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Abstract. We derive an analytic solution to the spectral higher computational costs, that is, longer computing time
growth/sublimation equation for ice crystals and apply it to and higher memory requirements. For many applications (for
idealised cases. The results are used to test parameterisi@stance in an operational weather forecast model) it is too
tions of the ice sublimation process in two—moment bulk expensive to use a bin model, hence bulk models are needed.
microphysics models. Although it turns out that the rela- Nonetheless, their behaviour should be tested under a large
tion between number loss fraction and mass loss fraction ivariety of situations such that their strenghts and weaknesses
not a function since it is not unique, it seems that a func-become understood as much as possible.

tional parameterisation is the best that one can do in a bulk Cloud microphysical models that use a two—moment bulk
model. Testing a more realistic case with humidity oscilla- scheme predict both the temporal and spatial variations of the
tions shows that artificial crystal loss can occur in simula-total number and total mass of the droplets and ice crystals.
tions of mature cirrus clouds with relative humidity fluctuat- The temporal change of number and mass concentrations are
ing about ice saturation. determined by process rates which are sometimes difficult to
formulate. One example is deposition. When ice crystals
grow by vapour deposition, the ice mass grows accordingly
while the number of crystals is constant. This is the easy
case. The difficult case arises in subsaturated conditions.

Cloud microphysical models can essentially be grouped intoWhen Ice crystals sublimate, the ice mass decreases accord-
while the decrease rate of crystal number cannot be for-

bulk and bin models. Bulk models describe a cloud in terms"9!Y:

of gross quantities like total water or ice mass and total num.mulated in a straightforward way. The prognostic equations

ber concentration of hydrometeors. Although an assumptiorfO" IC€ number and mass concentration (for recent examples

of the underlying size or mass spectrum of the hydrometeCf- Morrison and GrabowskP00§ Spichtinger and Gierens

ors is usually made, its evolution is not completely described2009 contain deposition terms) £ P (for mass concentra-
since only the low-order moments are predicted in the modefion) andN DE P (for number concentration) in the nomen-
equations. Bin models instead describe a cloud in much mor&ature ofSpichtinger and Gierer(@009). .

detail by explicitly accounting for the size or mass spectrum. 1€ problem is now, that there is an equation foE P,
Here the mass spectrum is divided into a large number of bin®ut not forN DE P. Harrington et al(1999 have performed
and the microphysical processes directly change the numbét Iarge series of S|mul_at|o.ns to find an appropriate parameter-
of particles in the various bins (some recent examples can bi$tion forN DEP. Spichtinger and Gierer(2009 roughly
found inLin et al, 2002 Monier et al, 200§ Leroy et al, folloyved their results and used the following simple approx-
2007 2009. While bulk microphysics models are designed imation to calculateV D E P:

rather for computational speed than for an exact description

of the evolution of a cloud’s mass spectrum, ivise versa  fn = Ju- (1)

for the bin models which pay for more exact results with

1 Introduction

where f,, is the mass fraction sublimated in the current time
step, f, is the desired number fraction, ardis a con-

Correspondence tK. Gierens stant parameter.Harrington et al.(1995 suggest a range
BY (klaus.gierens@dir.de) of 1<a<1.5 for this parameter, which is set to=1.1 by
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Spichtinger and Gieren@009. Morrison and Grabowski  but expressions liken” are always meant agn/UM)".
(2008 usea =1, i.e. f, = fm. With the chosen units, a certain valueafwhich is a num-

The constancy af is certainly an oversimplification, since ber) means that the sublimation rate of a 1 ng ice crystal is
this would mean that ice crystals in fall streaks sublimate ina ng/s. In this paper we use crystal masses and values of
a similar way than ice crystals deep inside a cloud wherea that are typical in cirrus clouds under subsaturated con-
small humidity fluctuations around ice saturation might leadditions, i.e. the temperature is below38°C, the pressure
to crystal loss. Hence, we deemed it worth to investigatebelow 300 hPa and the relative humidity with respect to ice
this process in more detail and to test potential alternativeranges from say 10 to 98%. We udeé 0.37 and a width of
parameterisations. the mass distribution af,, = 2.85. Note that the exact values

For this purpose we will use an analytic solution to are notimportant for the principle considerations that follow.
the problem, proceeding from the spectral form of the We introduce the following coordinate transformation:
growth/sublimation equation, to be derived next in Sect. 2.

