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Abstract. A double-moment bulk microphysics scheme for
modelling cirrus clouds including explicit impact of aerosols
on different types of nucleation mechanism is described. Pro-
cess rates are formulated in terms of generalised moments of
the underlying a priori size distributions in order to allow
simple switching between various distribution types. The
scheme has been implemented into a simple box model and
into the anelastic non-hydrostatic model EULAG. The new
microphysics is validated against simulations with detailed
microphysics for idealised process studies and for a well doc-
umented case of arctic cirrostratus. Additionally, the forma-
tion of ice crystals with realistic background aerosol concen-
tration is modelled and the effect of ambient pressure on ho-
mogeneous nucleation is investigated in the box model.

The model stands all tests and is thus suitable for cloud-
resolving simulations of cirrus clouds.

1 Introduction

The role of clouds is crucial for our understanding of the cur-
rent and the changing climate (IPCC, 2007). Cirrus clouds
modulate the Earth’s radiation budget significantly. It is as-
sumed that (thin) cirrus clouds contribute to a net warming
of the Earth-Atmosphere system (e.g.Chen et al., 2000), but
the magnitude of this warming has not been quantified yet.
Recently, the impact of thin cirrus clouds in the mid latitudes
was estimated in idealised framework using vertical profiles
from radiosondes (Fusina et al., 2007), but the global effect is
still uncertain. The formation and evolution of cirrus clouds
depends in a complex way on a variety of environmental con-
ditions (temperature, relative humidity, wind fields) as well
as on the impact of background aerosol acting as ice nuclei.
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The interaction of various processes and their non-linear de-
pendence on ambient conditions renders the understanding
of cirrus clouds in general a difficult task.

Cirrus clouds (except anvils) are closely related to
their formation regions, so-called ice-supersaturated regions
(ISSRs, see e.g.Gierens et al., 1999). These are large, ini-
tially cloud free airmasses in the upper troposphere (and
sometimes lowermost stratosphere) in the status of supersat-
uration with respect to (wrt) ice. These regions are quite
frequent in the tropopause region (see e.g.Spichtinger et
al., 2003a,b; Gettelman et al., 2006). From former inves-
tigations (Spichtinger et al., 2005a) it turns out that cirrus
clouds often are embedded in horizontally extended ISSRs;
ISSRs and their embedded clouds form a system. Large-
scale dynamical processes like synoptic upward motions,
but also mesoscale waves and small scale turbulence play
crucial roles for the formation and evolution of the system
ISSR/cirrus (Spichtinger et al., 2005a,b). Local dynamics
and microphysics are acting on the cloud and sub cloud-
scale. From this point of view there is need of a cloud resolv-
ing model which can be used for idealised studies of cirrus
clouds interacting with various scales of dynamics.

While from theory and measurements it is quite under-
stood that in cloud free air masses the relative humidity wrt
ice can reach very high values up to the freezing thresh-
olds for homogeneous freezing (i.e. 140–170% RHi, depend-
ing on temperature, seeKoop et al., 2000), substantial and
persistent supersaturation inside cirrus clouds is more dif-
ficult to understand. Ice crystals act as a strong sink for
water vapour. Thus, one expects that RHi-distributions in-
side cirrus are centred around saturation, as some measure-
ments indicate (Ovarlez et al., 2002; Spichtinger et al., 2004).
However, there are also many measurements from inside cir-
rus clouds that indicate considerable degrees of supersatu-
ration (seeComstock et al., 2004; Lee et al., 2004; Ovarlez
et al., 2002; Krämer et al., 2008; Peter et al., 2008, and M.
Krämer, personal communication). These findings seem to
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be contrary to our current understanding of microphysics in-
side cirrus clouds (Peter et al., 2006) and call for an explana-
tion. One possible explanation will be given in the present
paper. Another pending question is the impact of differ-
ent nucleation mechanisms on the formation and evolution
of cirrus clouds. While it is generally assumed that homo-
geneous nucleation is the dominant formation process for
cold (T<−38◦C) cirrus clouds (e.g.Sassen and Dodd, 1988;
Heymsfield and Sabin, 1989; Haag et al., 2003b), there are
indications that heterogeneous nucleation can substantially
modify the conditions for homogeneous nucleation bringing
forth large change in resulting cloud properties. Therefore
a model for studying the competition of different nucleation
processes would be useful.

Cirrus clouds have been modelled on all scales: there
are large scale models for climate research and numerical
weather prediction (Kärcher et al., 2006; Liu et al., 2007;
Tompkins et al., 2007) and mesoscale models (Harrington et
al, 1995; Reisner et al., 1998; Phillips et al., 2003; Seifert and
Beheng, 2005). For detailed process studies, cloud resolv-
ing models (Starr and Cox, 1985; Jensen et al., 1994; Lin et
al., 2005; Kärcher, 2005) and box models (Sassen and Dodd,
1989; Lin et al., 2002; Gierens, 2003; Haag and K̈archer,
2004; Hoyle et al., 2005; Bunz et al., 2008) were used. Many
box models and cloud resolving models have very detailed
microphysics schemes which require high spatial and tem-
poral resolution. Large scale and mesoscale models often
use bulk microphysics schemes.

We have developed a new ice microphysics scheme for the
use in box models and cloud resolving models, based on ear-
lier work (Gierens, 2003). A novel feature of the model is the
use of arbitrary many classes of ice, discriminated by their
formation mechanism. The corresponding aerosol types that
are involved in the formation of the various ice classes are
treated as well. This new concept allows us to investigate the
impact of different nucleation processes in the same airmass,
in particular how air pollution (heterogeneous nucleation) af-
fects the cloud evolution. Another novel feature is the formu-
lation of the various process rates in terms of moments of the
underlying crystal size distribution. This makes it possible to
the choose between various distribution types.

The structure of this article is as follows: in the next sec-
tion we will describe the basic dynamical models, i.e. the
box model and the anelastic, non-hydrostatic model EULAG
very briefly. In Sect.3 the new microphysics scheme is de-
scribed in detail. In Sect.4 the validation of the model using
box model simulations and 1-D simulations is shown, and the
model’s performance is discussed. We end with a summary
and draw conclusions in Sect.5.

2 Model description – dynamics

The new microphysics scheme is implemented into two dif-
ferent types of models: First, we implemented the ice micro-

physics into a simple box model for validating the nucleation
parameterisation and for fast calculations serving a principal
understanding of the interaction of different processes. The
box model can also be coupled to trajectories, e.g. to the out-
put of a trajectory model (in our case LAGRANTO,Wernli
and Davies, 1997). In a second step we implemented the
tested microphysics into the anelastic, non-hydrostatic model
EULAG (Smolarkiewicz and Margolin, 1997). The twofold
approach was not only for testing the model but also to have
two different tools which can be used for different applica-
tions, which have exactly the same ice microphysics param-
eterisations.

In the following we describe first the more complex dy-
namics of the EULAG model and the coupling of the dy-
namics to the microphysics.

Then, we describe the box model which was developed
together with the microphysics in the spirit of the EULAG
model, i.e. using background states (e.g. for potential tem-
perature) as well. This choice was made to make the “transi-
tion” between the two models as smooth as possible.

2.1 EULAG model – dynamics

As a basic dynamical model we use the anelastic non-
hydrostatic model EULAG (see e.g.Smolarkiewicz and Mar-
golin, 1997). The anelastic equations for the dry dynam-
ics can be written in perturbation form as follows (cf.Smo-
larkiewicz et al., 2001; Grabowski and Smolarkiewicz, 2002)

Du
Dt

= −∇

(
p′

ρ̄

)
+ g

(
θ ′

θ̄

)
− f × u′

+ M (1)

Dθ ′

Dt
= −u · ∇θe (2)

Here,u is the velocity vector;p, ρ andθ denote pressure,
density and potential temperature, respectively;g and f de-
note gravity and “Coriolis” vectors, respectively;θ̄ and ρ̄
are the anelastic reference state profiles for potential tem-
perature and density;M denotes additional appropriate met-
ric terms, depending on the coordinate system chosen. The
subscripte refers to the environmental profiles, which must
not necessarily be equal to the reference states. Primes de-
note deviations from the environmental state (e.g.θ ′

=θ−θe).
D
Dt

: =∂/∂t + u · ∇ denotes the total derivative. The per-
turbation pressurep′ is calculated using the mass continuity
constraint∇ · ρ̄u=0.

For solving the governing equations we use the uni-
fied semi-Lagrangian-Eulerian approach described inSmo-
larkiewicz and Margolin(1997); Smolarkiewicz et al.(2001):
Let9 andF denote the vectors of variables (θ ′, u, v,w) and
their forcings, respectively. With̃9 : =9n + 0.51tFn and
the generalised transport operatorLE the approximation can
be described as

9n+1
i = LEi

(
9̃

)
+ 0.51tFn+1

i (3)

Atmos. Chem. Phys., 9, 685–706, 2009 www.atmos-chem-phys.net/9/685/2009/



P. Spichtinger and K. Gierens: Modelling cirrus clouds – Part 1a 687

wherebyi and n denote the spatial and temporal location, re-
spectively. This results into a trapezoidal rule for the approx-
imations. This treatment and the non-oscillatory forward-
in-time (NFT) semi-Lagrangian/Eulerian approximations of
the integrals were carried out as described in detail inSmo-
larkiewicz and Margolin(1997) and Smolarkiewicz et al.
(2001). The model was used for many applications on dif-
ferent scales and several problems in atmospheric dynam-
ics (e.g. stratified flow over mountains, convectively induced
gravity waves etc.). One main advantage of this model is
the less diffusive advection scheme MPDATA (Multidimen-
sional Positive Definite Advection Transport Algorithm, see
e.g.Smolarkiewicz and Margolin, 1998).

