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Abstract. This paper investigates a potential of two remotely
sensed wild-land fire characteristics: 4-µm Brightness Tem-
perature Anomaly (TA) and Fire Radiative Power (FRP) for
the needs of operational chemical transport modelling and
short-term forecasting of atmospheric composition and air
quality. The treatments of the TA and FRP data are pre-
sented and a methodology for evaluating the emission fluxes
of primary aerosols (PM2.5 and total PM) is described. The
method does not include the complicated analysis of vegeta-
tion state, fuel load, burning efficiency and related factors,
which are uncertain but inevitably involved in approaches
based on burnt-area scars or similar products. The core of the
current methodology is based on the empirical emission fac-
tors that are used to convert the observed temperature anoma-
lies and fire radiative powers into emission fluxes. These
factors have been derived from the analysis of several fire
episodes in Europe (28.4–5.5.2006, 15.8–25.8.2006 and in
August 2008). These episodes were characterised by: (i)
well-identified FRP and TA values, and (ii) available ground-
based observations of aerosol concentrations, and optical
thickness for the regions where the contribution of the fire
smoke to the concentrations of PM2.5 was dominant, in com-
parison with those of other pollution sources. The emis-
sion factors were determined separately for the forested and
grassland areas; in case of mixed-type land use, an interme-
diate scaling was assumed. Despite significant differences
between the TA and FRP methodologies, an accurate non-
linear fitting was found between the predictions of these ap-
proaches. The agreement was comparatively weak only for
small fires, for which the accuracy of both products is ex-
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pected to be low. The applications of the Fire Assimila-
tion System (FAS) in combination with the dispersion model
SILAM showed that both the TA and FRP products are suit-
able for the evaluation of the emission fluxes from wild-land
fires. The fire-originated concentrations of aerosols (PM2.5,
PM10, sulphates and nitrates) and AOD, as predicted by the
SILAM model were mainly within a factor of 2–3 compared
with the observations. The main challenges of the FAS im-
provement include refining of the emission factors globally,
determination of the types of fires (smouldering vs flaming),
evaluation of the injection heights of the plumes, and predict-
ing the temporal evolution of fires.

1 Introduction

Each year about 5000 km2 of forested land in Europe is
burned by more than 50 000 fires (Keramitsoglou et al.,
2004). The wild-land fires occur in all European countries
being particularly intensive in the arid southern and eastern
regions. Globally, vast forests of Russia and Brazil, as well as
those in central Africa, are among the most severely affected
areas. Total estimates of the consumed biomass vary widely,
usually ranging between 5 and 10 Gtons annually (Scholes
and Andreae, 2000; Chin et al., 2002).

The fires in different parts of the globe have specific re-
gional characteristics. For instance, in forested regions, such
as Siberia or Alaska, the main impact and the amount of con-
sumed biomass can be attributed to a comparatively small
number of major episodes. Conversely, in Africa and in arid
regions a typical intensity of individual fires is smaller but
their count is much larger (Schultz et al., 2008). In Europe,
patchy land use and variety of climatic zones increase the
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diversity. In northern areas, boreal-forest and bog fires are
the most usual types of fires. In central Europe, grass and
mixed-forest fires are more frequent, while in the south the
fires of grassland and sub-tropical forests are the standard
ones. The European fire season starts in April and can last
until the end of November when seasonal precipitation has
wetted the surface and vegetation in the Southern Europe.
The impact of fires on climate processes, atmospheric com-
position and air quality also varies widely from region to re-
gion and its estimates may differ significantly between dif-
ferent studies (e.g. Barbosa et al., 1999; Wotawa et al., 2001;
Schultz, 2002; Generoso et al., 2003; Duncan et al., 2003;
Soja et al., 2004; van der Werf et al., 2004; Schultz et al.,
2008).

Most of the fires are ignited by humans, either deliberately
or accidentally. It is, therefore, difficult to make quantita-
tive predictions regarding individual fire events. As a result,
the forecasting capability of various fire indices is limited,
although they can be successfully correlated with the prob-
ability of the ignited flames to develop into a full-scale fire
(Tanskanen and Venäläinen, 2008).

Presently, a widely used methodology for obtaining the
fire information for real-time applications is based on the op-
erational in-situ and remote sensing observations of active
fires – using fire monitoring towers, aircrafts or satellites.
One of major European efforts is the European Forest Fire In-
formation System EFFIS (http://effis.jrc.ec.europa.eu) main-
tained by the Joint Research Centre. Its database includes up-
to-date and historical information about the European fires
from 20 European countries. EFFIS also incorporates the
fire danger forecast and an outlook of the current fire situa-
tion, mainly based on remote-sensing fire detection (MODIS
hot spot counts).

There are two main types of remote-sensing information
that are suitable for assessing the features and impacts of
fires: products based on estimating the burnt areas, and those
using the derivatives of observations of surface temperatures,
i.e., hot spot counts and fire radiative power (Flemming,
2005).

Most of the above-mentioned studies are based on the
analyses of burnt areas, which are primarily performed on
a monthly basis and diagnosed via, for example, albedo
changes at specific wavelengths. Examples of the burnt area
products are GLOBSCAR from the ATSR instruments (Si-
mon et al., 2004) and Global Burnt Area 2000 (GBA2000)
from SPOT-VEGETATION (Tansey et al., 2004). The burnt
area estimates are uncertain and, according to Boschetti
et al. (2004), the difference between GLOBSCAR and
GBA2000 can be as large as a factor of two. There are
no burnt-area products available in near-real-time (NRT) at
present, which allows the utilization of this type of data only
in re-analysis studies.

The other type of input data is based on surface temper-
ature observations and their derivatives. Dozier (1981) and
Matson and Dozier (1981) showed that using the information

from 3.8µm and 11µm thermal infrared channels one can
detect “sub-resolution scale high temperature sources, and to
estimate both the temperature and size of such sources”. This
bi-spectral method exploits the different sensitivities of the
channels to thermal emission. A sensitivity analysis of Giglio
and Kendall (2001) has shown that in realistic conditions the
random errors in fire temperature and area retrieved using
Dozier’s method are±100 K and±50% at one standard devi-
ation, respectively, for fires occupying a pixel fraction greater
than 0.005. The WF ABBA algorithm (Prins et al., 2001)
builds on the algorithm by Dozier (1981) to retrieve wildfire
size and temperature products from the GOES-8 geostation-
ary meteorological satellite operationally in NRT.