From the analytical solution we compute number and mass ;12

loss fractions (Sect. 3) and derive timescales (Sect. 4). Alter = 17 _

native parameterisations will be tested in Sect. 5. A discus-

sion and conclusions are presented in the final Sects. 6 and That s, in the new coordinates the growth/sublimation rate

7. is a simple constant. Lgt(x) be the probability density func-
tion of x. Then the spectral growth equation obtains the sim-
ple form:

X =a (=consj. 4)

2 Time dependent crystal mass distribution

g

P ®)

As ice crystals in a cloud generally have a large variety ofig(x, t) = —a
. ; - . . 0t

sizes, bulk microphysics models take account of this vari-

ety by implicitly or explicitly assuming an underlying crystal which is solved by a characteristic:

size distribution, which can be expressed as a crystal mass

distribution or mass spectruny,(m). Crystal growth by ¢(x #) = 3(x — at). (6)

vapour deposition or crystal sublimation changes the mass

spectrum, so that it becomes also a function of time, i.e. z can be any function in principle, but here we use proba-

fGm,1). The temporal change of the mass spectrum due igjity density functions, of course. It is obvious that the time

deposition/sublimation can be described by an equation thagieyelopment of (x, r) is merely a shift of the function as a

has the form of a continuity equation in mass space (see, €.gwhole along ther-axis. All central moments of order higher

Wacker and Herber 983 than one are invariant, that is, the shape of, r) does not
P 3 change over time.
af(m, 1) = —a—m(mf)- (2 We start {=0) from a certain initial mass distribution

(e.g., log-normal), normalized to one for the present paper:
f(m, t) dm can equivalently be interpreted as the time de-

pendent probability that an ice crystal selected randomly in 10N(2)12) 1
a cloud has a mass betweenandm + dm. The prob-  f(m,0)dm = ——— {—E%} —dm, (7)
abilistic interpretation will turn out useful for the analyt- Ve Inoy, (nom)= f m

ical derivations presented in the following. f n, t) has
to be distinguished carefully from fractiong which are
marked by a lower index.: (=dm/dt) is the depositional
mass growth/sublimation rate of a single crystal of mass

substitutem with x (this yields another log-normal with
xo=mg "/(1—b) and Ino; = Ino~P):

i ' i 1 10In(H)1?) 1
e e i P22 0t e gl ST L @
: 7 In oy (Inoy)? | x
m m \b . .
<UM—/UT) =a (U_M> . 3) and th_en replace with x —at, WhICh represents the temporal
evolution of the mass distribution in thecoordinates:
Here,a andb depend on temperature and pressure, and
a depends additionally on the degree of ice supersaturationg(x, t) dx = 9)
For subsaturated cases;0. Spichtinger and Gierer{2009
their Fig. 5) show that this approximation is very good over 1 p{—l (55" )]2} 14
four orders of magnitude im. UM andUT are unit mass V27 Inox 2 (noy? [ x—ar ™7

and unit time, for which we use 1 ng and 1, respectively. In  Finally, we have to substitute baakwith m1=?/(1 — b),
the following equations we drop the reference to the units,to get the desired result:
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Fig. 1. f(m,r) for various times: under sublimation with . . .
a=-0.004 (approximatly for—50°C, 250 hPa, RH=98%). r=0 0 0 0.2 0.4 0.6 0.8 1
(solid red, the initial log—hormal distribution), and 10, 30, 60,

120 s (solid green and blue, dashed red and blue). P

Fig. 2. Total fraction of number lossp,, vs. total fraction of
mass lossg,,, for various initial geometric mean masses from 1
to 1000 ng. Note that the curves are almost congruent. Time runs
along the curves fron®, 0) to (1, 1).

2
[In ml_b—(l—b)at :|
1 1-b

f(m,t)ydm = _r expl — = ";0 2 Since f depends on time, so dods. Harrington et al.
V2 Inoy, 2 (1-b)*(now) (1995 consider the fractional total mass logg Y and num-
ber loss ¢o) at timer which can be written as
1 L:(0) — I
e — 10 _ k(0 — I (@)
“m— A= byarmt " G0 g = L0 (12)

Note that we use the notation with numerical indices (since

Singularities of this formulation can appear at negative the expressions using moments suggest it) interchangeably
which are irrelevant. The singularity developingrat=0is  with the notation usingm, n) as indices (the notation that is
integrable. The temporal evolution of the initially log-normal ysed in the quoted papers), i.e. the following identities hold:
distribution is shown in Figl for a sublimation condition  ¢o=¢,, p1=¢,., lo=1,, [1=1,, (and correspondingly for the
(a<0). Itis evident that in the mass coordinates the distri- f; introduced below)¢, (¢,,) is plotted in Fig.2. Time runs
bution does not retain its initial shape; deviations from thealong the curves fron0, 0) to (1, 1). We see that initially
initial shape are very pronounced. When we consider insteaghere is mass loss combined with negligible number loss, but
a growth situationd>0) the initial shape is much better con- the number loss overhauls in the later phases of the ongoing
served (not shown). A more general solution of the spectrakublimation process. This is what we expect for mass dis-
growth equation is presented in Appendix A. tributions with mode masses exceeding the threshold mass.
Different behaviour can be expected for exponential distri-
butions. We note thatlarrington et al(1999 also had ex-
amples with a different behaviour.

