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Abstract. Forest fires in Alaska and western Canada repre-
sent important sources of aerosols and trace gases in North
America. Among the largest uncertainties when model-
ing forest fire effects are the timing and injection height
of biomass burning emissions. Here we simulate CO and
aerosols over North America during the 2004 fire season,
using the GEOS-Chem chemical transport model. We ap-
ply different temporal distributions and injection height pro-
files to the biomass burning emissions, and compare model
results with satellite-, aircraft-, and ground-based measure-
ments. We find that averaged over the fire season, the use of
finer temporal resolved biomass burning emissions usually
decreases CO and aerosol concentrations near the fire source
region, and often enhances long-range transport. Among the
individual temporal constraints, switching from monthly to
8-day time intervals for emissions has the largest effect on
CO and aerosol distributions, and shows better agreement
with measured day-to-day variability. Injection height sub-
stantially modifies the surface concentrations and vertical
profiles of pollutants near the source region. Compared with
CO, the simulation of black carbon aerosol is more sensi-
tive to the temporal and injection height distribution of emis-
sions. The use of MISR-derived injection heights improves
agreement with surface aerosol measurements near the fire
source. Our results indicate that the discrepancies between
model simulations and MOPITT CO measurements near the
Hudson Bay can not be attributed solely to the representation
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of injection height within the model. Frequent occurrence
of strong convection in North America during summer tends
to limit the influence of injection height parameterizations of
fire emissions in Alaska and western Canada with respect to
CO and aerosol distributions over eastern North America.

1 Introduction

Biomass burning is a substantial source of pollutants in the
atmosphere (Andreae and Merlet, 2001). Incomplete com-
bustion from fires produces large amounts of aerosols and
trace gases, which play an important role in atmospheric
chemistry and the radiation balance of the Earth-atmosphere
system. Smoke from biomass burning consists of inorganic
and organic aerosols including sulfates, nitrates, black car-
bon (BC), and organic carbon (OC). These tiny aerosols
scatter incoming solar radiation directly or indirectly, lead-
ing to the cooling of Earth’s surface and the atmosphere
(Forster et al., 2007). The light-absorbing aerosol com-
ponents (primarily BC) warm the atmosphere, counteract-
ing cooling caused by light-scattering particles (Bond and
Bergstrom, 2005). Deposition of BC on snow is shown to
reduce the surface albedo and affect the climate in the Arc-
tic (Hansen and Nazarenko, 2004; Stohl et al., 2006; Flanner
et al., 2007; Stone et al., 2008). It is estimated that global
mean direct radiative forcing for biomass burning aerosols
is +0.03±0.12 Wm−2 (Forster et al., 2007). In addition to
aerosols, large quantities of carbon monoxide (CO), nitrogen
oxides (NOx) and non-methane hydrocarbons (NMHC) are
also released to the atmosphere by biomass burning. These
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species are major precursors to the photochemical produc-
tion of tropospheric ozone (Goode et al., 2000) and thus have
a large impact on atmospheric chemistry and air quality.

The biomass burning aerosols and trace gases are subject
to long-range transport, with a potential to degrade the air
quality thousand kilometers downwind. For instance, several
studies have linked enhanced surface level pollutants in east-
ern and southeastern United States (e.g. Wotawa and Trainer,
2000; Colarco et al., 2004) and Europe (e.g. Forster et al.,
2001) with North American boreal forest fires. A useful tool
to investigate the effect of forest fires on atmospheric chem-
istry is global Chemical Transport Model (CTM), which
tracks the transport of pollutants by relating the distributions
of aerosols and trace gases to the biomass burning emissions
from forest fires. Because the composition and distribution
of smoke is highly variable, modeling forest fire effects re-
quires spatially and temporally detailed estimates of biomass
burning emissions (Kasischke et al., 2005).

The temporal variability and vertical distribution of
biomass burning emissions, however, are not fully repre-
sented in most current CTMs. For example, emissions of
trace gases and aerosols from biomass burning are typically
prescribed on a monthly basis in most global CTMs. While
this relatively low temporal resolution may be adequate for
investigating the annual mean or seasonal variability of fire
impacts, it may underestimate day-to-day fluctuations of pol-
lutants particularly during severe pollution events. In addi-
tion, fire emissions are traditionally considered to be emitted
near the surface and quickly mixed throughout the planetary
boundary layer (PBL). Therefore, in most models, biomass
burning emissions are initially distributed within the PBL
only. Observations have shown that boreal forest fire emis-
sions of aerosols and trace gases can rise above the PBL
when sufficient buoyancy triggered by fire energy is avail-
able (Fromm et al., 2005; Kahn et al., 2007). Aerosols and
trace gases generally have longer lifetimes in the free tropo-
sphere and therefore can travel further if the emissions are
above the PBL. Some recent modeling studies have allowed
for injection of biomass burning emissions above the PBL
in CTM simulations (e.g. Matichuk et al., 2007; Turquety et
al., 2007; Textor et al., 2007). However, the injection heights
used in these simulations lack strong observational support.
The impact of biomass burning emission temporal variabil-
ity and injection height on the transport of aerosols and trace
gases has not yet been well quantified.

In this study, we investigate the sensitivity of CO and
aerosol transport to temporal and vertical distribution of
biomass burning emissions. CO is an ideal tracer to study
the transport of biomass burning emissions, due to its rela-
tively long lifetime in the troposphere, 1–3 months, and rel-
atively simple chemistry. We conduct a series of simulations
of CO and aerosols using the GEOS-Chem global CTM (Bey
et al., 2001). Biomass burning emissions in the model are
from the Global Fire Emission Database version 2 (GFEDv2)
developed by van der Werf et al. (2006). This time series

of emissions is available with both monthly and 8-day time
steps. We use additional climate and satellite observations
to distribute the 8-day emissions on daily and 3-hourly time
intervals. One goal of this study is to determine the relative
importance of the temporal constraints of emissions, using
the monthly, 8-day, daily, and 3-hourly emissions time series
as different tracers. Additionally, we investigate the sensi-
tivity of transport to the parameterization of injection height.
We conduct simulations in which emissions were distributed
within the PBL, throughout the troposphere, and with vertical
distributions derived from satellite-observed smoke plume
injection heights. Our second goal is to better understand
how different implementations of smoke injection may affect
the spatial distribution and temporal variability of biomass
burning pollutants.

Forest fire activity in North American boreal forests has
increased in recent decades (Kasischke and Turetsky, 2006;
Gillett et al., 2004), with higher air temperatures impli-
cated as a contributing factor (Duffy et al., 2005). In this
study, we focus on extensive burning of boreal forests in
Alaska and western Canada during the summer of 2004.
According to the National Interagency Fire Center (NIFC,
http://iys.cidi.org/wildfire/), forest fires during the summer
2004 burned over 2.6 million hectares across Alaska. This
burned area is well above the 10-year average (∼0.3 mil-
lion hectares). Extensive fire activity also occurred in the
Yukon Territory of Canada, where over 1.5 million hectares
burned in summer 2004 (Canadian Interagency Forest Fire
Centre, CIFFC,http://www.ciffc.ca/). Several different data
streams during this period make it possible to track the long-
range transport of the Alaskan and west Canadian forest fire
emissions (e.g. Duck et al., 2007; Pfister et al., 2008; Real et
al., 2007; Cook et al., 2007; Turquety et al., 2007). In this
study, we evaluate model results with independent datasets
collected from the DC-8 aircraft during the INtercontinental
chemical Transport EXperiment – North America (INTEX-
NA) (Singh et al., 2006), retrieved by the Measurement of
Pollution in the Troposphere (MOPITT) instrument aboard
the NASA Terra satellite (Drummond et al., 1996; Deeter
et al., 2003), measured in the EPA Interagency Monitor-
ing of PROtected Visual Experiments (IMPROVE) program
(Chow and Watson, 2002), and recorded by ground-based
NASA Aerosol Robotic Network (AERONET) (Holben et
al., 1998). These satellite-, aircraft-, and ground-based ob-
servations provide CO and aerosol data on multiple temporal
and spatial scales, which helps interpret model results and
allows us to suggest possible strategies for improving the at-
mospheric model.

The paper has the following organization. Section 2 de-
scribes the GEOS-Chem model. We then introduce differ-
ent temporal constraints on biomass burning emissions in
Sect. 3. Several ways of modeling biomass burning emission
injection height are presented in Sect. 4. Various model sim-
ulations and the observations used for model evaluation are
discussed in Sect. 5. In Sect. 6, we show the results of the
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different simulations, and compare them with atmospheric
observations. We discuss the significance of improving emis-
sion temporal and vertical distribution for the simulation of
biomass burning pollutants in Sect. 7. Finally, a summary is
provided in Sect. 8.

2 GEOS-Chem description

GEOS-Chem is a global three-dimensional CTM (Bey et
al., 2001) driven by assimilated meteorological observations
from the Goddard Earth Observing System (GEOS) of the
NASA Global Modeling and Assimilation Office (GMAO).
We use here version 7-04-10 of the model (http://acmg.seas.
harvard.edu/geos/) driven by GEOS-4 meteorological fields
with 6-h temporal resolution (3-h for surface variables and
mixing depths), 2◦ (latitude)×2.5◦ (longitude) horizontal
resolution, and 30 vertical layers between the surface and
0.01 hPa. The lowest model levels are centered at approxi-
mately 170, 360, 720, 1300, and 2100 m above the local sur-
face.