For including cloud physics into the model, we have to
perform “moist” dynamics and a coupling of dynamics and
thermodynamics. This can be done as follows (see also
Grabowski and Smolarkiewicz, 2002): We define the density
potential temperature (seeEmanuel, 1994) including specific
humidityqv and the mixing ratio of cloud iceqc as follows:

θd := θ + θ̄ (εp qv − qc) (4)

with εp=(1/ε)−1, whereε=Rg/Rv denotes the ratio of the
ideal gas constants for dry air and water vapour, respectively.
Using the definition of an environmental density potential
temperatureθde : =θe + θ̄ εp qve for the representation of
the perturbationθ ′

d=θd−θde the governing equations for the
moist dynamics read as follows:

Du
Dt

= −∇

(
p′

ρ̄

)
+ g

(
θ ′

d

θ̄

)
− f × u′

+ M ′ (5)

Dθ ′

Dt
= −u · ∇θe + Fθ (6)

The coupling of dynamics and thermodynamics manifests it-
self in two parts:

1. An additional buoyancy source from the deviations in
water vapour and the cloud ice in Eq. (5) in the density
potential temperature

2. An additional source termFθ on the right hand side of
Eq. (6) due to diabatic processes (phase changes etc.).

2.2 Box model

The (zero-dimensional) box model represents an air par-
cel which is moved in the vertical direction with a velocity
w=w(t), prescribed for the whole simulation timets . Here,
we assume only adiabatic processes, i.e. the vertical velocity
produces an adiabatic cooling (expansion) or warming (com-
pression) for the background temperatureTe due to

dTe

dt
=
dTe

dz
·
dz

dt
= −

g

cp
· w(t) (7)

The governing equations for the dynamics reduce to

∂θ ′

∂t
= Fθ (8)

i.e. the coupling of dynamics and thermodynamics is re-
duced to the additional diabatic forcing term. As indicated
above, for consistency with the formulation of the dynamics
of EULAG we have formulated the box model using envi-
ronmental statesTe, pe, θe, i.e. the model is formulated in
perturbation form: All diabatic processes will only change
θ ′

=θ−θe, the adiabatic processes change the environment,
i.e. Te, pe while θe remains constant. This concept can also
be used for the dynamical model EULAG, where we can sim-
ulate adiabatic cooling due to upward motion by changing
the background physical temperatureTe.

3 Model description – ice microphysics

In this section the newly developed ice microphysics scheme
is described. First, we define the set of variables and de-
rive the governing equations. The classes of aerosol and ice
crystals will be defined, as well as their properties and mass
(or size) distribution types. The moments of these distribu-
tions will be used in the microphysical equations. Finally,
the currently implemented microphysical processes (nucle-
ation, deposition, sedimentation) are described in detail. For
all quantities we use SI units.

Aggregation is not yet implemented in the microphysics
scheme. However, aggregation is of less importance for the
cold temperature regime (T<−40◦C) and/or for moderate
vertical velocities (Kajikawa and Heymsfield, 1989). The de-
velopment of an appropriate parameterisation consistent with
the two-moment scheme is subject to ongoing research.

3.1 General assumptions and equations for ice micro-
physics

3.1.1 Prognostic equations

As we are interested in particular in the interplay of various
competing nucleation modes acting in a cirrus cloud (in par-
ticular homogeneous vs. heterogeneous nucleation), we al-
low a non-specified number of aerosol and ice classes. Each
aerosol class corresponds to an ice class that it nucleates and
vice versa. Each class has a number and a mass concentra-
tion, Nx andqx , respectively, which are the zeroth and first
moments of a mass distributionf (m). Note thatNx is meant
in a mass specific sense, that is, the unit of the number con-
centration is kg−1 (per kg of dry air). We use this convention
to be consistent with the formulation of the advection equa-
tions in flux form. This formulation will be used for the sed-
imentation of ice crystals, see below. However, ice crystal
number densities and ice water content can be derived using
the ambient densityρ: nc=Nc · ρ, IWC =qc · ρ. The kind
of the distribution is preselected (e.g. log-normal or gamma
etc.). The moments off (m) are

µk[m] :=

∫
∞

0
f (m) mk dm, k ∈ R≥0 (9)
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with the normalisationµ0=Nx. Prognostic equations for
the number and mass concentrations of each aerosol and ice
class form the basis of our bulk microphysical two-moment
scheme.

Note that we prefer mass distributions whereas observers
present their measurements usually as size distributions. Ice
crystals in nature appear in a myriad of shapes. Crystal mass
is therefore a more convenient choice for model formula-
tion than crystal size. Therefore we formulate the prognostic
equations for masses; sizes and shapes are diagnosed from
them.

Ice crystal shape is important for depositional growth
(Stephens, 1983), sedimentation (Heymsfield and Iaquinta,
2000) and radiative properties (Wendisch et al., 2005, 2007)
of ice crystals. The ice crystal shape depends clearly on
temperature and ice supersaturation (e.g.Bailey and Hal-
let, 2004; Libbrecht, 2005) but columns seem to be a fre-
quent habit below−40◦C in a variety of field measurements
(Heymsfield and McFarquhar, 2002, their Table 4.1). There-
fore we assume columnar ice crystals in our model.

One essential difference of our scheme to other schemes
(e.g. Kessler, 1969; Seifert and Beheng, 2005) is that we
do not differentiate ice classes according to their size. Tra-
ditionally, cirrus ice was classified as cloud ice and snow,
where cloud ice consisted of ice crystals that are so small
that their terminal fall speed could be set to zero, while snow
was the ice fraction that had non-negligible fall speeds. This
classification allowed a better treatment of sedimentation in
single-moment models. As a two-moment model partly over-
comes the problems with sedimentation by introducing two
sedimentation fluxes, for number and mass concentration, re-
spectively, we no longer differentiate between cloud ice and
snow. Instead our ice classes correspond to various nucle-
ation processes (or to the respective aerosol class).

The processes ice crystal nucleation, depositional
growth/sublimation and sedimentation are currently imple-
mented in the scheme. The prognostic equations for potential
temperature and the microphysical variables forn classes of
ice (index c) and aerosol (index a) are thus:

Dθ

Dt
=
Lθe

cp Te
(NUC + DEP)+Dθ (10)

Dqv

Dt
= − (NUC + DEP)+Dqv (11)

Dqc,j

Dt
=

1

ρ

∂(ρqc,jvm,j )

∂z
+ NUCj + DEPj +Dqc,j (12)

DNc,j

Dt
=

1

ρ

∂(ρNc,jvn,j )

∂z
+ NNUCj + NDEPj +DNc,j (13)

Dqa,j

Dt
= NUCAj + DEPAj +Dqa,j (14)

DNa,j

Dt
= −NNUCj + NDEPj +DNa,j (15)

wherej is the respective class index and

NUC =

n∑
j=1

NUCj, DEP=

n∑
j=1

DEPj . (16)

Here, θ denotes potential temperature,Te and θe denote
the physical and potential temperature of the environmental
state, respectively.Ls is the latent heat of sublimation,cp
denotes the specific heat at constant pressure andρ denotes
the density of the reference state.qv is the specific humidity.
Dψ terms represents sources and sinks of the model variable
ψ due to processes not explicitely represented in the equa-
tions (e.g. turbulent transport, diffusion etc.).vm,j andvn,j
are the mass and number weighted terminal velocities (see
Sect.3.4), respectively. The terms NUCj and NNUCj repre-
sent the sources and sinks for the ice crystal mass and number
concentration, respectively, due to nucleation. Sources and
sinks related to diffusional growth or sublimation are repre-
sented by the terms DEP and NDEP. We assume that every
ice crystal nucleates from an aerosol particle (for both nu-
cleation types, heterogeneous and homogeneous), hence the
aerosol particle will be removed (i.e. it is now inside the crys-
tal) from the aerosol number concentration and it will be re-
leased if the ice crystal sublimates completely. Therefore we
can treat the sources and sinks for the aerosol number con-
centration using the same terms NNUCj and NDEPj . For
treating the sources and sinks of the aerosol mass concentra-
tion we use the terms NUCAj and DEPAj . Note, that there is
no sedimentation of the aerosol particles (due to their small
masses).

3.1.2 Crystal shape and mass-size relation

For parameterisation of the various processes we need as-
sumptions on the properties of single ice crystals, for in-
stance their shapes. Generally, we assume that ice crystals
are hexagonal columns (Bailey and Hallet, 2004), with height
L and diameterD (twice the side length of the hexagon).
The aspect ratiora : =L/D depends on crystal size, such
that small crystals havera=1 and larger crystals havera>1.
Mass-length relations fromHeymsfield and Iaquinta(2000)
of the formL(m)=α(m)mβ(m) with piecewise constant pa-
rameter functionsα(m), β(m) (Table 1) are used to derive
crystal size from the prognostic quantity crystal mass. The
bulk ice density is assumed asρb=0.81·103kg m−3 (Heyms-
field and Iaquinta, 2000). The parameter values are such that
the boundary between small and large crystals ismt=2.146·

10−13 kg, or equivalentlyLt=7.416 µm. The aspect ratio
can be formulated as a function ofm; using the formula for
the volume of a hexagonal column (V=(

√
27/8) ·D2

·L) and
the mass-length relations we arrive at:

ra(m) =


1 form < mt√√

27ρb

8α
3
β

·m
3−β
2β for m ≥ mt

(17)
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Table 1. Values forα, β in the general mass-length relation; here,
mt=2.146 · 10−13 kg denotes the transition between aspect ratio
ra=1 andra>1, this ice crystal mass is equivalent to a ice crystal
length ofLt=7.416µm

m α(m)−1 β(m)−1

m<mt 526.1 3.0
m>mt 0.04142 2.2
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Fig. 1. Length (L) and diameter (D) of hexagonal ice crystals as
functions of the ice crystal massm.