In a cloud model, we generally do neither have knowledge
) . of the initial valuesl (0) nor of the timer which must be in-
We assume that ice crystals have a minimum mass.ff  erpreted here as the time passed by since sublimation started.
(e.g. 10°ng). Then we define fot < {0, 1} the following (gjnce many processes act in a cloud model simultaneously it
integrals which give the total number and mass fractions of,,;14 not even make sense to introduce such a time variable
the ice mass distribution exceeding the threshold: or to track the “initial” values). Hence, in a model we usu-

ally can only consider the fractional mass and number loss

3 Mass loss and number loss fractions

) per time step, which can be written as
Ix(t) = [ m* f(m, tydm. (11) I(t) — I (t + At
) Aty Any = O Ik’zt() ) (13)
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Fig. 4. f, vs. f,, for various initial geometric mean masses from 1
0 ! ! ! ! to 1000 ng (dashed red, solid green, blue, red). Note that the inverse
0 0.2 0.4 0.6 0.8 1 values of the axis correspond to the timescales for the change of
fon the corresponding integralg () in seconds. Arrows indicate the
direction of time.

Fig. 3. Mass loss f;,) and number lossf},) fractions for series of
subsequent sublimation time steps. Time steps are 100, 200, 30@nalysis is strictly valid only for cloud resolving models with

400 (solid red, green, blue, dashed red), and time runs along eactin )| time steps of the order seconds (where the higher order
curve from the point neares to thg,-axis to the point nearest to terms are negligible), but it might still give some guidance
the f,,-axis. The individual time steps are marked on each curve.for the treatment of Sl,Jinmation in large-scale models

Arrows indicate the direction of time. The yellow point&t 1) was .
the result of a test with a very long time step that should guarantee First, we have
that the ice sublimates completely within that step. The black line 315 (z, At) , -1 dI(t)
is the attempt of a fit of the later parts of the curvgsz f98%. The  — jA;7 = Ji@®) = Lo dr (15)
initial geometric mean mass for the calculations:ig= 1 ng.

which still retains the time dependence. We note thi#f &)

can be interpreted as a timescale for the change of the cor-
These fractions depend on the size of the time ftep  responding integral. The derivatives of the integrals can be
but still on the time since sublimation started. Examplescomputed in the following way:

for various time step valueAr are plotted in Fig3: These -~
curves link pairg f,, (#;, At), f,(t;, Ar)} fortimest; =i - At dI . Of
(i=1,2,3,...) running until the ice is completely subli- 4, = / m: - o dm, (16)

Mthr

mated. (The yellow dot atl, 1) was computed with a
very Iarge tlme stgp, such that the ice sublimated completelyand the partial derivative of the mass distribution function is:
within this single time step). The curves( f,,,) all have sim-

ilar shape. They start near thfg—axis which means that the
initial mass loss occurs alone almost without number loss, 9/ _ Fx (17)

and after about 600s they reach an “attractor” that can bedt
approximately be fitted by, = £¢ with @ = 0.89. @ < 1 n <m1b_(1_b)m> a

again signifies that later in the sublimation process the num- mg™" (1 — b)am®
ber loss catches up. The shape of the curves showsfthat | (1= p)(Ino,,)2(m> — (1 — byar] = m — (1 — b)atm?

is not really a function (in the mathematical sensey,phe-

cause itis not unique even if the timestep is fixed. This makes . L o o

it questionable whether a functional dependence for parame- J/u VS- /IS plotted in Fig 4. These curves look similar to

terisation of sublimation should be used in bulk models.  those in Fig3, and indeed they are equivalent to those for a
The timestep dependence ff suggests a Taylor expan- Unittime step of 1s.

sion which yields
fult, At) = fiAt + O(Ar?).