The GEOS-Chem model includes a detailed description
of tropospheric O3-NOx-hydrocarbon chemistry. Gas phase
chemical reaction rates and photolysis cross sections are
taken from Sander et al. (2000). Photolysis frequencies are
computed using the Fast-J algorithm (Wild et al., 2000).
Advection is computed with a flux-form semi-Lagrangian
method (Lin and Rood, 1996). The moist physics pack-
age includes the deep convection scheme of Zhang and
McFarlane (1995) and the shallow convection scheme of
Hack (1994).

In this study we applied the GEOS-Chem model for CO-
only and aerosol simulations. Emission sources of CO
and carbonaceous aerosols include fossil fuel combustion,
biomass burning, and biofuel burning. Emissions of other
aerosols and aerosol precursors are as described in Park et
al. (2004). CO loss is calculated using archived monthly
mean OH concentration fields from a full-chemistry simula-
tion (Hudman et al., 2004). Aerosols are assumed to be exter-
nally mixed. Eighty percent of BC and 50% of OC emitted
from biomass burning are assumed to be hydrophobic and
hydrophobic aerosols become hydrophilic with an e-folding
time of 1.2 days (Cooke et al., 1999). The dry deposition
rates are calculated based on Wesley (1989). Soluble gases
and aerosols are removed by scavenging in convective up-
drafts (Jacob et al., 2000) as well as rainout and washout
by stratiform and convective anvil precipitation (Balkanski
et al., 1993; Liu et al., 2001). A detailed description of the
model has been reported by Bey et al. (2001) with updates
by Park et al. (2004) and Hudman et al. (2007).

In the standard version (7-04-10) of GEOS-Chem,
biomass burning emissions are from a climatological in-
ventory with a monthly temporal resolution (Duncan et al.,
2003). Here we use the GFEDv2 inventory that resolves the
interannual variability of biomass burning emissions (van der

Werf et al., 2006). The original GFEDv2 inventory has a spa-
tial resolution of 1◦ (latitude)×1◦ (longitude) and a monthly
temporal resolution. We re-sampled the emissions to 2◦

(latitude)×2.5◦ (longitude) grids for use in our GEOS-Chem
simulations.

GFEDv2 was derived using satellite observations includ-
ing active fire counts and burned areas in conjunction with a
biogeochemical model. Carbon emissions were calculated
as the product of burned area, fuel loads and combustion
completeness. Burned area was derived using active fire and
500-m burned area datasets from the Moderate Resolution
Imaging Spectroradiometer (MODIS) as described by Giglio
et al. (2006). Giglio et al. (2006) showed that the predicted
burned area for Canada and the United States has a strong
correlation with estimates compiled by Canadian Interagency
Forest Fire Centre (CIFFC) and National Interagency Fire
Center (NIFC). However, the burned area estimated as such
has low biases amount to 17% in Alaska and 30% in Canada
(Giglio et al., 2006), which will lead to low biases in the re-
sulting emission estimates. In this study, we scaled the origi-
nal GFEDv2 emissions by a factor of 1.2 over Alaska and 1.4
over Canada to account for the aforementioned low biases.
The fuel loads, including organic soil layer and peatland fu-
els, were estimated based on the Carnegie-Ames-Stanford-
Approach (CASA) biogeochemical model (van der Werf et
al., 2003). Combustion completeness was allowed to vary
among fuel types and from month to month (van der Werf et
al., 2006). Emission factors for extratropical forests from
Andreae and Merlet (2001) were used to scale trace gas
and aerosol emissions from carbon emissions. The result-
ing total boreal forest fire CO emissions in North America
(180◦–60◦ W; 30◦–80◦ N) were 32 Tg for June–August 2004,
comparable to previous estimates of 30±5 Tg by Pfister et
al. (2005) and 30 Tg by Turquety et al. (2007).

3 Temporal constraints on biomass burning emissions

Biomass burning emissions from boreal forest fires show
temporal variabilies on different scales. To explore the im-
plications of these variabilities for atmospheric transport of
CO and aerosols, we implemented several additional tempo-
ral constraints to the standard monthly GFEDv2 inventory
(hereaftermonthlyGFEDv2).

Forest fires typically last from several days to weeks as
seen in MODIS active fires (Giglio et al., 2003). Therefore,
we re-sampled the monthly GFEDv2 emissions to an 8-day
time step according to MODIS 8-day active fire counts. The
resulting8-dayinventory has nearly the same total emissions
as themonthlyinventory but with a different temporal distri-
bution.

Satellite observations have shown that forest fires exhibit
strong diurnal cycles (Giglio, 2007; Prins et al., 1998; Lan-
gaas, 1992; Cahoon et al., 1992; Menzel and Prins, 1996;
Eva and Lambin, 1998; Pack et al., 2000). Peak burning
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Fig. 1. GFEDv2 time series of total biomass burning emission rates
(Tg C/hr) in North America (180◦–60◦ W; 30◦–80◦ N) for June–
August 2004. GFEDv2 inventories withmonthly, 8-day, diurnal,
andsynopticvariations are shown.

typically occurs from 13:00 to 18:30 local time and distinctly
earlier in heavily forested regions in the tropics and sub-
tropics (Giglio, 2007). This diurnal cycle, together with the
diurnal variability of atmospheric boundary layer, can con-
ceivably influence the transport and deposition of biomass
burning emissions. Thus, we were motivated to imple-
ment a diurnal cycle to the8-dayGFEDv2 inventory to ac-
count for the diurnal variability of forest fires. We used
the 8-day GFEDv2 emission inventory as a starting point.
We first constructed a mean diurnal cycle with a 3-h time
step based on the Automated Biomass Burning Algorithm
(ABBA) active fire observations (Prins et al., 1998). The
ABBA fire products are available only in the Western Hemi-
sphere from the Geostationary Operational Environmental
Satellites (GOES). Specifically, for 5 regions (boreal North
America, temperate North America, Central America, north-
ern South America, and southern South America) we con-
structed mean diurnal cycles of active fires for the four most
abundant land cover classes in the MODIS land cover prod-
uct (MOD12C1v4, UMD cover types). The diurnal cycles
from the top four land cover classes were weighted by their
relative GFEDv2 emissions to obtain a single mean diurnal
cycle for the region.

In the Eastern Hemisphere where there is no GOES cover-
age, we constructed a mean diurnal cycle using information
obtained from the Western Hemisphere. First, we mapped
Eastern Hemisphere regions to Western Hemisphere regions
based on latitude and land cover. We then used the distribu-
tion of MODIS land cover and GFEDv2 emissions in each
Eastern Hemisphere region to construct a weighted diurnal
cycle from the diurnal cycles for each land cover class in the
corresponding Western Hemisphere region. The 3-hourly di-
urnal coefficients were multiplied by each day’s emissions
(from 8-dayGFEDv2) to derive thediurnal GFEDv2 emis-
sion inventory.

It is conceivable that forest fires and the resulting emis-
sions may be influenced by synoptic weather conditions. For
example, high wind speed and less precipitation may en-
hance burning hence emissions while large precipitation may
suppress forest fires. It is thus essential to account for this

synoptic variability in forest fires. Here we use the Initial
Spread Index (ISI, Van Wagner, 1987) for that purpose. ISI
indicates the fire favorability of synoptic weather conditions
and the expected rate of fire spread. We computed ISI within
each GFEDv2 8-day period using GEOS-4 meteorological
parameters including temperature, relative humidity, wind
speed, and precipitation. These meteorological variables at
noon local time were used and re-sampled to 1◦

×1◦ grids.
The exception is precipitation, which was aggregated to 24-h
totals. The derived ISI was then used to re-distribute emis-
sions within each 8-day period. This synoptic variability is
then superimposed onto thediurnal inventory. This treat-
ment added the day-to-day variation to thediurnal inven-
tory, while keeping the diurnal variation within each day un-
changed. The resulting inventory is referred to assynoptic
GFEDv2 that combines both diurnal and synoptic variations.
We would like to point out that the8-dayGFEDv2 inventory
(and thediurnal inventory as a result) likely already includes
some synoptic variability. That is because the8-day inven-
tory was in part constrained by active fire counts, which are
presumably influenced by synoptic weather conditions.

A comparison of themonthly, 8-day, diurnal, andsynop-
tic GFEDv2 inventories is shown in Fig. 1 for North America
(180◦–60◦ W; 30◦–80◦ N) during the summer 2004 fire sea-
son. Emissions increased from June to August in themonthly
inventory. The higher-temporal resolution inventories, espe-
cially thediurnal andsynopticinventories indicate that large
emissions were concentrated in short periods. Major fires
and associated emissions occur in late June through early
July, in mid-July, and throughout much of August. Signif-
icant diurnal variations are seen in thediurnal andsynoptic
inventories. Thesynopticinventory shows large day-to-day
variability. The general features of day-to-day variation in
oursynopticinventory are very similar to that in the fire emis-
sion inventories derived by Pfister et al. (2005) and Turquety
et al. (2007). However, in comparison to these two invento-
ries, oursynopticinventory has lower emission rate during
late July and higher emission rate during mid-August.