In Fig. 1 length and diameter of the ice crystals are shown as
functions of crystal mass, and in Fig.2 the aspect ratio vs. the
ice crystal mass and length is shown.

3.1.3 Sedimentation and mass-fall speed relation

For formulating the sedimentation fluxes of the ice mass and
number concentrations, we need assumptions on the terminal
velocity of a single ice crystal. Here again we use an ansatz
by Heymsfield and Iaquinta(2000): v0(L)=x · Ly .

Using the mass-length relations derived above we formu-
late the terminal velocity as a function of crystal mass:

v0(m) = γ (m) ·mδ(m) (18)

with piecewise constant parameter functionsγ (m), δ(m), as
given in Table2. The parameters have been derived using the
coefficients for small columns byHeymsfield and Iaquinta
(2000). The terminal velocitiesv0 are valid for reference
values ofT0,1=233 K,p0,1=300 hPa, for other temperatures
and pressures we apply the correction factor

c(T , p) =

(
p

p0

)−0.178 (
T

T0

)−0.394

, (19)

such thatv(m, T , p)=γ (m)mδ(m) c(T , p). For very large
ice crystals (L>1899µm) we use coefficients adapted from
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Fig. 2. Aspect ratiora of hexagonal ice crystals versus ice crystal
massm (upper panel) and lengthL (lower panel), respectively.

Table 2. Values forγ, δ in the velocity-mass Eq. (18); the transition
masses arem1=2.146·10−13kg,m2=2.166·10−9 kg,m3=4.264·

10−8 kg; equivalent lengths areL1=7.416µm, L2=490.0µm,
L3=1899µm

m γ (m) δ(m)

m ≤ m1 735.4 0.42
m1 ≤ m ≤ m2 63292.4 0.57
m2 ≤ m ≤ m3 329.8 0.31
m3 ≤ m 8.8 0.096

Barthazy and Schefold(2006), who used a reference state
of T0,2=270 K, p0,2=815 hPa. This second reference state
was taken into account in the derivation of our coefficients,
which are then valid for the whole tropospheric temperature
and pressure range. The terminal velocity of a single ice crys-
tal vs. its mass is shown in Fig.3.

3.1.4 Choice of distribution type

For the formulation of the process rates in Eqs. (10–15) it is
required to choose an a priori distribution type for the crys-
tal masses and the masses of single aerosol particles. This
choice can be handled very flexible (for instance as an en-
try in a FORTRAN namelist) when we are able to formulate
the process rates in terms of general moments of the distribu-
tion. Then specification of a distribution in the model simply
means branching into the corresponding function for the gen-
eral moments. Because of this flexibility it does not matter
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Fig. 3. Terminal velocityv(m) of a single ice crystal as function of
the crystal massm.

much which kind of distribution we use here to derive the
process rates. However, the model formulation is simpler
when we select a lognormal distribution than when we se-
lect something else. The reason for that is the special form
of the mass-size and mass-fall speed relations that we have
assumed and that are common to cloud microphysics formu-
lations at least since the 1970s. These relations have the form
of a power law. It can easily be shown that when two quanti-
ties are related by such a power law and one quantity is log-
normally distributed, then the other quantity is lognormally
distributed as well. There are other distributions that have
that property as well, e.g. Weibull and generalised gamma
distributions. The former of these is a generalisation of the
exponential distribution and might sometimes apply, e.g. for
young contrails (Gierens, 1996). The latter has more param-
eters then the lognormal, which has two. Since it is difficult
to derive equations for all parameters, one usually has to fix
them somehow in an ad hoc way. Hence, we prefer to have
a distribution with few parameters that avoids such proce-
dures as much as possible. When a gamma distribution is
selected for crystal sizes, as is often done, then masses and
terminal velocities are generalised gamma distributed. How-
ever, from observations there is no evidence for preferring
(generalised) gamma distributions against lognormal distri-
butions for fitting size distributions of ice crystals. For many
observational data, a lognormal distribution can be fitted as
well as a generalised gamma distribution (M. DeReus, per-
sonal communication), and indeed, lognormal fits were used
in several studies (e.g.Schr̈oder et al., 2000)

Also the observation of multiple size modes does not call
for multi-parameter distributions. We strongly believe that
multiple modes are the result of mixing of ice crystal pop-
ulations that have different origin. In our model such cases
are covered by the use of multiple ice classes, where the com-
bined size distribution of several classes will often show sev-
eral modes. Hence, we prefer the lognormal distribution.

The lognormal distribution for the ice crystal mass can be
written as

f (m) =
Nc

√
2π logσm

· exp

−
1

2

 log
(
m
mm

)
logσm

2 ·
1

m
(20)

with geometric mean massmm and geometric mass standard
deviationσm. The lognormal distribution is completely spec-
ified once its zeroth, first, and second moment are given. The
prognostic variables of the two-moment scheme let the sec-
ond moment a free parameter that we either have to fix to a
constant or to make a function of the mean mass. We use the
latter possibility. For this purpose we followHöller (1986)
and define a “predominant mass”:mpre : =µ2[m]/µ1[m],
divide it by the mean massm : =µ1[m]/µ0[m] and set the
ratio r0 of these masses constant, that is:

r0 :=
mpre

m
=
µ2[m]µ0[m]

µ1[m]2
= exp

(
(log(σm))

2
)
. (21)

Hence, the geometric standard deviation can be expressed as

σm = exp
(√

logr0
)

or logσm =
√

logr0 (22)

Using Eq. (22) the analytical expression for the moments of
the lognormal distributionf (m) can be written as follows:

µk[m] = Nc ·mkm exp

(
1

2
(k log(σm))

2
)

(23)

= Nc ·mkmr
k2
2

0 = Nc ·mkr
k(k−1)

2
0 (24)

Obviously the formulation using the ratior0 is much simpler
than the formulation usingσm.

Given the lognormal mass distribution, the correspond-
ing lognormal distributions for the related quantities size and
fall speed are obtained using the following transformation
(e.g. for crystal lengthL):

Lm = α ·mβm, log(σL) = β · log(σm) (25)

Here we have considered the parameters as constant for the
sake of simplicity. Since the coefficients are actually piece-
wise constant functions of mass, the transformation formula
above is not strictly correct. One possible correction is the
use of truncated moments (see below).

In Table3 the values ofσm andσL depending on the ratio
r0 and the mass range are shown.

3.2 Nucleation

Two different nucleation processes are parameterised in our
scheme: First, homogeneous freezing of supercooled aque-
ous solution droplets (Sect.3.2.1) and second, heterogeneous
freezing on solid aerosol particles (Sect.3.2.2). Both mech-
anisms depend on relative humidity wrt ice; for calculating
relative humidities from prognostic variables (temperature,
specific humidity, pressure), we use formulae fromMur-
phy and Koop(2005) for the saturation pressures of (super-
cooled) water and ice.
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Table 3. Geometric standard deviationsσm andσL, depending on
the ratior0. The transition massmt=2.146· 10−13kg is equivalent
to a length ofLt=7.416µm.

r0 σm σL

m<mt m>mt
1.25 1.60 1.17 1.24
1.50 1.90 1.24 1.34
2.00 2.23 1.32 1.46
3.00 2.85 1.42 1.61
4.00 3.25 1.48 1.71
6.00 3.81 1.56 1.84
8.00 4.23 1.62 1.92
16.0 5.29 1.74 2.13

3.2.1 Homogeneous nucleation

The solute mass (mass of H2SO4) in a solution droplet is
equivalent to the radiusr of a sphere of the pure solute. For
this radius we prescribe a lognormal size distributionf (r)
with the geometric mean radiusrm and a geometric standard
deviationσr .

Given the solute mass, the radiusrd of the solution droplet
is obtained from the K̈ohler theory, depending on tempera-
ture and relative humidity. From the Köhler theory in its sim-
plest form we know that at (water) saturation the equilibrium
droplet radiusrd is proportional to the square root of the so-
lute mass, i.e. proportional tor3/2, a power law relationship.
Hence the solution droplets are approximately lognormally
distributed as well, which is in accordance to measurements
of upper tropospheric aerosol (Minikin et al., 2003).

The probability for an aqueous H2O/H2SO4 solution
droplet of volumeVd to freeze within a time period1t is

P(1aw, T ,1t) = 1 − exp[−Jhom(1aw, T )Vd(T )1t ] (26)

whereJhom(1aw, T ) denotes the homogeneous nucleation
rate which is parameterised according toKoop et al.(2000)
in terms of temperature and1aw : =aw−aiw, the difference
of water activity in the solution andaiw, the activity of the
water in the solution in equilibrium with ice at temperature
T (i.e. aiw=e∗i (T )/e

∗
w(T ), the ratio of the saturation vapour

pressures wrt ice and liquid water, respectively).aiw is thus a
function of temperature alone. The water activity itself is the
ratio of the equilibrium vapour pressure over the solution to
the equilibrium vapour pressure over pure liquid water.

When dynamical processes (uplift) are slow enough that
solution droplets can equilibrate their volume to changes in
relative humidity, then the water activity equals the saturation
ratio (wrt water). This is assumed here. Hence, the homoge-
neous nucleation rateJhom can be expressed as a function of
relative humidity and the temperature. The number of ice

crystals created within a time step1t from an initial aerosol
concentrationNa can now be calculated as

1Nc = Na

∫
∞

0
f ′
a(r)P (1aw, T ,1t) dr (27)

(wheref ′
a(r) is the aerosol size distribution normalised to 1)

and the frozen ice water content can be calculated as

1qc = Na

∫
∞

0
f ′
a(r)(r)wwρdVdP(1aw, T ,1t) dr (28)

whereww denotes the H2O weight fraction andρd the den-
sity of the solution, respectively. Exploiting the lognormal
character of the dry aerosol size distribution, we can use a
Gauss-Hermite integration for numerical calculation of the
integral (Gierens and Ström, 1998). The integral in Eq. (28)
is usually much less than one, so that homogeneous nucle-
ation usually is not number limited. Note, that homoge-
neous freezing of solution droplets only occurs atT<−38◦C,
i.e. below the supercooling limit of pure water.