As Fig. 3 shows, the higher orders cannot be neglected afThe curvesp, (¢,,) in Fig. 2 look very similar for different
time steps of the order 100 s and longer. Hence the followingnitial mean masses, but if we would include tick marks for

(14) 4 Time scales

Atmos. Chem. Phys., 9, 748749Q 2009 www.atmos-chem-phys.net/9/7481/2009/
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time along the curves they would differ for different curves.
We can therefore try to unify these functions with respect |
to time as well by introducing a dimensionless timeThe
corresponding-tick marks would then become nearly con- 1t
gruent. For this we can first compute the tiffigt needs to
sublimate completely (i.e. to mass zero) a crystal having ex-_.
actly the massng, which can be any characteristic mass of <
the chosen distribution, (for instance the median, mean, or
mode mass). Here we take fap the geometric mean mass 04|
of the chosen log-normal distribution. This time is

02
1-b
T = mo—. (18) 0 R
lal(1—b) 0.01

With this time we introduce asz/T, i.e.
Fig. 5. h(7) vs. dimensionless time for various initial geometric
(b-1) S
T =tla|(1—-Db)ymy . (19)  mean masses and sublimation ratesj=1ng, a = —0.04 (red);

. ) ) ) . mg=10ng, a=—0.09 (green); mg=100ng, a=-0.2 (blue);
Hence, the dimensionless time variable takes into accouny,; — 1000 ng,« = —0.5 (violet). These curves are so similar that

the chosen initial characteristic mass of the mass distributiorynly one can be seen. The dashed black line is a generalized log—
and the current sublimation rate. It does not take into accounlogistic function that fitsh(¢).
other quantities like the width of the mass distribution. We

define
, how fast sublimation changes from the mass loss to the num-

_ Jal@mo.v) _ dink(r)/dc (20)  ber loss regime. Finally, the inflexion point is found here

fmla,mo, vy dInly(r)/de at 0.3 which means that the transition into the number loss
regime occurs at a considerably shorter time than is needed
to sublimate a crystal with the chosen characteristic mass.

We see that it is possible to find a certain universal be-
lJ]aviour of the sublimation curves that do not depend on ini-
tial mean mass or sublimation rate. The function does how-

limation rates. We can observe the following behaviour: up h h dif Cinitial distributi
to a normalised time~0.1 sublimation leads almost only to ever change when we use different intial mass distributions,
.g. by changing to a differemnt,, (not shown). The main

a mass loss and the number density of the ice crystals sta C . .
nearly constant. Number loss comymences at ah))/atﬁ 1 y%roblem is still that the value df depends on the time since

and the fractional number loss rate exceeds the fractiona?Ubl'm"’ltlon started. As we do not_have this information In
mass loss rateh-1) at aboutr~1 and thereafter, that is clpuq models we cannot know easﬂy whether the process is
once the characteristic mass had sufficient time to sublimat(gtIII in the phase where mass .IOSS is much larger than the
completely. The shape of a cunier) depends on the width number loss1<0.1) or already in the phase where number

(and shape) of the initial mass spectrum. The transition fromIOSS catches upre-1) or somewhere in between glose to

mass loss to number loss regime is sudden for a narrow dist-he 'P“ex"’” point). . . .
It is clear that the time correspondingtgorz=1is a

tribution and gradual for a broad one (not shown). However, N : . :
9 ( ) characteristic time of the sublimation process. It might be

as long as we chose a fixed value &gr (as in the figure), all . . o .
these functions are very similar and they can be fitted with auseful to know it for practical a_pphcat|0n§ that we consider
generalised log—logistic function: next. For the parameFers_ used in Fghe time scal_es range
from 40 to 250 s, that is, time steps of cloud resolving models
" are mostly smaller than the characteristic times, while those

_ 21 i
Ly (22) (m)? (21)  of climate models are often larger.
p—1 T

The formulation is such thatg is the inflexion point of 5 Tests of parameterisations in two-moment models
the fit function. The latter is plotted in Fi®. as well with ) . o
=124 p=24, 19=03. v is the asymptotic value of In the foregqmg sections we h_ave seen that it IS necessary
the fit for large values of. It exceeds unity which is an to know the time since subhmathn stgrted when its effect on
expression for our earlier finding that in the end the numberth® Number and mass concentrations is to be treated correctly,
loss exceeds the mass loss rate. The parametentrols the and the the problem is just that this time cannot be defined

steepness of the fit around the inflexion point, i.e. it measure§€nerally once other processes actin a cloud as well.

h(t)

h(t) can be interpreted as the ratio of two timescales for
change of thel; integrals. These timescales and their ra-
tio vary in time. h(z) is plotted in Fig.5 for various initial
geometric mean masses (from 1 to 1000 ng) and various su

h(t) =

www.atmos-chem-phys.net/9/7481/2009/ Atmos. Chem. Phys., 9, 74902009
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In a two-moment model one needs both quantitfgsand L LY

fm. Itis easier to formulate an equation f@y, than for f, 09 F
because there is an analytic equation for the mass change of
single crystals, while there is none such for the number (it 0.8 | 7
is either zero or one, which is non-analytic in the mathemat-
ical sense). A formulation forf,, can be made in a rela-
tively straightforward way once the current mass spectrumis 06 | 4
known or assumed. We have seen in Sect. 2 how sublimation
changes the shape of the mass spectrum. This is ignored i 05
two-moment models, such that errors arise in the mass loss 04
computation as well as in the number loss fractions (as we
will see below). 03 F e

