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Abstract. We describe a comparison study of Aerosol Op-
tical Thickness (AOT) from numerical simulations using a
regional atmospheric model with an elastic backscattering li-
dar operating at 532 nm and a sunphotometer belonging to
the AERONET network at S̃ao Paulo (23◦ S 46◦ W) city,
Brazil, a very populated urban area. The atmospheric model
includes an aerosol emission, transport and deposition mod-
ule coupled to a radiative transfer parameterization, which
takes the interaction between aerosol particles and short and
long wave radiation into account. A period of one week was
taken as case study during the dry season (late August) when
intense biomass burning activities occur at remote areas in
South America, and meteorological conditions disfavor the
pollution dispersion in the city of S̃ao Paulo. The situation
presented here showed how smoke from biomass burning in
remote areas is transported to the south-east part of Brazil
and affects the optical atmospheric conditions in São Paulo.
The numerical simulations are corroborated by in situ mea-
surements of AOT obtained by lidar and sun photometry.

1 Introduction

In South America every year during the dry season (July to
October) a continental scale biomass burning activity (veg-
etation fires) occurs mainly associated to land use change.
A few weeks after the burning season started, large areas of
South America (SA) were covered by dense smoke plumes of
aerosol particles and several types of primary and secondary

Correspondence to:E. Landulfo
(landulfo@gmail.com)

gases. In GOES-8 visible imagery (Prins et al., 1995) an ex-
tense regional smoke plume was observed covering an area of
approximately 4 to 5 million km2 during the biomass-burning
season of 2005.Freitas et al.(2009) described a concep-
tual model of how the typical South American synoptic sys-
tems drive the transport of biomass burning emissions. The
general picture is dominated by an anticyclone associated
with the South Atlantic Subtropical High (SASH) centered
on the Atlantic Ocean and an orographic barrier of the Andes
Mountains at West. The smoke mostly produced in the Ama-
zon basin and Central part of Brazil is then normally carried
out to West and then turned to Southwest following the East
side of Andes. In same cases, this transport is strongly aug-
mented by occurrence of the South America Low Level Jet,
a strong low troposphere pole-ward stream at East side of the
Andes (Vera et al., 2006; Longo et al., 2006a,b). However
the occurrence of other transient systems like mid-latitude
cold fronts from the South can change this scenario and pre-
pares corridors of smoke export towards the south-east part
of Brazil, where the most populated urban areas do exist. In
these events, the local air pollution produced by the urban
activities gain additional load of pyrogenic and aged aerosols
and gases, changing the local air quality and atmospheric op-
tical property patterns. In this paper we study the aerosol
transport which can reach areas about 2000 km away from
the sources (Freitas et al., 2005) and and even affect lower
tropospheric aerosol levels in a densely populated area such
as S̃ao Paulo. A backscattering LIDAR system located at the
outskirts of S̃ao Paulo was setup since 2001 and has been op-
erational since then (Landulfo et al., 2003). With this system
one can vertically profile the aerosol in the atmosphere and
retrieve its optical properties. During the so called dry season
which corresponds to the period of June through September
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the number of aerosol transport events into the Metropoli-
tan Area of S̃ao Paulo increases drastically. In this case one
expects to observe aerosol layers above the Planetary Bound-
ary Layer (PBL) where less mixing with local sources hap-
pen. In order to corroborate these transports we correlated
the aerosol layers above the PBL and their optical properties
with a regional forecasted calculated model capable of eval-
uating the concentration of biomass burning products such
as: Carbon Monoxide (CO), Particulate Material with a size
below 2.5µm (PM2.5), and meteorological quantities such as
temperature, pressure, wind field, etc. In this paper the pe-
riod of 24 August through 30 August was chosen as a case
study for a model validation with a colocated AERONET
sunphotometer (SunP) and the LIDAR system (LS). After
the selection of these periods a day by day analysis was car-
ried out to obtain: the̊Angstr̈om Exponent(AE), the Aerosol
Optical Thickness (AOT), the Extinction-to-Backcatter Ratio
(LR) and a synoptic analysis of the time period considered.