The few intercomparison studies made so far for the burnt-
area and hot-spot count approaches indicate severe differ-
ences between the methods and even between the retrievals
based on the same principle (Boschetti et al., 2004).

Most methods to convert the fire information to emissions
of atmospheric tracers are based on empirical scaling coeffi-
cients from the burnt area (models GWEM of Hoelzemann et
al. (2004), FLAMBE of Reid et al. (2004), INPE/CPTEC of
Freitas et al., 2005) or, rarely, from the hot spots (GFED, Van
der Werf et al., 2003) to fluxes of a mixture of species. The
lists of species included in the emission models vary but usu-
ally CO2, CO and the total mass of aerosols are included, as
these are amongst the most important constituents emitted by
fires and measured in the atmosphere, thus allowing a direct
calibration of a modelling system. More detailed chemical
speciation is usually based on the review by Andrea and Mer-
let (2001, AM01), in which the most widely used emission
factors are provided for the main land use types. However,
the speciation also depends on the state of the vegetation,
which resulted in a wide range of uncertainties of the mean
emission factors.

One of the early operational Fire Alarm Systems based
on hot-spot satellite information has been developed in Fin-
land in the mid-1990’s and is still operational (Kelhä et al.,
2003). The system utilizes the products from the AVHRR
and AATSR instruments and generates alarm messages for
the authorities and fire-fighting services, if an overheated
pixel (compared to the neighbouring ones) appears anywhere
in Finland. However, the system provides only qualitative in-
formation (the appearance of a fire) and does not describe its
intensity or the chemical composition of the emissions.

The goal of the current paper is to present a new-
generation Fire Assimilation System (FAS), which evalu-
ates globally the emission fluxes of primary particulate mat-
ter originated from wild-land fires on a daily resolution.
The predicted emissions in Europe are subsequently scaled
to other pollutants using emission factors from the litera-
ture and submitted to the chemical transport model SILAM
(http://silam.fmi.fi, Sofiev et al., 2006, 2008) for diagnostic
assessment and forecasting of the atmospheric composition.
This SILAM application also enables the indirect verification
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of the FAS itself via comparison of modelled concentrations
with in-situ and remote-sensing observations.

2 Description of the Fire Assimilation System (FAS)

The FAS is based on Level 2 MODIS Collection 4 and 5 Ac-
tive Fire Products, which are used for the near-real-time and
historical evaluation of the emissions from wild-land fires.
The FAS information is processed into the emission input for
the atmospheric composition modelling system SILAM for a
subsequent evaluation of the impact of fires on atmospheric
composition and air quality.

The present FAS consists of two parallel branches based
on partly independent products: the Temperature Anomaly
and Fire Radiative Power. Their algorithms of converting the
fire information to the emission fluxes of atmospheric pol-
lutants are described below, starting from the outlines of the
corresponding fire products.

2.1 Background

2.1.1 The fire detection algorithm of the MODIS
instrument

The MODIS fire detection procedure is based on a contextual
algorithm of Giglio et al. (2003) that exploits the strong emis-
sion of mid-infrared radiation from fires (Dozier, 1981; Mat-
son and Dozier, 1981). The algorithm examines each pixel
of the MODIS swath and attributes it to one of the follow-
ing classes: missing data, cloud, water, non-fire, fire, or un-
known. For each fire-classified pixel, the procedure attempts
to use the neighbouring pixels to estimate the radiometric
signal of the pixel, if there would be no fire there. Valid
neighbouring pixels are identified in a window centred on
the potential fire pixel and used to estimate this background
value.

If the characterization of the background is successful, a
series of threshold tests are used to confirm the active-fire
hypothesis. These search for the characteristic signature of
an active fire, in which both the 4µm brightness tempera-
ture and the difference between the 4 and 11µm brightness
temperatures depart substantially from those of the non-fire
background. The thresholds are adjusted based on the natu-
ral variability of the background. Additional tests are used to
eliminate false detections caused by sun glint, desert bound-
aries, and errors in the water mask. Candidate fire pixels that
are not rejected in the course of these tests are assigned with
the class of fire. A dedicated effort is needed to separate the
wild-land fires from other types of fires, which is done on the
basis of the land use reported for the detected fire pixel.

2.1.2 Outline of the test cases used for the development
and testing of FAS

The FAS was developed and evaluated on the basis of a set
of fire episodes, which were selected from actual MODIS
records during recent years. The selection criteria were: (i)
well identified fire sources and limited impact of clouds, (ii)
easily distinguishable fire plumes dominating over those of
other sources, (iii) sufficient duration of the episode (a week
or more) to average out the random fluctuations in the model
simulations, and (iv) the representativeness of the complete
set of episodes at a European scale.

The episode 1occurred in spring 2006 and caused a se-
vere deterioration of air quality over a major part of Europe
(Saarikoski et al., 2007; Stohl et al., 2007; Sofiev et al.,
2009). It lasted for most of April and May of 2006 while the
highest ground-level concentrations were recorded during
25.04–10.05.2006. During the first part of April, an unusu-
ally hot and dry period with low-wind conditions contributed
to an accumulation of the anthropogenic contamination over
Eastern Europe. It was accompanied by widespread wild-
land fires over western Russia. The burning material mainly
consisted of previous-year grass remnants, which were dried
up by the beginning of the fires. However, the emissions
from forest and mixed areas were also substantial (Figs. 1
and 2). Resulting mixture of pollutants was transported over
the whole Europe in the beginning of May reaching Spitsber-
gen and Iceland and causing severe degradation of air qual-
ity. High concentrations of several pollutants were registered
along the plume passway. The episode was finished by a
frontal rain passing over Europe from the Atlantic, which
scavenged out the pollutants, and largely extinguished the
fires.