4 Injection heights of biomass burning emissions

There is ample evidence that biomass burning smoke plumes
can be injected well above the PBL (Kahn et al., 2008;
Fromm et al., 2005). Recent modeling studies also show
that some smoke plumes have to be injected into the free
troposphere for improved model comparison with observa-
tions (Turquety et al., 2007; Leung et al., 2007). This rising
of smoke plumes is thought to be related to the dynamical
heat flux from fires, convolved with the atmospheric stabil-
ity structure (Kahn et al., 2007), and the associated moist
convective processes (Fromm et al., 2005). These mecha-
nisms have been implemented and examined in several high-
resolution modeling studies (e.g. Luderer et al., 2006; Trent-
mann et al., 2002, 2006), which showed strong sensitivity of
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the pyro-convection to background meteorology. We exam-
ine here the effects of different plume injection height pa-
rameterizations on the model simulation of biomass burning
long-range transport.

It is conceivable that the pyro-convection at the fire
sources shows distinct characteristics compared with the pas-
sive convection driven by the meteorology. Fire-produced
buoyancy is naturally associated with abundant pollutants
such as CO, NOx, and smoke, therefore the potential for sig-
nificant atmospheric impact is much greater than for ther-
mal convection unrelated to fire (Fromm et al., 2005). How-
ever, many previous modeling studies release biomass burn-
ing emissions exclusively within the PBL, which does not ex-
plicitly treat the fire-induced convection. To represent pyro-
convection processes in model simulations, biomass burning
emissions can be injected to different vertical layers, emu-
lating the effect of fast vertical mixing in the source regions.
Recently, some efforts have been made to derive this injec-
tion height from the energy of fires and the stability of lo-
cal atmosphere through empirically- (Lavoué et al., 2000) or
physically-based (Freitas et al., 2006, 2007) parameteriza-
tions. However, the empirical parameterizations were usu-
ally derived from limited observations and may not apply to
other smoke plumes. The physically-based methods require
accurate measurements of fire energy and local meteorology,
which are often not available. Direct observations of for-
est fire injection height to validate these injection models are
still sparse. Space-based remote sensing instruments are be-
ginning to provide measurements of injection heights in fire
source regions using stereo imaging (e.g. Kahn et al., 2007;
Val Martin et al., 2009), and smoke plume heights downwind
from active sensors such as the CALIPSO Lidar (Labonne et
al., 2007).

A new stereoscopy-based technique has been recently de-
veloped to determine smoke plume injection height from
satellite observations (Kahn et al., 2007, 2008; Nelson et
al., 2008; Moroney et al., 2002). In this method, smoke
plumes were identified using the MODIS thermal anomaly
and the multi-angular images from the Multi-angle Imaging
SpectroRadiometer (MISR). The wind-corrected height for
each smoke pixel was derived using a high-resolution stereo-
matching technique, with an uncertainty of about±500 m
(Naud et al., 2005). This new approach represents a refine-
ment of that developed for the MISR Standard Stereo Height
product (Moroney et al., 2002). Detailed validation of the
MISR-derived plume height is still challenging due to limited
coverage of MISR measurements and the lack of coincident
in situ observations. For some smoke, the fires occur outside
the MISR field-of-view, and sometimes for other reasons, it
can be difficult to determine the evolution of plume height.
In these cases, it is uncertain whether the smoke was injected
or advected by regional meteorology to the observed heights.
We called such events smoke clouds, and assume the derived
heights represent the actual injection heights. Based on this
method, plume heights for more than 600 smoke plumes and

Emission rate (g C/m /hr)2

0 0.01 0.02 0.05 0.1 0.2

Fig. 2. Spatial distribution of GFEDv2 emissions (g C/m2/hr) in
Alaska and western Canada during June–August 2004 (blue). Also
shown are MISR-derived heights of smoke plumes (brown circles)
and smoke clouds (grey circles). Data are from Nelson et al. (2008).

smoke clouds over Alaska and the Yukon Territory during
the summer of 2004 have been derived (Fig. 2). The average,
maximum, and minimum plume heights observed during this
period were 0.97 km, 4.5 km, and 0.18 km, respectively. We
found between 10% and 30% of smoke plumes reached the
free troposphere, even considering the uncertainties in smoke
plume height retrieval and PBL height (Kahn et al., 2008).

To investigate the impact of plume injection height, we
conducted GEOS-Chem simulations with four different treat-
ments of biomass burning emissions, with or without vertical
injection above the PBL. In the base simulation, emissions
are evenly distributed throughout the PBL (hereafter referred
to as All PBL). Obviously this approach underestimates
emissions injected into the free troposphere. In the second
simulation, we distribute emissions vertically based upon sta-
tistical distributions of observed plume heights. Specifically,
we derived a probability distribution function (PDF) of the
MISR plume heights mentioned above. Biomass burning
emissions in each model grid box are then distributed ver-
tically according to this PDF (hereafter referred to asMIS-
Rpdf). This approach is not realistic in that not all plumes
rise above the boundary layer in the real atmosphere. On
the other hand, one might expect a correlation between high
emissions and high plume heights. By assuming all indi-
vidual smoke plumes follow a single PDF, this method may
underestimate the fire emissions injected at the highest alti-
tudes. Plumes injected at high altitudes generally result from
intense burning over a large area and are often associated
with large emissions (see Fig. 2). In the third simulation,
we treat these high rising smoke plumes and smoke clouds
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Fig. 3. Vertical profiles for releasing biomass burning emissions in
Alaska and western Canada during summer 2004, calculated using
All PBL, MISRpdf, MISRind, anduniform injection height distri-
butions as described in Table 1. The two triangles represent the
altitudes of maximum and minimum injection heights as observed
by MISR in Alaska and western Canada during summer 2004.

individually (hereafter referred to asMISRind). In this ap-
proach, when the height of a smoke plume or cloud is more
than 2 km above terrain, as observed by MISR, emissions
in the model grid box containing the plume are released to
the model layer corresponding to the MISR-derived plume
height. Since fires usually last for several days, we assume
that this high-altitude injection lasts through the 8-day pe-
riod. A single PDF profile derived from the rest plumes is
used to distribute other fire emissions into model vertical lay-
ers. On average, about 10% of the emissions are from those
plumes individually treated in the simulation. This approach
is based upon the hypothesis that the most intense fires (area
and biomass burned, energy release, emissions, etc.) fol-
lowed by injection to high altitudes contribute the most to the
long-range transport of biomass burning emissions. Since the
MISR smoke plume height product we used only includes
Alaska and western Canada, we applied the MISR derived

profiles (MISRpdf and MISRind) to these regions only. In
other regions, including central Canada where considerable
fires were present during the summer 2004, we still use the
ALL PBL distribution. Lastly, we conducted a simulation in
which biomass burning emissions were uniformly (in mass
mixing ratio) distributed through the tropospheric column up
to 200 hPa (hereafter referred to asuniform). This approach
is similar to that used in several previous studies (Leung et
al., 2007; Turquety et al., 2007; Hyer et al., 2007) although
we choose a simpler average configuration. It clearly rep-
resents an extreme scenario in which certain percentages of
emissions from each boreal forest fire were injected to the
middle and upper troposphere. The four vertical profiles for
plume injection,All PBL, MISRpdf, MISRind, anduniform
are shown in Fig. 3.

5 Model simulations and observations

To examine the effects of the temporal and vertical con-
straints on biomass burning emissions, we conducted GEOS-
Chem simulations of CO and aerosols in which the GFEDv2
biomass burning emissions inventories described in the pre-
vious sections were used. In the CO simulation, we track
CO emitted from different source types and regions. This
enables the separation of North American forest fire emis-
sions of CO from other sources and/or regions. The simula-
tions were conducted for January–August 2004 with the first
five months as initialization. Our analysis focuses on the last
three months, June–August. We archived model output of 3-
h average concentrations of tagged CO tracers and aerosols.

In the first four GEOS-Chem simulations, GFEDv2 emis-
sions were uniformly distributed within the boundary layer
but withmonthly, 8-day, diurnal, andsynoptictemporal vari-
ations, respectively. We conducted three additional simu-
lations where theMISRpdf, MISRind, anduniform biomass
burning injection height profiles were applied to thesyn-
optic GFEDv2 inventory. To isolate the effects of North
American boreal forest fires (mostly in Alaska and western
Canada) from other sources, we also conducted a simula-
tion in which North American biomass burning emissions
were shut off (hereafter referred to asnobbNA). Addition-
ally, we conducted simulations with moist convection turned
off to assess the importance of this factor relative to the vari-
ous temporal and vertical constraints on the export of boreal
forest fire smoke subsequent to emissions. Specifically, we
conducted three sensitivity tagged CO simulations in which
moist convection is turned off while biomass burning emis-
sions were prescribed using thesynopticGFEDv2 with all-
in-PBL injection,synopticGFEDv2 plusMISRindinjection,
andsynopticGFEDv2 plusuniform injection (referred to as
synoptic-noconv, MISRind-noconv, anduniform-noconv, re-
spectively). A summary of the different GEOS-Chem simu-
lations is presented in Table 1.
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Table 1. GEOS-Chem simulations with different GFEDv2 biomass burning emission inventories (different temporal distributions and plume
injection heights) and with or without convection.