2 Model and numerical simulations description

The numerical simulation described here was performed by
using the Coupled Aerosol and Tracer Transport model to the
Brazilian developments on the Regional Atmospheric Mod-
eling System (CATT-BRAMS,Freitas et al., 2005; Longo
et al., 2007). Shortly, CATT is an “on-line” transport model
fully coupled to the Regional Atmospheric Modeling System
(RAMS,Walko et al., 2000) and has been designed to study
emission, deposition and transport of gases and aerosols as-
sociated with biomass burning in South America. An impor-
tant characteristic of this modeling system is that the biomass
burning emission source is based on the fire counts daily ob-
served by remote sensing techniques (Freitas et al., 2005;
Longo et al., 2007), allowing realistic spatial and temporal
injection of smoke from fires in the simulated atmosphere.
Additionally, CATT-BRAMS includes a radiation scheme
that takes into account the interaction between aerosol par-
ticles and short and long wave radiation. The consistent de-
scription of the smoke and its interaction with short- and
long-wave radiation make the CATT-BRAMS model reli-
able for atmospheric feedback studies of the smoke aerosols
(Longo et al., 2006b). Model simulations for the 2005 dry
season were performed using 2 grids: the coarse grid with
160 km horizontal resolution covering the South American
(SA) and African continents and the nested finer grid with a
horizontal resolution of 40 km, covering only SA. The verti-
cal resolution for both grids varies telescopically with higher
resolution at the surface (150 m) with ratio of 1.07 up to a
maximum vertical resolution of 850 m, with the top of the
model at 23 km (a total of 42 vertical levels). The soil model
is composed of 7 layers with variable resolution, distributed
within the first 4 m of soil depth. For the atmospheric ini-
tial and boundary conditions, the 6 hourly Brazilian Center
for Weather Forecast and Climate Studies (CPTEC) T126

analysis field was used for the model initialization and to pro-
vide the necessary boundary condition using the traditional
RAMS scheme, the 4DDA (four-dimensional data assimi-
lation) technique. Initial soil moisture was taken from the
(Gevaerd and Freitas, 2006) estimation technique. The soil
temperature was initialized assuming a vertically homoge-
nously field defined by the air temperature closest to the sur-
face from the atmospheric initial data. The biomass burn-
ing source emission was defined from remote sensing fire
counts, as described below. The fire database used a com-
bination of the Geostationary Operational Environmental
Satellite – Wildfire Automated Biomass Burning Algorithm
(GOES WFABBA product (cimss.ssec.wisc.edu/goes/burn/
wfabba.html; Prins et al., 1995), the Brazilian National In-
stitute for Space Research fire product, which is based on
the Advanced Very High Resolution Radiometer (AVHRR),
aboard the NOAA polar orbiting satellites series (www.cptec.
inpe.br/queimadas; Setzer and Pereira, 1991) and the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) fire
product (modis-fire.umd.edu; Giglio et al., 2003). The fire
counts were then processed by the emission model and daily
emission sources were obtained for CO and PM2.5. During
simulation, the emission data is daily ingested in the model
to provide the tracer fluxes. Once emitted to the atmosphere,
CO and PM2.5 are dispersed and transported by the wind in
the model providing an useful tool to simulate and forecast
its concentration and trends.