There are two principle possibilities to parameterise sub-
limation in two—moment models, either one defingsas a
direct function off,, or one formulates,, independently of 01k i
fm- The second approach is a bit risky, since it does not
guarantee thay;,, = (0, 1) for f,, =(0, 1), so that a mixed 0 . S 1 S
approach that gives this guarantee would perhaps be prefer- 0 010203040506 070809 1
able. Whenf, is a direct function off,,, the power law B
fn= f2 is the simplest formulation that fulfillg;, = (0, 1)
for f =(0, 1). Fig. 6. ¢n VS. ¢, as parameterized iBpichtinger and Gierens

In the following we test a number of potential formula- (2009 (red lines, for various choices of sublimation rates and initial
tions. The tests are all based on the corresponding “benchi€ometric mean masses), compared with the analytical solution for
mark” functionse, (¢,) obtained from the analytical solu- various initial geometrl_c mean masses and subllmatlo_n rates (black
tion derived in Sect. 2, see Fig. That is, we take a formula- line). Only one b_Iack Ilne_can be seen because the qmerences be-
. . . tween the analytical solutions are smaller than the thickness of the
tion of f,,, and compute the corresponding functiyn(¢,,) curve
up to complete sublimation and compare the result to the
benchmarly, (¢,,). The tests use the following algorithm:

07 F -

02 -

is, as we have seen in the foregoing sections. Thus, such a

1. Start loop over time steps; possibility is not given.
2. compute mass chang&:M o« aupAt; 5.2 Other functions
3. compute relative mass chang; = —AM/M; We tested other functional relations betwegnand f,, as
4. compute number change (various methods, see belowell, in particular such that give a zero derivativefat=0
e.g.fu=f%— AN =—f,N of ANoxajp_1A1); (not shown). Examples arg, = 1—_,/1—fm“ with oz_>1 and
fn=1[co(fin—1)m)+1]/2. This did not yield real improve-
5. update mass and number, update mode masg (o), ments over the simple power law. In these caggs;0 until
output of various quantities; most of the ice mass is sublimated (unlass very close to
one).

6. end time step loop.

5.3 Using maximum sublimating crystal mass
5.1 Power laws

i ] . Alternatively one can compute in the cloud model the max-
A first example showing a test of, = f;; with a =11 m crystal massimay that sublimates within a timestep.

(Spichtinger and Giereng009 is given in Fig.6. We see Assuming the Koenig approximation this is given as
that the parameterisation produces too high number loss frac-

tions in the early phases of sublimation while in the final mmax = (ja|Ar)Y/ =2, (22)
phase the mass loss fractions are overestimated relative
the number loss. Obviously, a choicea&1 would deteri-
orate the situation, and a much larger value:@fould only fo’”max f(m)dm
improve the agreement for the initial phase of sublimation at/» = —ro— (23)
th : ; fo f(m)dm

e price of much worse results in the later phases.

One could try to use a largein the initial phase and <1 while f,, is computed by the model in the usual way. For
later. The problem is, however, that one cannot decide irthe calculation of the numerator integral we may use expres-
the bulk cloud model in which phase the sublimation processsions for truncated moments when analytical expressions for

T\R/ith this quantity at hand we can compute

Atmos. Chem. Phys., 9, 7487149Q 2009 www.atmos-chem-phys.net/9/7481/2009/
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them are available. For our special choice of a log—normalsinusoidal oscillation. The sublimated ice is assumed to add

distribution we have (cflawitz 2004): to the water vapour, i.e. to increase the relative humidity.
_— 1 | 1 The iniFiaI cond'itions are chosen such that_we start vyith ice
/ Fm)dm = —erf[ n(mmax/mo)} 4Lz (24)  saturation and if we would completely sublimate the ice we
2 IN /2 2 would reach RH=105%. The oscillation amplitude is as-
, sumed to bet5%, as well. Hence we have:
It turns out that this method produces bad results for too

large and too small time steps. For too large time steps (eVEeRH; = 100— 5 sin(27 wt) + 5¢m  (%). (26)

