the simulated and measured vertical velocity (upper panel), ICNC (middle panel) and

ice water content (lower panel). For the ICNC the black line denotes the combined measurements taken with

the FSSP-300 and 2DC-C optical probe. Additionally, the measurements with the CVI are shown in dark blue.

The simulated results for the temperature range 226 K and 230 K are shown in red and light blue, respectively.

The purple line shows the simulated results sampled over the whole ISSR. All simulated values contain data

sampled over all time steps.

ties of orographic cirrus clouds and can thus be used for further investigations of orographic cirrus

clouds with idealized simulations as described in the next chapter or to investigate the changes in

microphysical properties in a changing climate as discussed in chapter 5.
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climate, there are two main processes, which influence the properties of an orographic cirrus cloud.

On the one hand, an increase in moisture could lead to a damping of the gravity waves amplitude and
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Fig. 3. Comparison of the simulated and measured vertical veloc-
ity (upper panel), ICNC (middle panel) and ice water content (lower
panel). For the ICNC the black line denotes the combined measure-
ments taken with the FSSP-300 and 2DC-C optical probe. Addi-
tionally, the measurements with the CVI are shown in dark blue.
The simulated results for the temperature range 226 K and 230 K
are shown in red and light blue, respectively. The purple line shows
the simulated results sampled over the whole ISSR. All simulated
values contain data sampled over all time steps.

chapter or to investigate the changes in microphysical prop-
erties in a changing climate as discussed in chapter5.

4 Idealized simulations

To investigate the key parameters, which determine the mi-
crophysical and optical properties of orographic cirrus clouds
in a future climate, idealized simulations have been carried
out. In a future climate, there are two main processes, which
influence the properties of an orographic cirrus cloud. On
the one hand, an increase in moisture could lead to a damp-
ing of the gravity waves amplitude and reduce the vertical
velocities. Furthermore, the vertical wavelength could in-

crease such that the ISSR shifts in a different vertical phase
of the wave. On the other hand, the temperature increase
changes the available water vapor under the assumption of a
constant relative humidity and has an influence on the depo-
sitional growth. In order to assess the importance of these
individual thermodynamical and dynamical processes and its
influence on the formation of cirrus clouds, the temperature
inside the ISSR has been changed and the height of the ISSR
is shifted to a lower/higher position such that a change in the
wave phase is simulated.

The model is initialized with the ambient potential tem-
perature and pressure profilesθ(z) and p(z) according to
Clark and Farley(1984), using a constant Brunt-V̈ais̈ala fre-
quencyN over the whole troposphere. Fromθ(z) andp(z)

the physical temperatureT (z) and the densityρ(z) can be
calculated. Additionally, a wind profileu(z) is prescribed:
between 0 and 2 km height,u(z) increases from 4 m s−1 to
9 m s−1. From 2 km to 12 km the horizontal velocity is con-
stant (u(z) = 9 m s−1). Above that level it decreases linearly
until u(z = 15 km) =−10 m s−1. For these simulations we
use a 2-D domain (x-z-plane) with a horizontal extension of
320 km and a vertical extension of 20 km with a bell shaped
mountain in the middle of the domain. The mountain shape
can be described as

H(x) =
h0

1 +
x2

a2

(1)

wherea = 10 000 m is the half-width of the mountain and
h0 = 600 m the maximum height, respectively. The non-
dimensional mountain height is given byĥ = Nh0/u = 0.6
which leads to a hydrostatic mountain wave. The horizontal
and vertical resolutions aredx = 250m anddz = 50 m, re-
spectively. The simulations have been carried out for 5 h. An
ice supersaturated layer (ISSR) with a depth of 1 km has been
implemented in the model additionally.

First, a reference case has been defined: The ISSR is situ-
ated in the vertical range between 8500 m and 9500 m. This
corresponds to the height where the highest vertical veloc-
ity in the developing hydrostatic wave occurs. The initial
temperature profile has been chosen in a way that the tem-
perature in the middle of the reference ISSR is 220 K and the
reference initial supersaturation with respect to ice (RHi) is
120%. Then two different effects were investigated.

1. A shift of the initialθ profiles such that the temperature
in the middle of the reference ISSR is 210 K and 230 K,
respectively (see Fig.4).

2. A change of the height of the ISSR, which causes a dif-
ferent temperature and a different position in the wave
phase. The height of the ISSR has been shifted so
that the temperature in the middle of the lowest layer
is 230 K and in the highest layer 210 K (see Fig.5).
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Fig. 4. Initial vertical profiles of temperature T , potential temperature θ and wind speed u for the idealized

simulations. Black lines denote the reference case. The black box shows the position of the ISSR for the

reference case.

Fig. 5. Flow regime after 5 hours used for the idealized simulations (left). Grey lines indicate lines of constant

potential temperature with an increment of 4 K. Black, blue and orange rectangles show the three different

positions of the ISSR. Colors indicate the vertical velocities (left) and the relative humidity (right). Black

contours show the ICNC with the lines for 0.00001,1,10,100,500,1000 l−1 and red contours the IWC with lines

for 0.0001,1,3,6,9,12,15,18 mg m−3.

results shown here are after t = 5h. A nearly hydrostatic wave develops, which propagates vertically

through the whole troposphere and is absorbed at the tropopause in a critical layer. The highest

vertical velocity occurs at ∼9 km height and amounts to ∼0.8 m s−1.180

8

Fig. 4. Initial vertical profiles of temperatureT , potential temperatureθ and wind speedu for the idealized simulations. Black lines denote
the reference case. The black box shows the position of the ISSR for the reference case.
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positions of the ISSR. Colors indicate the vertical velocities (left) and the relative humidity (right). Black

contours show the ICNC with the lines for 0.00001,1,10,100,500,1000 l−1 and red contours the IWC with lines

for 0.0001,1,3,6,9,12,15,18 mg m−3.
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Fig. 5. Flow regime after 5 h used for the idealized simulations (left). Grey lines indicate lines of constant potential temperature with an
increment of 4 K. Black, blue and orange rectangles show the three different positions of the ISSR. Colors indicate the vertical velocities
(left) and the relative humidity (right). Black contours show the ICNC with the lines for 0.00001, 1, 10, 100, 500, 1000 l−1 and red contours
the IWC with lines for 0.0001, 1, 3, 6, 9, 12, 15, 18 mg m−3.

Figure4 shows the initialT (z), θ(z) andu(z) profiles for
the reference case (black line) and the two shiftedθ -profiles.

In order to obtain the same flow regime for all cases, the
θ -profile has been shifted by adding a constant. Thus, the
Brunt-Väis̈ala-frequency is the same in all simulations. The
developing flow regime and the position of the different ISSR
is shown in figure5 (left panel).

The results shown here are aftert = 5 h. A nearly hydro-
static wave develops, which propagates vertically through
the whole troposphere and is absorbed at the tropopause in
a critical layer. The highest vertical velocity occurs at∼9 km
height and amounts to∼0.8 m s−1.

4.1 Results

4.1.1 Description of the reference case

In order to compare the effect of changed initial conditions,
first the reference case is described in more detail. After a
while, a hydrostatic wave forms and aftert = 3 h the critical
supersaturation for homogeneous freezing is reached, the for-
mation of ice starts and an orographic cirrus cloud develops.
Figure5 (right panel) shows the ice crystal number concen-
tration (ICNC) and the ice water content (IWC) aftert = 5 h,
when the flow regime is in a quasi steady state.

The maximum ICNC and IWP amounts to 1.3 cm−3

and 18.9 mg m−3, respectively. The homogeneous freez-
ing occurs in the updraft region of the gravity wave,
whereas the maximum vertical velocity in the supersat-
urated layer amounts to 0.8 m s−1. The crystals are

www.atmos-chem-phys.net/9/7825/2009/ Atmos. Chem. Phys., 9, 7825–7845, 2009
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Fig. 6. Optical depth, ICNC and IWP after t = 5h for (left) RHi=110%, (middle) RHi=120% and (right)

RHi=130%. Different colors indicate different temperatures inside the ISSR. Values in brackets denote the

mean values, whereas here all values corresponding to τ > 0.03 are considered.

mean is calculated over all values where the optical depth exceeds 0.03, which distinguishes visible

from subvisible cirrus. In the second small updraft region at x ∼ 220 km the crystals start to grow

again, but no new crystals are formed. This leads to an increased IWP and τ in this region. The

mean τ is 0.62. As the crystals are advected and even start to grow in the second updraft region the215

cloud has a horizontal extent of approx. 80 km.

4.1.2 Shift of temperature profile

In order to investigate the formation of orographic cirrus depending on a change in temperature in-

side the ISSR at constant RHi, simulations with the initial θ-profiles shown in figure 4 are carried out.