The episode 2took place in August 2006 and was geo-
graphically located in two regions: in Northern Europe (the
Russian part of Karelia, Estonia and Finland) and in South-
Eastern Europe. The burning material was a mixture of grass,
agricultural remnants (mainly in the south), but also bog and
forest trees (mainly in the north) (Fig. 2). We have consid-
ered here the fires in the northern region, where pit fires and,
to a smaller extent, forest fires created a set of very dense
plumes, which were important on regional and meso-scales.

The episode 3took place in August of 2008, mainly in
the Ukrainian and Russian territories, but also over Moldova,
Romania, Bulgaria and Greece. The burning material was
mainly grass and regional forests. The fire smoke was trans-
ported in several separated pollution clouds to the north and
to the east. To our knowledge, this episode has not been
studied, probably as practically no in-situ observations have
been internationally available up to date. Such fires occur al-
most every year in that region commonly lasting for most of
August. However, few studies have been published regard-
ing these fires. In 2008, the plume was transported towards
the north-east and could not be observed by the Western
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(a) (b)

Fig. 1. (a) the LANDSAT land cover inventory, on a spatial resolution of 250 m; examples of fires in May 2006 are shown as red dots, their
diameters are proportional to the Fire Radiative Power.(b) The classification of prevailing land types on a resolution of 10km, as a surrogate
for emission factors (constructed from the data of LANDSAT and USGS-2).
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Fig. 2. Temporal evolution of fire FRP [MW] distributed between
the land use types for the fire season of 2006. The geographic area
considered is the whole of Europe (the same as in Fig. 1b).

European observational networks. We have therefore used
satellite retrievals to describe the event.

Regarding these episodes, the best-observed one is case
1, as its smoke was recorded by a number of European air
quality stations. Case 2 was mainly detected by the Finnish
observational sites. The case 3 analysis has to rely on the
satellite information. Its advantages, however, are the well-
identified plumes, which were transported over regions with
comparatively low anthropogenic emissions, thus reducing
the impact of the anthropogenic emissions to the concentra-
tions.

The overall representativeness of the cases on a European
scale was qualitatively estimated on the basis of the type of
the fuel burning rather than from the geographical position
of the fires. Thus, case 1 represents a dry grass fire, case 2 is
mainly a bog and boreal forest fire, and case 3 is a mixture of

the present-year grass (partly dry, partly still green) and the
sub-tropical forests.

In addition to the episodes, the FAS was also executed
for the complete three-yearly period from 2006 to 2008 on
a daily resolution, in order to obtain the long-term averages
that could possibly be compared with the corresponding val-
ues obtained in other fire emission inventories.

2.2 The evaluation of PM2.5 emission based on
Temperature Anomaly (TA) products

For simple fire-detection purposes, the fire-classified pixel
is attributed with the 4-µm brightness temperatureT4 (this
channel is the most-representative and least affected by other
factors that are not connected with fires). The method is also
known as hot-spot counting and the pixel temperature is fur-
ther referred to in this study as the TA-value.

The simplicity of this product and its operational avail-
ability allowed its utilization as a starting point for FAS de-
velopment. This branch is hereinafter referred to as FAS-
TA. The system receives the input from ASCII telegrams
that contain the location, the temperature and the detection
confidence of the thermal anomalies. This brightness tem-
perature is then multiplied with an empirical coefficient of
6.78 ton PM2.5 yr−1 K−1 to yield an emission flux of PM2.5.
The scaling was obtained for the Western-Russia (mainly)
grass-fire episode 1 in 2006 (Saarikoski et al., 2007, here-
inafter referred as S07). Input data for the calibration were:
(i) the MODIS hot-spot counts (temperature anomaly prod-
uct) collected over an extensive territory in Western Russia
(about 1000 km×1000 km) with a resolution of 1 km, (ii)
near-surface observations of PM2.5 concentrations in Fin-
land, located directly downwind from the fire at the distances
of about 500–600 km. These two datasets were related via
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FAS-TA and dispersion model SILAM, finally yielding the
TA emission factor for PM2.5.

The PM2.5 emission fluxes can be converted further to total
PM, as well as to other species using the factors of Andrea
and Merlet (2001, hereinafter referred as AM01).

The advantages of FAS-TA are its simplicity and the near-
real-time (NRT) availability of the data via Rapid Response
System (with a delay of just a few hours), which allow its fast
application. Also, the system is sensitive to small-scale fires.
However, the information obtained from the TA value is lim-
ited since the algorithm neglects the background temperature
of the fire pixels and uses a simple scaling from temperature
to emission rate.

2.3 The evaluation of total PM emission based on Fire
Radiative Power (FRP) products

For more sophisticated reporting, the MODIS product list in-
cludes the Fire Radiative Power (FRP, a rate of release of Ra-
diation Energy, FRE) of the fire pixel, based on the empirical
formula of Kaufman et al. (1998):

FRP= 4.34× 10−13(T 8
4 − T 8

4b), [Watt] (1)

where theT4, andT4b are the fire and the background (taken
from neighbouring pixels) temperatures, respectively, mea-
sured at the 4-µm channel. The dependence has been ob-
tained from fitting the actual release of radiative energy from
a fire and its apparent temperature at the 4 and 11µm chan-
nels – as observed by the MODIS instrument. The relation-
ship showed good correlation for open moderate-to-strong
fires (Kaufman et al., 1998). There may be potential diffi-
culties for small fires, as these may be partly overshadowed
by trees, appear as low-temperature but strongly emitting
smouldering fires, etc.

As TA, the FRP data are included into the level 2 Fire
Products (MOD14 for Terra and MYD14 for Aqua satellites)
and are available with a comparatively short delay (usually
within 1–2 days), which makes it possible to utilise them
within the FAS. However, until recently, FRP has not been
available via the Rapid Response System that is practically
NRT and updated several times a day. This can cause ad-
ditional delays in case of technical problems at the central
processing or distribution sites. Such delays affect the appli-
cability of the FRP product for the needs of the operational
monitoring system.