Name Temporal distribution Plume injection height North Convection
monthly 8-day diurnal synoptic all PBL 1 MISRpdf 2 MISRind 3 uniform 4 America
resolved resolved cycle variation biomass

burning

monthly x x x x
8-day x x x x
diurnal x x x x x
synoptic x x x x x x

MISRpdf x x x x x x
MISRind x x x x x
uniform x x x x x x

nobbNA x x x x x

synoptic-noconv x x x x x
MISRind-noconv x x x x x
uniform-noconv x x x x x

1 all PBL: uniformly released throughout the PBL.
2 MISRpdf: vertically dirstributed according to a probability distribution function (PDF) of MISR-derived plume heights.
3 MISRind: similar to MISRpdf, but with high smoke plumes treated indivicually.
4 uniform: uniformly released throughout the tropospheric column up to 200 hPA.

To evaluate the model performance, we compared model
results with aircraft, satellite, and ground-based observations
of CO and aerosols. The INtercontinental chemical Trans-
port EXperiment – North America (INTEX-NA) (Singh et
al., 2006) was conducted over the continental United States
and western North Atlantic during the summer of 2004.
A focus of this experiment was to quantify and character-
ize the inflow and outflow of aerosols and trace gases over
North America. We used the 5-min aggregated CO mix-
ing ratio and aerosol absorption data from INTEX-NA, for
which the NASA DC-8 was the principle platform. The mea-
sured 530 nm absorption coefficient (babs, m−1) from Parti-
cle Soot Absorption Photometers was used to derive the BC
mass concentration (M, g/m3) as follows: M=

babs
Eabs

, where

Eabs=10 m2 g−1 is the assumed BC mass absorption effi-
ciency (Horvath, 1993; Andreae and Gelencsér, 2006). Ver-
tical profiles of CO mixing ratio and BC mass concentration
were derived from the DC-8 measurements and compared
with GEOS-Chem results.

The Measurement of Pollution in the Troposphere (MO-
PITT) instrument aboard the Earth Observing System (EOS)
Terra satellite measures upwelling infrared radiation and has
been retrieving CO mixing ratios and total column amounts
since 2000 (Drummond et al., 1996; Deeter et al., 2003).
CO mixing ratios are reported for six pressure levels: 850,
700, 500, 350, 250, 150 hPa, and at the surface, for global
clear-sky measurements. The retrieved CO profile is a linear
combination of the true profile and a fixed a priori profile.

MOPITT also retrieves CO column, which is the integral of
the CO mixing ratio at each level, using an averaging kernel
that is most sensitive to the middle troposphere (Deeter et
al., 2003). MOPITT views the Earth with a 22 km×22 km
spatial resolution and covers the entire globe every 3 days.
In this study, we compare spatial distribution and time series
of CO column over North America from the model simula-
tions with the MOPITT V3 Level 3 (MOP03, gridded daily
averages) CO retrievals. Only the daytime (10:45 local time)
MOPITT CO columns were used in our comparison because
the nighttime measurements have not been validated (Heald
et al., 2004).

Two surface observation networks provide aerosol mea-
surements that can be used for comparison with our model
results. The EPA Interagency Monitoring of PROtected Vi-
sual Experiments (IMPROVE) program (Chow and Watson,
2002) has been measuring air quality parameters in United
States since 1985 (http://vista.cira.colostate.edu/improve/).
The IMPROVE network monitored surface level aerosols and
optical properties at 175 sites in the summer of 2004. 24-
h average samples were collected every 3 days. The IM-
PROVE aerosol samplers contained four modules with dif-
ferent filters to collect and analyze aerosol concentration and
composition. In this study, we used surface BC concentra-
tions analyzed from the quartz filters for comparison with
GEOS-Chem results. Only data with quality control flag
“NM (normal)” or “CG (cogged filter with the final flow rate
greater than one-half of the initial flow rate)” were used in
this analysis.
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NASA’s AErosol RObotic NETwork (AERONET, Holben
et al., 1998) provides globally distributed near real time ob-
servations of aerosol spectral optical depths at wavelengths
of 340, 380, 440, 500, 670, 870, 940 and 1020 nm (Holben
et al., 1998). During the summer of 2004, there were more
than 80 automatic Sun-sky spectral radiometer sites operat-
ing. In this study we compared model simulated aerosol re-
sults against AERONET Level 2.0 cloud-screened, quality-
assured 500 nm AOD data (Smirnov et al., 2000).

We used CO from MOPITT and aircraft measurements to
compare with our simulation because these measurements
provided CO information in the middle and upper tropo-
sphere, where the long-range transport has largest effect.
Measurements of surface CO are also available, but the vari-
ability of surface CO is often dominated by other factors such
as fossil fuel emissions. Therefore it is difficult to use these
measurements to assess the importance of temporal variabil-
ity and injection height of biomass burning. In addition to
aerosol measurements from IMPROVE and AERONET, we
also compared model results with AOD products from satel-
lite remote sensing instruments (e.g. MODIS and MISR).
Initial results showed that the differences between differ-
ent model simulations are much smaller than the model-
observation difference and MODIS-MISR difference. Thus
we will not present these comparisons in this study.

6 Results

6.1 Simulated CO and BC in response to biomass
burning emission temporal and vertical distribution

The primary goal of this study is to assess the impact of vari-
ous temporal and vertical emission distributions on the trans-
port and mixing of North American biomass burning CO and
aerosols. In this section, we compare the CO and BC re-
sults from different GEOS-Chem simulations as summarized
in Table 1. The differences among the model simulations
can then be attributed to different temporal and/or vertical
distributions of biomass burning emissions. We present the
comparisons of CO mixing ratios in different model layers in
6.1.1. In 6.1.2, we show how the temporal distributions and
injection heights of biomass burning emissions affect CO and
BC total column burdens in North America.

6.2 CO mixing ratios

Modeled CO mixing ratios at five pressure levels (surface,
850 hPa, 700 hPa, 500 hPa, 300 hPa) over North America and
adjacent oceans from themonthlysimulation are shown in
the left column of Fig. 4. The values are averages for June–
August 2004. In addition to the anthropogenic emissions
over the Midwest and East Coast, emissions from boreal for-
est fires in Alaska and western Canada and their subsequent
long-range transport lead to widespread enhancement in CO
throughout the lower to middle troposphere.

Fig. 4. Model simulated 3-month (June–August 2004) average
CO mixing ratios (ppbv) at five pressure layers (surface, 850 hPa,
700 hPa, 500 hPa, 300 hPa) from themonthlysimulation, and the
differences due to the adding of temporal constraints (synoptic–
monthly), and due to the adding of both temporal constraints and
MISRind injection height of biomass burning emissions (MISRind
– monthly).

In comparison with themonthlysimulation, effects of ad-
ditional temporal and vertical constraints are clearly seen
in the middle (synoptic – monthly) and right (MISRind –
monthly) columns of Fig. 4. The difference between thesyn-
opticandmonthlysimulations (middle column, Fig. 4) repre-
sents the cumulative effect of all three temporal constraints,
i.e. the 8-day redistribution, the diurnal cycle, and the syn-
optic day-to-day variation. Relative to themonthlysimula-
tion, thesynopticsimulation decreases CO levels throughout
the tropospheric column over the biomass burning source re-
gions, and increases CO levels downwind of the source re-
gions. The largest increase occurs at 300 hPa over much of
North America.

These differences obviously result from the combined ef-
fects of both the temporal distributions of biomass burn-
ing emissions and meteorological conditions. To illustrate
this point, we calculated the mean values of horizontal wind
speeds and deep convective mass fluxes from the GEOS-
4 meteorological fields over Alaska and western Canada,
weighted by biomass burning emissions from GFEDv2. The
results are summarized in Table 2. Averaged over June–
August 2004, the emission-weighted convective mass fluxes
from thesynopticsimulation are higher than those from the
monthlysimulation at all pressure levels. This suggests that
with emissions distributed over 8-day or shorter time inter-
vals, roughly the durations of major fire events, more CO
is transported out of the boundary layer into the free tropo-
sphere. Additionally, the emission-weighted mean horizontal
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Table 2. Biomass burning emission-weighted mean meridional (V) winds (m/s), zonal (U) winds (m/s), and deep convective mass fluxes
(10−2Pa/s) over Alaska and western Canada during summer 2004. Positive values indicate eastward, northward and upward winds and
fluxes.

Meridional Wind (V) Zonal Wind (U) Deep Convective Mass Flux
monthly 8-day synoptic monthly 8-day synoptic monthly 8-day synoptic

Surface −3.15 −4.44 −3.24 5.09 4.30 4.02 2.77 2.46 2.91
850 hPa −6.64 −9.34 −7.81 11.68 11.08 11.70 1.94 1.76 2.16
700 hPa −11.46 −16.56 −14.27 18.78 19.13 21.28 1.49 1.70 2.24
500 hPa −17.17 −25.79 −22.10 26.78 28.07 31.86 0.75 1.09 1.61
300 hPa −23.73 −36.97 −33.20 38.51 40.49 47.15 0.02 0.03 0.04

Fig. 5. Differences of model simulated 3-month (June–
August 2004) average CO mixing ratios (ppbv) at five pressure lay-
ers (surface, 850 hPa, 700 hPa, 500 hPa, 300 hPa) due to the adding
of each temporal constraint on biomass burning emissions.

wind speeds are also higher in thesynopticsimulation (see
Table 2), indicating stronger horizontal advection of CO.