The assumptions of a constant relative humidity and warmer temperatures represent the conditions220

in a future climate. The results are also shown in figure 6 (blue and red lines). The results shown

here are for t = 5h, although in the simulation with RHi=110% the formation of the cirrus cloud

starts ∼ 1h later than in the other simulations. This means, that the figure for RHi=110%, 120%

and RHi=130% are not directly comparable as the pictures refer to different stages of development

of the cloud. Comparing the results for all cases at the same time (3h) after the first nucleation does225

not change the overall picture. Therefore here the results after t = 5h are shown referring to different

stages of development of the cloud. For the case of RHi=120% (middle panel) it can be seen that the

IWP decreases strongly with decreasing temperature when RHi is kept constant because much less

water vapor is available at colder temperatures. IWP for the cold case decreases to 1.6 g m−2, which

corresponds to a reduction of 64%. The mean value for the warm case amounts to 13.9 g m−2, which230
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Fig. 6. Optical depth, ICNC and IWP aftert = 5 h for (left) RHi = 110%, (middle) RHi = 120% and (right) RHi = 130%. Different colors
indicate different temperatures inside the ISSR. Values in brackets denote the mean values, whereas here all values corresponding toτ>0.03
are considered.

advected approximately 80 km downstream. If they become
big enough they start to sediment. Atx∼220 km there is a
second small updraft region as the flow regime is not per-
fectly hydrostatic. However the increase in RHi is not high
enough to initiate a new freezing event, but the crystals are
growing in this region and therefore become large enough
to sediment out of the supersaturated layer. In order to in-
vestigate the changes in the microphysical properties and the
optical depth and to compare it to the other simulations we
calculate the vertically integrated ice water content (ice wa-
ter path, IWP), ice crystal number concentration (ICNC) and
cloud optical depth (τ ).

For the calculation ofτ the effective radius of the crystals
is needed. It is calculated using the assumption of randomly
orientated hexagonal cylinders and is based on the following
equation (Ebert and Curry, 1992):

reff =

∫
∞

0 ( A
4π

)3/2
· f (L)dL∫

∞

0
A
4π

· f (L)dL
(2)

whereA denotes the total surface of a hexagonal cylin-
der andf (L) denotes the log-normally distributed ice crys-
tal size. Here, the integral is approximated using only the
(analytical) formula for the moments of the ice crystal size
distribution. For a more detailed description seeFusina et al.
(2007). The cloud optical depth for the wavelength 0.2–4 µm
is then calculated as (Fu and Liou, 1992);

τ = IWP · (a +
b

reff
) (3)

where IWP is the ice water path in g m−2, reff is the effective
radius in µm,a = − 6.656×10−3 andb = 3.686.

Figure6 (middle panel, black line) shows the results for
the IWP, ICNC andτ for the reference case. The triangle
denotes the position of the top of the mountain. In the strong
updraft region the supersaturation passes over the critical
threshold for homogeneous nucleation and ice crystals start
to form and grow. The mean IWP amounts to 4.45 g m−2 an
the mean ICNC is 0.29×109 m−2. The mean is calculated
over all values where the optical depth exceeds 0.03, which
distinguishes visible from subvisible cirrus. In the second
small updraft region atx∼220 km the crystals start to grow
again, but no new crystals are formed. This leads to an in-
creased IWP andτ in this region. The meanτ is 0.62. As
the crystals are advected and even start to grow in the second
updraft region the cloud has a horizontal extent of approx.
80 km.

4.1.2 Shift of temperature profile

In order to investigate the formation of orographic cirrus de-
pending on a change in temperature inside the ISSR at con-
stant RHi, simulations with the initialθ -profiles shown in
Fig. 4 are carried out. The assumptions of a constant rela-
tive humidity and warmer temperatures represent the condi-
tions in a future climate. The results are also shown in Fig.6
(blue and red lines). The results shown here are fort = 5 h,
although in the simulation with RHi = 110% the formation
of the cirrus cloud starts∼1 h later than in the other simula-
tions. This means, that the figure for RHi = 110%, 120% and
RHi = 130% are not directly comparable as the pictures refer
to different stages of development of the cloud. Comparing
the results for all cases at the same time (3 h) after the first nu-
cleation does not change the overall picture. Therefore here
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the results aftert = 5 h are shown referring to different stages
of development of the cloud.

For the case of RHi=120% (middle panel) it can be seen
that the IWP decreases strongly with decreasing temper-
ature when RHi is kept constant because much less wa-
ter vapor is available at colder temperatures. IWP for the
cold case decreases to 1.6 g m−2, which corresponds to a
reduction of 64%. The mean value for the warm case
amounts to 13.9 g m−2, which corresponds to an increase of
212% compared to the reference case. The ICNC increases
strongly for the cold case and decreases for the warm case
as the crystal growth rate decreases significantly with de-
creasing temperature and thus the water vapor is removed
at a slower rate and RHi remains high enough for further
homogeneous nucleation (seeKärcher and Lohmann(2002);
Spichtinger and Gierens(2009)). The mean ICNC for the
warm case is 0.12×109m−2 which represents a reduction
of 59%, whereas for the cold case there is an increase of
303% to 1.17×109m−2. In the warm case there is no sec-
ond maximum in the IWP. Due to the warmer temperatures
there are less crystals which grow more rapidly and start to
sediment. Therefore the horizontal extent of the cloud is re-
duced compared to the reference case but the mean optical
depth is higher. In the cold case the crystals are advected over
about 80 km without a drastic fallout and start to grow in the
second small updraft region. The resulting optical depth for
T = 230 K amounts to 0.88 and forT = 210 K to 0.54. This
corresponds to a decrease/increase of 13%/42% for the cold
and warm case, respectively. Thus, in the warm case the in-
crease of IWP dominates the decrease in ICNC and the mean
τ is highest although the cloud is not as large in its horizontal
extent. For the cold case the decrease in IWP dominates the
strong increase in ICNC and the optical depth decreases com-
pared to the reference case. Thus temperature changes inside
the ISSR change the optical depth of the cloud by changing
the IWP and ICNC. This example points out that changes
in IWP strongly dominate the behavior ofτ and cannot be
compensated by changes in ICNC. Only for the highest tem-
perature (T = 230 K), sedimentation becomes important. The
increased sedimentation leads to a reduction of the horizon-
tal extent of the cloud and the IWP and could therefore also
lead to a decrease ofτ .

When the initial supersaturation is increased to 130%,
more water vapor is available and the IWP is higher than in
the reference case. In the warmest case (T = 230 K) the crys-
tals start to sediment. However, there still remain some ice
crystals in this case (Rhi = 130%,T = 230 K) and the meanτ
decreases compared to the case whereT = 220 K and is even
lower than for the cold case. This is caused by the fact that
τ is still higher than 0.03 and is therefore taken into account
for the calculation of the mean value ofτ . In contrast, in
the case where Rhi = 120% the crystals sediment completely
leading to a higher mean value ofτ but a smaller horizontal
extent. Thus if the increase in temperature is strong enough
and the initial ice supersaturation is high, the increase inτ

due to more IWP is not necessarily the dominant effect any-
more as the cloud ice is reduced due to sedimentation and
the optical depth is reduced. As a temperature increase of
10 K inside the ISSR may not be realistic for a future cli-
mate, we can conclude that the increase in IWP at warmer
temperatures and constant relative humidity and the result-
ing increase in optical depth is the dominant process. How-
ever, it has to be considered that the opposing effect of a
reduced optical depth due to sedimentation is also possible.
If the supersaturation is reduced to 110%, a slightly differ-
ent picture shows up. As the initial RHi is relatively low, the
difference in IWP between the different temperatures is not
as much pronounced as for high RHi. Therefore the reduc-
tion in ICNC due to warmer temperatures is not completely
compensated by the increase in IWP and the resultingτ for
the warm case is slightly lower than forT = 220 K but still
higher than for the cold case.

4.1.3 Change of height of the ISSR

In a changing climate an increase in moisture is expected.
This increase influences the propagation of gravity waves in
the atmosphere and leads to an increase of the vertical wave-
length of the waves, which means that the ISSR shifts to a
different position in the wave. Therefore, we investigated
the changes of the formation of orographic cirrus due to a
change of the height of the ISSR which corresponds to a dif-
ferent position in the wave phase compared to the reference
case. The different heights of the ISSR can be seen in fig.5.
The height of the ISSR is chosen in a way that the temper-
atures inside the low/high ISSR amount to 230/210 K for a
better comparison to the other cases discussed in Sect.4.1.2.
In the case of the high and low ISSR the maximum vertical
velocities are lower than in the reference case and decrease
from 0.8 m s−1 to 0.6 m s−1. Furthermore, for the low case,
the air first has to pass a region of strong downdraft before it
reaches the updraft region where a cloud can form. Figure7
shows the results for the three different heights of the ISSR.

The left panel shows the results when the ISSR is shifted
to a higher/lower position so that the temperature inside
the lower/higher ISSR amounts to 210 K/230 K, respectively.
The initial supersaturation is 120%. Due to the decrease in
temperature at constant RHi the IWP decreases strongly for
the high ISSR. However, no cloud forms when the ISSR is
at its low position. Although the vertical velocity in the high
and low case are nearly the same, the net lifting of the air in
the low case is much less. Therefore the critical supersatu-
ration for the homogeneous freezing is not reached and no
cloud forms. For the high case the initiation of the freezing
event is shifted∼10 km upstream due to the backward shift
of the waves crest with height. The ICNC shows a strong in-
crease for the high case as the temperature inside the ISSR is
T = 210 K. We again observe that the decrease in IWP due to
the colder temperature is the dominant effect and the result-
ing optical depth is decreased. The middle panel shows the
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Fig. 7. Optical depth, ICNC and IWP after t = 5h for (left) RHi=120% and three different positions of ISSR,

(middle) comparison of a decrease in temperature due to a change of the height of the ISSR (blue line) and shift

of the initial temperature profile (red line) to T=210K at RHi=120% and (right) same as in the middle panel but

for a temperature increase to T=230K at RHi=120%. Note that the vertical axis differs in each column.

lower than for T=220 K but still higher than for the cold case.