To convert the FRP to emission fluxes we used a similar
approach as for TA – a direct conversion of FRP using an
empirical scaling to emission rates. In the current FAS it is
based on Ichoku and Kaufman (2005, hereinafter referred as
IK05) who related the FRP in [W] per pixel to total partic-
ulate matter (PM) emission in [kg tPM s−1]. Since the cal-
ibration IK05 was obtained by relating the aerosol optical
depth (AOD) with the FRP, the obtained emission factors are
valid for total PM instead of PM2.5, which was the reference
species for FAS-TA. The mean relation between these PM

measures can be evaluated based on AM01: within the fire
plume

mpm2.5 ≈ 0.6mtotal pm (2)

The relation is approximately valid for all land use types:
the changes between the vegetation types are smaller than the
uncertainty range within each type (AM01).

The key parameter for FAS-FRP is therefore the emission
rate of total PM per unit FRP, i.e. the smoke emission factor
Ce [kg tPM J−1]. According to IK05,Ce varies from 0.02–
0.06 kg tPM MJ−1 for boreal regions, 0.04–0.08 kg tPM
MJ−1 for Africa (mainly savannas and grassland), and 0.08–
0.1 kg tPM MJ−1 for Western Russian regions. Since the
Ce determination involved a simple estimate of atmospheric
transport (based on wind at a constant height and not involv-
ing a dispersion model), the authors suggested that the co-
efficients are probably overestimated by about a factor of 2.
Using these estimates as a starting point, we have developed
the emission coefficients that are based on actual land-cover
information, instead of geographical region.

2.4 Connecting the FRP emission factors and the
land use

The procedure of linking the FRP products with the land-use
was made in three steps with subsequent 4th step verifying
the obtained calibration:

1. the LANDSAT land use inventory for Europe with
250 m resolution and USGS with 1 km grid spacing
were aggregated to the map of the vegetation fractiona-
tion with 10 km resolution. It included only three types
of land use: grass and agriculture land, forests, and a
mixture of these (Fig. 1);

2. for these three types, we assumed the following total-
PM emission coefficients: 0.1 kg tPM MJ−1 for forest,
0.05 kg tPM MJ−1 for grass/agriculture lands, and an
average of 0.075 kg tPM MJ−1 for mixed areas. These
values were deduced from the prevailing land cover in
the IK05 domains;

3. these coefficients were adjusted using the fire episodes 1
and 2, for which the actual location of each daily fire
pixel was attributed to one of the land cover types (see
Fig. 2 for the total-FRP release from each land-use
class). The emission maps were used as input data by
the chemical transport model SILAM, which simulated
the atmospheric dispersion of the plumes. The results
were compared with the MODIS observations of AOD
and the coefficients for the corresponding source types
were adjusted.

4. Finally, the PM2.5 concentrations computed by the
SILAM model were compared with observations of
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Fig. 3. TA- (left-hand panel) and FRP- (right-hand panel) characteristics of the fires in 2006. All observed fires are presented. The linear
sizes of the markers are proportional to the corresponding TA/FRP values.

the Finnish stations of Helsinki-Kumpula (urban back-
ground), Uto (regional background), Virolahti (regional
background), Oulu (small city, urban background) and
Vaasa (small city, urban background).

The reference dataset used for the calibration was the aerosol
optical depth from MODIS, converted to the total column-
integrated PM concentrations (an extension of the MODIS
AOD product available e.g. via Giovanni frameworkhttp:
//daac.gsfc.nasa.gov/techlab/giovanni). This dataset was
utilised for setting the numerical values of the emission fac-
tors. The reason for using the satellite observations as the
main source of information for the calibration of FAS is that
the modelled near-surface concentrations are sensitive to the
treatment of the boundary layer in the model. In addition, the
ground-based observational network is comparatively scarce
and there are potential uncertainties due to the limited spatial
representativeness of the sites (Galperin and Sofiev, 1994).

We assumed that inside the fire plumes, the AOD was
entirely determined by the biomass-burning products. It is
partly supported by S07 analysis, as they found that more
than 80% of PM2.5 during a specific episode in May 2006
was originated from fires. We therefore attributed all system-
atic discrepancy between the observed and calculated column
AOD to errors in the emission rates, and corrected the emis-
sion factors accordingly.

The resulting emission coefficients for the European
domain are the following: 0.035 kg tPM MJ−1 for for-
est, 0.018 kg tPM MJ−1 for grassland and agriculture, and
0.026 kg tPM MJ−1 for mixed areas.

Analysis of the PM2.5 and PM10 concentrations obtained
with the updated emission factors are discussed in the Sect. 4.

2.5 Cross-calibration of the FAS-TA and FAS – FRP

The FRP is physically a better grounded quantity than TA for
the determination of the fire emissions: the release of radia-
tive energy is indeed approximately proportional to the num-
ber of carbon atoms oxidised per second. Compared to that,
the dependence of the brightness temperature on the fire in-
tensity is much less straightforward. It is also more affected
by factors that are not directly associated with the fires per
se (such as the meteorological ones). Consequently, the TA
value should be less sensitive to the fire intensity and have a
weaker connection to the emission.

Figure 3 illustrates these differences using the European
fires in 2006 as an example. Both panels include all the fires
recorded during 2006 with the marker linear dimension pro-
portional to TA (left-hand panel) and FRP (right-hand panel).
As one can see, the TA mechanism is much less sensitive to
the intensity of a single fire; it reports most of them to be
approximately the same intensity. The FRP products reflect
better the diversity in the magnitude of the fires, but may
under-predict the small fires, many of which are presented
on the map as very small dots.

However, also the FRP methodology has inherent limita-
tions. Firstly, Eq. (1) is obtained not via rigorous deriva-
tions but via empirical fitting to observations, which makes
it dependent on the specific characteristics of the measured
data. Secondly, it is presently available only from a few
instruments. TA, to the opposite, is available from a wide
range of instruments and satellites. Thirdly, the 11-µm chan-
nel needed for the computations and for distinguishing be-
tween the types of burning is noisy. Fourthly, the reliance on
neighbouring pixels for evaluating the background tempera-
ture of the burning one can lead to problems, especially in
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Fig. 4. Left-hand panel: The relation between the brightness temperatures, [K] from 21-st band of MODIS (horizontal axis) and FRP for the
same fire pixel from MOD14 fire product [MW per pixel area] (vertical axis). Colours of the dots correspond to the land cover types (red –
forest, green – mixed forest and grass, blue – grass only). Right-hand-panel: the land-use-independent fitting Eq. (3) and the forest-fires data
sub-set.

the regions with heterogeneous land use or densely located
fires occupying several grid cells. Fifthly, the 8th power of
temperatures in Eq. (1) makes the final estimates sensitive to
inherent noise in the temperature observations. Finally, due
to the use of a more sophisticated algorithm, the near-real-
time availability of FRP from MODIS was worse than that
of TA, reported through the Rapid Response System.