Going from monthly to synopticGFEDv2 not only en-
hances transport, but also changes the transport direction.
For example, negative values over the sub-Arctic regions in
Fig. 4 indicate that the northward transport is decreased in
thesynopticsimulation. On the other hand, increased influ-
ence of biomass burning CO is seen at mid-latitude North
America in thesynopticsimulation. This is consistent with
the much stronger, southward (negative values), emission-
weighted meridional winds in thesynopticsimulation at all
pressure levels (Table 2).

Also shown in Fig. 4 (right column) are the changes in CO
mixing ratios relative to themonthlysimulation when both
the temporal constraints and MISR-derived injection heights
were used (MISRind – monthly). The spatial patterns out-
side of fire source regions are similar to those ofsynoptic –

monthly(Fig. 4, middle column), indicating that the overall
effect of plume vertical injection as implemented inMISRind
is smaller than that of the temporal distributions. However,
in the source regions, the use ofMISRindvertical distribu-
tion significantly increases the CO mixing ratios at 700 hPa
while decreases CO at the surface. The enhancement of CO
at 700 hPa over eastern North America is also stronger than
that ofsynoptic – monthly.

Figure 5 shows the relative importance of each tempo-
ral constraint. A mean diurnal cycle as implemented in the
model has a relatively minor effect on the export and long-
range transport of biomass burning CO. It somewhat de-
creases the surface CO level while increasing CO mixing
ratios at high altitudes (Fig. 5, middle column). Matichuk
et al. (2007) studied the effect of a diurnal cycle on biomass
burning aerosols in southern Africa and reached similar con-
clusions.

Relative to the inclusion of a diurnal cycle, going from
monthly to 8-day GFEDv2 inventory (Fig. 5, left column)
and the inclusion of a synoptic constraint (Fig. 5, right col-
umn) lead to larger changes in simulated CO distribution.
Compared to themonthlysimulation, the use of the8-day
GFEDv2 enhances the southward transport and therefore in-
creases the CO mixing ratios in southern Canada and north-
ern US. This change can also be linked to the increased coin-
cidence of fire emissions and southward winds (see Table 2).
With the use of the synoptic constraint, the enhancement of
southward transport is decreased. More transport is toward
the high latitudes over northeastern Canada.

Changes of CO spatial pattern due to different treatments
of biomass burning emission injection heights are shown in
Fig. 6. We present results from three injection height dis-
tributions: MISRpdf, MISRind, anduniform. Relative to a
synopticsimulation in which all biomass burning emissions
are distributed within the PBL, the two MISR-based injection
height profiles,MISRpdfandMISRind, produce higher CO
mixing ratios in the middle troposphere and lower CO at sur-
face. Among the five levels, the largest increase in CO from
theMISRpdfsimulation occurs at 850 hPa, which is compati-
ble with the largest difference of biomass emissions between
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Fig. 6. Differences of model simulated 3-month (June–
August 2004) average CO mixing ratios (ppbv) at five pressure lay-
ers (surface, 850 hPa, 700 hPa, 500 hPa, 300 hPa) due to the use of
each injection height distribution of biomass burning emissions.

theMISRpdfandAll PBL distributions (Fig. 3). Since most
high smoke plumes individually treated in theMISRinddis-
tribution reside between 600 hPa and 800 hPa, theMISRind
simulation also shows large increase of CO at 700 hPa. The
increase of CO is also seen up to the 500 hPa level over high
latitudes. By injecting much more emissions into higher
altitudes (Fig. 3), theuniform distribution significantly de-
creases the CO mixing ratios in the lower troposphere and
increases CO in the upper troposphere. The affected region
covers a much larger area than that from theMISRpdf or
MISRindsimulations.

We also calculated the BC concentration changes due to
the use of different biomass burning emission temporal dis-
tributions and injection height distributions (not shown here).
Overall the effects are similar to that for CO mixing ratios
shown in Figs. 4–6. A noticeable difference is that the ef-
fects on BC at high altitudes are much smaller than for CO.
In addition, the domain in which injection height reduces the
surface BC concentration is smaller than that for CO.

6.3 Column burdens

In this section, we investigate the sensitivity of CO and BC
column burdens to different biomass burning emission tem-
poral distributions and injection height profiles. Figure 7
shows the changes of 3-month (June–August 2004) average
CO and BC column burdens after using the temporal con-
straints, the MISR-derived injection height distributions, and
both. Since the relative differences of CO and BC column
burdens between theMISRpdfandMISRindsimulations are
small, hereafter we only concentrate on theMISRindsimula-
tion.
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Fig. 7. Impacts of biomass burning emission temporal and injection
height distribution on simulated 3-month (June–August 2004) aver-
age CO (left columns) and BC (right columns) column burdens in
North America. The absolute differences (kg/km2) are shown in red
and blue grid cells. The relative changes (in percentage) are shown
in line contours.

With biomass burning emission temporal constraints
added, more emissions are distributed during shorter inter-
vals. Previous discussions on Fig. 4 and Table 2 show
that emissions during these shorter intervals are subject to
stronger convection and southward transport. Therefore, the
CO and BC column burdens are reduced in the source re-
gions and increased in the downwind regions, particularly
south of 60◦ N, as evident in the difference between thesyn-
optic andmonthlysimulations (Fig. 7a). TheMISRindsim-
ulation includes all the temporal constraints (8-day, diurnal,
and synoptic) therefore the difference between theMISRind
andsynopticsimulations is attributed to the effect of plume
injection (see Sect. 4). Lifetimes of pollutants including CO
and BC are typically longer in the free troposphere. Thus the
overall effect of applying theMISRindvertical distribution
is decreasing the CO and BC burdens in the biomass burn-
ing source regions and increasing them downwind, as shown
in the difference between theMISRindandsynopticsimula-
tions (Fig. 7b). The combined effect of including both the
temporal constraints and MISR-derived emissions injection
height distributions, as the difference between theMISRind
andmonthlysimulations shows, is mainly determined by the
temporal constraints (Fig. 7c).

The changes of CO and BC column burdens when ap-
plying the temporal and/or vertical injection constraints are
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Fig. 8. Time series of enhanced total CO and BC burdens (Tg) in
North America (180 W–60 W, 30 N–80 N) for June–August 2004.
The enhancement is the difference between simulated CO/BC bur-
den and that from thenobbNAsimulation. The 3-month mean val-
ues for the enhancement from each simulation are shown in the leg-
end.

considerably different. Relative to CO, BC burden decreases
in a smaller region near the biomass burning sources, as ex-
pected, considering the shorter lifetime of BC. Over eastern
North America, the use of temporal constraints and MIS-
Rind injection height increases BC burden as much as 20%,
whereas the largest change in CO burden is only about 2%
(Fig. 7c).

Figure 8 shows GEOS-Chem simulated time series of CO
and BC burden enhancements within the North American
domain, defined as 180◦–60◦ W, 30◦–80◦ N, during June–
August 2004. The enhancements were calculated as the
difference between thenobbNAsimulation in which North
American biomass burning (mostly in Alaska and western
Canada) were turned off, and other simulations (see Table 1).
The larger slopes in Fig. 8 correspond to intensive emis-
sions shown in Fig. 1. Overall, the use of emissions with
higher temporal resolutions shows more temporal variability,
and generally increases the enhancements during periods of
extensive fire occurrences such as later June, mid-July, and
mid-August. However, there is no significant change in the
three-month mean values (shown in the legend of Fig. 8) of
enhancements for CO and BC from simulations with differ-
ent temporal distributions of emissions. We also notice that
in the monthlyand 8-day simulations in which the diurnal
variability of biomass emissions is not represented, a diurnal
cycle of total burden is clearly seen for BC, but not for CO.
This diurnal signal of the BC burden, not to be confused with
that from diurnal cycle of fires, may originate from the diur-
nal patterns of aerosol removal processes (Nicholson, 1988).

Figure 8 also demonstrates the difference between the in-
jection height effects on BC and CO. TheMISRind and

uniform simulations, especially the latter, show large in-
creases of total BC burdens due to longer lifetimes of BC
once injected into the free troposphere. Therefore, the to-
tal BC enhancement is larger when some fire emissions are
above the PBL (MISRindanduniform). The consequence for
the CO burden, however, is the opposite. The amount of in-
creased CO transported out of the North American domain
is so large that increased transport removal outweighs the in-
crease of CO burden within the domain due to the longer
lifetime.

6.4 Comparison of modeled CO and BC vertical profiles
with INTEX-NA observations

The role of biomass burning injection height distribution in
affecting the simulated vertical profiles of trace gases and
aerosols is discussed in this section. We compared our model
results with DC-8 aircraft measurements during the INTEX-
NA experiment over eastern North America (Fig. 9). We
compared CO and BC vertical profiles averaged for the en-
tire INTEX-NA period and from specific flights. In the lat-
ter case, the selected flights correspond to days with appar-
ent influence of forest fires in Alaska and western Canada.
GEOS-Chem results are sampled along the flight tracks at
the time of measurements (seehttp://www.espo.nasa.gov/
intex-na/flightreps.html).

