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Abstract. With the increasing availability of observational
data from different sources at a global level, joint analysis
of these data is becoming especially attractive. For such an
analysis – oftentimes with little prior knowledge about local
and global interactions between the different observational
variables at hand – an exploratory, data-driven analysis of
the data may be of particular relevance.

In the present work we used generalized additive models
(GAM) in an exemplary study of spatio-temporal patterns
in the tropospheric NO2-distribution derived from GOME
satellite observations (1996 to 2001) at global scale. We
focused on identifying correlations between NO2 and local
wind fields, a quantity which is of particular interest in the
analysis of spatio-temporal interactions. Formulating general
functional, parametric relationships between the observed
NO2 distribution and local wind fields, however, is diffi-
cult – if not impossible. So, rather than following a model-
based analysis testing the data for predefined hypotheses (as-
suming, for example, sinusoidal seasonal trends), we used a
GAM with non-parametric model terms to learn this func-
tional relationship between NO2 and wind directly from the
data.

The NO2 observations showed to be affected by wind-
dominated processes over large areas. We estimated the ex-
tent of areas affected by specific NO2 emission sources, and
were able to highlight likely atmospheric transport “path-
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ways”. General temporal trends which were also part of our
model – weekly, seasonal and linear changes – showed to be
in good agreement with previous studies and alternative ways
of analysing the time series. Overall, using a non-parametric
model provided favorable means for a rapid inspection of this
large spatio-temporal NO2 data set, with less bias than para-
metric approaches, and allowing to visualize dynamical pro-
cesses of the NO2 distribution at a global scale.

1 Introduction

Nitrogen oxides – NO and NO2, often referred to as NOx –
belong to the most important atmospheric pollutants. NO2 is
poisonous by inhalation (World Health Organization, 2005)
and NOx plays an important role in the atmospheric ozone
budget (Jacob, 1999; Seinfeld and Pandis, 1997). NOx is
influencing chemical and biological processes both locally
(Uno et al., 1996; Wakamatsu et al., 1998) and globally
(Stohl et al., 2003; Wenig et al., 2003), and its occurrence
is closely related to human activities. Tropospheric NOx is a
major contributor to tropospheric ozone smog in urban areas,
and even at a global scale a disproportionally high amount of
the NOx originates from anthropogenic sources (Olivier et
al., 1990; Seinfeld and Pandis, 1997).

With space-borne instruments, such as the Global Ozone
Monitoring Experiment (GOME), global time series of NO2
and other tropospheric trace gases are becoming increas-
ingly available, with a considerable resolution both in time
and space (European Space Agency, 1995; Burrows et al.,
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1999; Bovensmann et al., 1999; Wagner et al., 2008; Leue et
al., 2001; Richter and Burrows, 2002; Martin et al., 2002;
Beirle et al., 2003; Beirle, 2004a,b; Boersma et al., 2004,
2008, 2009). Also, with an increasing amount of observa-
tions from other space-borne sensors and high level products
derived from them, such as global 3-dimensional wind fields,
the joint analysis of observational data from multiple sources
is becoming more and more attractive. Here, an exploratory
data-driven analysis of the remote sensing data may be of
particular interest, since only a little prior knowledge about
local and global interactions between the different observa-
tional variables may be available for specific questions of in-
terest.

A number of earlier studies focused on different tempo-
ral patterns in global NO2 observations. Examples are the
weekly cycle found to correlate well with anthropogenic
sources (Beirle et al., 2003) and the analysis of long term
trends and seasonal cycles (Richter et al., 2005; van der A
et al., 2006, 2008; Stavrakou et al., 2008). All these stud-
ies used parametric models for the seasonal variation of the
temporal trends and ad hoc extensions, e.g. averaging the
residual over monthly windows (Beirle, 2004b).