4.1.3 Change of height of the ISSR

In a changing climate an increase in moisture is expected. This increase influences the propagation270

of gravity waves in the atmosphere and leads to an increase of the vertical wavelength of the waves,

which means that the ISSR shifts to a different position in the wave. Therefore, we investigated

the changes of the formation of orographic cirrus due to a change of the height of the ISSR which

corresponds to a different position in the wave phase compared to the reference case. The different

heights of the ISSR can be seen in fig.5. The height of the ISSR is chosen in a way that the tem-275

peratures inside the low/high ISSR amount to 230/210 K for a better comparison to the other cases

discussed in sec. 4.1.2. In the case of the high and low ISSR the maximum vertical velocities are

lower than in the reference case and decrease from 0.8 m s−1 to 0.6 m s−1. Furthermore, for the

low case, the air first has to pass a region of strong downdraft before it reaches the updraft region

where a cloud can form. Fig. 7 shows the results for the three different heights of the ISSR. The left280

panel shows the results when the ISSR is shifted to a higher/lower position so that the temperature

inside the lower/higher ISSR amounts to 210 K/230 K, respectively. The initial supersaturation is

120%. Due to the decrease in temperature at constant RHi the IWP decreases strongly for the high

ISSR. However, no cloud forms when the ISSR is at its low position. Although the vertical veloc-

ity in the high and low case are nearly the same, the net lifting of the air in the low case is much285
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Fig. 7. Optical depth, ICNC and IWP aftert = 5 h for (left) RHi = 120% and three different positions of ISSR, (middle) comparison of a
decrease in temperature due to a change of the height of the ISSR (blue line) and shift of the initial temperature profile (red line) toT = 210 K
at RHi = 120% and (right) same as in the middle panel but for a temperature increase toT = 230 K at RHi = 120%. Note that the vertical axis
differs in each column.

results for the simulations where the temperature inside the
ISSR has been changed toT = 210 K once due to a change
in the initial temperature profiles (red lines) and once due to
the shift of the ISSR to a higher position (blue lines). Thus
a comparison of the changes due to a temperature change
only and due to a combined change of temperature and ver-
tical velocity is possible. In both cases the IWP decreases
strongly due to the lower temperature, but forT = 210 K the
IWP is nearly the same, as the IWP is mainly determined
by the RHi, but the position of the cloud is shifted upstream
for the high position of the ISSR. For the increase of ICNC
a difference between both simulations can be seen. Here,
the change in the dynamics as well as the change in tem-
perature affects the ice crystal formation. The decrease in
temperature leads to an increase in ICNC in both cases. This
increases is more pronounced in the case where the initial
temperature profile is shifted as then the ISSR remains in the
region with the highest vertical velocities. When the ISSR is
shifted to a higher position, the maximum vertical velocity
decreases and hence the ICNC. The resulting optical depth is
therefore lowered even more for the high ISSR as the dynam-
ical changes suppress the strong increase in ICNC. The right
panel shows the same as the middle panel but for an increase
in temperature due to a lowering of the ISSRs position and a
shift in the initial temperature profile. It can be seen that in
this case the shift of the initial temperature profile leads to an
enhanced IWP and optical depth, whereas in the case of the
low ISSR the change in the dynamics completely suppresses
the formation of a cloud. When the initial supersaturation is
enhanced to RHi=130%, a cloud forms even in the low ISSR
(not shown here). However, the resulting IWP is lower com-

pared to the case where the ISSR is in the reference height
although the temperature is much higher and much more wa-
ter vapor is available. Therefore a strong reduction of theτ

can also be seen here as the dynamical changes dominate the
increase in temperature.

We did the same simulations for a non-linear flow regime
by increasing the mountain heighth0 to 850 m which leads to
ĥ = 0.94. For this regime we found the same features for the
development of the orographic cirrus clouds as in the linear
flow regime (not shown).

5 Simulations with IPCC initial profiles

In order to investigate the formation of orographic cirrus
clouds in a changing climate, simulations with initial pro-
files for the equivalent potential temperature, wind speed,
pressure and specific humidity from the IPCC fourth assess-
ment report have been carried out (Meehl et al., 2007). We
used the results from the ECHAM simulation obtained for
the A1B emission scenario and investigated the effect of a
warmer climate on the formation of orographic cirrus in a lin-
ear and non-linear flow regime for two regions representative
for the Northern and Southern Hemisphere. All simulations
have been performed for the particular winter and summer
months.

5.1 Model setup

For simulating orographic cirrus clouds we use a 2-D do-
main (x-z-plane) with a horizontal extension of 320 km and
a vertical extension of 20 km with a bell shaped mountain in
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Fig. 8. Ten year mean of the initial profiles of temperature T , difference of potential temperature θ and equiva-

lent potential temperature θe between A1B9 and A1B0, moist and dry Brunt-Väisäla frequency N , wind speed

u and specific humidity q for 2001-2010 (black) and 2090-2099 (blue) for the Southern Hemisphere winter and

summer month (upper two panels) and Northern Hemisphere winter and summer months (lower two panels).

are only described briefly. The results of all simulations are also summarized in the tables 1 and

2. In order to simulate the formation of orographic cirrus a supersaturated layer is implemented.

The initial supersaturation is RHi=130%. For every hemisphere simulations with the initial profiles335

of θe(z), u(z) for the beginning (A1B0) and the end of the century (A1B9) have been carried out.

Furthermore, we assume that the relative humidity with respect to water stays constant in a changing

climate. This assumption is based on model simulations that produce increases in water vapour con-

centrations which are similar to those which are predicted if a constant relative humidity is assumed

(Held and Soden, 2000). The assumption of a constant relative humidity with respect to water leads340
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Fig. 8. Ten year mean of the initial profiles of temperatureT , difference of potential temperatureθ and equivalent potential temperatureθe

between A1B9 and A1B0, moist and dry Brunt-Väis̈ala frequencyN , wind speedu and specific humidityq for A1B0 (black) and A1B9
(blue) for the Southern Hemisphere winter and summer month (upper two panels) and Northern Hemisphere winter and summer months
(lower two panels).

the middle of the domain. Two different flow regimes have
been investigated. The change from the linear to the non-
linear flow regime was performed by increasing the mountain
height from 600 m in the linear to 1850 m in the non-linear
case. The horizontal and vertical resolutions aredx = 250 m
anddz = 50 m for the linear flow regime anddx = 1000 m
for the non-linear regime. The simulations for the linear flow
regime have been carried out for 6 hours. For the non-linear
case the simulations are extended to 10 h because it takes
much longer until a stable flow is reached.

The model is initialized with the ambient (equivalent) po-
tential temperature, pressure and wind profilesθe(z), p(z)

andu(z) taken from the IPCC simulations. Two regions rep-
resentative for the Northern and Southern Hemisphere have
been selected in order to investigate the effect of a warm-

ing climate. In the Southern Hemisphere mean profiles aver-
aged over a region from 60◦ W to 80◦ W and from 40◦ S to
55◦ S representative for the tip of South America have been
taken. For North America a region from 115◦ W–130◦ W and
45◦ N–60◦ N has been selected. For both cases the profiles
for the particular winter and summer month (December, Jan-
uary, February and June, July, August) are taken. Addition-
ally, only values over land are used for the calculation of the
mean vertical profiles. In order to represent the conditions of
the beginning and the end of the 21 century, a ten year mean
for the years 2001–2010 (A1B0) and 2090–2099 (A1B9) has
been calculated. Figure8 shows the initial profiles for the
Southern and Northern Hemisphere for the winter and sum-
mer months.
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Fig. 9. Flow regime for South America after t = 5h for the initial profiles of 2001-2010 (left) and 2090-2099

(right) and for winter (JJA, upper panels) and summer (DJF, lower panels). Grey lines denote the lines of

constant potential temperature, colors indicate the vertical velocity. The black box shows the position of the

supersaturated layer.

to a decrease in relative humidity with respect to ice. However, for the temperature increase we con-

sider here, this decrease is very small. Therefore we also assume the relative humidity with respect

to ice to stay constant.

5.2 South America: linear flow regime

Figure 9 shows the resulting flow regime for the moist simulations initialized with the IPCC profiles345

for South America after t = 5h with the initial profiles for 2001-2010 and 2090-2099. In all cases

a gravity wave develops which propagates through the whole troposphere. In winter time, the at-

mosphere is much more stably stratified than in summer and the vertical velocities occuring in the

wave lie between -1.5 m s−1 and 1.3 m s−1. The simulation A1B9 shows higher velocities, how-

ever, the vertical velocities inside the supersaturated layer are only slightly higher in the simulation350

A1B9. The increase in wind speed in a future climate as well as the increase in moisture have an

influence on the flow regime. The increase in moisture in a future climate influences the stability of

the atmosphere. It leads to a less stable profile and thus to smaller amplitudes and vertical velocities

(Jiang, 2003; Durran and Klemp, 1983). However, as can be seen in Fig. 8 (upper panels) the moist

Brunt-Väisäla frequency nearly stays the same and the influence of a change in moisture is very355

weak. The increase in horizontal wind speed leads to an increase of the amplitudes. In the resulting
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Fig. 9. Flow regime for South America aftert = 5 h for the initial profiles of A1B0 (left) and A1B9 (right) and for winter (JJA, upper panels)
and summer (DJF, lower panels). Grey lines denote the lines of constant potential temperature, colors indicate the vertical velocity. The
black box shows the initial position of the supersaturated layer.