1s turned out too large fong=1ng anda = — 0.04) f, is

non-zero at the beginning, and for too short time steps (0.1s) Note thatg, can become negative in the growth phases.
we have again the problem that =~ 0 until most of the ice  We use a geometric mean mass of 100 ng. At RI95%

mass is sublimated. (220K, 250 hPa) we get= — 9.1x10~4, the characteristic
time (i.e.7 =1) is 5800s. The oscillation frequency cho-
5.4 Using moments sen waso = 1/250 1, which is a typical value for a Brunt-

o ) ) Vaisala oscillation in stably stratified air. A first test of the
Another possibility one could think about is to formulafe  numerical method with constant subsaturation gav@,,)
in a cloud model via the moments of the mass d|Str|bUt|On.aS in F|gz which shows that the numerical procedure works

These are defined as well. When we switch on the oscillation and add the sub-
o limated ice to the relative humidity both mass and number
He = /0 m” f(m)dm. (25) loss are reduced strongly; after 30000 s simulation time only

a few percent of the mass and less than one per mille of the
Spichtinger and Gieren009 usedq./dt =au, (COr-  number are lost. With a lower frequency of=1/2500s!
rections neglected) to calculate the tendency of the ice mix(gravity wave) these numbers are larger, because the initial
ing ratio from which f;, is computed. In analogy, we may sybplimation period lasts much longer, but still less than 10
setdN /dt =aup-1 to calculate the tendency of the number percent of the number is lost after 300005s. The results can
mixing ratio and computgf, fromit. (Althoughu,-1isa  pe explained as follows: Initially the mean relative humidity
moment of negative order, it works since the corresponds ice saturation, but the sublimating ice adds to this mean,
ing integral is finite). Although this sounds a logical ap- sych that quickly a new mean value is achieved that exceeds
proach, itis not. In this case we hay = —aup/pn1and  saturation. Hence, in spite of the oscillations that always
fa = —aup—1/po, which shows thak(z) turns outas acon- |ead transiently through subsaturated states, on the average
stant (since the time dependent mode mass cancels out in thRe sublimation process is halted. After the first sublimation
division f,/f,, andoy, is constant). This is not only in con-  period all crystals that were small enough for sublimation
tradiction to the analytical behaviour 6fz) (Fig. 5), but—  are lost, but in the following sublimation phases the remain-
even worse — it also implieg, = ¢/, (c a constant) whichvi-  ing crystals are large enough to survive. Unfortunately, a
olates the boundary conditions@t 1), unlessc =1, which  different behaviour is displayed by a model employing the
itis generally not since it depends én(pressure and tem-  simple parameterisatiofi, = f¢. Here, more than 20% of
perature dependent) angj. the ice is lost within 30 000 s and with=1/250s1, while
. ) ) the ice mass stays approximatly constant. This is obvioulsy
5.5 Effect of humidity fluctuations around ice satura-  yhe effect of adjusting the mass distribution after each time
bl step to a new log-normal distribution (with changed geomet-

Finally we test the effect of small-scale humidity fluctuations fic mean m_ass). H_ence_ although the small crystals are gone
within the first sublimation phase, there are new small crys-

around ice saturation (caused by random fluctuations or at-" " . . R
X o L . tals in the next, merely because the fixed distribution type
mospheric waves) on sublimation. Such a situation can arise . . ; .
. . . . o énforces this. This leads to crystal loss in every new subli-
in old contrails or cirrus clouds (where relative humidity had . : -
. . ; ; mation phase. This means that under conditions of a cloud
enough time to equilibrate with the ice crystal ensemble) un-

der certain synoptic conditions, namely when the lar e—scalin equilibrium (i.e. RH~100%) small scale fluctuations in
. 1 Synop ' y 9 $he cloud model can lead to an artificial crystal loss with cor-
vertical wind is very weak (less than a few cmiy Since

. . ) o responding consequences on further microphysical evolution
a is a non—explicit function of time in such a case, the ana-

Iytical solution is no longer valid and also the more generaland optical properties.

solution of Appendix A is not applicable. Hence we choose a

simple numerical procedure. We divide the lognormal masss Discussion

distribution in 1000 discrete initial masses, compute the mass

growth/sublimation rates for each mass with 1s timestepsHaving performed the simple tests of the various possible pa-
Once a mass gets smaller than a threshold of 0.001 ng, it isameterisations we see now clearer the difficulties inherent in
assumed to be lost. The fluctuations are represented with modelling ice sublimation in the framework of two-moment
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models. These difficulties arise in the same way when anapproach in the previous section was not successful although
other mass distribution is chosen (we have also tested a gerit sounded plausible.

eralised gamma distribution). An exponential distribution Our analytical tests were admittedly a bit academic. The
which is typical for cloud droplets could give different test analytical solution is only valid for constant which would
results; this has not been tested in this paper because we angean that sublimated ice would disappear from the system.
mainly interested in improvement of cirrus and contrail mod- In reality, the sublimating ice increases the vapour concentra-
els. But such tests could be done in an analogous manner. tion which generally will lead to increasing Also the sub-