Observing small fires is a special problem, where the com-
bined use of both TA and FRP methods can be efficient. The
differences of the 8th powers of temperatures become un-
certain, when the burning-pixel and background brightness
temperatures approach each other. For such cases, also the
chemical composition and the particle size distributions of
the emission fluxes are most likely different, compared with
the larger scale fires, as the burning becomes less efficient.
For smaller fires, the relative fraction of CO2 is expected to
decrease, and the CO, soot and coarse aerosol fractions are
expected to increase. As a result, the emissions of coarse
aerosols and other trace species related to incomplete com-
bustion processes would be disproportionally larger for small
fires, i.e., the FRP and the emission fluxes should be mod-
elled with a less steep temperature dependence than the 8th
power. Whether the actual power should be 1, as in TA ap-
proach, or something intermediate remains open but it is ev-
ident that for small fires, the TA value is closer to the upper
estimate of the possible emission rates, and the FRP value
closer to the lower one.

It is therefore reasonable to consider the inter-dependence
of the predictions of the FAS-TA and FAS-FRP algorithms.
For this purpose, we used the dataset of episode 1 (in 2006)
and also took into account the split between the three land-
use types.

As seen from the scatter plot of FRP against TA values
(Fig. 4a), there is a functional dependence between these
products, with very narrow spread for moderate and strong

fires. The noticeable scatter of data for small fires was to be
expected. Indeed, besides the above-mentioned methodolog-
ical difficulties in case of small fires, the TA method does not
allow for the background temperature, which becomes com-
parable with the actual temperature of the pixel if the fire-
induced heat release is small. However, the segmentation of
the data in terms of the land use types significantly improves
the correlation, even for small fires (Fig. 4a, b).

The strong connection between FRP and TA and the small
scatter allow polynomial fitting of TA to FRP (Fig. 4b),
which appears valid for all land-use types:

FRP= 8.3338× 10−5
× TA3

− 6.11707× 10−2
×

TA2
+ 14.8674× TA − 1150.92 (3)

where TA is in [K] and FRP is in [MW].
The relation between the observed FRP and the FRP com-

puted from TA using Eq. (3) is practically linear, with the
regression slope deviating from unity by∼2% and the corre-
lation coefficient of∼0.94 for all land use types. Hence, the
values of TA can be converted to FRP with a good accuracy,
if the latter ones are unavailable or doubtful.

2.6 Operational setup of FAS at FMI

The current section outlines the implementation of the FAS
at Finnish Meteorological Institute and its connections with
the air quality modelling. The implementation required solu-
tions of several problems whose detailed descriptions are out
of the scope of the current paper. Therefore, the presented
outlines aim only at a general outlook, which is relevant for
interpreting the FAS application and evaluation results shown
in the next sections.

The operational FAS setup includes both TA- and FRP-
based branches constructed in a complementary way. For the
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periods when both TA and FRP are available, the branches
are kept independent. Each uses its own linear scaling to
emissions of PM2.5 and total PM, respectively, which are
then scaled to a full list of chemicals according to AM01.
For days, in which the FRP data are either unreliable or do
not exist, the system converts TA to FRP using the fitting
Eq. (3). This FRP substitution is treated the same way as the
original FRP: scaled to total PM emissions and then to the
fluxes of other species.

Atmospheric composition forecasts require also forecasts
of the evolution of the fires. Presently, these are based on the
persistency assumption: the observed fires are assumed to
continue for the whole forecasting period (48 h) with a con-
stant mean intensity equal to the latest recorded level. This
simple assumption nevertheless qualitatively reflects two im-
portant features: fires that are observed at some moment will
continue burning at least several more hours – even in case
of a fire brigade intervention. Secondly, even an extinguished
fire keeps smouldering for some hours or days; it is therefore
still a source of pollutants (clearly, with a different emission
rate).

A significant challenge for the current FAS algorithm is
the modelling of the diurnal variation of the fire intensity.
The main source of information – the MODIS instrument
onboard of Aqua and Terra satellites – can provide only 2–4
values per day per place and only during daytime. This is ev-
idently insufficient for the quantitative representation of the
diurnal variation. Therefore, we assumed a conservative di-
urnal variation, same for all types of vegetation and regions,
which suggests day-time emission intensity to be 25% higher
than the daily-mean level while the night-time emission is
25% lower (Saarikoski et al., 2007). The actual variation is
probably larger and depends on land-use and meteorology
(e.g., Beck and Trevitt, 1989; Beck et al., 2001); however,
the up-to-date available information on the diurnal variation
of the fires is scarce.

The fire-induced PM emission obtained from each FAS
branch is merged with other pollution sources taken into
account by the SILAM model dispersion simulations – as
maps of gridded daily-mean emission rates with superim-
posed fixed diurnal cycle. The extension of PM emission
to other species used the AM01 factors. We assumed that the
following admixture of gaseous species is emitted in addition
to PM: 94% of CO, 1.3% of HCHO, 2.9% of NOx as NO2,
1.4% of NH3, and 0.4% of SO2 (mass fractions as species).
The gaseous emission flux is assumed to be 7.9 times larger
than the particulate mass flux. These fractions are assumed
to be valid for all European land use types.