3 Experimental setup

3.1 Lidar apparatus

A ground-based elastic Lidar system has been operational
in São Paulo since 2001 at the Laboratory of Environmen-
tal Laser Applications at the Centre for Laser and Applica-
tions (CLA/IPEN)Landulfo et al.(2003, 2005). This coaxial
lidar system is a single-wavelength backscatter system point-
ing vertically to the zenith. The light source used is a com-
mercial Nd:YAG laser (Brilliant by Quantel SA) operating
at the second harmonic frequency (SHF), namely at 532 nm,
with a fixed repetition rate of 20 Hz. The average emitted
power can be selected up to values as high as 3.3 W and
peak-power of a few MW when the pulse duration is taken
into account (around 4 ns). The beam divergence is typically
about 0.5 mrad at 85% (2 sigma-level) of energy. As a light
collector we employ a newtonian telescope with a primary
mirror with 30 cm of diameter and focal lengthf =30 cm.
The telescope’s field of view is variable ranging from 0.5
to 5 mrad by using a small diaphragm. At the present con-
figuration the system has a maximum overlap beggining at
300 m allowing the system to perform up to 8–10 km during
daytime (15–25 km nighttime). The backscattered laser radi-
ation is detected by a low-noise photomultiplier coupled to
a 1 nm FWHM interference filter to assure the reduction of
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solar background and improve the signal-to-noise ratio. The
PMT output signal is recorded by a transient recorder in both
analog and photoncounting modes. Data are averaged ev-
ery 2 min and summed up in blocks corresponding to about
30 min. The raw spatial resolution applied is 15 m, which
corresponds to 100 ns sampling in time.

3.2 Aeronet sunphotometer

The sunphotometer (CIMEL 318A) located at São Paulo is
in close range to the Lidar station. This system belongs
to the AERONET network (Holben et al., 1998) and per-
forms aureole and sky radiances measurements in order to
retrieve the Aerosol Optical Thickness for aerosols at sev-
eral wavelengths. The standard measurements are taken in
the whole spectral interval, and their number depends on the
daytime duration. Besides the AOT, it is possible to obtain
the aerosol size distribution, the phase function, single scat-
tering albedo and extinction-to-backscatter ratio. The sun-
photometer like the others in this network is periodically cal-
ibrated by a remote computer or locally. This procedure as-
sures measurement accuracy to within 1–3%. However vari-
ous instruments, calibration, atmospheric, and methodologi-
cal factors can influence the precision and accuracy achieved
and the total uncertainty in the AOT might reach around 5–
10% (Dubovik et al., 2002).

4 Lidar and aeronet data processing

4.1 Lidar data retrieval

The retrieval of the aerosol optical properties is based on the
measurements of the aerosol backscatter coefficientβaer at
532 nm, up to an altitude of 5–6 km. The vertical profile
of the aerosol backscatter and extinction coefficients is ob-
tained by the LIDAR inversion technique following an inver-
sion algorithmKlett (1985). In general, the inversion profile
is based on the solution of the so called LIDAR equation:

P(λL, R)=PL(
cτ

2
)Aoξ(λ)ζ(R)R−2β(λ, R)

×exp

[
−2

∫ R

0
α(λ, r)dr

]
(1)

where,P(λL, R) is the lidar signal received from a distance
R at the wavelengthλ, PL is emitted laser power,Ao is the
telescope receiving area,ξ(λ) is the received spectral trans-
mission factor,β(λ, R) is the atmospheric volume backscat-
tering coefficient,ζ(R) is the overlap factor between the
field-of-view of the telescope and the laser beam,α(λ, R)

is the extinction coefficient,c is the speed of light andτ is
the laser pulse lenght. In Eq.1, theα andβ coefficients can
be separated into two sets, one for the molecular scattering
and the other for the particle scattering component. Besides
in the inversion technique applied here there is a reference al-
titude which is used as an upper limit where we consider an

aerosol-free region. Besides in order to keep this inversion
“well” behaved we have to assume a relation betweenα and
β known also a the Lidar ratio:

Saer=
αaer

βaer
(2)

The Lidar ratio can be interpreted as the amount of light
being absorbed or scattered out of the telescope FOV by the
backscattered light due the influence of the aerosols, there-
fore it is a microphysical property of the aerosol which de-
pends on the aerosol refractive index, size and shape of
the aerosol particles. Since aerosols change their physico-
chemical properties due relative humidity changes and aging
this will have a direct impact on their optical properties and
therefore give a wide values of lidar ratio and their interpre-
tation (Anderson et al., 2000; Ackermann, 1998; Dubovik
et al., 2002; Cattrall et al., 2005). Also, in order to derive
the appropriateSaer values of the vertical backscatter and
extinction coefficients it is applied an iterative inversion ap-
proach by tuning theSaer with the AOT values retrieved by
the CIMEL data, compare it with those extracted from the
LIDAR data:

AOTLIDAR=K×AOTCIMEL=

Zref∑
0

αLIDAR (r)1r (3)

whereK is a number between 0 and 1, which might work
as a “weight” factor due the fact that the LIDAR overlap is
maximum at 300 m and above one might expect that the por-
tion below might not have been taken into account when es-
timating the aerosol load contribution to the total AOT (Lan-
dulfo et al., 2003). Here1r corresponds to the resolution
binning used to calculate theα andβ the values taken in the
whole period show that the maximum AOT values obtained
by CATT-BRAMS and measured by the sunphotometer show
some large differences which can be understood from three
aspects a) the sunphotometer data taken is level 1.5 and the
level 2.0 after calibration could change the AOT values due
instrument issues; b) The week during the measurements pre-
sented some clouds which are taken into account in the model
and c) The grid resolution employed in the model gives an av-
erage over an area of 40×40 km2. The retrieved coefficients
in our case is in a resolution equal to 30 m.

4.2 Sunphotometer data retrieval

The inversion of the solar radiances measured by the CIMEL
sunphotometer to retrieve the AOT is based on the Beer-
Lambert Law (4), assuming that the contribution of multiple
scattering within the small field of view of the sunphotometer
is negligible (Holben et al., 1998):

Iλ=I o
λ exp(−

τλ

µs

) (4)

whereIλ and I o
λ are the solar irradiances at the top of the

atmosphere and at ground level, respectively, andµs is the
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Fig. 1. CATT-BRAMS simulation of AOT at 550 nm for 23, 28, 29 and 30 August over the Brazilian territory and bordering countries. The
star markers gives the São Paulo position in South America.

cosine of the solar zenith angle.τλ is the total optical thick-
ness from the Rayleigh and aerosol contributions, as well the
ozone and water vapour absorption at 670 nm and 870 nm,
respecively. The molecular (Rayleigh) scattering contribu-
tion is taken into account to get the aerosol optical thickness
values at 532 nm, determined by the relation:

τaer
532

τaer
500

=(
532

500
)−å (5)

where, theÅngstr̈om exponent,å was derived from the
measured optical thicknesses in the blue and red channels
(440 nm and 670 nm):

å=−
log(τaer

440/τ
aer
670)

log(440/670)
(6)

In general, theÅngstr̈om exponent provides information
on the aerosol size distribution, and according to the liter-
ature (Dubovik et al., 2002) different types might bear dif-
ferent ranges for the̊Angstr̈om exponent: 1.2 to 2.5 (urban-
continental aerosols; 1.2 to 2.3 (biomass burning); 0 to 1.6
and 0.9 (desert dust and oceanic). The data are retrieved
from the AERONET site and given in three data quality

levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened)
(Smirnov et al., 2005), and Level 2.0 (cloud-screened and
quality-assured).

4.2.1 Results

The CATT-BRAMS simulations have been very useful in
assessing the dispersion and transport of biomass burning
aerosol over South America. The period of forest fires spans
from late July through early October (Prins et al., 1995)
which might vary due meteorological conditions. In this
work we made comparisons of some of the CATT-BRAMS
products, namely AOT (550 nm) and PM2.5 over the conti-
nent and in special in S̃ao Paulo, where a backscattering Li-
dar system and a AERONET sunphotometer are established.
A period of 7 days in late August 2005 (23 August through
30 August) was chosen as case study to observe the model
predictions and how the aerosol distribution and impact over
the atmospheric optical properties varied during this period.
From the CATT-BRAMS simulations, AOT (550 nm) is ob-
tained every 3 h, starting from 09:00 a.m. (Local Time) to
06:00p.m. Figure1 illustrates the AOT over the continent for
23, 28, 29 and 30 August (results for the entire period are
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Fig. 2. AOT, AE from CIMEL sunphometer and Lidar-Ratio for
23 August at 532 nm over the city of São Paulo, the AOT and AE
were extracted from the sunphotometer and the Lidar-Ratio was re-
trieved using the Lidar system at IPEN. The features shown in each
panel reveal the aerosol micro-physical patterns with and without
the biomass burning aerosol influence. The most evident is the in-
crease in the AOT while the other parameters are related to local
sources as well.