Overall, GEOS-Chem captures the main features of the
mean and individual CO profiles (Fig. 9a, b), even with
biomass burning emissions distributed within the PBL only
(in the synopticsimulation). The largest bias occurs in the
low troposphere, where the model overestimates the CO mix-
ing ratios. This may be due to several factors including emis-
sion estimates that are too high, or by model biases such as
OH levels that are too low, or convection that is too weak.
Detailed exploration of this discrepancy is beyond the scope
of this paper. Due to the different temporal and spatial scales
between model results and the INTEX-NA measurements,
GEOS-Chem is not expected to capture some extreme events
of high CO. Therefore, there are occasional large differences
between model results and the mean values of observations
(e.g. at 350 hPa on 18 July).

The difference of CO mixing ratios between thenobbNA
simulation and other simulations, reflecting the contribu-
tion from North American biomass burning, is 10∼20 ppbv,
about 10% of the total CO (Fig. 9a). This enhancement
occurs throughout the troposphere. The inclusion of North
American biomass burning emissions improves the agree-
ment with observations in the middle and upper troposphere
while degrades the simulation in the lowermost troposphere.

The change of CO profile when using theMISRindinjec-
tion height distribution is generally small. Note thesynop-
tic lines in Fig. 9 are mostly overlapped with theMISRind
lines. Even during days when the forest fires in Alaska and
western Canada significantly increased the CO mixing ratios
(as represented by the large difference betweennobbNAand
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o

Fig. 9a. Comparisons of vertical CO and BC profiles from model
simulations and from measurements during the 2004 INTEX-NA
experiment for all flights. Grey points and bars are mean values and
standard deviation of the observations at each level. Black squares
are median values of the observations at each level. All model re-
sults are sampled along the flight trajectories.

07/15 07/18 07/22 08/02 08/13

07/15 07/18 07/22 08/02 08/13

Fig. 9b. Same to Fig. 9a, but for representative individual flights.

synopticCO profiles), the differences between thesynoptic
andMISRindprofiles are almost negligible. It is not obvious
from Fig. 9 that theuniformsimulation improves the agree-
ment with the aircraft observations in the upper troposphere,
either in the average sense (left panel, Fig. 9a) or during in-
dividual flights (top row, Fig. 9b). It does show an enhanced
plume in the upper troposphere during the flight on 15 July
but significantly overestimates CO by more than 20 ppbv dur-
ing the flight on 13 August.

The shape of CO profiles is determined by moist convec-
tion to a large degree. By turning off convection, GEOS-
Chem significantly underestimates CO at high altitudes and
overestimates CO at low altitudes. The model sensitivity
to biomass burning injection height is also affected by con-
vection. Most flights during INTEX-NA were thousands of
kilometers away from the fire sources in Alaska and west-
ern Canada. During long-range transport, vertical mixing
processes including convection carry more pollutants out of
the PBL, thereby reducing the effect of biomass burning
injection height. Figure 9 shows the difference between
simulations with different injection height distributions is
smaller when convection is turned on.

The vertical profile of BC is an important factor in de-
termining BC radiative effect (Haywood and Ramaswamy,
1998; Penner et al., 2003). However, it is extremely diffi-
cult to compare the modeled BC vertical profile with mea-
surements for several reasons. First, the data in each layer
are more variable than for CO (shown with grey error bars
in Fig. 9). Second, the assumed value of mass absorption
efficiency, which is used to convert measured absorption ex-
tinction to BC concentration, may vary by more than a factor
of two (Fuller et al., 1999; Andreae and Gelencsér, 2006).
Third, the uncertainty caused by the deposition scheme used
in the model may have a large impact on the comparison. De-
spite these uncertainties, the comparison (Fig. 9) shows small
concentration differences between thesynopticandMISRind
simulations.

6.5 Comparison of modeled CO total column with
MOPITT observations

The MOPITT CO retrieval is most sensitive to the middle
troposphere (Deeter et al., 2003). For direct comparison with
MOPITT CO columns, GOES-Chem simulated CO profiles
were sampled along MOPITT orbital tracks and then inter-
polated to the six standard MOPITT pressure levels and the
surface. The resulting model profiles were then convolved
with MOPITT averaging kernels and a priori profile (Em-
mons et al., 2004). To minimize the a priori influence and
compare model results against actual measured information,
we used MOPITT retrievals with a priori contributions less
than a preset threshold. Two thresholds (50% and 30%) were
used to show the sensitivity of the comparison to this value,
as discussed below.

Figure 10 shows the 3-month (June–August 2004) aver-
age CO columns over North America from the MOPITT re-
trievals and from GEOS-Chem simulations. MOPITT CO
shows high values over the fire source regions in Alaska and
western Canada, over the west of Hudson Bay, and over east-
ern Canada. There is a significant difference between MO-
PITT and GEOS-Chem CO columns, both over the biomass
burning source regions and downwind. Applying tempo-
ral constraints on biomass burning emissions improves the
agreement between MOPITT and model CO columns in the
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Fig. 10. Comparison of 3-month (June–August 2004) average CO
column (1018molec/cm2) from GEOS-Chem simulations and from
MOPITT retrievals. MOPITT averaging kernel and the a priori CO
profile were applied to model results. Two a priori critical fractions
(50% and 30%) were used to filter out samples with large a priori
contributions.

downwind region, where the correlation coefficient increases
from 0.61 for themonthlyto 0.69 for thesynoptic. The use of
MISRindanduniforminjection height distributions decreases
the CO column in the source regions, but they cause little
change downwind. Over eastern Canada, the large discrep-
ancy still exists when the temporal constraints are applied.
Previous modeling studies have shown similar large model
versus MOPITT CO column discrepancies and point to poor
treatments of biomass burning emissions as a primary rea-
son (Bian et al., 2007; Turquety et al., 2007). Our results
show that even with a large portion of the fire emissions dis-
tributed in the middle and upper troposphere, as in theuni-
form simulation, the model still underestimates CO columns
over this region. Therefore, the lack of fire emission injection
above the PBL is unlikely to be the only or main cause of the
large discrepancy. We should also bear in mind that the MO-
PITT measurement itself has uncertainty and bias. Emmons
et al. (2004) showed that the MOPITT retrievals have an un-
certainty of 20–40% at 500 hPa, and a bias of−0.2%–8%
compared to in situ CO measurements from aircraft.

Figure 10 also shows that the comparison is sensitive to the
value of a priori critical fraction. The comparisons between

model and MOPITT CO columns over the fire source regions
are better when a priori critical fraction of 30% is used (cor-
relation coefficientR=0.54), compared with 50% (R=0.46).
Downwind, particularly over northeastern North America,
fewer data samples satisfy the criterion of a priori fraction
be less than 30%, which makes the comparison more diffi-
cult. Our simulated CO column distribution (with a priori
fraction<50%) is similar to that in Turquety et al. (2007), in
which the same GEOS-Chem model with a different biomass
burning emission inventory was used.

We further compare our model results with MOPITT re-
trievals by showing the time series of mean CO columns over
a source domain (150◦–110◦ W, 55◦–70◦ N) and a downwind
domain (110◦–60◦ W, 50◦–70◦ N) (Fig. 11). The domains are
indicated in Fig. 10. Since MOPITT provides global cover-
age every 3 days, we used the 3-day average CO. Again, we
applied two a priori critical fractions (50% and 30%).

The phase of temporal variability agrees well between
MOPITT and all the GEOS-Chem simulations in the biomass
burning source regions except themonthly. The correla-
tion coefficient is considerably smaller in themonthlycase
(R=0.08) than the other cases (R>0.60). In general, the
agreement is better in the source domain than in the down-
wind domain. Differences in magnitude between measure-
ments and simulations are present, particularly during peri-
ods of major fire occurrences (represented by high emissions
as shown in Fig. 11). For example, all model simulations
underestimate CO columns in mid-July in the downwind
domain, and overestimate CO in mid-August in both the
source and downwind domains. This suggests that using
MODIS fire counts to re-distribute biomass burning emis-
sions may miss some important fire events (e.g. clouds may
mask fire hot spots) and incorrectly represent the day-to-day
variation.

The use ofMISRind injection height distribution causes
only small changes in the results. Theuniform simulation
produces smaller CO column in the source domain than the
synopticsimulation, which sometimes shows better agree-
ment with MOPITT but sometimes shows larger bias. The a
priori critical fraction has a larger effect on the simulated CO
column than on the MOPITT retrievals. Overall, the bias be-
tween model simulations and measurements is higher when
we use a smaller critical fraction, partly due to the smaller
number of data samples after applying the 30% restriction.