An effort is made to avoid double-counting of the sec-
ondary PM. The FAS calibration against MODIS AOD re-
ports all the secondary aerosols as primary emission. A po-
tential way to reduce this effect is to consider the calibra-
tion as close as possible to the fires themselves, so that the
transport time is short and production of secondary aerosols
is limited. That procedure, however, is prone to other un-

certainties. The above mentioned regional-scale calibration,
having less noise due to spatial and temporal averaging,
over-estimates the primary PM emission due to misinter-
preting the secondary aerosols as primary ones. According
to SILAM chemical simulations, this typically amounts to
∼20% of the total aerosol mass.

The SILAM modelling system (Sofiev et al., 2006, 2008)
currently includes both Lagrangian and Eulerian dynamic
kernels. It takes into account up to 8 different types of the
transported species including size-segregated aerosol, sul-
phur and nitrogen oxides and some VOCs. Operationally,
it is used to predict sulphur and nitrogen oxides, ammo-
nium, some hydrocarbons, ozone, sea salt, fine and coarse
primary anthropogenic aerosols PM2.5 and PM10, as well as
biogenic primary aerosols, such as pollen. Other compounds
are utilised only in research applications. The current study
is based only on the Eulerian-kernel computations with the
SILAM v.4.5.1.

Injection height for all fires is prescribed. According to
available literature data (Trentmann et al., 2006; Freitas et al.,
2007; Zilitinkevich et al., 2006; Labonne et al., 2007; Maz-
zoni et al., 2007; Kahn et al., 2008, etc), simulations with the
BUOYANT plume-rise model (Nikmo et al., 1999), the US
fire injection height archive derived from MISR observations
over the US (Mazzoni et al., 2007) the plumes from small or
moderate fires rarely rise higher than twice the height of the
boundary layerHABL being in most cases confined within
0.5–1 ofHABL , especially if it is deep. For a qualitative con-
sideration, Fig. 9a shows that the fires in the MISR clima-
tology (>500 fires analysed over several years) set are much
stronger than the fires comprising the episodes 1 and 3 (over
23 000 individual fires, case 2 excluded, as these fires were
small). The MISR fires, however, extremely seldom inject
plumes above 1.5–2 km (a typical ABL height for summer at
those latitudes) and the dependence of the altitude on FRP
is weak (Fig. 10b). The quantitative comparison of MISR
archive and European fires is not straightforward due to dif-
ferent methodologies behind the sampling and possible bias
of MISR dataset towards stronger fires (for which the plume
height analysis is more precise). We therefore conclude that
(i) the injection of smoke from moderate fires in most cases
takes place within the boundary layer, and (ii) European fires,
even in strong events considered in the current study, can be
classified as moderate ones. For the European fires we there-
fore assumed simply that 50% of the emissions are injected
in the lowest 200 m, and the rest is homogenously distributed
from 200 m up to 1 km.

3 Examples of the simulations and comparison with the
MODIS and ground-based observations

Two examples of the simulations for the episodes 1 and 3 are
shown in Figs. 5 and 6. In both figures, the panel a) presents
the SILAM computations with only FAS-TA emission fields

Atmos. Chem. Phys., 9, 6833–6847, 2009 www.atmos-chem-phys.net/9/6833/2009/



M. Sofiev et al.: Fire Assimilaion System 6841

Fig. 5. Spatial distribution of column-integrated PM2.5 concentration on 3.5.2006.(a) The SILAM simulations with only FAS-TA PM2.5
emissions,(b) The SILAM simulations with only FAS-FRP PM2.5 emissions,(c) The SILAM simulations for total PM2.5 for full emissions,
and(d) combined MODIS Aqua and Terra observations (processing: Giovanni system, Acker and Leptoukh, 2007). Unit: [cg PM2.5 m−2].

for PM2.5, the panel b – for only FAS-FRP emission, the
panel c – for the full emission including total PM from FAS-
FRP combined with anthropogenic and natural sources, and
the panel d is obtained from merged MODIS Aqua and Terra
aerosol column-integrated mass over land.

The full-emission SILAM simulations included anthro-
pogenic, natural sea salt emissions and fire-induced emis-
sions for SOx, NOx, NHx and some organic species. In case
of fires, the speciation was based on the AM01 fractions. The
spatial resolution of the simulations was 25 km with 10 verti-
cal layers up to∼8 km of the altitude. The resulting gaseous
and particulate compounds have been converted to AOD and
to total-PM column-integrated burden.

Analyzing the results for both cases, one has to allow for
the following inherent limitations in modelling and experi-
mental data. Firstly, the model emission fields did not in-
clude wind-blown dust, which, however, is expected to be

small in comparison with the fire plumes. In addition, the ac-
tual MODIS observations of Aqua and Terra take place with
a time lag: satellites fly over Europe at different times, about
two hours one after another. Since each overpass covers only
a part of the computational domain, the complete map is ac-
tually a compilation of several overpasses, also about 1.5 h
after each other, but all the observations refer to daytime
(mostly in the morning). This results in certain imbalance
of the merged AOD fields: they are shifted in time from each
other and their combination has no definite time tag. There-
fore, the model results in Figs. 5 and 6 are averaged over
the daytime. Finally, observations cannot provide any infor-
mation for the areas covered by clouds or by dense aerosol
plumes (often for fires) misinterpreted as clouds – these areas
are missing in the panels d of both figures.
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Fig. 6. Spatial distribution of near-surface concentration of PM2.5 16.8.2008. (a) is for SILAM simulations with only FAS-TA PM2.5
emission,(b) is for the run with only FAS-FRP PM2.5 emission,(c) is the total-PM2.5 for full-emission computations,(d) is combined
MODIS Aqua+Terra observations of total PM mass in column (processing: Giovanni system, Acker and Leptoukh, 2007).

For both cases, the absolute levels of predicted column-
integrated PM mass differ by approximately 30% from the
observations (e.g. in Fig. 5 slightly over 50 cg m−2 in the
predicted peak compared with∼35 cg m−2 observed while
in Fig. 6 both the model prediction and MODIS observa-
tions show around 30–50 cg m−2 (however, the peak loca-
tions are somewhat shifted). The shapes of the predicted and
measured fire plumes are qualitatively similar, except for the
northern part of the fire plume in 2006, where it mixes-up
with the anthropogenic pollution from Central and Eastern
Europe and is also partly overshadowed by clouds. In both
cases, the SILAM-predicted max column burden is larger
than the observed one, which might point at over-stated fire
emission coefficients. However, the predicted plumes are
less efficiently dispersed than the observed ones, which seem
to cover larger areas. The reasons for these differences can
be either inaccuracies in the dispersion estimation or the
above-mentioned difficulties with the observations. Finally,
the over-estimation was not systematic day-by-day although
seen more often than the under-estimation.