As a general rule of thumb the analytical solutions showedliimation process was considered in isolation, which is rea-
that over a large fraction of the sublimation phase the numbesonable for testing, but in reality other processes act simulta-
loss fraction equals roughly the mass loss fraction, as seen fateously. The sublimation timescales can be very long espe-
instance in Figs2 and3. In particular for large-scale models cially when the subsaturation is low. In such a case, however,
with long timesteps of the order of the sublimation timescalethere may well be other processes with shorter timescales
it seems therefore reasonable to get f,,. For cloud re- that then dominate the cloud evolution rendering the prob-
solving models which need timesteps much shorter than théems with sublimation less important. When subsaturation
sublimation timescale problems can arise, in particular in theis larger or the mean mass smaller, sublimation time scales
beginning of the process, when the number concentration iget shorter; then the sublimation process will quickly evolve
hardly affected although the mass concentration is alreadynto that regime wherg,~ f,,, such that the problems with
diminishing. Hence it is not easy to find a better parameteri-the initial phases lasts for a shorter period of time. Here it
sation for a small-scale model. The simple parameterisatiorwould turn out disadvantagous to have a largesr one of
fa=fx with @« 2 1 seems to obey the simple rule, but in the other approaches discussed in the previous section, be-
the oscillation case it went wrong although the more exactcause they lead to underestimation of the number loss over a
simulation showed that the rule is valid in this case as well. large fraction of the whole sublimation process.

Unfortunately, the oscillation case is not so academic like Considering these arguments we think that, in spite of its
the other tests we have performed; we even took into accountveaknesses, the simple approggh= £, with « slightly ex-
that the sublimating ice mass contributes to the vapour phaseeeding unity or dependent on the degree of subsaturation (or
and thus to the relative humidity in the cloud. The oscillation unity for large-scale models) is still one of the best choices
case is typical for mature clouds where crystals have conone can make.
sumed the excess vapour completely and where random fluc-
tuations (turbulence) and atmospheric waves of various kind
affect the cloud evolution. In order to avoid artificial number 7 Conclusions

concentration loss in such quasi-equilibrium cases one could . ) )
either employ a larger value of, such that larger mass loss The analytic solution of the spectral for_m of the equation .for
is needed before crystal loss commences. Or one could indeposition/subl_ima_tion and its application to ice sublimation
troduce a sublimation humidity threshold of several percentdave the following insights:

below saturation. Both strategies have their disadvantages. A
sublimation threshold several percent below 100% is unphys- i ) ) =Y
ical and may have unforeseeable effects. Latgenderes- tional mass loss is non-unique, that is, it is no func-
timates crystal loss in situations of steady substantial subli- ~ ton. However it seems advantageous to formulate it as
mation (as do other functional relations, as we have seen); & function in parameterisations of ice microphysics for
however, one can let depend on the degree of subsatura- both large-scale and small-scale models.

tion, with larger values at small and smaller values at larger
saturation deficits. This has been tested as well and it pro-
duces better results than the parameterisation with constant
.

The question arises whether there are other pieces of infor-
mation available at timestep level in the two-moment model.
We have: two independent moments, namely number and _ As a rule of thumb the analytical solutions showed that
mass concentrations, and direct functions of them (all other  gyer most of the sublimation process the number loss
moments, effective sizes, and so on). More information can  rate equals approximatly the mass loss rate. It is there-
only be provided by the thermodynamic state at the timestep,  fore a good idea to set them equal in large-scale models
i.e. the relative humidity and the temperature. These quan-  jth long timesteps (say, 15 min. and more).
tities allow to additionally compute the maximum mass that
can evaporate within one timestep. However, we have seen — For small-scale models (e.g. cloud—resolving and large—
that even with this additional information it is difficult to con- eddy models) we have tested a number of alternatives to
struct a better parameterisation of sublimation; at least our  the standard power law, but the power law turned out

— The relation between fractional number loss and frac-

— Sublimation timescales are wusually longer than
timesteps of cloud resolving models, and often but not
generally shorter than timesteps of large-scale models.
The latter case is easier to parameterise than the first
one.
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to produce the best results compared to the analyticabeing the antiderivative ai(z) (for constanta, A = ar as
solution. in the main part of the paper). Now take the following view-
point: Letm (0) be a random variable with a given probability
— Care has to be taken with the power law formulation distribution fo[m(0)], e.g. the log—normal. Then the solution
when a cirrus cloud or condensation trail at ice satura-ahove (Eq. A2) effects a mapping from the random variable
tion undergoes small-scale humidity fluctuations (prob- ;; (0) to the random variable: (), that is unique (and invert-
ably irrelevant for large—scale models). Without any jple) over a certain interval in tim¢Q, 7’1, depending on the
counter-measure the power law withclose to one  time dependence af. Over this intervall it is possible to

leads to severe overestimation of crystal loss. It mightcompute the probability distribution ef(¢), f,[m(t)], using
be better to letr be a function of saturation deficit with  the substitution rule, i.e.