In order to account for the influence of moisture on the
static stability and hence the propagation of gravity waves,
the simulations are performed with the equivalent potential
temperatureθe instead of the potential temperatureθ . The
equivalent potential temperature is calculated as

θe = θ · exp

(
Lvq

cpT

)
≈

(
T +

Lv

cp

q

) (
p0

p

)Rd
cp

(4)

whereT is the temperature of air,p is the pressure,p0 is
a reference pressure,Rd = 287 J kg−1 K−1 is the specific gas
constant of air,cp = 1004 J kg−1 K−1 is the specific heat of
dry air at constant pressure,Lv is the latent heat of evapo-
ration which has been set to 2500 kJ kg−1 andq is the water
vapor mixing ratio. Takingθe implies that condensation oc-
curs everywhere, which is usually not realistic. Therefore
additional “dry” simulations with the potential temperature
θ instead ofθe as initial profiles are performed. These sim-
ulations then cover two extreme cases where condensation
in lower levels is neglected completely or is assumed to oc-
cur everywhere. In the following the moist simulations are
explained in detail whereas the results of the corresponding
dry simulations are only described briefly. The results of all
simulations are also summarized in Tables1 and2. In or-
der to simulate the formation of orographic cirrus a super-
saturated layer is implemented. The initial supersaturation
is RHi = 130%. For every hemisphere simulations with the
initial profiles of θe(z), u(z) for the beginning (A1B0) and
the end of the century (A1B9) have been carried out. Fur-

thermore, we assume that the relative humidity with respect
to water stays constant in a changing climate. This assump-
tion is based on model simulations that produce increases in
water vapour concentrations which are similar to those which
are predicted if a constant relative humidity is assumed (Held
and Soden, 2000). The assumption of a constant relative hu-
midity with respect to water leads to a decrease in relative
humidity with respect to ice. However, for the temperature
increase we consider here, this decrease is very small. There-
fore we also assume the relative humidity with respect to ice
to stay constant.

5.2 South America: linear flow regime

Figure9 shows the resulting flow regime for the moist simu-
lations initialized with the IPCC profiles for South America
aftert = 5 h with the initial profiles for 2001–2010 and 2090–
2099.

In all cases a gravity wave develops which propagates
through the whole troposphere. In winter time, the at-
mosphere is much more stably stratified than in summer
and the vertical velocities occuring in the wave lie between
−1.5 m s−1 and 1.3 m s−1. The simulation A1B9 shows
higher velocities, however, the vertical velocities inside the
supersaturated layer are only slightly higher in the simula-
tion A1B9. The increase in wind speed in a future climate as
well as the increase in moisture have an influence on the flow
regime. The increase in moisture in a future climate influ-
ences the stability of the atmosphere. It leads to a less stable
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Fig. 10. Optical depth, ICNC and IWP for the Southern Hemisphere for winter (left) and summer (right). Black

lines show the results for the initial profiles for 2001-2010, blue lines show the results obtained with the initial

profiles from the ECHAM A1B simulation averaged over 2090-2099, dark blue lines show the results for the

A1Bmax simulation and red lines for the A1Bmin simulation.

For winter (JJA) the predicted increase in surface temperature over land varies between 1.7 K and

3.6 K. The initial profile used in the simulation before is based on the ECHAM A1B simulation395

and shows an increase in surface temperature of 2.1 K for the Southern Hemisphere. Therefore two

additional simulation have been performed where we added/subtracted +1.5/-0.4 K to the temper-

ature profile T (z)A1B9 in order to obtain the extreme values of the predicted temperature change.

For simplicity it is assumed that the stability remains the same as in A1B9 but only the temperature

changes. This assumption is justified as the dynamical changes are negligible here. Figure 10 (left400

panels) shows the results for the minimum and maximum predicted temperature change for the win-

ter months. A strong increase in IWP from the beginning to the end of the century for all simulations

can be seen as the temperature increases. This also leads to a strong reduction of the ICNC for all

simulations whereas the decreases are most pronounced for the A1Bmax simulation where the high-

est temperatures are reached. The resulting optical depth is much higher for all simulations at the405

end of the century. However, the mean optical depth is largest for the A1Bmin simulation. This is

caused by a strong increase in IWP but a small decrease in ICNC.

In the summer case a slightly different picture emerges. The IWP increases as again more water

vapor is available. However, ICNC also increases very strongly although the temperature is much

warmer in the A1B9 case. This can be explained here as follows: The critical supersaturation for the410

initiation of the homogeneous freezing process decreases with increasing temperature. Therefore,
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Fig. 10. Optical depth, ICNC and IWP for the Southern Hemisphere for winter (left) and summer (right). Black lines show the results for
the initial profiles for A1B0, blue lines show the results obtained with the initial profiles from the ECHAM A1B simulation averaged over
2090–2099 (A1B9), dark blue lines show the results for the A1Bmax simulation and red lines for the A1Bmin simulation.

profile and thus to smaller amplitudes and vertical velocities
(Jiang, 2003; Durran and Klemp, 1983). However, as can
be seen in Fig.8 (upper panels) the moist Brunt-Väis̈ala fre-
quency nearly stays the same and the influence of a change
in moisture is very weak. The increase in horizontal wind
speed leads to an increase of the amplitudes. In the resulting
flow the effects of increased moisture and horizontal wind
speed nearly compensate each other and the amplitudes and
vertical velocities remain nearly the same for both simula-
tions. As the vertical wavelengths also depends on the sta-
bility and hence the moisture, a weak increase in the vertical
wavelength can be seen for the run A1B9. The ISSR there-
fore occurs in a slightly different phase of the wave.

During the summer months the atmosphere is less stable
and the developing gravity wave is weaker than in the win-
ter case. The maximum/minimum vertical velocities there-
fore only reach +0.6 m s−1 and−0.5 m s−1 in the A1B0 and
A1B9 scenario. However, the gravity wave for A1B9 is
slightly weaker then for A1B0 as the vertical profile for
A1B9 is less stable in the lowest levels and the horizontal
wind speed is smaller (see Fig.8, second row).

In order to investigate the changes in cirrus cloud prop-
erties in a changing climate, again the vertically integrated
ice crystal number concentration (ICNC), the ice water path
(IWP) and the optical depth are calculated. Figure10 shows
the results for the two simulations after 5 h for summer and
winter.

An orographic cirrus cloud develops above the moun-
tain top in both seasons. As the downdrafts of the gravity
waves are not very strong, the crystals survive this down-
draft and are advected more than 150 km downstream. There

are several effects influencing the optical depth of the de-
veloping cirrus cloud. First of all, the assumption of a con-
stant relative humidity in a changing climate with higher
temperatures leads to a strong increase in IWP. In the win-
ter case (left panel), the mean IWP averaged over the whole
cloud increases from 10.1 g m−2 in the A1B0 simulation to
13.4 g m−2. ICNC is influenced by the vertical velocities and
the temperature in their formation region. As in the winter
case the vertical velocity is nearly the same in the ISSR for
both simulations, the strong reduction of ICNC in the A1B9
simulation is caused by the much warmer temperatures in
the A1B9 case. The temperature in the middle of the ISSR
in 8000 m height increases fromT = 223.6 K for the A1B0
simulation toT = 227.1 K for the A1B9 case. This strong in-
crease speeds up the growth rates of the ice crystals. There-
fore the supersaturation is depleted faster and no new crys-
tals can be formed. Additionally they grow large enough to
sediment out and thus represent a sink for the water vapor.
However in this case no reduction of the horizontal extent of
the cloud can be seen as the differences in temperatures are
much weaker here than in the idealized simulations. The re-
sulting optical depth shows an increase for the A1B9 case.
Thus, the increase in IWP dominates over the reduction of
the ICNC and the resulting cloud is optically thicker in the
A1B9 case. This behavior shows that the thermodynamical
changes are more important than the dynamical changes for
this particular case.

In order to estimate the effect of the uncertainty in the pre-
dicted warming on the formation of orographic cirrus and to
evaluate if changes due to the uncertainty in the predicted
warming are bigger than the changes from current to future
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Fig. 11. Flow regime for South America after t = 10h for the initial profiles of 2001-2010 (right) and 2090-2099

(left)for winter (JJA, upper panels) and summer (DJF, lower panels). Grey lines denote the lines of potential

temperature, colors indicate the vertical velocity. The black box shows the position of the supersaturated layer.

dry simulations show the opposite results with a decreased optical depth in future.