To build a scatter-plot of the FAS+SILAM agreement with
the MODIS observations for each day of the episode 1, an
area with dominating fire-induced pollution has been se-
lected out of the domain and the scatter plots were made
for each day; an example of such figures has been presented
in Fig. 7. The day-to-day variation was large but the scat-
ter itself was moderate: each plot contains more than 4500
points, so that the visible spread in Fig. 7 with distinguish-
able individual points constitutes less than 0.1% of the to-
tal set. Comparing the scatter plots in Fig. 7, one can also
notice the similarities and differences between the results of
FAS-TA and FAS-FRP. Both plots show smaller scatter for
low concentrations in the columns, both have a very dense
cloud of points with almost twice over-estimation of concen-
trations at∼10 cg m−2; finally, both systems result in certain
under-estimation of the maximum values. However, the TA-
based scatter plot (left) has a higher correlation (0.5) com-
pared with that of FRP (0.3). This is mainly due to stronger
non-linearity seen in the FPR-based plot: somewhat stronger
over-statement of the moderate concentrations and somewhat
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stronger under-estimation of the peaks. However, such de-
pendencies did not repeat every day, so we do not draw defi-
nite conclusions on the relative performance of the branches.

Comparison with in-situ observations was also performed
using the available information for 2006 (the case of Au-
gust 2008 does not have enough data available to justify such
comparison). An example of evaluation against AIRBASE
stations (http://www.eea.europa.eu) is shown in Fig. 8, which
depicts the beginning of the plume motion towards the west.
During the next few days it has reached the Atlantic and Ice-
land. On 5 May, one can clearly see two well-segregated
parts of the European pollution pattern: the anthropogenic
contamination over France, Benelux and Germany on the
west, and Eastern Europe, which is covered by a dense fire
smoke.

4 Discussion

The Fire Assimilation System presented above is based on a
simple set of assumptions and involves explicit scaling fac-
tors to convert the TA or FRP values to the emissions of par-
ticulate matter and other pollutants. The approach is similar
to that of Ichoku and Kaufman (2005) whose emission fac-
tors were used as the initial set. However, in that work the
assumptions regarding the transport of smoke from the fires
were simpler. According to the authors, such simplification
results in uncertainties in the emission coefficients of about
a factor of 2, with a probable over-prediction of the emission
factorCe.

In this study, detailed atmospheric transport simulations
were performed and the scaling coefficients were attributed
to the type of the land use rather than to the geographical
position of the region.

According to the present study, the IK05Ce values for the
European area are indeed over-estimated but somewhat more
than expected. On the average, the new emission factors are
2–3 times lower – and the model still tends to over-predict
the aerosol column burden with both the FAS-TA and FAS-
FRP emissions. This is seen from evaluation of the indepen-
dent cases with the full-emission simulations (including both
anthropogenic and natural sources). However, the new coef-
ficients are still based on a limited set of data. Analysis over
longer periods and within various regions would be valuable
to refine them.

When the fire-induced emission is integrated over the
whole of Europe (from 10 W till 45 E longitude and from
35 N till 70 N latitude) using the emission coefficients
derived in the present study, the mean European daily
PM2.5 emission from fires is∼7.5 kton day−1 on the av-
erage in 2006–2008. This number can be compared with
∼9 kton day−1 of anthropogenic PM2.5 emission reported
by European Monitoring and Evaluation Programme EMEP
(Vestreng et al., 2006). According to these values, the to-
tal European fire-originated PM2.5 emission during these 3
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Fig. 7. Scatter-plots for FAS-TA(a) and FAS-FRP(b), using the
SILAM model, compared to MODIS AOT observations (converted
to PM2.5 column load) for 3.5.2006. Only fire-dominated area is
included (4557 grid cells). Mean MODIS 19 cg PM2.5 m−2, mean
FAS-TA 18 cg PM2.5 m−3, mean FAS-FRP 18 cg PM2.5 m−3; cor-
relation coefficients RTA=0.5, RFRP=0.3.

years is nearly the same as that of the primary anthropogenic
PM2.5emission. Clearly, both anthropogenic and fire emis-
sion estimates are substantially uncertain (Vestreng et al.,
2006) and the fire emission varies from year to year (e.g. Van
der Werf et al., 2006). However, one can still conclude that in
Europe the fire contribution to PM2.5 were comparable with
the anthropogenic contribution during recent years.

Other sources for comparison are the existing fire invento-
ries performed using independent approaches, such as Global
Fire Emission Database v.2 (GFEDv2, Giglio et al., 2006) or
RETRO archive (Schultz et al., 2008). However, the com-
parison with both GFEDv2 and RETRO can only be made
qualitatively, as these inventories only cover the period be-
fore 2006. Average fire-related emission of PM2.5 in Eu-
rope (same domain as above) for 1997–2005, according to
GFEDv2, was∼1 kton day−1. It is substantially lower than
in this study but a series of record-strong fire events in spring
2006 (Russian fires), in summer 2007 (southern European
and Greek fires) and August 2008 (south-eastern fires) could
largely be responsible for the differences. Apart from this,
according to Giglio et al. (2006), the GFEDv2 data should
be considered as lower-limit estimates. The RETRO analysis
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Fig. 8. Example of comparison of the model predictions (coloured plume) with in-situ AIRBASE observations (coloured circles) for PM10
for 5 May 2006. The unit of the legend isµg/m3.

stops in 2000 showing the long-term fluxes, which are more
than twice as high as those of GFEDv2 – 2.1 kton day−1.

As a summary for the emission factor evaluation, the cur-
rent methodology shows the results between the estimates of
GFEDv2 and RETRO and the original IK05 emission fac-
tors. The comparison of the atmospheric dispersion pre-
dictions and with in-situ and remote-sensing observations
showed that the scores varied day by day, depending on the
particular episode and region. Studies over longer periods
and wider areas are therefore needed to refine the emission
factors.