Formation of1Nc ice crystals simply implies loss of
1Na= − 1Nc aerosol particles. However, a priori it is not
clear how much aerosol mass is transferred to the ice in the
nucleation process. Here we use the following procedure.
While the aerosol number concentration decreases by a fac-
tor fn=|1Na|/Na the dry aerosol mass concentration in the
aerosol class decreases by a factorfm. Hence the mean dry
aerosol mass is reduced by a factor(1−fm)/(1−fn). We can
compute and apply this factor once a relation betweenfm and
fn is given. For this we make the ansatz

f αm = fn. (29)

The postulateα≥1 expresses that fact that large droplets
(consisting of large aerosols) will freeze first and vanish from
the aerosol pool (see e.g.Haag et al., 2003a, Fig. 8). It turns
out from additional calculations, that a factorα=1.33 is a
good approximation. We will use the same approach for the
sublimation of ice crystals, see Sect.3.3. Note that we let the
width parameter (σm) of the aerosol mass distribution un-
changed during the nucleation event.

The shift of the mean mass of the background aerosol dis-
tribution is optional and can be switched on and off. For
very large background aerosol concentrations, the shift of the
mean mass is marginal and can be switched off. Then, only
the number concentration is decreased, while the mean mass
or size of the aerosol distribution remains constant; the new
mass distribution is calculated using the new number concen-
tration. For simulations with high vertical velocities at very
cold temperatures (T<210 K) the shift of the mean mass is
recommended.

The impact of shifting the modal radius of the background
aerosol distribution leads to smaller radii of solution droplets
during the ongoing nucleation event, resulting in a decrease
of number density of nucleated ice crystals due to the abrupt
change during a nucleation event.
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3.2.2 Heterogeneous nucleation

Although the investigation of different nucleation mecha-
nisms within the same environment is one of the key issues
which will be studied using the new cirrus microphysics, we
mention heterogeneous nucleation only briefly here, because
we will not use it further in the present paper. Generally,
the parameterisation for heterogeneous nucleation makes use
of prescribed background aerosols, which act as ice nuclei.
Thus, there is an explicit impact of the aerosol on the for-
mation of ice crystals and also washout of the background
aerosol trapped in the sedimenting ice crystals is described.
After nucleation the aerosol particles are trapped inside the
ice crystals and are released as soon as the ice crystals evap-
orate.

In our model we can use parameterisations of heteroge-
neous nucleation of any type, more or less sophisticated. In
Part 1b (Spichtinger and Gierens, 2009) we will extensively
use heterogeneous and homogeneous nucleation within the
same environment; the parameterisation that is used is de-
scribed there.

3.3 Deposition growth and sublimation

The growth Eq. (see e.g.Stephens, 1983) for a single ice
crystal of massm reads:

dm

dt
= 4πCDvf1f2

[
ρv(Te)− ρs,i(Ts)

]
(30)

whereρv(Te) andρs,i(Ts) denote the ambient water vapour
density, derived from ambient humidity and temperatureTe
and the saturated (with respect to ice) water vapour density
at the ice crystal surface, i.e. at surface temperatureTs . The
other factors in Eq. (30) are as follows:

– Diffusivity of water vapour in air

Dv = 2.11 · 10−5
(
T

T0

)1.94(
p0

p

)
m2s−1 (31)

according toPruppacher and Klett(1997) using refer-
ence valuesT0=273.15 K andp0=101325 Pa, respec-
tively.

– Capacitance factorC which accounts for the non-
spherical crystal shape. We could have used the ca-
pacitance factors for hexagonal columns ofChiruta and
Wang(2005) here, but we did not for the following rea-
sons: First, the well-known uncertainty in the deposi-
tion coefficient (see below) has a larger effect on the
results than the choice ofC. Second, the formulation
of ventilation factors (see below) has been derived for
spherical water drops and only few experiments have
been carried out for other shapes than sphericalHall
and Pruppacher(1976). Third, an ice cloud contains
anyway a mixture of crystal shapes and habits. Inclu-
sion of the correct capacitance factor for one habit leads

to inconsistencies with other habits. For these reasons
we simply followedHall and Pruppacher(1976). For
spheres of radiusr, C=r. Hexagonal columns with
lengthL=2a and diameterD=2b can be approximated
by prolate spheroids with semi axesa and b (a≥b),
i.e. with an aspect ratiora=L/D=a/b. The capacitance
factorC can be determined using the electrostatic anal-
ogy (McDonald, 1963)

C =
Lε′

log
(

1+ε′

1−ε′

) =
A′

log
(
a+A′

b

) (32)

where ε′=
√

1 − (b/a)2= 1
a

√
a2 − b2=A′

a
denotes the

eccentricity of the spheroid. We use the aspect ratiora
introduced in Sect.3.1for our calculations.

– Correction factorf1 for the difference between the
transfer of water molecules to the crystal by pure diffu-
sion and that according to kinetic treatment of individ-
ual water molecules (important for very small crystals
with sizes less than 1µm):

f1 =
r∗

r∗ + l∗M
, with (33)

r∗ =
A

4πC
, l∗M =

2πMw

RTs

Df2

2αd(2 − αd)−1
(34)

whereA is the surface area of the ice crystal,Mw

denotes molecular weight of water andR is the uni-
versal gas constant.αd denotes the deposition coef-
ficient. Currently there is no agreement on a gen-
erally accepted value ofαd . Measured values range
between 0.004≤αd≤1 (see e.g.Pruppacher and Klett,
1997; Magee et al., 2006), however most models work
well with αd ≥ 0.1 (Lin et al., 2002) for reasons dis-
cussed inKay and Wood(2008). The deposition coeffi-
cient could even depend on crystal size (e.g.Gierens et
al., 2003) or on ice supersaturation (Wood et al., 2001).
For our validation runs we have setαd=0.5 (see e.g.
Kärcher and Lohmann, 2002a,b).

– Ventilation factorf2 to correct for the enhanced growth
of ice crystals due to enhanced water vapour flux arising
from motion of the crystal relative to the environmental
air (important for large crystals). We followHall and
Pruppacher(1976) and set:

f2 =

1 + 0.14(N
1
3
ScN

1
2
Re)

2 for N
1
3
ScN

1
2
Re ≤ 1

0.86+ 0.28(N
1
3
ScN

1
2
Re) for N

1
3
ScN

1
2
Re > 1

(35)

whereNSc=Dη/ρ denotes the Schmidt number,η is the
viscosity of air andNRe is the Reynolds number defined
by characteristic dimensions of the ice crystal.
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The latent heat released on the growing crystal must be dif-
fused to the ambient air. This is described by an analogous
equation:

Ls
dm

dt
= 4πCDvf

∗

1 f
∗

2 (Te − Ts) (36)

Ls denotes the latent heat of sublimation, the coefficients
f ∗

1 , f
∗

2 are the counterparts to those in Eq. (30):

– f ∗

1 =
r∗

r∗+l∗Q
with l∗Q =

Kf ∗

2

ρ
1
4
a urβdcp

.

Here,K is the thermal conductivity of moist air,ur is
the average thermal velocity of air molecules striking
the ice surface andβd=1 is the thermal accommodation
coefficient.

– The ventilation factorf ∗

2 for thermal diffusion is calcu-
lated as follows (Hall and Pruppacher, 1976):

f ∗

2 =

{
1.00+ 0.14χ2

Q for χQ < 1
0.86+ 0.28χQ for χQ > 1

, (37)

χQ=N
1
3
PrN

1
2
Re,l∗Q

, whereNPr denotes the Prandtl num-

ber andNRe,l∗Q denotes the Reynolds number for the
characteristic lengthl∗Q.

In order to compute the parameters required for a pa-
rameterisation, the two diffusion equations are solved iter-
atively using a fourth order Runge-Kutta scheme. For crys-
tals of intermediate size, i.e. above the kinetic regime but still
small enough such that ventilation is negligible, the ansatz by
Koenig (1971) dm

dt
≈amb, provides a good approximation to

the numerical solution. The coefficientsa, b depend on satu-
ration ratio, temperature and pressure and can be derived us-
ing a least squares regression of exponential typef (x)=axb.
The coefficientsa, b have been calculated for pressures in
the range 150≤p≤600 hPa in 50 hPa bins and for the tem-
perature range−80≤T≤−20◦C in 1 K bins. For the Runge-
Kutta integration we have assumed water saturation. The ac-
tual value ofa during a simulation is the product of the tab-
ulated value and(e−e∗i )/(e−e

∗
w). This factor is negative for

ice-subsaturated conditions, i.e. the equations then describe
crystal sublimation. The functionsa(p, T ) andb(p, T ) for
selected pressures are displayed in Fig.4. The form of the
Koenig approximation makes it ideal for later use in the prog-
nostic equation forqc. However, it overestimates strongly the
crystal growth in the kinetic regime and underestimates the
influence of the ventilation factor for large crystals. In order
to overcome these problems, we introduce a correction of the
following form:

dm

dt
≈

a ·mb ·

(
1 − exp

(
−

(
m
m0

)γ ))
for m < ml

a ·mb ·

(
m
ml

)δ
for m ≥ ml

(38)
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Fig. 4. Coefficients a(p, T ) (top) and b(p, T ) (bottom) for
Koenig’s ansatzdm/dt≈a(p, T )mb(p,T ) and the approximation of
the numerical solution of Eq. (30) for different pressures.

wherem0=m0(p, T ) ∼ 10−16
− 10−14 kg, γ=γ (p, T ) ∼

0.2−0.25,ml=2.2 · 10−10 kg, andδ=0.12.
Using these corrections we are able to approximate the

mass growth rates for single crystals within an error margin
of less than 5% compared to the numerical solution.