Fig. 3. Same as Fig.2 for 28 August.

presented in the supplementary material). In August 2005
the frequency of precipitation was higher in the eastern part
of north-east Brazil than in the other parts of Amazonia.
This increase was associated with the intensification of the
trade winds that brought stratiform clouds from the Atlantic
Ocean. In the eastern part of southern Brazil the precipita-
tion during the same period was associated with cyclogene-
sis in the adjoining Atlantic. Although the temperatures were
above normal in most parts of the country, two intense cold

Landulfo: A Comparison 7

Fig. 01. CATT-BRAMS simulation of AOT at 550 nm for 23, 28, 29
and 30 August over the Brazilian territory and bordering countries.
The star markers gives the São Paulo position in South America.
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Fig. 02. AOT, AE from CIMEL sunphometer and Lidar-Ratio for
23 August at 532 nm over the city of São Paulo, the AOT and AE
were extracted from the sunphotometer and the Lidar-Ratio was re-
trieved using the Lidar system at IPEN. The features shown in each
panel reveal the aerosol micro-physical patterns with and without
the biomass burning aerosol influence. The most evident is the in-
crease in the AOT while the other parameters are related to local
sources as well.
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Fig. 03. Same as figure 02 for 28 August.
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Fig. 04. Same as figure 02 for 29 August.

Fig. 4. Same as Fig.2 for 29 August.

mass penetrations caused steep falls of temperature in the
southern and the western regions of Brazil. Six mid-latitude
cold fronts from the South Polar Region, associated with
low pressure systems, propagated across the South American
territory reaching S̃ao Paulo metropolitan area. On 23 Au-
gust, the fifth cold front developed from a cyclogenesis over
Paraguai, Argentina Uruguai and south of Brazil. On the next
day, this system moved North passing over São Paulo and
reaching Rio de Janeiro state. The last cold front took place
on 28 and 29 August over Rio Grande do Sul and then moved
northward reaching S̃ao Paulo on 31 August. This synoptic
conditions created conditions for the spreading of biomass
material almost over the western part of the brazilian territory
and cold fronts brought these air masses towards the south-
eastern states where the city of São Paulo is included. This
procedure not only permitted us to compare the simulations
but also to assess how an influx of biomass burning aerosol
could “perturb” the local conditions in a heavy polluted ur-
ban area as S̃ao Paulo. Biomass burning has a strong im-
pact on simulated AOT (Fig.1); southward transport of the
smoke also affects AOT in mid-west Brazil, Paraguay and
Northeastern Argentina. São Paulo remains not affected un-
til 27 August, when a cold front (common in this time of the
year) brought aerosol into the city. It is observed then that
on 28 August there is a new cold front forming in the south
of the continent where a lot of aerosol concentration is ob-
served. Later in this period its advance culminates on 30 Au-
gust when AOT values over 1.5 are observed in the region
of São Paulo. Tracking these observations we took from the
LIDAR system and AERONET the measurements in these
days by extracting the AOT, AE and Lidar Ratio variations
at 532 nm over this period which are presented in a form of
panel in Figs.2, 3, 4 and5, the information is summarized
in Table1. The values taken in the whole period show that
the maximum AOT values obtained by CATT-BRAMS and
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Fig. 5. Same as Fig.2 for 30 August.

measured by the sunphotometer show some large differences
which can be understood as mentioned before from three as-
pects (a) the SUNPHOTOMETER data taken is level 1.5 and
the level 2.0 after calibration can change somehow the AOT;
(b) the week during the measurements presented some clouds
which are taken into account in the model and (c) the grid
resolution employed in the model gives an average over an
area of 40×40 km2. A correlation plot, see Fig.6, was made
between the two parameters, AOT BRAMS vs AOT CIMEL,
and aR2