6.6 Comparison of modeled results with surface aerosol
and total AOD measurements

Surface BC mass concentrations from model simulations and
measurements at four IMPROVE sites are shown in Fig. 12.
For each site, the upper panel shows the model sensitivity to
biomass burning emission temporal distribution, whereas the
lower panel shows the sensitivity to injection height distri-
bution. Results from thediurnal andMISRpdf simulations
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Fig. 11. Time series of mean CO column (1018molec/cm2) in a source domain (150◦–110◦ W, 55◦–70◦ N) and a downwind domain (110◦–
60◦ W, 50◦–70◦ N) from MOPITT retrievals and GEOS-Chem simulations. Each point represents a value of three-day average CO column.
Locations of these domains are shown in Fig. 10. MOPITT averaging kernel and the a priori CO profile were applied to model results. The
correlation coefficients between MOPITT and model simulations are shown in the legend. Two a priori thresholds (50% and 30%) were used
to filter out samples with large a priori contributions. Grey bars represent total biomass burning emissions (Tg C/3-day) in the domains.

are not shown, as they are very similar to the8-dayandMIS-
Rind simulations, respectively. Among the four IMPROVE
sites, DENA1 (63.7◦ N, 149.0◦ W) is very close to major
fires. AMBL1 (67.1◦ N, 157.9◦ W) is a Northern Alaskan site
with no major fires, but is not far away from the major fire
sources in Alaska and western Canada. MELA1 (48.5◦ N,
104.5◦W) and BOWA1 (47.9◦ N, 91.5◦ W) are near the US-
Canada border and are frequently affected by smoke from
boreal fires in Alaska and western Canada.

We find the day-to-day variability in the model simulations
resembles that from the IMPROVE measurements, except for
themonthlysimulation. This again indicates the importance
of using emissions with at least an 8-day temporal resolu-
tion. Thesynopticsimulation, which includes both the di-
urnal cycle and the synoptic variability of biomass burning
emissions, shows more temporal variability. But its effect on
the comparison with measurements is smaller than switch-
ing from the monthly to the 8-day emissions. The use of

MISRind injection height distribution improves the simula-
tion in the source region (DENA1 site) compared with no
vertical injections, particularly during mid-July and late Au-
gust. For the downwind sites, the BC surface concentrations
from theMISRindsimulation are similar to those from the
synopticsimulation. Theuniform simulation shows better
agreement with IMPROVE measurements at the downwind
sites. However, in the source region (DENA1 site), theuni-
form simulation often significantly underestimates surface
BC. Therefore, high-elevation injection of biomass burning
smoke injection might be episodic and possibly related to in-
dividual high-energy fire events and suitable meteorological
conditions, or even high-energy fires might tend to inject a
large fraction of smoke into the PBL than theuniformsimu-
lation assumes.

Figure 13 compares simulated time series of AOD at
500 nm with the AERONET retrievals in a source region site
(BonanzaCreak: 64.6◦ N, 148.3◦ W) and three downwind
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Fig. 12. Time series of surface BC concentrations (µg/m3) from model simulations and IMPROVE observations (filled square boxes).
IMPROVE measurements are 24 h average values which were recorded each 3 days. Upper panel for each site shows the sensitivity to
temporal constraints. Bottom panel for each site shows the sensitivity to injection height.

Fig. 13. Time series of 500 nm AOD from model simulations and AERONET observations. Daily mean values and uncertainty ranges of
AERONET data are shown in filled square boxes and vertical bars. Upper panel for each site shows the sensitivity to temporal constraints.
Bottom panel for each site shows the sensitivity to injection height.
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sites (Barrow; 71.3◦ N, 156.6◦ W; BrattsLake; 50.3◦ N,
104.6◦ W; ResoluteBay; 74.7◦ N, 94.9◦ W). We calculated
total AODs from GEOS-Chem simulated aerosol concen-
trations and pre-assumed microphysical and optical proper-
ties associated with all aerosol species (Park et al., 2003).
The use of 8-day temporal resolution and synoptic constraint
improves the timing of high-AOD occurrences over both
the source and downwind regions. For example, the corre-
lation coefficients between observations and model results
increased from 0.36 to 0.66 at Bonanza Creek and from
0.21 to 0.74 at Barrow. But there are still large discrepan-
cies between simulated and AERONET AODs, particularly
during high-AOD events. ThenobbNAsimulation produces
very small AODs during these events, indicating a domi-
nating contribution from North American biomass burning
emissions. A comparison with satellite observed AODs from
MISR and MODIS (not shown here) also shows the under-
estimation of GEOS-Chem model results. The low bias in
the simulated AOD over biomass burning regions has been
reported by several previous studies (Matichuk et al., 2007;
Pfister et al., 2008). Pronounced spatiotemporal variability
of AOD and different sampling between the measurements
and the model may partly explain the discrepancy. The dif-
ferent assumptions of aerosol properties used in the satellite
retrievals and model calculations may play a role as well.
Recent studies of simulating directly satellite observed ra-
diances in CTMs to retrieve AOD show better agreement
between GEOS-Chem and MODIS (Drury et al., 2008). It
avoids the aforementioned inconsistency. Figure 13 also
shows the use of theMISRpdfanduniform injection height
distributions only has minor change in the simulated AOD.

7 Discussion

Conflicting results have been reported in past work on the
effect of fire-induced lifting in model simulations. Some
comparisons between models and measurements (e.g. Leung
et al., 2007; Freitas et al., 2006) show the best agreement
when a large portion of fire emissions are injected into the
middle troposphere. Turquety et al. (2007) concluded that a
significant fraction of emissions from the largest fires should
be injected into the upper troposphere in order to match MO-
PITT observations. Lamarque et al. (2003) and Colarco et
al. (2004), however, showed that releasing of fire emissions
at the surface may produce results similar to releasing emis-
sions at high altitude, because in these models, local convec-
tion immediately lifts the pollution into the free troposphere.

Our results show that averaged over the 2004 summer fire
season, the overall effect of using the MISR-derived injection
height distribution is small. The change of simulated CO col-
umn by usingMISRinddistribution is smaller than 1% over
most North America (Fig. 7). Compared to CO, the effect of
injection height distribution on BC is larger, with 5%–10%
increase in total column averaged over summer 2004 after

MISRinddistribution being used. Both CO and BC changes
due to the use ofMISRinddistribution are smaller than that
caused by applying temporal constraints on biomass burn-
ing emissions. The combined effect of using thesynoptic
GFEDv2 andMISRind distribution can increase the mean
BC burden over northeastern North America by 10%–20%
(Fig. 7).

Previous studies (e.g. Turquety et al., 2007) have shown
the use of higher injection heights may enhance the long-
range transport of CO and reduce the bias between CO
column derived from model simulation and MOPITT re-
trievals. Results from this study show that unlike the tem-
poral constraints, which reduce the bias between modeled
CO and MOPITT CO (Fig. 10), the injection height has lit-
tle effect on the comparison. We believe that the lack of
biomass burning injection heights above the PBL is unlikely
the primary reason for the CO column underestimation over
Quebec during 2004 summer. Other adjustments, such as
improvements to total biomass burning emission amount, a
better representation of emission temporal variability, and a
more realistic meteorological field, may be more important.

On a shorter time scale, the injection height may have
larger effects. Satellite-derived injection height distribution
(MISRind) improves the agreement with surface measure-
ments at or near the fire source (Fig. 12). But its effect on
AOD is not significant (Fig. 13). We also notice the injection
height effect is much smaller in the downwind region. The
time series of CO column (Fig. 11), surface BC concentra-
tion (Fig. 12), and AOD (Fig. 13), and the vertical profiles of
CO and BC (Fig. 9) over northeastern North America show
very small difference between thesynopticandMISRindsim-
ulations. Even during large fire events, there is no conclusive
evidence that the use of biomass burning emissions above the
PBL will improve the simulation in the downwind region.

In Fig. 14, we take a fire event as an example to illustrate
how the injection height effect is entangled with other uncer-
tainties, particularly the meteorology driven transport. This
fire event took place in mid-July 2004. High CO concentra-
tions at 300 hPa were observed by the DC-8 aircraft during
the INTEX-NA experiment on 18 July. We calculated back-
ward air trajectories ending in Quebec (centered at 67◦ W,
55◦ N) at 19 July (00:00 UTC) using the HYbrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) model
(Draxler and Rolph, 2003; Rolph, 2003) and the NCAR
re-analysis meteorology (Kalnay et al., 1996). This analy-
sis shows that the enhancement of CO originated from fires
in Alaska and western Canada around five days previously.
The horizontal trajectory ending at 5 km above the ground is
shown in Fig. 14a (from A to B). Most biomass burning emis-
sions concentrate in the first half of this trajectory (Fig. 14b)
during 13∼15 July. As introduced in Sect. 5, we recorded
the mixing ratios of tagged CO tracer from North American
forest fire emissions (CObbNA). The CObbNA spatial distri-
bution at 300 hPa and its vertical profiles along the trajectory
A-B from the synopticsimulation (withAll PBL injection
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A B A BA B A B

Fig. 14.Simulated daily mean CObbNA (CO from North American biomass burning source) during 13–19 July 2004.(a) CobbNA (ppbv) at
300 hPa from thesynopticsimulation. White line A–B is derived from the back trajectory analysis using the HYSPLIT model. The starting
point B [55◦ N, 67◦ W] is located at 5 km above the ground level and the back trajectory starting time is 00:00 UTC, 19 July .(b) Total
biomass burning emission rate (Tg C/month) in grid cells along the trajectory A–B.(c) CObbNA vertical profile along the trajectory A–B
from thesynopticsimulation. Line contours represent the deep convection mass flux (kg/m2/s) from the GEOS-4 reanalysis database. The
contour levels are 0.005, 0.01, 0.02, 0.04, 0.06, 0.1 from light dashed line to thick solid line.(d) CObbNA difference along the trajectory
A–B between theMISRindandsynopticsimulations.(e) CObbNA difference along the trajectory A–B between theuniform andsynoptic
simulations.

height distribution) are shown in Fig. 14a and c. We also
plot a contour of deep convective flux from the GEOS-4 me-
teorology over CO mixing ratio profiles in Fig. 14c. The hor-
izontal and vertical patterns show the rise of fire emissions
and the transport of CO from the source region near A to the
downwind region near B. This rise and transport are closely
related to meteorological conditions. During 13–15 July, de-
spite large emissions in the source region, CO concentration
in the upper troposphere is small. Strong deep convection
from 16 July causes rapid mixing between the near-surface
atmosphere and the upper troposphere. CO in the upper tro-
posphere is then enhanced and transported to the downwind
region. The differences of CObbNA profiles between the
MISRind and synopticsimulations are shown in Fig. 14d.
Since more emission is assigned to the middle troposphere
in the MISRinddistribution (see Fig. 3), an increase of CO
between 400–600 hPa and a decrease of CO in the PBL can
be seen in Fig. 14d. During 13–15 July, when the convec-
tion is weak, this signal of injection height distribution is
moved to the near downwind region (near the middle of A

and B) without much abatement. However, this signal dis-
sipates quickly after 16 July, likely due to the occurrence of
strong convections near the fire sources.