An evaluation of the vertical distribution of the initial
plumes comprised another difficult challenge for the system.
Small and moderate fires do not create a sufficient plume
buoyancy to reach substantially further than the top of the
boundary layer. However, for the large-scale fires this may
not be the case. Freitas et al. (2007) showed that injection
height can exceed 5–7 km, especially if atmospheric condi-
tions are favourable and the fires are very strong. The authors
also stressed the significant impact of the latent heat flux,
which can almost double the plume elevation in some cases.
However, the MODIS FRP records and the FAS applications
of the present study showed that strong individual fires are
rare in the European conditions and have not occurred dur-
ing 2006–2008 (for the cases considered within this study, a
summary is presented in Fig. 9).

To estimate the uncertainty related to the simplified injec-
tion height determination, a set of year-long sensitivity com-
putations has been performed with a single point source ar-
bitrarily set in Central Europe, the injection height of which

varied from 100 m to 1500 m. The scope of this paper does
not allow detailed analysis of the results but the main out-
come was as follows. The simulations using the SILAM
model showed that such increase of the source height re-
sulted in a∼2.5-fold decrease of the upper percentile (98%)
of hourly concentrations (computed with regard to different
meteorological situations over a year) at a distance of 60 km
from the source. The sensitivity decreases with growing dis-
tance from the source and decreases below 10% at a distance
of ∼250 km. For lower percentiles, the variation is substan-
tially smaller already in the vicinity of the source. Therefore,
the assumption does not seem to lead to excessive errors even
in case of comparatively strong fires.

Analysis of performance of FAS-TA and FAS-FRP did not
reveal an unequivocally better approach. As seen from exam-
ples of Figs. 3, 5 and 6, the effect of the difference between
the TA/FRP emission estimates for the same region and time
can be as large as a factor of 4. These differences are to be
related to the retrieval algorithms. Contrary to TA, FRP de-
pends on the background temperature determined from eight
surrounding pixels (providing that they are not overheated
themselves) and the actual pixel temperature. A single hot
pixel surrounded by the colder ones is therefore reported as
an intensive fire with a high emission rate. On the other hand,
emission from widespread small-scale fires may be under-
estimated due to a smaller temperature differences between
the adjacent pixels. Smaller difference would also tend to
lead to a lower signal-to-noise ratio and to more uncertain
emission estimates.

Atmos. Chem. Phys., 9, 6833–6847, 2009 www.atmos-chem-phys.net/9/6833/2009/



M. Sofiev et al.: Fire Assimilaion System 6845

The TA-based assessments are vulnerable to a mirror-
ing problem: the algorithm ignores background temperature,
which is used only for the classification of the fire pixels.
Consequently, the TA-method does not report any fire emis-
sions below a certain level corresponding to commonly oc-
curring temperatures in the region. It is also not sensitive to
large fires – because the brightness temperature grows slower
than linearly with the fire intensity.

In a general case, the FRP algorithm tends to report higher
emissions from fewer intensive locations among the compar-
atively low-emitting small fires. The TA approach, to the
opposite, better detects small fires, and potentially under-
estimates the emissions from the more intensive ones. How-
ever, in commonly occurring regional applications these dif-
ferences are partly averaged during compilation of emission
from hundreds of fires. As a result, the emission estimates
from TA and FRP for more extensive areas are usually com-
parable. The SILAM-based evaluation did not conclusively
favour either of these two methods. For instance, the com-
parison in Fig. 7 reflects the day when the TA-based com-
putations were preferable. However, during the next day the
FRP-based computations were in a better agreement with ob-
servations.

A potential way to improve the emission estimates for in-
dividual fires is to use the 11-µm channel to distinguish be-
tween the open flames and smouldering. However, this chan-
nel is noisier than the 4-µm one and the characteristic corre-
lations with the type of the fire are not high. This approach
has therefore not been implemented in the current FAS ver-
sion.

5 Conclusions

The presented Fire Assimilation System consists of two
branches based on partly complementary treatments of the
remote-sensing information on the wild-land fires: the Tem-
perature Anomaly and the Fire Radiative Power. The under-
lying methodologies are both dependent on the 4-µm tem-
perature of the burning pixel and their output variables can be
fitted one to another for moderate and strong fires. In such
cases the background temperature of non-burning pixels is
much smaller than the temperature of the burning ones.

The procedure of determination of the emission factors for
the FAS-FRP branch is based on the approach of Ichoku and
Kaufman (2005). However, in the current work the disper-
sion of the fire plumes was computed more rigorously using
the dispersion model SILAM. We suggest a refinement of
the emission factors by Ichoku and Kaufman (2005), based
on the analysis of the model predictions combined with the
satellite observations of column-integrated optical density
and aerosol mass. According to the present study, the new
factors are lower by a factor of 2 to 3, which is qualitatively
in agreement with the analysis of Ichoku and Kaufman, who
suggested that their estimates can be too high.
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Fig. 9. Qualitative analysis of expected plume heights in Europe.
(a) Percentiles for FRP for the MISR dataset (>500 fires) and
episodes 1 and 3 of this study (>23 000 fires);(b) observed plume
heights of MISR fires.

The main inherent uncertainties of the FAS presented in
this study include: (i) a simplified land use segregation, (ii)
the consideration of only one type of fires (e.g., smouldering
fires not treated explicitly), (iii) the possibly under-predicted
diurnal variation of the fire intensity, and (iv) a simplified
treatment of the vertical profile of the emission fluxes.

The described FAS has been implemented in the opera-
tional air quality forecasting suite of the Finnish Meteoro-
logical Institute, linked to the dispersion model SILAM, and
used since 2006. The related air quality predictions are rou-
tinely compared with available in-situ and remote-sensing
observations and are in most cases in agreement with the ob-
servations over the areas, for which the fire-originated pol-
lution is dominant. The differences of the peaks of column-
integrated concentrations from the observations characteris-
tically range from 20% to 50%. However, in specific cases,
the difference can be substantially higher.
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