5.3 South America: hydraulic jump450

To investigate the effects of a warmer climate in a different flow regime, additional simulations with

an increased mountain height have been performed. The increase in mountain height leads to higher

Froude numbers and the flow becomes non-linear. Figure 11 shows the resulting flow regime after t

= 10h for the beginning and the end of this century for the winter and summer months. Due to the

changes in moisture one could expect a shift to a more linear regime as the onset of gravity wave455

breaking is delayed (Jiang, 2003). However, since in our case the changes in moisture are weak this

effect cannot be seen here. The resulting flow regimes are very similar, only a slight increase in

the vertical wavelength from A1B0 to A1B9 can be seen for the winter month which is caused by

the increase in moisture. The resulting optical depth of the cirrus clouds for the four simulations is

shown in figure 12. As the flow needs a spinup time of ∼5 h in winter and ∼4 h in summer until it460

becomes stable, we show the time development of the optical depth for both seasons. We evaluate

the results after t = 5h for JJA and after t = 4h for DJF when the flow becomes stable. As can be seen

very clearly, the resulting optical depth after t = 5h and t = 4h, respectively is higher for the A1B9

simulation. Thus, the same features as in the linear case show up. The changes in the flow regimes

for the current and future climate are relatively weak, but due to the higher temperatures in a future465
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Fig. 11. Flow regime for South America aftert = 10 h for the initial profiles of A1B0 (right) and A1B9 (left) for winter (JJA, upper panels)
and summer (DJF, lower panels). Grey lines denote the lines of potential temperature, colors indicate the vertical velocity. The black box
shows the initial position of the supersaturated layer.

climate, additional simulations have been performed. From
the regional climate projections from the IPCC (Christensen
et al., 2007) the minimum and maximum warming for the re-
gion of South America for summer (DJF) and winter (JJA)
has been taken. For winter (JJA) the predicted increase
in surface temperature over land varies between 1.7 K and
3.6 K. The initial profile used in the simulation before is
based on the ECHAM A1B simulation and shows an increase
in surface temperature of 2.1 K for the Southern Hemisphere.
Therefore two additional simulation have been performed
where we added/subtracted +1.5/−0.4 K to the temperature
profileT (z)A1B9 in order to obtain the extreme values of the
predicted temperature change. For simplicity it is assumed
that the stability remains the same as in A1B9 but only the
temperature changes. This assumption is justified as the dy-
namical changes are negligible here. Figure10 (left panels)
shows the results for the minimum and maximum predicted
temperature change for the winter months.

A strong increase in IWP from the beginning to the end
of the century for all simulations can be seen as the temper-
ature increases. This also leads to a strong reduction of the
ICNC for all simulations whereas the decreases are most pro-
nounced for the A1Bmax simulation where the highest tem-
peratures are reached. The resulting optical depth is much
higher for all simulations at the end of the century. However,
the mean optical depth is largest for the A1Bmin simulation.
This is caused by a strong increase in IWP but a small de-
crease in ICNC.

In the summer case a slightly different picture emerges.
The IWP increases as again more water vapor is available.
However, ICNC also increases very strongly although the
temperature is much warmer in the A1B9 case. This can
be explained here as follows: The critical supersaturation for
the initiation of the homogeneous freezing process decreases
with increasing temperature. Therefore, in the upper part of
the ISSR the critical supersaturation is only exceeded in the
warmer A1B9 case and crystals start to form. In the colder
A1B0 case where the critical supersaturation is higher, the
relative humidity with respect to ice stays below the critical
value and no crystals can form. This increase in IWP com-
bined with an increase in ICNC leads to a strong increase in
optical depth from 0.08 to 0.87 in the A1B9 case. This effect
might be strongly influenced by the use of mean profiles. If
the variability of the meteorological conditions would have
been taken into account, plenty of cases would arise where
the nucleation threshold would be exceeded. Thus, this re-
sults might overestimate the effect of climate change. Com-
pared to the winter months, the optical depth is lower in sum-
mer. The IWP is similar for both cases as it is mainly deter-
mined by the initial supersaturation. However, the ICNC is
an order of magnitude lower than winter. This is caused by
much lower vertical velocities combined with higher temper-
atures during the summer months.

For the summer months we also investigated the effects of
the uncertainty in the predicted warming on the properties of
orographic cirrus. Here, the predicted warming lies between
1.5 K and 4.3 K. The ECHAM A1B simulation predicts a
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Fig. 12. Time development of the optical depth for the A1B0 (left) and A1B9 (right) simulations for winter

(JJA, upper panels) and summer (DJF, lower panels). The triangle denotes the top of the mountain, and the

black line shows the point in time when the flow becomes stable. The small panels show the time average from

5-10h and 4-10h, respectively.

climate we obtain less ice crystals but more ice water content and thus a higher optical depth in both

seasons as shown in figure 13. As in the linear flow regime the thermodynamical changes dominate

the dynamical changes for this South American case. In contrast to the linear flow regime, here the

optical depth is higher in summer. The changes in the flow regime between summer and winter are

not as much pronounced here. The IWP increases and ICNC decreases from winter to summer as470

the temperatures are higher. As again the increase in IWP is the dominant process, the optical depth

increases from winter to summer.

In the dry simulations of the winter months the vertical velocity is higher in A1B9. As here the

influence of the additional moisture in the future climate is not taken into account, the stratification

is more stable in A1B9 followed by higher vertical velocities. Therefore the ICNC increases for475

A1B0 despite the higher temperatures. This means that in this case the dynamical changes start

to dominate. Together with an increased IWP the optical depths is higher in the A1B9 simulation.
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Fig. 12. Time development of the optical depth for the A1B0 (left) and A1B9 (right) simulations for winter (JJA, upper panels) and summer
(DJF, lower panels). The triangle denotes the top of the mountain, and the black line shows the point in time when the flow becomes stable.
The small panels show the time average from 5–10 h and 4–10 h, respectively.

surface warming of 2.0 K. Therefore we added/subtracted
+2.3/−0.5 K to the original temperature profile of the sum-
mer months. Again, for all A1B9 simulations the optical
depth is much higher. The highest optical depth is reached
for the A1Bmax case where the increase in temperature and
hence IWP is strongest. As mentioned earlier, ICNC in-
creases, as due to the warmer temperatures the critical su-
persaturation is exceeded. The ICNC for A1Bmin is higher
than for A1B9 as the temperature is slightly lower which
leads to more ice crystals. The highest ICNC is reached in
the A1Bmax case where the critical value of the supersatura-
tion is exceeded in a larger region than in the colder cases of
A1Bmin and A1B9.

The corresponding dry simulations show a slightly differ-
ent behavior (not shown here). For the winter months (JJA),
the changes in the flow regimes from A1B0 to A1B9 are
again very small. Higher temperatures thus lead to a strong
decrease in the simulated ICNC and an increase in the IWP.
However, the decrease in ICNC is more pronounced than in
the moist simulation and cannot be compensated by the in-
creased IWP. The resulting optical depth therefore decreases

∼8% from A1B0 to A1B9. In the summer months (DJF),
the vertical velocity decreases from A1B0 to A1B9. In com-
bination with higher temperatures this leads to a strong re-
duction in the ICNC which cannot be compensated by the
increased IWP. The optical depth is therefore lower in the
A1B9 simulation. In comparison to the moist simulations,
the vertical velocity is much higher in the dry case caused
by a more stable stratification. In contrast to the moist sim-
ulations where the critical supersaturation is only exceeded
in the A1B9 simulation and the ICNC therefore strongly in-
creases from A1B0 to A1B9, in the dry simulation nucle-
ation also starts in the A1B0 case as the vertical velocities are
much higher such that the adiabatic cooling is strong enough
to exceedScr .

In general, we can state that for all moist cases the increase
in IWP and hence the optical depth from the current to the fu-
ture climate is the dominant effect. The changes in the results
due to the uncertainties in the predicted warming are much
less than the changes from A1B0 to A1B9. However, the
dry simulations show the opposite results with a decreased
optical depth in future.
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Fig. 13. ICNC and IWP for the simulations A1B0 and A1B9 averaged over t = 5-10 h for JJA and t = 4-10 h

for DJF for South America. The triangle denotes the tip of the mountain.

However, for the summer months, a reduction in the vertical velocity followed by a strong reduction

in the ICNC concentration can be seen. Here, the increased IWP cannot compensate this reduction

and the optical depth decreases from the present to a future climate.480

5.4 North America: linear flow regime

Figure 14 shows the resulting flow regime for the moist simulations initialized with the IPCC profiles

for North America after t=5h for the winter month DJF. The moist vertical profiles averaged over

JJA for this region show an unstable region in the lower levels. Therefore no gravity waves develop

and it is not possible to investigate the effect of a changing climate on the formation of orographic485

cirrus clouds based on the ECHAM IPCC simulations. We therefore also looked at the results for

spring (March, April May) and autumn (September, October, November). For these seasons the

same features as for the winter months that are described in this section are seen, and are therefore

not shown here. Again a gravity wave develops which propagates through the whole troposphere.

In the northern hemisphere the difference in temperature and moisture is more pronounced than in490

the southern hemisphere. Therefore the influence of the additional moisture is stronger. The static

stability decreases, as can be seen in the moist Brunt-Väisäla frequency in Fig. 8 (third row) and thus

the amplitude and vertical velocity. The maximum vertical velocity in the A1B0 simulation amounts

to 1.5 m s−1, in the A1B9 simulation to 1.3 m s−1. However, the vertical velocities inside the ISSR

are only slightly higher. The increase of the vertical wavelength is also much more pronounced than495

in the southern hemispheric case and the ISSR shifts in a different wave phase. Figure 15 shows the

results of IWP, ICNC and optical depth for the Northern Hemisphere. The orographic cloud again
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Fig. 13. ICNC and IWP for the simulations A1B0 and A1B9 averaged overt = 5–10 h for JJA andt = 4–10 h for DJF for South America.
The triangle denotes the tip of the mountain.

Fig. 14. Flow regime for North America after t = 5h for the initial profiles of 2001-2010 (right) and 2090-2099

(left). Grey lines denote the lines of constant potential temperature, colors indicate the vertical velocity. The

black box shows the position of the supersaturated layer.

develops above the mountain top and has a horizontal extent of more than 150 km. In this case it

can be seen that the ISSR shifts in a different position in the wave phase as in the A1B9 simulation

a leeward shift of the formation region of the cloud can be seen. Again, the dominant process is500

the strong increase in IWP from 6.7 g m−2 to 9.4 g m−2 under the assumption of a constant relative

humidity in a warmer climate. The reduction in ICNC is more pronounced than in the southern

hemispheric case. First, there is a slight decrease in the vertical velocities occuring inside the ISSR

and second, the warmer temperatures in a changing climate lead to a faster growth rate. As the

temperature in a height of 8000 m increases from 219 K to 222 K the crystals grow faster and505

less crystals can be formed. The difference in the growth rates is more pronounced in this cold

temperature range than in the warmer southern hemispheric case and the reduction of the ICNC is

more pronounced. However, the strong increase in IWP still dominates the reduction in ICNC and

the resulting optical depth of the cloud is higher in the A1B9 simulation.