In the present study we followed a different approach and
used a generalized additive model (GAM) to analyze spatio-
temporal dynamics of the observed NO2 in a non-parametric
fashion (Hastie and Tibshirani, 1986; Wood, 2006). In addi-
tion to a parametric linear trend and a discrete weekly cycle,
we used non-parametric terms for annual cycles and another
non-parametric term for the interaction of the observed NO2
and the local wind fields. Our choice of this generalized ad-
ditive model was motivated by two different incentives:

– Firstly, we test the data for temporal trends which are
more complex than the parametric formulations used so
far for global studies of trends in the NO2 distribution.

– Secondly, the GAM allows us to approach the modeling
problem of the interaction of NO2 and local wind, where
no parametric relation had to be known.

The alternative approach for modeling the dependence on
the wind direction, that consists of discretizing the wind di-
rections, would decrease the angular resolution for this term.
The same is true for the alternative of estimating monthly
means instead of using the GAM for modeling the annual
cycle.

Non-parametric approaches are in common use to model
the time series of different trace gases to pursue, for example,
such tasks as identifying relationships between air pollution
and public health (Dominici et al., 2002; Smith et al., 1999),
but also to increase the sensitivity in the monitoring of local
trace gas distributions (Aldrin et al., 2005; Kim et al., 2005).
We aimed at generalizing theselocal approaches for the anal-
ysis ofglobal trace gas distributions.

In general, the influence of the wind component to the
observed NO2 is particularly high close to strong and con-

tinuous point sources like power plants or individual cities.
Such regions are characterized by strong fluctuations of the
tropospheric NO2 concentration, which can easily be visu-
alized by forming the ratio of the standard deviation and its
counterpart from robust statistics – the median of absolute
deviation – of the time series of the observed tropospheric
NO2. High values of this ratio are, for example, found close
to Hong Kong and Johannesburg (see Fig. 1), indicating that
few observations contributing to large part to the overall ob-
served NO2, and suggesting that these events might be due to
wind-related transport from the nearby sources. So, focusing
on these prominent examples may allow us to understand the
contribution of local transport processes to the observed NO2
distributions.

In our study, we used data derived from the GOME instru-
ment on board the ERS-2 satellite, which provided one of the
longest global records on tropospheric NO2 observations at
the beginning of our work. (Meanwhile also SCIAMACHY
on board ENVISAT and OMI on board AURA may provide
time series of similar lengths, with even better spatial reso-
lution and/or coverage.) In the following we will detail on
GOME and the satellite data used (Sect.2), and the gener-
alized additive model adapted to our task (Sect.3). We will
present global maps of spatial and temporal trends from the
application of the model to the GOME data, and discuss the
influence of the local wind field on the NO2 trace gas dynam-
ics observed (Sect.4).

2 GOME instrument and data retrieval

The GOME instrument is one of several instruments aboard
the European research satellite ERS-2 (European Space
Agency, 1995; Burrows et al., 1999). It consists of a set
of four spectrometers that simultaneously measure sunlight
scattered and reflected from the Earth’s atmosphere and
ground in a total of 4096 spectral channels, covering the
wavelength range between 240 and 790 nm, with moderate
spectral resolutions. While GOME was primarily designed
for the observation of the ozone layer, many other trace
gases can also be retrieved from the GOME spectra (sev-
eral of them for the first time from space, see e.g.Burrows
et al., 1999). The satellite operates in a nearly polar, sun-
synchronous orbit at an altitude of 780 km and crosses the
equator at approximately 10:30 local time. While the satel-
lite orbits the Earth in an almost north-south direction, the
GOME instrument scans the surface of the Earth in the per-
pendicular east-west direction. During one scan, three in-
dividual ground pixels are observed, each covering an area
of 320 km east to west by 40 km north to south. They
lie side by side: a western, a center, and an eastern pixel.
The Earth’s surface is totally covered within 3 days (pole-
ward from about 70◦ latitude within 1 day). During this
three day orbital repetition pattern, the local equator cross-
ing time varies by about 35 min. Over the considered period
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Fig. 1. Left: Mean tropospheric vertical column density (TVCD) of NO2 (1015molec/cm2) around Johannesburg (top) and Hong Kong
(bottom). Right: Ratio of standard deviation over MAD (median absolute deviance) for the respective regions. The high ratios between the
two variability measures around the local minimum of the sources are consequences of transport processes. High values indicate that the
transport is dominated by relatively few, though large events.