≈0.47 was found. Another model feature is worth
mentioning is that the AOT is obtained by the spatial averag-
ing over a grid that covers the city of São Paulo. One might
see that on days 23 and 30 when the presence of biomass
burning transported from remote areas is predicted one ob-
serves a steep increase in the AOT, and the largest variations
in the AE and LR parameters. As expected the high values
of LR are a signature of strong absorbing particles (Ander-
son et al., 2000) and since due transport over a large distance
one expects increases in size as result of coagulation, con-
densation and gas-to-particle conversion (Reid et al., 1998)
therefore size distributions can present both coarse and fine
modes in equal amounts. Besides the vertical lidar profiles
taken during this period one could detect that the incoming
air parcels bringing aerosols were about 3–4 km discarding
the possibility the aerosol load was only from local sources.
The model also generated the PM2.5 concentration product
shown in Fig.7 where it can be clearly seen a strong corre-
lation between the particle concentration and AOT values for
a period of almost ten days beginning on 24 August. That
was expected since the coarse mode particles are more prone
to be deposited nearby the source and would have a shorter
residence time in the atmosphere.

8 Landulfo: A Comparison
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Fig. 05. Same as figure 02 for 30 August.
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Fig. 06. A correlation plot between the BRAMS retrieved AOT and
the measured by the AERONET sunphotometer (CIMEL).

Fig. 07. AOT from CIMEL sunphotometer at 550 nm and PM2.5

column integrated concentration during a period of ten days starting
on 22 August 2005. There is a direct correlation between these
two quantities and the largest values were observed when intense
biomass burning aerosol transport took place over the Metropolitan
Region of São Paulo.

Table 01. Summarized data of the period of our study with the
main quantities retrieved by the intrumentation and calculated by
CATT-BRAMS. The values taken in the whole period show that the
maximum AOT values obtained by CATT-BRAMS and measured
by the sunphotometer show some large differences which can be
understood from three aspects a) the sunphotometer data taken is
level 1.5 and the level 2.0 after calibration can change somehow the
AOT; b) The week during the measurements presented some clouds
which are taken into account in the model and c) The grid resolution
employed in the model gives an average over an area of 40/40 km.

mm-dd-yy MAX AOT
Observed

MAX AOT
(BRAMS)

AE variation LR
varia-
tion

08-23-05 0.25 0.15 1.48 - 1.67 33 - 65
08-24-05 0.50 0.30 0.49 - 0.98 30 - 33
08-25-05 0.22 0.30 1.42 N/A
08-26-05 1.20 0.70 1.25 - 1.53 46 - 55
08-27-05 2.10 0.80 1.45 N/A
08-28-05 0.30 0.80 1.60 - 1.75 N/A
08-29-05 0.30 0.60 1.50 - 1.60 33 - 40
08-30-05 1.70 >1.50 1.55 - 1.75 39 - 60

Fig. 6. A correlation plot between the BRAMS retrieved AOT and
the measured by the AERONET sunphotometer (CIMEL).
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Fig. 05. Same as figure 02 for 30 August.
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Fig. 06. A correlation plot between the BRAMS retrieved AOT and
the measured by the AERONET sunphotometer (CIMEL).

Fig. 07. AOT from CIMEL sunphotometer at 550 nm and PM2.5

column integrated concentration during a period of ten days starting
on 22 August 2005. There is a direct correlation between these
two quantities and the largest values were observed when intense
biomass burning aerosol transport took place over the Metropolitan
Region of São Paulo.

Table 01. Summarized data of the period of our study with the
main quantities retrieved by the intrumentation and calculated by
CATT-BRAMS. The values taken in the whole period show that the
maximum AOT values obtained by CATT-BRAMS and measured
by the sunphotometer show some large differences which can be
understood from three aspects a) the sunphotometer data taken is
level 1.5 and the level 2.0 after calibration can change somehow the
AOT; b) The week during the measurements presented some clouds
which are taken into account in the model and c) The grid resolution
employed in the model gives an average over an area of 40/40 km.

mm-dd-yy MAX AOT
Observed

MAX AOT
(BRAMS)