In order to estimate the uncertainties in the predicted warming we again made some additional510

simulations where we used the maximum and minimum temperature changes predicted for the years

2090-2099. As the ECHAM A1B run predicts an increase of surface temperature of +4.5 K we

added/subtracted +1.3/-2.9 K from the ECHAM temperature profile T (z)A1B9, based on the regional

climate projections (Christensen et al., 2007). Again, the stability stays the same. The results of this

simulations can be seen in fig. 15. Due to the increase in vertical wavelength the air first undergoes a515

stronger downdraft in the A1B9 simulation before it is lifted. Thus, the net lifting is smaller in A1B9

compared to A1B0 and the formation of the cloud is shifted downwind. The temperatures inside the

ISSR amount to TA1B0=219.5 K, TA1B9=222.9 K, TA1Bmin=221.1 K and TA1Bmax=225.4 K. The

increase in temperature inside the ISSR from A1B0 to A1Bmin is not much pronounced and the

increase in IWP from 6.7 g m−2 to 7.2 g m−2 is rather weak. Therefore, the resulting optical depth520

for the A1Bmin simulation is only slightly higher than in A1B0. When the temperature is increased

further, IWP increases strongly and ICNC decreases. For these cases, the increase in IWP again
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Fig. 14. Flow regime for North America aftert = 5 h for the initial profiles of A1B0 (right) and A1B9 (left). Grey lines denote the lines of
constant potential temperature, colors indicate the vertical velocity. The black box shows the initial position of the supersaturated layer.

5.3 South America: hydraulic jump

To investigate the effects of a warmer climate in a different
flow regime, additional simulations with an increased moun-
tain height have been performed. The increase in mountain
height leads to higher Froude numbers and the flow becomes
non-linear. Figure11 shows the resulting flow regime after
t = 10 h for the beginning and the end of this century for the
winter and summer months.

Due to the changes in moisture one could expect a shift
to a more linear regime as the onset of gravity wave break-
ing is delayed (Jiang, 2003). However, since in our case the
changes in moisture are weak this effect cannot be seen here.
The resulting flow regimes are very similar, only a slight in-
crease in the vertical wavelength from A1B0 to A1B9 can be
seen for the winter month which is caused by the increase in
moisture. The resulting optical depth of the cirrus clouds for
the four simulations is shown in Fig.12. As the flow needs

a spinup time of∼5 h in winter and∼4 h in summer until it
becomes stable, we show the time development of the optical
depth for both seasons.

We evaluate the results aftert = 5 h for JJA and aftert = 4 h
for DJF when the flow becomes stable. As can be seen very
clearly, the resulting optical depth aftert = 5 h andt = 4 h,
respectively is higher for the A1B9 simulation. Thus, the
same features as in the linear case show up. The changes in
the flow regimes for the current and future climate are rel-
atively weak, but due to the higher temperatures in a future
climate we obtain less ice crystals but more ice water content
and thus a higher optical depth in both seasons as shown in
Fig. 13.

As in the linear flow regime the thermodynamical changes
dominate the dynamical changes for this South American
case. In contrast to the linear flow regime, here the optical
depth is higher in summer. The changes in the flow regime
between summer and winter are not as much pronounced
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Fig. 15. Optical depth, ICNC and IWP for the Northern Hemisphere. Black lines show the results for the initial

profiles for 2001-2010, blue lines show the results obtained with the initial profiles from the ECHAM A1B

simulation averaged over 2090-2099, dark blue lines show the results for A1Bmax simulation and red lines for

the A1Bmin simulation.

strongly dominates over the decrease in ICNC and the resulting cloud is optically thicker in a future

climate. These simulations combine the two effects of warmer temperatures and a shift in the wave

phase, also described in the idealized simulations. A warmer temperature does not necessarily lead525

to more ice water content. It also depends strongly on the position of the ISSR in the wave phase.

Additionally, the reduction of the ICNC can be very strong in cases where the vertical velocities

in the ISSR decrease. Therefore, the resulting optical depth is not necessarily higher if dynamics

dominate over the thermodynamical features.

The results of the dry simulations for the winter months show an increased vertical velocity in the530

A1B9 simulation which is mainly caused by the changes in the wind speed. As an increased vertical

velocity and a higher temperature counteract for the process of ice nucleation, the ICNC nearly stays

the same for both simulations. As the IWP increases for A1B9, the optical depth is also higher. If
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Fig. 15. Optical depth, ICNC and IWP for the Northern Hemi-
sphere. Black lines show the results for the initial profiles for A1B0,
blue lines show the results obtained with the initial profiles from the
ECHAM A1B simulation averaged over 2090–2099 (A1B9), dark
blue lines show the results for A1Bmax simulation and red lines for
the A1Bmin simulation.

here. The IWP increases and ICNC decreases from winter to
summer as the temperatures are higher. As again the increase
in IWP is the dominant process, the optical depth increases
from winter to summer.

In the dry simulations of the winter months the vertical
velocity is higher in A1B9. As here the influence of the addi-
tional moisture in the future climate is not taken into account,
the stratification is more stable in A1B9 followed by higher
vertical velocities. Therefore the ICNC increases for A1B0
despite the higher temperatures. This means that in this case
the dynamical changes start to dominate. Together with an
increased IWP the optical depths is higher in the A1B9 sim-
ulation. However, for the summer months, a reduction in
the vertical velocity followed by a strong reduction in the
ICNC concentration can be seen. Here, the increased IWP

cannot compensate this reduction and the optical depth de-
creases from the present to a future climate.

5.4 North America: linear flow regime

Figure14shows the resulting flow regime for the moist sim-
ulations initialized with the IPCC profiles for North America
aftert = 5 h for the winter month DJF. The moist vertical pro-
files averaged over JJA for this region show an unstable re-
gion in the lower levels. Therefore no gravity waves develop
and it is not possible to investigate the effect of a chang-
ing climate on the formation of orographic cirrus clouds
based on the ECHAM IPCC simulations. We therefore also
looked at the results for spring (March, April May) and au-
tumn (September, October, November). For these seasons
the same features as for the winter months that are described
in this section are seen, and are therefore not shown here.

Again a gravity wave develops which propagates through
the whole troposphere. In the Northern Hemisphere the dif-
ference in temperature and moisture is more pronounced than
in the Southern Hemisphere. Therefore the influence of the
additional moisture is stronger. The static stability decreases,
as can be seen in the moist Brunt-Väis̈ala frequency in Fig.8
(third row) and thus the amplitude and vertical velocity. The
maximum vertical velocity in the A1B0 simulation amounts
to 1.5 m s−1, in the A1B9 simulation to 1.3 m s−1. How-
ever, the vertical velocities inside the ISSR are only slightly
higher. The increase of the vertical wavelength is also much
more pronounced than in the southern hemispheric case and
the ISSR shifts in a different wave phase. Figure15 shows
the results of IWP, ICNC and optical depth for the Northern
Hemisphere.

The orographic cloud again develops above the mountain
top and has a horizontal extent of more than 150 km. In
this case it can be seen that the ISSR shifts in a different
position in the wave phase as in the A1B9 simulation a lee-
ward shift of the formation region of the cloud can be seen.
Again, the dominant process is the strong increase in IWP
from 6.7 g m−2 to 9.4 g m−2 under the assumption of a con-
stant relative humidity in a warmer climate. The reduction in
ICNC is more pronounced than in the southern hemispheric
case. First, there is a slight decrease in the vertical velocities
occuring inside the ISSR and second, the warmer tempera-
tures in a changing climate lead to a faster growth rate. As
the temperature in a height of 8000 m increases from 219 K
to 222 K the crystals grow faster and less crystals can be
formed. The difference in the growth rates is more pro-
nounced in this cold temperature range than in the warmer
southern hemispheric case and the reduction of the ICNC is
more pronounced. However, the strong increase in IWP still
dominates the reduction in ICNC and the resulting optical
depth of the cloud is higher in the A1B9 simulation.

In order to estimate the uncertainties in the predicted
warming we again made some additional simulations where
we used the maximum and minimum temperature changes
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predicted for the years 2090–2099. As the ECHAM A1B
run predicts an increase of surface temperature of +4.5 K we
added/subtracted +1.3/−2.9 K from the ECHAM tempera-
ture profileT (z)A1B9, based on the regional climate projec-
tions (Christensen et al., 2007). Again, the stability stays the
same. The results of this simulations can be seen in Fig.15.