The numerical solutions together with the original Koenig
ansatz and the new approximations are shown in Fig.5.

Now we are going to derive the “integrated” equation for
the cloud ice mixing ratio tendency:

dqc

dt
=
d

dt

∫
∞

0
f (m)m dm (39)

We may interchange the derivative with integration, invoke
the product rule and arrive at:

dqc

dt
=

∫
∞

0

∂f (m)

∂t
m dm+

∫
∞

0
f (m)

∂m

∂t
dm

The second integral vanishes, since∂m/∂t ≡ 0 (becausem
must be interpreted here a co-ordinate inm-space, and the co-
ordinate system is, of course, fixed). The first integral can be
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Fig. 5. Growth ratesdm/dt of single ice crystals vs. crys-
tal mass. Results of the numerical integration (red) and ap-
proximations using the original Koenig ansatz (green) and the
Koenig ansatz with our corrections (blue) for various temperatures
(T=230/220/210/200 K) and fixed pressure (p=300 hPa).

cast into another form when we make use of the “continuity
equation” in mass-space, which reads

∂f (m)

∂t
+

∂

∂m

(
dm

dt
f (m)

)
= 0. (40)

Inserting this into the first integral above, we find

dqc

dt
= −

∫
∞

0
m
∂

∂m

(
dm

dt
f (m)

)
dm.

Partial integration yields

dqc

dt
= −

[
m
dm

dt
f (m)

]∞

0
+

∫
∞

0

dm

dt
f (m) dm,

where the integrated part in the square brackets vanishes, be-
causef (m) vanishes at infinity, and at the lower boundary
m=0. Finally, we arrive at the following simple expression:

dqc

dt
=

∫
∞

0

dm

dt
f (m) dm.

Here, dm
dt

can be interpreted as the “advection velocity” in
the “mass”-space due to crystal growth; hence, we can insert
the modified Koenig approximation from above. Let us first
treat the case where the largest crystals are still smaller than
ml (i.e.f (m) ≈ 0) for m>ml). This gives

dqc

dt
=

∫
∞

0
f (m)a ·mb

(
1 − e

−

(
m
m0

)γ )
dm (41)

=

∫
∞

0
f (m)a ·mbdm

−

∫
∞

0
f (m)a ·mbe

−

(
m
m0

)γ
dm

= aµb[m] − a

∫
∞

0
f (m)mbe

−

(
m
m0

)γ
dm (42)

The original Koenig approximation results into an ice water
mass rate ofaµb[m]. Additional numerical integrations and
our simulations showed that we can approximate the integral
in Eq. (42) so that for sufficiently small crystals the tendency
for qc can be cast into the following form:

dqc

dt
≈ a · µb[m] ·

(
1 − exp

(
−

(
m

m0 · χ

)γ))
(43)

whereχ≈20. Hence, we simply need another correction fac-
tor. It turns out that this correction will only have an impact
for low temperatures and high vertical velocities (see below).

For large crystals, the ventilation correction becomes im-
portant. These crystals alone give the following contribution:

dqc

dt
=

∫
∞

ml

f (m)a ·mb ·

(
m

ml

)δ
dm (44)

which can be computed using known expressions for trun-
cated moments (Jawitz, 2004). Finally, we arrive at the fol-
lowing expression:

dqc

dt
≈ a µb[m]


(

1 − e

(
−

(
m

m0·χ

)γ ))
for m ≤ ml(

m
ml

)δ
for m > ml

(45)

Note that dqc
dt

is expressed using the mean mass (first mo-
ment) and the moment of orderb of the mass distribution.
This formulation makes it possible to use any kind of mass
distribution for which analytical expressions for the moments
are known.

Growth of ice crystals does not affect their number con-
centration (as long as there is no aggregation), but sublima-
tion does when the smallest ice crystals sublimate completely
while larger crystals only loose some mass. We parameterise
this effect in a simple way. Let the ice mass mixing ratio
in a certain grid box be reduced by a fractionfq during one
time step. Then we assume that the corresponding fractional
reduction of number concentration is given byfN=f αq , with
α>1. This relation implies that when a small mass fraction
sublimates, this is mainly due to shrinking of big crystals;
when a large mass fraction vanishes, then also a large fraction
of crystal number concentration must vanish. In the limiting
cases,fq=0 orfq=1, we also havefN=0 orfN=1, respec-
tively, as it should be. From numerical studies we found that
α=1.1 produces plausible results. This value is in agreement
with Harrington et al(1995), who derived from numerical
simulations a range 1≤α≤1.5.

3.4 Sedimentation of ice crystals

From our parameterisation of the terminal velocity of a sin-
gle ice crystal we derive terminal velocities for the mass
and number concentrations, respectively. To this end let
us consider the sedimentation fluxes of mass and number
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concentrations:

Fm :=

∫
∞

0
ρf (m)v(m)mdm (46)

Fn :=

∫
∞

0
ρf (m)v(m) dm (47)

We use these definitions to define mass and number weighted
terminal velocities, such thatFm=ρ qc vm,Fn=ρ Nc vn.
Hence:

vm =
1

qc

∫
∞

0
f (m)v(m)mdm (48)

vn =
1

Nc

∫
∞

0
f (m)v(m) dm (49)

The terminal velocity of one single ice crystal is a function of
its mass, viz.v(m)=γ (m) ·mδ(m). For simplicity, let us first
assumeγ (m) = γ0, δ(m)=δ0 to be constants. This allows
to simply express the mass and number weighted terminal
velocities via the moments off (m):

vm = γ0 ·
µδ+1

µ1
, vn = γ0 ·

µδ

µ0
(50)

Actually, the coefficients in the mass vs. fall speed relation
are piecewise constant, hence we can express the integrals
by using truncated moments:∫

∞

0
f (m)v(m) dm =

4∑
k=0

∫ mk+1

mk

f (m)γ (m)mδ(m)dm

=

4∑
k=0

γ (m)µδ(m)(mk, mk+1) (51)

∫
∞

0
f (m)v(m)m dm =

4∑
k=0

∫ mk+1

mk

f (m)γ (m)mδ(m)+1dm

=

4∑
k=0

γ (m)µδ(m)+1(mk, mk+1) (52)

whereµk(ml, mu) denotes the kth truncated moment with
boundariesml<m<mu. Here,m0=0, m4=∞, the values
m1, m2, m3 are given in Table2. For the lognormal distri-
bution the truncated moments can be expressed as follows
(Jawitz, 2004):

µk(ml, mu) = µk[m]
1

√
π

∫ z(mu)

z(ml)

exp(−z2)dz (53)

with the transformation

z(m) =

log
(
m
mm

)
− k log(σm)
√

2
, (54)

For the calculation of the integral we have to evaluate the
error function

erf(x) =
2

√
π

∫ x

0
exp(−r2)dr (55)
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Fig. 6. Mean terminal velocitiesvm, vn for r0=3 and the approxi-
mations by using the expressions of general moments as in Eq. (50)
as piecewise constant functions.

In Fig. 6 the mean terminal velocitiesvm, vn for a typical
value ofr0=3 (i.e.σm=2.852) are shown.

The treatment using truncated moments is computation-
ally expensive. Therefore we approximate the analytical so-
lutions by using general moments for different mass intervals
of the curve, i.e.

vm(m) ≈ γ (m) ·
µδ(m)+1

µ1
(56)

vn(m) ≈ γ (m) ·
µδ(m)

µ0
(57)

The approximations are also shown in Fig.6. Evidently, the
approximation works rather well. Certain mathematical rela-
tions between moments (Lyapounov’s inequality) guarantee
that the ratiovm/vn>1 for all r0>1 which implies that the
mass mixing ratio sediments faster than the number concen-
tration, or in other terms, that large ice crystals fall faster than
smaller ones.

The ratiovm/vn depends strongly on the width of the ice
crystal mass distribution (parameterr0). For too large val-
ues ofr0 a kind of decoupling of the variablesNc, qc could
be observed: The ice crystal number density concentrates in
the upper layers of a cloud, while the cloud ice falls down-
wards very fast. This leads to unphysical behaviour, e.g. to
extraordinary large ice crystals in the lower cloud levels and
fall streaks. For realistic values ofr0 in the range 1<r0≤4
this does not occur.

In the EULAG model sedimentation is treated as a 1-D
advection in vertical direction. Several advection schemes
can be used: a simple implicit scheme or an explicit scheme
(as used for the 3-D) with various orders and non-oscillatory
option. In our studies we will usually use the explicit scheme
of 2nd order (MPDATA) without the non-oscillatory option.
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3.5 Microphysical time step

As we will see later in the validation section, the parame-
terisations can be sensitive to the prescribed time step. For
box model calculations this is not a problem; the computa-
tional effort is so small, that we can easily use a very small
time step. However, for the application of the microphysics
scheme in a 2D/3D framework of the EULAG model the
computational effort is much higher. For solving this prob-
lem, we implemented a so-called microphysical time step.
Here, the “dynamical” time step, i.e. the time step for the
dynamics in the EULAG model is split into a number of sub-
time steps, i.e.1tmp = 1t/nmp. There is an additional
loop for each vertical column ofnmp sub time steps; here,
only the microphysics (nucleation, growth/sublimation, sed-
imentation) is calculated. Then, the summed forcing terms
from the sub-time steps are used for the next dynamical time
steps. We use the microphysical time step adaptively: First,
the forcings for a normal dynamical time step are calculated.
If homogeneous nucleation takes place within this time step
or the change in relative humidity wrt ice is larger than 1%
due to deposition/sublimation, then the time splitting is used.
We will see later in the validation of the nucleation parame-
terisation, which number of sub-time steps is appropriate.