(1996–2001), these patterns of equator crossing times stayed
constant. The ERS-2 repeat cycle of 35 days hast to be kept
in mind for the analysis of the weekly cycle since this period
is a multiple of one week (see Sect.4.3).

In the raw spectra from GOME, the NO2 absorption
around 430 nm was used and analyzed by differential op-
tical absorption spectroscopy (DOAS, seePlatt and Stutz
(2008); Wagner et al.(2008)). Besides the NO2 cross sec-
tion, also those for O3, H2O, and the oxygen dimer O4, as
well as a Ring spectrum were included in the analysis (for
details of the spectral analysis see alsoLeue et al.(2001);
Beirle (2004a)). Output of the DOAS analysis was the NO2
slant column density (SCD), the NO2 concentration inte-
grated along the atmospheric absorption path.

The vertical column density (VCD), the amount of
molecules in a vertical column, was calculated from the SCD
by means of a modeled Air Mass Factor (AMF) (Solomon
et al., 1987; Leue et al., 2001). For simplicity, we used
an AMF for a purely stratospheric NO2 concentration pro-
file (see Sect.2.1 and also discussion inLeue et al.(2001);
Velders et al.(2001)). To obtain the tropospheric NO2 VCD
from the total VCD, the stratospheric part of the total VCD
had to be subtracted. In this study the stratospheric NO2

VCD was estimated over a reference sector over the Pacific
Ocean and then subtracted from the total NO2 VCD mea-
sured at any location at the same latitude (see alsoRichter
and Burrows(2002)). The difference was then used as the
estimate of the tropospheric NO2 vertical column density,
referred to as NO2 TVCD in the following. The data used
in this study were from the period beginning on 17 January
1996 and ending on 31 December 2001. We re-sampled the
data at a spatial resolution of 0.5×0.5 degrees of latitude
and longitude, respectively, with 0.5◦ being the approximate
north-south range of the scan. This may be a reasonable com-
promise between obtaining high resolution maps and work-
ing with a resolution which can be supported by the satellite
data.

2.1 Radiative transfer effects on the retrieval of tropo-
spheric NO2 VCD

In contrast to higher layers of the atmosphere, the radiative
transfer in the troposphere, especially in the boundary layer,
is rather complex. The increased air density, and also the
higher probability for the presence of aerosols and clouds,
cause many photons to be scattered more than once. In
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Table 1. The factor by which the retrieved tropospheric NO2 VCD
has to be corrected, depending on the height of the NO2 profile and
the solar zenith angle. Results are for cloud-free situations and an
aerosol optical depth of 0.3.

SZA 0–200 m 0–1000 m 0–2000 m

20◦ 2.3 2.0 1.9
50◦ 2.4 2.1 2.0
70◦ 4.7 3.4 3.1

addition, the reflection and absorption at the surface becomes
more important. Thus, knowledge on these parameters is
required for the accurate determination of the tropospheric
NO2 VCD from the satellite observations.

In our study, we did not account for all of these effects
in detail (instead we used a stratospheric AMF), because of
several reasons. Firstly, the detailed consideration of these
parameters requires a huge effort, which we wanted to avoid.
Secondly, accurate information on these parameters (espe-
cially on the vertical profiles of clouds, aerosols and NO2) is
usually not available. Even if external information (e.g. from
chemical models) is used, systematic biases remain. Thirdly,
most of our results describe the relative variation of the ob-
served tropospheric NO2 VCD. The relative variation of most
of the model components of our GAM – like weekly cycle,
linear trend, or wind direction (see below) – is not affected
by this simplification.

We may expect, however, a systematic seasonal variation
of the parameters influencing the radiative transfer in the tro-
posphere. As a consequence, the retrieved seasonal cycle of
the tropospheric NO2 VCD may not only contain the vari-
ation of the tropospheric NO2 concentrations, but also vari-
ations originating from parameters like the boundary layer
height, or the surface albedo.