Due to the increase in vertical wavelength the air first
undergoes a stronger downdraft in the A1B9 simulation
before it is lifted. Thus, the net lifting is smaller in
A1B9 compared to A1B0 and the formation of the cloud is
shifted downwind. The temperatures inside the ISSR amount
to TA1B0 = 219.5 K,TA1B9 = 222.9 K,TA1Bmin = 221.1 K and
TA1Bmax= 225.4 K. The increase in temperature inside the
ISSR from A1B0 to A1Bmin is not much pronounced and
the increase in IWP from 6.7 g m−2 to 7.2 g m−2 is rather
weak. Therefore, the resulting optical depth for the A1Bmin
simulation is only slightly higher than in A1B0. When the
temperature is increased further, IWP increases strongly and
ICNC decreases. For these cases, the increase in IWP again
strongly dominates over the decrease in ICNC and the re-
sulting cloud is optically thicker in a future climate. These
simulations combine the two effects of warmer temperatures
and a shift in the wave phase, also described in the ideal-
ized simulations. A warmer temperature does not necessar-
ily lead to more ice water content. It also depends strongly
on the position of the ISSR in the wave phase. Additionally,
the reduction of the ICNC can be very strong in cases where
the vertical velocities in the ISSR decrease. Therefore, the
resulting optical depth is not necessarily higher if dynamics
dominate over the thermodynamical features.

The results of the dry simulations for the winter months
show an increased vertical velocity in the A1B9 simulation
which is mainly caused by the changes in the wind speed.
As an increased vertical velocity and a higher temperature
counteract for the process of ice nucleation, the ICNC nearly
stays the same for both simulations. As the IWP increases for
A1B9, the optical depth is also higher. If in the calculation
of the Brunt-V̈ais̈ala-frequency the moisture is not taken into
account, the profile is stable also during the North American
summer months and simulations for this case have been per-
formed as well. The results show an increased ICNC caused
by changes in the flow regime and an increased IWP followed
by an increased optical depth for A1B9 (not shown).

5.5 North America: hydraulic jump

For the North American case we also changed the flow
regime by increasing the height of the mountain from 600 m
to 1850 m in order to obtain a non-linear flow regime. The
resulting flow is shown in Fig.16.

In this case the changes in the flow regime are more pro-
nounced than in the South American case. After a spinup
time of 3 h a reasonably stable flow regime develops. The de-
crease in stability leads to a slight increase in vertical wave-
length and to a weak damping of the maximum vertical ve-

locity. The time evolution of the flow (not shown here) shows
an increased vertical velocity in the first updraft region from
A1B0 to A1B9 and a decrease in vertical velocity in the sec-
ond updraft region inside the ISSR. This feature is caused
by the increase in vertical wavelength. In order to assess the
changes in the optical properties of the cloud, we again show
the time development of the optical depth in figure17.

The resulting optical depth does not show a strong increase
as in the South American case. This behavior can be ex-
plained with the simulated mean ICNC and IWP shown in
Fig. 18.

The IWP increases from A1B0 to A1B9 in the first up-
draft region, however, in the second updraft region, the IWP
decreases. ICNC increases from A1B0 to A1B9 for the first
updraft region, although there is a strong increase in tem-
perature which would lead to a decrease in ICNC. However,
the dynamical changes are strong enough to overcompensate
this effect and the higher vertical velocity in the first updraft
region leads to an increase in ICNC. In the second updraft
region, we have a decrease in vertical velocity from A1B0
to A1B9 followed by a strong reduction in ICNC and IWP.
Therefore, the resulting optical depth is increased in the first
updraft region and decreased in the second updraft region.
Here, dynamics strongly influence the microphysical prop-
erties of the cloud and nearly offset the thermodynamical
changes. The optical depth averaged over the whole cloud
from 3–10 h increases∼15% from 0.57 for A1B0 to 0.66 for
A1B9.

The dry simulation of the winter months shows a slightly
increased vertical velocity due to changes in the flow regime.
This leads to an increased ICNC. Thus again the dynamical
changes dominate the influence of the higher temperatures on
the ice crystal number concentration. The IWP increases as
well for A1B9 followed by an increased optical depth. We
also looked at the results for the summer months for this
dry simulation. Here the vertical velocity is much lower for
A1B9 again followed by a strong decrease in ICNC. The in-
crease in IWP is however not strong enough to compensate
the ICNC reduction leading to a decreased optical depth for
A1B9.

In Tables1 and2 the results of the IWP, ICNC and optical
depth for all simulations (moist and dry) initialized with the
IPCC profiles are summarized.

As can be seen from these tables, all moist simulations
show an enhanced optical depth of the clouds in a future cli-
mate. The increase in IWP dominates in all cases over the de-
crease in ICNC. Thus, the dynamical changes are less impor-
tant than the thermodynamical changes. This effect is more
pronounced for the non-linear flow regimes where a strong
increase of 17.2%, 15.6% and 15.7% is simulated. For the
dry simulations a different picture shows up. Especially for
South America, the dynamical changes start to dominate and
a reduced optical depth for the future climate is simulated.
For North America most of the simulations also show an in-
creased optical depth for A1B9.
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Fig. 16. Flow regime for North America after t = 10h for the initial profiles of 2001-2010 (right) and 2090-2099

(left). Grey lines denote the lines of potential temperature, colors indicate the vertical velocity. The black box

shows the position of the supersaturated layer.

in the calculation of the Brunt-Väisäla-frequency the moisture is not taken into account, the profile

is stable also during the North American summer months and simulations for this case have been535

performed as well. The results show an increased ICNC caused by changes in the flow regime and

an increased IWP followed by an increased optical depth for A1B9 (not shown).

5.5 North America: hydraulic jump

For the North American case we also changed the flow regime by increasing the height of the moun-

tain from 600 m to 1850 m in order to obtain a non-linear flow regime. The resulting flow is shown540

in figure 16. In this case the changes in the flow regime are more pronounced than in the South

American case. After a spinup time of 3h a reasonably stable flow regime develops. The decrease

in stability leads to a slight increase in vertical wavelength and to a weak damping of the maximum

vertical velocity. The time evolution of the flow (not shown here) shows an increased vertical veloc-

ity in the first updraft region from A1B0 to A1B9 and a decrease in vertical velocity in the second545

updraft region inside the ISSR. This feature is caused by the increase in vertical wavelength. In or-

der to assess the changes in the optical properties of the cloud, we again show the time development

of the optical depth in figure 17. The resulting optical depth does not show a strong increase as in

the South American case. This behavior can be explained with the simulated mean ICNC and IWP

shown in Figure 18. The IWP increases from A1B0 to A1B9 in the first updraft region, however,550

in the second updraft region, the IWP decreases. ICNC increases from A1B0 to A1B9 for the first

updraft region, although there is a strong increase in temperature which would lead to a decrease

in ICNC. However, the dynamical changes are strong enough to overcompensate this effect and the

higher vertical velocity in the first updraft region leads to an increase in ICNC. In the second updraft

region, we have a decrease in vertical velocity from A1B0 to A1B9 followed by a strong reduction555

in ICNC and IWP. Therefore, the resulting optical depth is increased in the first updraft region and

decreased in the second updraft region. Here, dynamics strongly influence the microphysical prop-
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Fig. 16. Flow regime for North America aftert = 10 h for the initial profiles of A1B0 (right) and A1B9 (left). Grey lines denote the lines of
potential temperature, colors indicate the vertical velocity. The black box shows the initial position of the supersaturated layer.

Fig. 17. Time development of the optical depth for the A1B0 (left) and A1B9 (right) simulations. The triangle

denotes the top of the mountain, and the black line shows the point in time when the flow becomes reasonably

stable. The upper panel shows the time averaged optical depth from 3-10 h. In the upper right panel we also

show the time averaged optical depth for the A1B0 simulation for a better comparison.

Fig. 18. ICNC and IWP for the simulations A1B0 and A1B9 averaged over t=3-10 h for North America. The

triangle denotes the tip of the mountain.

erties of the cloud and nearly offset the thermodynamical changes. The optical depth averaged over

the whole cloud from 3-10 h increases ∼ 15% from 0.57 for A1B0 to 0.66 for A1B9.

The dry simulation of the winter months shows a slightly increased vertical velocity due to changes560

in the flow regime. This leads to an increased ICNC. Thus again the dynamical changes dominate the

influence of the higher temperatures on the ice crystal number concentration. The IWP increases as
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Fig. 17. Time development of the optical depth for the A1B0 (left) and A1B9 (right) simulations. The triangle denotes the top of the
mountain, and the black line shows the point in time when the flow becomes reasonably stable. The upper panel shows the time averaged
optical depth from 3–10 h. In the upper right panel we also show the time averaged optical depth for the A1B0 simulation for a better
comparison.

6 Summary and discussion

The 2-dimensional non-hydrostatic model EULAG has been
used to investigate the formation of orographic cirrus clouds
in a changing climate. Therefore, different simulations with
a detailed cloud microphysics have been carried out. To show
the model’s capability to represent orographic cirrus clouds
and to produce realistic results, the INCA case was simu-
lated and compared to measurements. Second, some key pa-
rameters which determine the microphysical properties of the
developing cloud, like the initial relative humidity, the tem-
perature inside the ISSR and the shift of the position of the
ISSR in the vertical wave phase have been investigated with
idealized simulations and thirdly, idealized simulations ini-
tialized with the IPCC A1B profiles for the beginning and
end of the century calculated with the ECHAM model have
been carried out.

The comparison with the INCA measurements shows a
very good agreement. Although the simulation is only 2-
dimensional the simulated and measured distributions of ver-

tical velocity, ice water content and ice crystal number con-
centration agree very well.