4 Validation and discussion

The microphysics scheme is validated using two different
types of comparisons. First, we use our microphysics in a
box model setting to compare the ice crystal number den-
sities that are nucleated homogeneously under a large vari-
ety of conditions with values derived from a box model with
detailed ice microphysics scheme (Kärcher and Lohmann,
2002a,b). Additionally, some sensitivity studies are carried
out. Second, we simulate a well-documented case of arc-
tic cirrostratus and compare our results with 1-D simulations
(Lin et al., 2005; Kärcher, 2005).

4.1 Comparison with detailed box model calculations

Kärcher and Lohmann(2002a) used a detailed box model
(particle tracking, highly resolved aerosol size distribution)
for testing an analytically derived relationship between the
maximum possible ice crystal number density, formed by
homogeneous nucleation, and vertical velocity. In our first
step of validating the model, we carry out box model runs
for the same conditions to compare ice crystal number den-
sities with the results ofKärcher and Lohmann(2002a). The
code ofKärcher and Lohmann(2002a) has been successfully
applied to measurements of homogeneous nucleation in the
large cloud chamber AIDA (Haag et al., 2003a) and to field
measurements during INCA (Interhemispheric differences
in cirrus properties from anthropogenic emissions,Gayet et
al., 2006). So, our comparison with results ofKärcher and

Lohmann(2002a) can be viewed as an indirect comparison
with the AIDA and INCA results.

We use the following setup: We allow only homogeneous
freezing and prescribe a constant vertical velocity in the
rangew=0.01−5.0 m s−1. The initial conditions (p, T , qv)
are adapted such that temperature and pressure reach pre-
scribed valuesp±5 hPa,T±0.1 K at the beginning of the
homogeneous freezing event.

Initially we assume a very high aerosol number density so
that nucleation is not constrained by the number of available
nuclei. Later we will investigate cases with realistic back-
ground aerosol conditions, obtained from observations (e.g.
Minikin et al., 2003). Within the box model framework we
will also investigate the impact of pressure on the number
density of ice crystals produced in the nucleation event.

4.1.1 Idealised simulations

In our first series of experiments we use only one class
of (homogeneously formed) ice. The number density of
the background aerosol is set to the very large value of
Na=10 000 cm−3, such that nucleation cannot exhaust the
background aerosol. Therefore we may safely neglect the
shift in the mean mass of the aerosol size distribution. We
choose a geometric standard deviation ofσm=2.85 (r0=3)
for the lognormal distribution of the ice crystal mass. Ad-
ditional sensitivity tests have been performed withr0 in the
range 2≤r0≤4; these resulted in only slight variations com-
pared tor0=3. For a certain vertical velocityw we choose
the time step such that the nucleation event is resolved:
1t=(0.05 m/w) (B. Kärcher, personal communication). The
number of time steps is fixed atnt=12 000.

We choose the same conditions (p, T ) as in Kärcher
and Lohmann(2002a), i.e. T=196, 216, 235 K and
p=200 hPa, and a mean radius for the (dry) H2SO4 aerosol
of rm=25 nm. The reported values of temperature and pres-
sure, respectively, in all boxmodel simulations refer always
to the onset of homogeneous freezing. For investigating the
effect of the width of the aerosol size distribution we vary the
geometrical standard deviation:σr=1.3, 1.6, 1.9.

The results are shown in Fig.7 in comparison with the
values ofKärcher and Lohmann(2002a,b). The agreement
between our results and those of the more detailed model
is quite satisfying, in particular for the two higher tempera-
tures. At the lowest temperature our model still produces re-
sults similar to those ofKärcher and Lohmann(2002a,b), but
only up tow=10 cm s−1. Generally we find from additional
simulations (not shown) that the maximal vertical velocity at
which our model produces reliable results decreases with de-
creasing temperature. At higher vertical velocities our model
starts to underestimate the number of aerosols freezing, and
the underestimation grows with the width of the aerosol size
distribution. We believe that these errors have two sources.

The first error source is the assumption of equilib-
rium implicit in the Koehler equation and in the Koop
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parameterisation. Both the Koehler equation and the Koop
parameterisation are based on the assumption of equilibrium,
i.e. they are only strictly applicable when rates of water up-
take on aerosol droplets are fast compared to the rate of
change of saturation ratio. For high vertical velocities, es-
pecially in the low temperature range, this condition is not
fulfilled. Hence, in a fast cooling environment the solution
droplets are actually smaller than computed with the Koehler
equation. The initial nucleation rate (when the threshold su-
persaturation is reached) is larger when the aerosol sizes are
overestimated, first because of their increased volume, and
second because of the overestimated water activity. How-
ever, the final number of ice crystals is the integral ofJhomVd
over time. Since the nucleation rate is initially overestimated,
and since these crystals are too big, the initial crystal growth
is overestimated as well, and so the initial depletion of excess
vapour is overestimated. This can have two effects: First, the
actual maximum supersaturation beyond the threshold is not
reached in our model, hence maximum nucleation rates are
underestimated. Second, the duration of the nucleation event
is clipped. Overall, the time integral ofJhomVd becomes un-
derestimated, which is the effect that we see.

The solution of this problem requires introduction of prog-
nostic equations for the aerosol dynamics, which currently is
not part of our scheme.

The second error source works in a similar way, but it
arises as an artifact of the assumptions required in a bulk
model. When nucleation starts, it transforms the largest
aerosol droplets into ice, cutting off the right tail of the
droplet size distribution (see Fig.8).
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In the next time step this cutoff is forgotten, however, be-
cause the bulk model always assumes the same type of size
distribution. This has the effect that at each time step dur-
ing nucleation (except the first) the size of freezing droplets
is overestimated. The newly formed crystals come out too
large, consume too much excess vapour and quench nucle-
ation prematurely, so that eventually too few crystals are
produced. We can try to mitigate this error by reducing the
mean aerosol size during the nucleation phase (switched off
for the idealised experiments), but this does not always help,
because the error depends in a non-linear way on the time
step (simply because the mass distribution is a non-linear
function). Later we will see that the mentioned problems be-
come unimportant in cases with realistic aerosol background
concentrations, so that fortunately it turns out unnecessary
to invent a much more complicated correction for the mean
aerosol size.

With the same setup as before we now study the effect of
changing the geometric mean radius of the “dry” sulphuric
acid: rm=12.5,25.0,50.0 nm. We hold the width constant at
σ=1.4. Fig.9 shows the results.

At the two higher temperatures there is hardly an effect of
the aerosol core mass distribution. But at the lowest tem-
perature and at high uplift rates, there is an effect. Our
model follows the detailed microphysical results ofKärcher
and Lohmann(2002a,b) the best when the acid mass in the
droplets is smallest. In this case equilibrium between the so-
lution droplets and their environment is easier to maintain
compared to cases with larger acid fractions; hence use of
the Koehler equations is still justified at strong uplift. We
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Fig. 10. Box model calculations for the homogeneously formed ice
crystal number densities depending on the vertical velocity and on
the temperature. For the simulations, we assume a fixed width for
the aerosol size distribution ofσr=1.4 and a geometric mean radius
of rm=25 nm. Here, the impact of pressure on the formation of ice
crystals is shown using values ofp=200/300/400 hPa.

have already stated above that at (water) saturation the equi-
librium droplet radiusrd is proportional to the square root
of the solute mass, i.e. proportional tor3/2, which shows that
generally droplets are smaller with smaller solute mass under
otherwise identical conditions. The relaxation time (the time
needed to equilibrate with changed ambient saturation ratio)
of a droplet increases with its size because the number of wa-
ter molecules that have to be transferred between the vapour
and the droplets increases with droplet size. A simple rem-
edy of the problem encountered above could therefore be to
choose smaller values ofrm orσr than in corresponding spec-
tral microphysics simulations. As we have seen, this choice
gives better results at low temperatures and high uplift ve-
locities while it has merely a weak effect at other conditions.
Such an approach is justified as long as it is rather the ice
than the aerosol that is the focus of the studies.

Finally we study the pressure dependence of the number
concentration of ice crystals freezing by homogeneous nu-
cleation. We expect an influence via the pressure depen-
dence of the diffusion coefficient. Also results ofHoyle et
al. (2005) point at the possibility that changes in pressure
can change the amount of ice crystals formed in a homoge-
neous freezing event up to one order of magnitude. We select
σr=1.4, rm=25 nm as a setup that gave reasonably consistent
results withKärcher and Lohmann(2002a) who, however,
did not investigate the pressure dependence. We choose tem-
peratures in the rangeT=200, 215, 230 K and pressures in
the rangep=200,300,400 hPa. The results are presented in
Fig. 10.

We can see clearly that the ambient pressure has an im-
pact on the ice crystal number densities produced during
the cooling experiment. The diffusion constant depends on
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pressure, i.e.Dv∝p−1 (see Eq.31); thus diffusional growth
rates decrease with increasing ambient pressure due to de-
creasing mean free path of the water molecules in air. Slower
growth at higher pressures implies that supersaturation can
stay longer above the nucleation threshold, hence more crys-
tals nucleate. Varying the pressure from 200 to 400 hPa leads
to an increase in the ice crystal number concentrations by a
factor of 4–5.

4.1.2 Realistic background conditions

Realistic background aerosol concentrations are much lower
than in the idealised simulations, for instance in the range
na=Naρ∼100−300 cm−3 (Minikin et al., 2003). Hence, we
repeat the simulations of Sect.4.1.1 with a realistic back-
ground aerosol density ofna=300 cm−3. In this case we also
use the correction for the mean aerosol mass, i.e. the aerosol
size distribution is now shifted to smaller masses after a nu-
cleation event. Under realistic conditions the number of ice
crystals that form in homogenous nucleation events can be
constrained by the available aerosol.