The event shown in Fig. 14 is an example of how mete-
orology affects the influence of injection height. The use
of MISRind injection height, which emulates the fast verti-
cal transport due to the heat buoyancy and associated pyro-
convection, does change the distribution of pollutants at or
near the fire sources. However, the fraction of emissions
above the PBL from theMISRinddistribution is only about
15% of the total emissions. The effect caused by different
injection height distributions for this fraction of emissions is
easily dissipated by other vertical mixings. The case shown
in Fig. 14 is not unique. It has been found that in high fire
years in western Canada, a high-pressure system is often lo-
cated above northwestern Canada and a low-pressure system
above northeastern Canada (Skinner et al., 1999; Wotawa
and Trainer, 2000). This climate pattern can cause strong
convection in North America and can reduce the injection
height effect of forest fires.

www.atmos-chem-phys.net/9/6559/2009/ Atmos. Chem. Phys., 9, 6559–6580, 2009



6576 Y. Chen et al.: The sensitivity of CO and aerosol transport to the temporal and vertical distribution

Finally let us take a look at a special injection height dis-
tribution used in this study. Theuniform distribution put
more than 50% of the biomass burning emissions into the
middle and upper troposphere. It appears that the injection
height effect in this simulation can survive the strong verti-
cal mixing and cause a significant enhancement downwind
(Fig. 14). We find thisuniform distribution may produce
better results in the downwind region when compared with
measurements during some fire events (e.g. CO mixing ratio
at middle and high altitudes on 07/18 as shown in Fig. 9b,
Surface BC concentration at MELA1 on 08/18 as shown in
Fig. 12c). However, we note this injection height distribution
is highly unrealistic. It simply assumes all biomass burn-
ing emissions follow the same distribution, neglecting the
fact that high injection heights occur only at sporadic fire
events when sufficient thermal buoyancy and appropriate at-
mospheric stability are available. As shown in previous sec-
tions, the use of theuniforminjection height distribution may
cause distorted vertical CO and BC profiles (e.g. on 08/13 as
shown in Fig. 9b), and too low surface concentrations near
the source (at DENA1 and AMBL1 as shown in Fig. 12), at
least in some situations. The presence of some cases where
theuniformsimulation agrees better with the measurements
than theMISRindsimulation indicates that MISR observa-
tions may miss some high smoke injection events. This can
be due to the limited spatial and temporal coverage of MISR
radiance measurements, or the blocking of fire hot spots by
clouds.

8 Summary

Aerosols and trace gases from boreal forest fires in Alaska
and western Canada can be transported to eastern North
America, the North Atlantic, and Europe, causing a degrada-
tion of air quality and influencing solar radiation and climate.
Accurate estimation of this effect needs temporally and spa-
tially resolved biomass burning emissions. We simulated CO
and aerosols over North America during the 2004 fire season
using the GEOS-Chem chemical transport model. We ap-
plied different temporal and injection height distributions to
the biomass burning emissions, and evaluated model perfor-
mance with these constraints by comparing the results with
atmospheric measurements from multiple sources.

We find the use of finer temporal resolution biomass emis-
sions usually decreases CO and BC near the fire source re-
gion, and often enhances long-range transport. Among the
individual temporal constraints, switching frommonthlyto8-
dayGFEDv2 and including synoptic variability significantly
affect CO and BC distributions. Themonthly-to-8-daycon-
version often produces more southward transport. The inclu-
sion of synoptic constraints is associated with stronger con-
vection and more northward transport. Whether this shift of
transport is a general phenomenon or is specific to this par-
ticular model environment for summer 2004 needs further

investigation. The effect due to the diurnal cycle of biomass
burning emissions is minimal.

Averaged over three months during summer 2004, the
change of CO and BC due to the use of different injection
height distributions is smaller than that due to the use of dif-
ferent temporal distributions. The model results are more
sensitive to the biomass burning injection height near the
source region. Allowing emissions above the PBL lowers
surface concentrations and column burdens of pollutants near
the source, whereas it increases pollutant concentrations at
high altitude and downwind. But overall, the use of MISR-
derived injection height distribution increases CO burden in
the downwind region only by less than 1%. This is roughly
consistent with Pfister et al. (2005), who showed that the CO
fire emissions derived from inverse calculations are not sen-
sitive to the vertical distribution of emissions.

The BC simulation is more sensitive to the temporal and
injection height distributions of biomass burning emissions.
The use of these constraints may increase the BC column
in eastern North America by 10%–20%. Over the whole US
domain, the use of smoke injections above the PBL decreases
the total CO burden but increases the BC burden. The shorter
lifetime and smaller background concentration for BC are
likely reasons for the contrasts between CO and BC.

We compared our model results with CO and BC vertical
profiles from INTEX-NA, the CO total column from MO-
PITT, surface BC concentrations from IMPROVE, and total-
column AOD from AERONET. These comparisons confirm
the improvement when satellite data are used to constrain
the intra-month variability. In particular, the use of8-day
GFEDv2 inventory shows much better agreement with most
measurements than the monthly mean emissions.

In comparison to CO from MOPITT and BC from IM-
PROVE measurements, the use of MISR-derived injection
height profile (MISRind) improves the simulation near the
fire sources. The injection height effect is less apparent in
the downwind regions. Modeled CO and BC vertical pro-
files closely match the INTEX-NA measurements over east-
ern North America, even when all the biomass burning emis-
sions are distributed within the PBL. The discrepancies be-
tween model simulated and MOPITT retrieved CO over Que-
bec of Canada can not be simply attributed simply to the lack
of biomass burning injections above the PBL. Neither the
MISRindnor theuniformprofile significantly reduces the dis-
agreement. Reducing uncertainties from other sources, such
as a better estimate of total burned area, a more realistic rep-
resentation of emission temporal variability, or an improve-
ment in moist convection parameterization, may do more to
improve model performance.

The use ofuniform injection height distribution occa-
sionally improves the simulation during some fire events,
which suggest the possible existence of high smoke injec-
tions. These high smoke injections could be missed by the
MISR observations. But theuniform simulation often pro-
duces unrealistic results because it applies a fixed vertical
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distribution to all model grid boxes. For example, it often
underestimates the surface concentrations in the source re-
gion and overestimates concentrations in upper troposphere
by large fractions.

The change in CO vertical profiles due to different biomass
burning emissions injection heights becomes smaller during
transport. The dissipation of the injection height effect de-
pends on meteorological conditions. The existence of strong
convection during transport from Alaska and western Canada
to northeastern North America often mixes the atmosphere
between the PBL and free troposphere quickly, reducing the
influence of injection heights.

Other than the temporal variability and injection height
discussed in this study, the discrepancies between modeled
and observed CO and BC may also be attributed to variabil-
ity in fire emission factors. Emissions of CO and BC are
very different during different stages of combustion, e.g. un-
der smoldering and flaming conditions (Andreae and Mer-
let, 2001). Emissions factors are an important candidate for
further study and may be constrained by combining satellite
information on aerosol optical properties with CO measure-
ments. In addition, the plume injection height may also have
a diurnal cycle due to variations of fire power, surface energy
fluxes, and atmospheric stability. Using MISR observations
(with an approximately 10:30 a. m. local overpass time) to
derive the plume height distribution is likely to underestimate
the injections of pollutants in the free troposphere. However,
accurate representation of these processes in the model re-
mains challenging.

The simulations and comparisons shown in the present
study only focus on North America during the summer of
2004. Although some conclusions (e.g. the improvement
from monthlyto 8-daysimulations in reproducing measured
termporal variability; the insensitivity to diurnal cycle of
emissions) might generalize to other situations, different
emission patterns and meteorological conditions may cause
different model sensitivity to biomass burning temporal and
injection height distributions over other regions and during
other seasons. In addition, the current study describes the
overall effect over North America during the whole summer.
For some specific long-range transport events, the sensitiv-
ity to initial injection height distribution may be higher. Re-
cently, MISR Plume Height Climatology Project has pro-
duced a smoke injection height climatology over North
America for the years 2002 and 2004–2007. This dataset
will enable us to use variable injection height distributions
over different fire period.
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