AE variation LR
varia-
tion

08-23-05 0.25 0.15 1.48 - 1.67 33 - 65
08-24-05 0.50 0.30 0.49 - 0.98 30 - 33
08-25-05 0.22 0.30 1.42 N/A
08-26-05 1.20 0.70 1.25 - 1.53 46 - 55
08-27-05 2.10 0.80 1.45 N/A
08-28-05 0.30 0.80 1.60 - 1.75 N/A
08-29-05 0.30 0.60 1.50 - 1.60 33 - 40
08-30-05 1.70 >1.50 1.55 - 1.75 39 - 60

Fig. 7. AOT from CIMEL sunphotometer at 550 nm and PM2.5
column integrated concentration during a period of ten days starting
on 22 August 2005. There is a direct correlation between these
two quantities and the largest values were observed when intense
biomass burning aerosol transport took place over the Metropolitan
Region of S̃ao Paulo.

5 Conclusions

We have performed a comparison study of aerosol optical
thickness (AOT) from numerical simulations using a regional
atmospheric model with an elastic backscattering lidar op-
erating at 532 nm and a sunphotometer belonging to the
AERONET network at S̃ao Paulo (23◦ S 46◦ W) city, Brazil.
This synergy proved to be very fruitful in understanding local
and regional aerosol transport and its presence at many differ-
ent layers and also helped qualitatively in deriving and inter-
preting the AOT, the AE and the extinction-to-backscattering
ratio values, important microphysical quantities to describe
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Table 1. Summarized data of the period of our study with the main quantities retrieved by the intrumentation and calculated by CATT-
BRAMS. The values taken in the whole period show that the maximum AOT values obtained by CATT-BRAMS and measured by the
sunphotometer show some large differences which can be understood from three aspects (a) the sunphotometer data taken is level 1.5 and
the level 2.0 after calibration can change somehow the AOT; (b) the week during the measurements presented some clouds which are taken
into account in the model and (c) the grid resolution employed in the model gives an average over an area of 40/40 km.

mm-dd-yy MAX AOT MAX AOT AE variation LR variation
Observed (BRAMS)

08-23-05 0.25 ∼0.15 1.48–1.67 33–65
08-24-05 0.50 ∼0.30 0.49–0.98 30–33
08-25-05 0.22 ∼0.30 1.42 N/A
08-26-05 1.20 ∼0.70 1.25–1.53 46–55
08-27-05 2.10 ∼0.80 1.45 N/A
08-28-05 0.30 ∼0.80 1.60–1.75 N/A
08-29-05 0.30 ∼0.60 1.50–1.60 33–40
08-30-05 1.70 >1.50 1.55–1.75 39–60

the aerosol optical properties. Predictions carried out with
the CATT-BRAMS model were found to be in agreement
with observations; the model was able to reasonably cap-
ture the effects of long-range transport of biomass burning
smoke on AOT. The strong temporal correlation between
simulated and measured AOT on RMSP (Fig.7) suggests
that the time variability of AOT at S̃ao Paulo are not only
explained by the local aerosol sources and atmospheric dy-
namics, but also are influenced by long-range transport of
smoke. There are instances where predictions do not agree
with observations and could be related to several issues. For
example, measurements may not always represent properties
at the model-resolved spatial scale; discrepancies can also
arise from errors in emission inventories, simulated relative
humidity, cloud fields and model dynamics.

Nevertheless, the synoptical description gave a good back-
ground in comprehension of the transport biomass burning
aerosol from remote areas such as the central-western and
Northern regions into the southern and south-eastern parts
of Brazil. Such transport was associated with low pressure
systems generated by cold fronts originating in the South
Polar latitudes. Further efforts should be taken into extend-
ing the time series in other years and comparing with other
instruments besides the LIDAR system and sunphotometer
employed with emphasis on satellite products from MODIS
and/or CALIPSO for instance.
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mosfera, Parte I: Descrição da metodologia e validação, Revista
Brasileira de Meteorologia, 21(3a), 59–73, 2006.

Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J.: An en-
hanced contextual fire detection algorithm for MODIS, Remote
Sens. Environ., 87, 273–282, 2003.

Holben, B. N., Eck, T. F., Slustker, I., Tanré, D., Buis, D. P., Setzer,
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