Figure11shows the impact of the width of the aerosol size
distribution. We see that it hardly has an effect on the num-
ber of crystals formed, even at the lowest temperature and the
highest uplift velocities (except for a very broad distribution
with σr=1.9). This is in sharp contrast to the idealised cases
whereσr had a much larger influence at the lowest tempera-
ture. We conclude that it is here the constraint by the avail-
able aerosol rather than the equilibrium assumptions in the
Koehler and Koop theories that leads to lower crystal num-
bers than in theKärcher and Lohmann(2002a) studies. This
implies that the problems encountered above are less impor-
tant in reality than in the idealised situations, which means
that our parameterisation can be used at low temperatures
and high uplift velocities.

We also repeated the simulations with different pressures
with the realistic aerosol distribution. While we still find the
pressure effect at low uplift speeds, the effect gets weak or
even vanishes at high uplift speeds due to the constraints
posed by the number of available aerosol particles (see
Fig. 12).

4.1.3 Time step issues

In all previous box model simulations we have adapted the
time step such that the homogeneous nucleation event can
be resolved in time. However, for more expensive 2-D/3-
D simulations one would like to use longer time steps. We
have tested how the model behaves with fixed time steps
of 1t=0.1,0.5,1.0,2.0 s, respectively, both in the idealised
and realistic cases from above. Figure13shows the results.

Obviously, problems appear with too long time steps
at high uplift speeds. While there are no problems
even with a time step of 1 s at small vertical veloci-
ties (w≤20−50 cm s−1), there are strong deviations from

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000

ic
e 

cr
ys

ta
l n

um
be

r 
de

ns
ity

 (
cm

-3
)

vertical velocity (cm/s)

KL02, T=196K
KL02, T=216K
KL02, T=233K

sigma=1.3
sigma=1.6
sigma=1.9

background

Fig. 11. Box model calculations for the homogeneously formed ice
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For the simulations, we assume a fixed geometric mean size of the
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the previously shown cases at higher vertical velocities
(w>50 cm s−1) where the non-linear behaviour of both, the
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Fig. 13. Box model calculations for the homogeneously formed ice
crystal number densities depending on the vertical velocity and on
the temperature. For comparison, the values from detailed micro-
physics calculations inKärcher and Lohmann(2002a) are shown.
For the simulations, we assume a fixed width for the aerosol distri-
bution ofσr=1.4 and a geometric mean radius ofrm=25 nm. Here,
the impact of the prescribed (fixed) time step (dt=0.1/0.5/1.0/2.0)
for the simulations is shown, compared to simulations using an
adapted time step (simulation “ref”, red line). For the simulations
shown at the top panel, the background aerosol reservoir is large,
while for the simulations at the bottom panel, we used a realistic
background aerosol concentration (nc=300cm−3).

nucleation process and the depositional growth introduce
large deviations from the reference cases. The deviations
are more severe for higher than colder temperatures. Crys-
tal growth proceeds faster at warmer than at colder tempera-
tures, which means that the duration of the nucleation pulse
increases with decreasing temperature. When the nucleation
event is not resolved, its duration will be overestimated and
too much crystals will form. This effect is evidently the more
severe the shorter is the nucleation pulse; i.e. the largest error
occurs at the warmest temperature considered.

4.2 Formation and evolution of an arctic cirrostratus

In this section we compare the performance of our bulk mi-
crophysics scheme with the spectrally resolving schemes of
Lin et al. (2005) andKärcher(2005) for the case of an arctic
cirrostratus triggered by a constant vertical updraught.

4.2.1 Setup

We use the following setup for our simulations: The
whole 2D model domain (0≤x≤6.3 km, 2≤z≤11 km) is
lifted up adiabatically with a constant updraught velocity of
w=0.05 m s−1 as described inKärcher(2005). This is equiv-
alent to a constant cooling of the background profileTe with a
rate of dT /dt=dT /dz·dz/dt=−g/cp·w =−0.000489 K/s.
The same cooling rate was used in the box model simulations
in Sect.4.1. The cooling is adiabatic (i.e.θe is constant), and
is continued for a total simulation time ofts=7 h. In Fig.14
the initial profiles for the simulations are shown.

We use a horizontal resolution of1x=100 m with a hor-
izontal extension of 6.3 km, cyclic boundary conditions in
x-direction, a vertical resolution of1z=10 m and a dynam-
ical time step of1t=1 s. According to our discussion in
Sect.4.1.3, there is no need of a small microphysical time
step for the moderate vertical updraught in this case. For
the background aerosol (H2SO4) we use a number density
of na=Naρ=300 cm−3 with geometric standard deviation
σr=1.4 and geometric mean radius ofrm=25 nm for the
lognormal distribution, as these values gave good results in
Sect.4.1.

4.2.2 Results

For our comparisons we mostly refer to the simulation by
Kärcher(2005), because he also parameterised homogeneous
nucleation according toKoop et al.(2000).

In Fig. 15 the time evolution of the variables relative hu-
midity wrt ice, ice crystal mass and number concentrations,
resp., are shown.

The first nucleation event occurs att≈60 min. The super-
saturation peak of about 154% RHi triggers homogeneous
nucleation. Within a few minutes a large amount of ice crys-
tals (Ncρ∼100 L−1) is formed. Because of the high supersat-
uration the ice crystals can grow quickly and deplete a frac-
tion of the water vapour, which reduces the relative humidity,
see Fig.16. Ice crystals grow and soon start to fall. There-
fore the peak of high supersaturation at the top of the ISSR is
influenced very weakly by the depletion of the water vapour.
The peak is permanently maintained for the whole simulation
time and is a permanent source for homogeneous nucleation
at the top of the ISSR.

The combination of crystal growth and sedimentation
causes two effects: On the one hand, the supersaturation is
reduced by crystal growth such that the relative humidity
cannot reach the threshold for homogeneous nucleation in
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Fig. 14. Initial vertical profiles (pressure, temperature, potential temperature and relative humidity wrt ice) for the simulations of a synopti-
cally driven cirrostratus.
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Fig. 15. Time evolution of the simulated cirrostratus lifted with a
constant vertical velocity of w = 0.05 m s−1. The colours indicate
relative humidity wrt ice, while lines indicate ice crystal number
densities (black, in L−1, ∆nc = 10L−1) and ice water content
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layer would everywhere lead to nucleation, then the crystals
would grow until the excess vapour would be consumed over
the whole depth of the layer. Sedimentation obviously plays
a crucial role for the development and the structure of the
simulated cirrus cloud and for the maintenance of supersatu-
ration within the cloud.

The first nucleation event forms a large number of ice crys-
tals. Many crystals fall downwards, resulting in a down-
ward moving peak of high ice crystal number densities in
fig. 17. These results agree qualitatively well with those of
Kärcher (2005), yet there are differences in details. For in-
stance, the in–cloud supersaturation is higher in our simula-
tion than in Kärcher’s. This is simply a consequence of dif-
ferent assumptions of crystal shape in the two codes. While
we use hexagonal columns with an aspect ratio ra > 1 for
crystal lengths L ≥ 7.42µm, Kärcher (2005) assumes spher-
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lation time 60 ≤ t ≤ 90 min. The notch of the profile due to ice
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the cloud top remains.

ical crystals (ra = 1) for crystal lengths up to L ∼ 25µm;
spherical crystals always grow faster than columns. Hence
high supersaturation can be maintained for a longer period in
our simulation than in Kärcher’s. Second, our treatment of
sedimentation is more diffusive than that of Kärcher (2005)
who uses a particle approach with the advection scheme by
Walcek (2000). Numerical diffusion in the double–moment
scheme (see Wacker and Seifert, 2001) leads to smoothing
of vertical gradients in ice crystal number concentrations and
cloud ice mixing ratio, such that peak values are smaller than
in Kärcher (2005).

In spite of these differences in details we find that our bulk
microphysics scheme is able to well reproduce the main fea-
tures of the arctic cirrostratus case, namely:

– High supersaturation at the top of the cloud with contin-
uously ongoing homogeneous nucleation;

Fig. 14. Initial vertical profiles (pressure, temperature, potential temperature and relative humidity wrt ice) for the simulations of a synopti-
cally driven cirrostratus.
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Fig. 15. Time evolution of the simulated cirrostratus lifted with a
constant vertical velocity ofw=0.05 m s−1. The colours indicate
relative humidity wrt ice, while lines indicate ice crystal number
densities (black, in L−1, 1nc=10L−1) and ice water content (pur-
ple, in mg m−3,1IWC = 1mg m−3).

the lower part of the cloud. On the other hand, the falling
ice crystals formed at the top of the cloud are the only sink
for the water vapour. Although the continuous homogeneous
nucleation events permanently form new ice crystals, these
are spread vertically over the whole cloud depth resulting in
relatively low number densities. Thus, inside the cloud, ice
supersaturation is maintained. If there were no sedimenta-
tion or if it were very weak, the cooling in the supersaturated
layer would everywhere lead to nucleation, then the crystals
would grow until the excess vapour would be consumed over
the whole depth of the layer. Sedimentation obviously plays
a crucial role for the development and the structure of the
simulated cirrus cloud and for the maintenance of supersatu-
ration within the cloud.

The first nucleation event forms a large number of ice crys-
tals. Many crystals fall downwards, resulting in a downward
moving peak of high ice crystal number densities in Fig.17.
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Fig. 16. Temporal evolution of the vertical RHi profiles for simula-
tion time 60≤t≤90 min. The notch of the profile due to ice crystal
growth is represented clearly, while the supersaturation at the cloud
top remains.