In order to give the reader an indication on the effect on
the retrieved tropospheric NO2 VCD, we calculated correc-
tion factors for different assumed profile heights and solar
zenith angles (see Table 1). These correction factors are the
ratio of the stratospheric AMF (which was used in our study)
to the tropospheric AMF, for the different scenarios. The cor-
rection factors are between about 2 and 5. They describe the
underestimation of the true values by the retrieved NO2 VCD
in this study. The smallest underestimation occurs for high
layer altitude and low SZA.

In contrast to the phenomena taking place at short time
scales (like weekly cycle, and wind influence) or long time
scales (like linear trends), many atmospheric parameters
change systematically with the season. Typically, the bound-
ary layer height is larger in summer, thus the underestima-
tion is smaller. In addition, especially in the mid and high
latitudes, the solar zenith angle is smaller in summer, lead-
ing again to a smaller underestimation. In contrast, the sur-
face albedo in winter is more frequently affected by snow,

leading to a smaller underestimation. Finally, the situation
is complicated by the seasonal cycles of clouds and aerosols.
To reduce this bias, we confined ourselves to use observa-
tions with an effective cloud fraction of less than 0.3. This
resulted in time series with an average length of about 400
data points per 0.5◦×0.5◦ grid box. Regarding the fact that
GOME’s scannings reach global coverage after three days,
an unfiltered time series of six years would have the approxi-
mate length of 730 data points at mid-latitudes. Hence about
half of the data were filtered out. The information about the
cloud fractions was also obtained from GOME observations
using the HICRU algorithm (Grzegorski et al., 2006). While
part of the mentioned effects will cancel each other out, the
effects of changing layer height and SZA, especially, will
lead to a stronger underestimation of the true tropospheric
NO2 VCD in winter.

It should be noted that also due to the simple stratospheric
corrections, components of the annual cycle of the strato-
sphere might be artificially transferred to the estimated tro-
pospheric NO2 TVCD, especially in the presence of longitu-
dinal gradients of the stratospheric NO2 distributions.

2.2 Wind data from ECMWF

In addition to the GOME NO2 measurements, freely avail-
able wind data of the European Center for Medium range
Weather Forecasting (ECMWF) were used (Kållberg, 2004).
The resolution of the wind data is 2.5×2.5 degree in lati-
tude and longitude. They are temporally sampled every 6 h
(00:00, 06:00, 12:00, 18:00 UTC). Since the satellite crosses
the equator at approximately 10:30 local time each orbit, de-
pending on the longitude and latitude, the times of the satel-
lite observations and of the modeled data can deviate more or
less. In our eyes, in order to reduce the systematic differences
caused by differences in the matches of the sampling peri-
ods of GOME data and wind data, applying the wind speeds
averaged over the last 24 h is a good compromise with the
temporal resolution. Due to the rather low lifetime of tropo-
spheric NO2, this selection should be well representative for
the transport processes to the measurement location. We will
leave the question of in what detail – in spatial and temporal
resolution – the wind information should be used to study the
interaction of wind and trace gas open for further studies.

3 The Generalized Additive Model

The Generalized Additive Model (GAM) provides a gen-
eral statistical framework to model the interaction between
a specific feature of interestY and a set ofq (potentially)
explanatory variablesX = X1, . . . , Xq . The methodology
behind the GAM follows a data-driven, non-parametric ap-
proach and has greater flexibility than traditional parametric
modeling. The observableY is modeled as a superposition
of separate functionsfj on the featuresXi . Few restrictions
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apply to these, and either (linear) parametric models, or a
non-parametric smoothing function may be chosen forfj .
Certain constraints may apply tofj , such as cyclic boundary
conditions. This approach has two desirable features in the
exploration of large, unstructured data sets. Firstly, a GAM
is able to identify those variablesXi in X that are relevant
to Y , even in a large set of potential candidates. Secondly, a
GAM does not require the structural relationship betweenY

andX to be defined right from the outset when using non-
parametric model terms, but is able to “learn” it from the
data, individually for each variableXi . Hence their use might
be indicated when no prior knowledge about the relationship
is available, and one would like the data to “suggest” the ap-
propriate functional form; or when the functional form is ex-
pected to be complex – with threshold effects or other non-
linearities – and cannot easily be represented in a parametric
model.