larger values at low deficit and values closer to one at

i dm(0
larger subsaturations. Film®] = folm©)[m)1} dm((t)) (Ad)
m
The academic test cases of the present paper can only givehd the derivative is
insight about the problems inherent in parameterisations of .
ice sublimation. The success of an alternative parameterisadm(0) 1 A—-b)A(t)\ TP AS
tion in “every day work” should, however, be checked against g, (1) ~ \©™ m(@r)1-? (A5)

spectrally resolving microphysics models where sublimation ) ) )
acts in combination and in competition with all other pro- J:m ()]s the desired solution of the spectral growth equa-
cesses. tion. For the special cade = —1 (radius growth equation

The analytical solution points to the very core of the prob- for quuid dr_oplets) formally identical _solution_s have been
lem: the sublimation process requires an additional parame2Ptained using another method (seemingly going baSeto
ter for the complete description of the mass spectrum. Th&lunov 1974 by Brenguier(1991, eq. 2.5).
additional parameter must be obtained from an additional
equation which is difficult to formulate in general once a ;

! Appendix B
variety of other processes affect the shape of the spectrum
as well. To introduce such new equations is probably nofytation

the best way to overcome the problems since this would add

a significant amount of complexity to the bulk models. If 4 p
exact solutions are required one should resort to bin models
which do not suffer from the mentioned problems. Neverthe- 4

parameters in Koenig’s crystal growth
parameterisation
time integral ofa (Appendix A)

less, bulk models are useful and needed whenever there arg,, 1) time dependent ice crystal mass spectrum

computer time and memory constraints, which is a common¢, = 7, number loss fraction per timestep

situation. Therefore, in spite of the problems, we encouragey; = f,, mass loss fraction per timestep

their use, provided that their limits are thoroughly checked. ¢(x,s) transformed time dependent ice crystal mass
sprectrum

. g(x — at) characteristic solution fog(x, 1)

Appendix A h(t) time dependent ratio of time scales

for number and mass loss

total integrated number loss

total integrated mass loss

mass of a single ice crystal

mass growth rate of a single ice crystal

characteristic mass of the spectrum

or geometric mean mass

dm . N ice number mixing ratio

= = a(tym’, (Al)  p fit parameter (steepness of the transition
from the mass loss to the number loss regime)

then the solution of this nonlinear differential equation is qe ice mass mixing ratio

Solution of the spectral growth equation lo=1,

A more general analytic solution of the spectral growth equa—;l
tion that handles for instances cases with time dependent

(but with constanb) is possible proceeding from the follow-

ing point of view. Let

b b RH; relative humidity with respect to ice
m(@)=" =m0 = (1 = b)A) (A2) time since sublimation started
with T time required to completely sublimate
crystal of characteristic mass;
e, length of time interval (Appendix A)
A = /0 a(t)dt (A3) transformed crystal mass
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X transformed mass growth rate Jawitz, J.W., 2004: Moments of truncated continuous univariate dis-
X0 transformed geometric mean mass tributions. Adv. Water Resour., 27, 269-281.

o power law exponent for the sublimation Koenig, L., 1971: Numerical modeling of ice deposition. J. Atmos.

parameterisation Sci., 28, 226-237. .
& fit parameter Leroy, D., W. Wobrock, and A.l. Flossmann, 2007: On the influ-
At model time step ence of the treatment of aerosol particles in different bin micro-
i moment of ordek physical models: a comparison between two different schemes.
k

Atmos. Res., 85, 269-287.
Leroy, D., W. Wobrock, and A.l. Flossmann, 2009: The role of
boundary layer aerosol particles for the development of deep

¢o = ¢, total fractional number loss
¢1 = ¢, total fractional mass loss

Om geometric standard deviation of mass spectrum convective clouds: a high—resolution 3D model with detailed

Ox geometric standard deviation of (bin) microphysics applied to CRYSTAL-FACE. Atmos. Res.,
transformed mass spectrum 91, 62-87.

w oscillation frequency Lin, R.-F., D. O'C. Starr, P.J. DeMott, W. Cotton, K. Sassen, E.

Jensen, B. Ercher, and X. Liu, 2002: Cirrus parcel model com-

parison project. Phase 1: The critical components to simulate
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