These results agree qualitatively well with those of
Kärcher(2005), yet there are differences in details. For in-
stance, the in-cloud supersaturation is higher in our simula-
tion than in K̈archer’s. This is simply a consequence of dif-
ferent assumptions of crystal shape in the two codes. While
we use hexagonal columns with an aspect ratiora>1 for
crystal lengthsL≥7.42µm, Kärcher(2005) assumes spheri-
cal crystals (ra=1) for crystal lengths up toL∼25µm; spher-
ical crystals always grow faster than columns. Hence high
supersaturation can be maintained for a longer period in
our simulation than in K̈archer’s. Second, our treatment of
sedimentation is more diffusive than that ofKärcher(2005)
who uses a particle approach with the advection scheme by
Walcek(2000). Numerical diffusion in the double-moment
scheme (seeWacker and Seifert, 2001) leads to smoothing
of vertical gradients in ice crystal number concentrations and
cloud ice mixing ratio, such that peak values are smaller than
in Kärcher(2005).
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Fig. 17. Downward moving peak of high ice crystal number densi-
ties formed by the first homogeneous nucleation event att≈60 min
in the reference simulation (i.e. constant uplift ofw=0.05 m s−1).
At the top of the cloud there is continuous nucleation, indicated by
the high peak values of ice crystal number density.

In spite of these differences in details we find that our bulk
microphysics scheme is able to well reproduce the main fea-
tures of the arctic cirrostratus case, namely:

– High supersaturation at the top of the cloud with contin-
uously ongoing homogeneous nucleation;

– Significant supersaturation within the cloud for the
whole simulation time;

– Downward moving peak of high ice crystal number con-
centrations formed at the first nucleation event.

Lin et al. (2005) noted that high vertical resolution is
needed for the reproduction of these features. We have
checked this issue using various resolutions in the range
5≤z≤50 m. It turned out that the number of ice crystals
that are produced is underestimated with too coarse verti-
cal resolution, which occurs when the continuous nucleation
source at the cloud top is unresolved. This renders the su-
persaturation inside the cloud too high. Results change only
marginally between simulations with resolutions of1z=5 m
and1z=10 m. Therefore, we used1z=10 m.

Regarding the occurrence of ice supersaturation inside cir-
rus clouds we want to remark that this feature is not limited to
the very cold temperature range in the tropics (an example is
presented byGao et al., 2004). Also in the temperature range
of midlatitude and arctic cirrus clouds ice supersaturation
inside the clouds can be found frequently, see for instance
the results ofOvarlez et al.(2002); Comstock et al.(2004);
Krämer et al.(2008) and also the recent SPARC newsletter
about the supersaturation issue (Peter et al., 2008).

5 Conclusions

We have described a new bulk microphysics parameterisation
for simulation of cirrus clouds on the cloud resolving scale.
In the two-moment scheme the processes nucleation (homo-
geneous and heterogeneous), deposition growth/sublimation
and sedimentation of ice crystals are implemented. An arbi-
trary number of ice classes can be treated that are discrimi-
nated by their formation mechanism. Each ice class is con-
nected to an aerosol type that freezes into the respective ice
class. We tried to formulate process rates as functions of
general moments of the assumed underlying ice mass distri-
bution in order to keep the model flexible enough that var-
ious kinds of mass distribution can be chosen. Currently
we use log-normal distributions for the aerosol and the ice
masses. The new parameterisation was implemented into
a simple box model and into the anelastic, non-hydrostatic
model EULAG.

In a first validation step we compared the ice crystal num-
ber densities generated during box model simulations with a
steady and constant updraught with results from a box model
that was equipped with a more detailed microphysics scheme
(Kärcher and Lohmann, 2002a). The agreement of our re-
sults with the results from the detailed model was very good.
Additionally we used the box model to study the impact of
the ambient pressure on the generated ice crystal number
concentrations. Also, for realistic background aerosol condi-
tions simulations were carried out. In this case we could find
that the background aerosol acts as a limiting factor, i.e. the
produced ice crystal number density is strongly reduced in
the low temperature range in combination with high vertical
velocities (consistent with results ofKay and Wood, 2008).
This partly offsets the underestimation of ice crystal number
densities of our parameterisation. Additionally, the pressure
dependence of the parameterisation was investigated.

In a second validation step we simulated the case of an
arctic cirrostratus using EULAG as a 1-D column model first.
Also in this case the agreement with a much more detailed
microphysical model (Kärcher, 2005) was very good.

These studies led to the following conclusions:

– The model is validated against models with detailed mi-
crophysics and produces reliable results;

– Sedimentation is of utmost importance in the evolution
of the cloud structure and the in-cloud humidity field;

– Persistent in-cloud supersaturation is found in our sim-
ulations consistent withKärcher(2005).

Finally, we conclude that the model is suitable to represent
cirrus clouds in cloud-resolving simulations. In the second
part of our study (Spichtinger and Gierens, 2009), we will in-
vestigate the validation case of an arctic cirrostratus carefully
in terms of changing the large scale dynamics (i.e. updraught
velocity) and in terms of possible changes due to 2-D effects

Atmos. Chem. Phys., 9, 685–706, 2009 www.atmos-chem-phys.net/9/685/2009/



P. Spichtinger and K. Gierens: Modelling cirrus clouds – Part 1a 703

introduced by temperature fluctuations and wind shear. In
future applications the model will be used for investigating
the effects of the competition of different nucleation mech-
anisms (Spichtinger and Gierens, 2008) and for the multi-
scale problem of the impact of mesoscale dynamics on the
formation and evolution of cirrus clouds (as inSpichtinger
and D̈ornbrack, 2006).

Appendix A: Notation

a long half axis of spheroid
a(p, T ) factor for Koenig’s approximation (abbrev. bya)
aw water activity in the solution
aiw water activity in the solution in equilib. with ice
A Ice crystal surface
A′

=
√
a2 − b2

b short half axis of spheroid
b(p, T ) exponent for Koenig’s approximation (abbrev. byb)
C Capacitance factor
cp heat capacity for constant pressure
c(T , p) correction factor for sedimentation
D
Dt

advection operator/total derivative
D ice crystal diameter
Dv Diffusion constant
e water vapour pressure
e∗i saturation water vapour pressure over ice
e∗w saturation water vapour pressure over water
Fθ additional forcing for potential temperature
f Coriolis vector
f (m) ice crystal mass distribution
f1 correction, kinetic growth regime (mass growth rate)
f2 correction, ventilation (mass growth rate)
f ∗

1 correction, kinetic growth regime (latent heat release)
f ∗

2 correction, ventilation (latent heat release)
fa(m) aerosol mass distribution
f ′
a(m) aerosol mass distribution, normalised to 1
fm mass concentration fraction (aerosol)
fn number concentration fraction (aerosol)
fN number concentration fraction (ice)
fq mass concentration fraction (ice)
g gravity vector
g gravitational acceleration
L ice crystal length
Li i = 1,2,3 transition sizes for terminal velocity
Lm geometric mean size in lognormal distribution
l∗m reference length for kinetic correction (mass)
l∗Q reference length for kinetic correction (heat)
Ls latent heat of sublimation
Lt transition size between spherical crystals and columns
M metric term
m (ice crystal) mass
m mean mass
m0(p, T ) mass for appr. in Eq. (38) (abbrev.m0)
mi i=1,2,3 transition masses for terminal velocity

mm geometric mean mass in lognormal distribution
mpre predominant mass
mt transition mass between spherical crystals and columns
Mw molecular weight of water vapour
Na aerosol number concentration per kg dry air
na aerosol number density (na=Naρ) per m3 dry air
Nc ice crystal number concentration per kg dry air
nc ice crystal number density (nc=Ncρ) per m3 dry air
NPr Prandtl number
NRe Reynolds number
NSc Schmidt number
P freezing probability
p pressure
p′ pressure deviation
p0 reference pressure = 101 325 hPa
p0,1 reference pressure = 30 000 hPa
p0,2 reference pressure = 81 500 hPa
pe pressure, environmental state
qa aerosol mass mixing ratio
qc cloud ice mass mixing ratio
qv specific humidity
qve specific humidity, environmental state
r radius
r∗ effective crystal radius for growth
r0 ratio of predominant and mean mass
ra aspect ratio
rd radius of solution droplets
rm geometric mean radius in lognormal distribution
R universal gas constant
Rg ideal gas constant for dry air
Rv ideal gas constant for water vapour
RH relative humidity with respect to water
RHi relative humidity with respect to ice
t time
ts simulation time
T temperature
Te temperature, environmental state
T0 reference temperature =273.15 K
T0,1 reference temperature =233 K
T0,2 reference temperature =270 K
TS temperature at ice surface
u velocity field
u′ velocity field deviation
ue velocity field, environmental state
u horizontal wind
ur average thermal velocity of air molecules
Vd solution droplet volume
v(m) terminal velocity of a single ice crystal
v0(m) reference terminal velocity of a single ice crystal
vm mass weighted terminal velocity
vn number weighted terminal velocity
w vertical velocity
ww H2O weight fraction
x horizontal coordinate
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x coefficient for terminal velocity
y coefficient for terminal velocity
z vertical coordinate

α exponent for mass/number fraction (Eq.29)
αd deposition coefficient
βd thermal accommodation coefficient
γ (p, T ) exponent for appr. in Eq. (38) (abbrev.γ )
γ (m) factor for terminal velocity
δ coefficient for approximation in (Eq.38)
δ(m) exponent for terminal velocity
ε′ eccentricity of an ellipse
ε ratio of gas constants for dry air and water vapour
εp = (1/ε)− 1
µk kth moment of probability distributionf
ρ air density
ρ̄ air density, base state
ρb bulk ice density
ρd solution density
ρs,i saturated water vapour density at crystal surface
ρv water vapour partial density
σL geometric std. dev., size distribution (ice)
σm geometric std. dev., mass distribution (ice)
σr geometric std. dev., radius distribution (aerosol)
θ potential temperature
θ ′ potential temperature deviation
θd density potential temperature, (Eq.4)
θ ′

d density potential temperature deviation
θde density potential temperature, environmental state
θe potential temperature, environmental state
θ̄ potential temperature, base state
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