The idealized simulations show that one important factor
which determines the optical depth is the temperature inside
the ISSR which determines how much water vapor is avail-
able for the formation of ice when a constant relative humid-
ity is assumed. The strong increase in IWP with increasing
temperature dominates the reduction of ICNC and the mean
optical depth increases. However, in the idealized simula-
tions the increase in temperature is very strong (10K) such
that the crystals grow very large and start to sediment. This
leads to a decrease of the mean optical depth for the warmest
temperature and highest initial RHi as the horizontal extent
of the cloud and the IWP is reduced. Additionally, the po-
sition of the ISSR in the vertical wave phase has a strong
influence on the microphysical properties. It could be shown
that when the ISSR is shifted to a lower position where the
vertical velocities are smaller, the resulting IWP and optical
depth is much smaller than for the reference case although
the initial RHi is the same and much more water vapor is
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Table 1. ICNC, IWP and optical depth averaged over the whole cloud for all moist simulations initialized with the IPCC profiles. Values in
brackets denote the percental change compared to the associated A1B0 run.

Moist simulations

South America ICNC [109 m−2] IWP [g m−2] optical depth

A1B0 – linear, winter 1.25 10.1 1.84
A1B9 – linear, winter 0.87 (−30%) 13.5 (+33%) 1.93 (+5%)
A1Bmin - linear, winter 0.92 (−26%) 13.1 (+29%) 1.94 (+5%)
A1Bmax - linear, winter 0.71 (−43%) 15.1 (+49%) 1.92 (+4%)

A1B0 – non-linear, winter 5.2 16.1 4.29
A1B9 – non-linear, winter 4.5 (−13%) 22.8 (+41%) 5.03 (+17%)

A1B0 – linear, summer 0.01 1.7 0.08
A1B9 – linear, summer 0.09 (+800%) 13.7 (+705%) 0.84 (+950%)
A1Bmin – linear, summer 0.12 (+1100%) 15.3 (+800%) 0.97 (+1112%)
A1Bmax – linear, summer 0.12 (+1100%) 17.1 (+905%) 0.98 (+1125%)

A1B0 – non-linear, summer 4.5 31.1 6.08
A1B9 – non-linear, summer 3.5 (−22%) 44.2 (+42%) 7.03 (+16%)

North America ICNC [109 m−2] IWP [g m−2] optical depth

A1B0 – linear, winter 1.5 6.7 1.53
A1B9 – linear, winter 1.0 (−33%) 9.4 (+40%) 1.66 (+8%)
A1Bmin – linear, winter 1.4 (−6%) 7.2 (+7%) 1.57 (+3%)
A1Bmax – linear, winter 0.9 (−40%) 10.6 (+58%) 1.71 (+12%)

A1B0 – non-linear, winter 0.28 5.2 0.57
A1B9 – non-linear, winter 0.20 (−28%) 6.6 (+26%) 0.66 (+16%)

Fig. 17. Time development of the optical depth for the A1B0 (left) and A1B9 (right) simulations. The triangle

denotes the top of the mountain, and the black line shows the point in time when the flow becomes reasonably

stable. The upper panel shows the time averaged optical depth from 3-10 h. In the upper right panel we also

show the time averaged optical depth for the A1B0 simulation for a better comparison.

Fig. 18. ICNC and IWP for the simulations A1B0 and A1B9 averaged over t=3-10 h for North America. The

triangle denotes the tip of the mountain.

erties of the cloud and nearly offset the thermodynamical changes. The optical depth averaged over

the whole cloud from 3-10 h increases ∼ 15% from 0.57 for A1B0 to 0.66 for A1B9.

The dry simulation of the winter months shows a slightly increased vertical velocity due to changes560

in the flow regime. This leads to an increased ICNC. Thus again the dynamical changes dominate the

influence of the higher temperatures on the ice crystal number concentration. The IWP increases as

26

Fig. 18. ICNC and IWP for the simulations A1B0 and A1B9 av-
eraged overt = 3–10 h for North America. The triangle denotes the
tip of the mountain.

available at the warmer temperatures in the lower layer. The
layer which is shifted to a higher position and thus lower
temperatures shows a strong increase in ICNC. The optical
depth for the highest layer is therefore higher than for the
lowest layer although the IWP is much less. If the tempera-
ture inside the ISSR is increased due to a shift of the initial
temperature profile or due to a change of the height of the
ISSR, the resulting IWP and optical depth for the tempera-
ture shift are much higher than for the change of the height as
the ISSR occurs in a different phase of the wave. In general,
when the temperature increases at a constant relative humid-
ity, the following increase in IWP and optical depth is the
dominant process. The decrease of ICNC which would lead
to a decrease in optical depth cannot compensate the effect
of an increased IWP.

For the simulations with the IPCC profiles it seems that un-
der the assumption of a constant relative humidity in a chang-
ing climate (Held and Soden, 2000), the increase in IWP due
to the increase in humidity and temperature is the dominant
effect. All moist simulations for the linear as well as the
non-linear flow regime for both seasons show the same be-
havior with an increase in optical depth for the end of the
century. However, in the North American case the optical
depth increases very slightly for the A1Bmin simulation as
the increase in moisture and the following change in the flow
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Table 2. ICNC, IWP and optical depth averaged over the whole cloud for all dry simulations initialized with the IPCC profiles. Values in
brackets denote the percental change compared to the associated A1B0 run.

Dry simulations

South America ICNC [109 m−2] IWP [g m−2] optical depth

A1B0 – linear, winter 0.5 8.4 1.14
A1B9 – linear, winter 0.3 (−40%) 10.2 (+22%) 1.04 (−9%)

A1B0 – non-linear, winter 11.5 13.9 4.95
A1B9 – non-linear, winter 20.7 (+80%) 30 (+116%) 9.94 (+101%)

A1B0 – linear, summer 0.6 16.5 1.93
A1B9 – linear, summer 0.2 (−67%) 17.9 (+9%) 1.36 (−30%)

A1B0 – non-linear, summer 12.5 21 6.92
A1B9 – non-linear, summer 3.6 (−71%) 31.2 (+48%) 5.67 (−18%)

North America ICNC [109 m−2] IWP [g m−2] optical depth

A1B0 – linear, winter 1.1 7.5 1.48
A1B9 – linear, winter 1.09 (-1%) 10.9 (+46%) 1.86 (+26%)

A1B0 – non-linear, winter 5.5 6.8 2.19
A1B9 – non-linear, winter 6.9 (+25%) 12.1 (+78%) 3.73 (+70%)

A1B0 – linear, summer 0.05 4.8 0.29
A1B9 – linear, summer 0.14 (+180%) 13.8 (+187%) 0.96 (+231%)

A1B0 – non-linear, summer 1.2 6.5 1.18
A1B9 – non-linear, summer 0.3 (−75%) 8.8 (+35%) 0.77 (−34%)

regime is much more pronounced and the effect of an in-
creased IWP at constant RHi is not dominant anymore. How-
ever, if the temperature increase from A1B0 to A1B9 is large
enough the increase in IWP dominates again and the opti-
cal depth increases from A1B0 to A1B9. This North Amer-
ican example shows that changes in the dynamics regime
can become important and can contribute to changes in the
IWP, ICNC and optical depth. In the dry simulations the
dynamical changes become important. For South America,
most simulations show a decreased optical depth caused by
smaller vertical velocities which lead to a strong reduction
in the ICNC in A1B9. However, most of the simulations
for North America show the same behavior as their corre-
sponding moist simulations. This means that most simula-
tions point into the direction that the increase in IWP is the
most dominant effect and that the change in the flow regime
and vertical velocities play a secondary role here. All these
effects and their influence on the microphysical and optical
properties are summarized in Fig.19.

The predicted increase in temperature in the IPCC simu-
lations are small enough that the reduction of the horizontal
extent or lifetime of the cloud due to sedimenting ice crystals
does not occur in our simulations. Nevertheless it cannot be
ruled out completely.
These simulations only represent first ideas about the behav-
ior of orographic cirrus in a changing climate. In order to
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Fig. 19. Schematic of possible dynamical and thermodynamical changes in orographic cirrus clouds in the

future climate and the following changes in microphysical and optical properties. The effect dominating most

of the simulations is highlighted in red.
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crophysical properties generated by the mean flow does not equal the mean change in microphysical

properties which would be generated by all different flow regimes occuring in ten years. Addition-

ally, the assumption of condensation occuring everywhere in the moist simulations and neglecting635

it in the dry simulations represent only the two extreme cases whereas in many cases the reality

might be somewhere in between. Nevertheless, we could show that we can expect an influence of

the changing climate on the microphysical and optical properties of orographic cirrus clouds. As the
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Fig. 19. Schematic of possible dynamical and thermodynamical
changes in orographic cirrus clouds in the future climate and the
following changes in microphysical and optical properties. The ef-
fect dominating most of the simulations is highlighted in red.

make more quantitative conclusions additional simulations
are necessary. The use of mean vertical profiles for initial-
izing the model implies some problems as the change in mi-
crophysical properties generated by the mean flow does not
equal the mean change in microphysical properties which
would be generated by all different flow regimes occuring
in ten years. Additionally, the assumption of condensation
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occuring everywhere in the moist simulations and neglect-
ing it in the dry simulations represent only the two extreme
cases whereas in many cases the reality might be somewhere
in between. Nevertheless, we could show that we can expect
an influence of the changing climate on the microphysical
and optical properties of orographic cirrus clouds. As the
cirrus cloud cover over continents which are formed due to
orographic forcing is quite substantial (Dean et al., 2005),
a strong influence on the radiative budget can be expected.
In order to make reliable predictions of the change in cirrus
cloud cover and microphysical properties the change in at-
mospheric stability caused by an increased moisture and its
influence on the flow regime as well as the change of the tem-
perature and water vapor in the upper troposphere have to be
considered.
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