In the analysis of the global distribution of NO2 (our mod-
eled observableY ), we were interested in characterizing the
structural relationship between NO2 and the signal of se-
lected relevant featuresXi – representing temporal cycles of
predefined length, or the aforementioned wind fields.

3.1 Learning the structural relationship

Assume we have for a given location a time series ofm mea-
surements ofY available – in our case a set of approximately
300–700 observations of NO2 taken in the time from 1996
to 2001 – which can be represented by a vectory of length
m, i.e. with y ∈ Rm. The number of available observations
vary mainly because of two reasons: The first reason is the
cloud cover filtering, individual for each pixel. The second is
the spatially varying observational coverage, with the higher
latitudes being more frequently visited by the satellite than
equatorial regions.

We assume that the measurementy arises from a true value
η ∈ Rm, superposed by a measurement errorε ∈ Rm:

y=η+ε. (1)

The true valueη can be, for example, the time course:
η = fann(t), wheret is the time of the year. In this case,X

stands for the seasonal timet . We chose to estimate the func-
tional form of fann from the data using a univariate spline
model which can be fitted to them data pairs of (X, Y ) under
the assumption of a sufficiently “smooth” behavior offann
along time:

fann =

∑
k

βkbk(xj ). (2)

Spline basis{bk} and spline coefficients{βk} have to be
either predefined (type and number of basis functionsbk),
or estimated from the data (spline coefficient{βk}). For the
annual signalfann, trigonometric basis functions would be

appropriate basis functions, since they fulfill periodic bound-
ary conditions. The spline coefficients for the functionfann
are found as follows: We look for the splinefannminimizing

m∑
i=1

(yi − fann(ti))
2
+ λ ·

∫ {
f ′′

ann(t)
}2

dt (3)

with f ′′

i being the second derivative offi andλ the smooth-
ing parameter governingβk in (2) for a specific spline repre-
sentationb. The latter formula (3) can be presented in matrix
notation:∥∥∥∥(

y

0

)
−

(
O

√
λL

)
β

∥∥∥∥2

(4)

with (O)ij = (bj (ti)) building the model matrix andL
building the Cholesky factor of the covariance matrix
(L ′L)ij = (0)ij =

∫
b′′

i (t)b′′

j (t)dt . The parametersβ min-
imizing this expression can be found in several ways, e.g.

using QR-decomposition of the system matrix

(
O

√
λL

)
, or

using iterative approaches.
The smoothing parameterλ allows us to trade the fit-error

from overfitting the noise in the available observations (first
term in 3), which results in a rough functionfann, with
the model-errorfann from an unrealistic, overly strongly
smoothed spline (second term in3). It is adjusted to min-
imize the sum of both fit- and model-error in (3) – the ex-
pected prediction error – using generalized cross-validation
(GCV)(Craven and Wahba, 1979). Next to the GCV method,
there exist several more methods for the selection of the
smoothing parameters. Methods are listed, for example, in
the comparison study ofLee(2003).

The minimization problem described with (3) and (4) is
optimal under the assumption that the residualsε are inde-
pendent realizations of a normally distributed random vari-
able. For simplicity we assume this to be true for NO2. Nev-
ertheless, the GAM potentially allows us to use different dis-
tributional models for the model residuals – for example a
binomial distribution in a binary detection task, or a Poisson
distribution when measuring rare events (in accordance with
McCullagh et al.(1989) andWood(2006)).

We can expand our model (1) and (2) by assuming the
true valueη to be a superposition of several processes, repre-
sented by a set of functional terms

η = f1 + . . . + fp (5)

The functions fj may depend on one variable
Xj only, with fj = fj (Xj ) as a univariate func-
tion, or may depend on several variables, with
fj = fj (Xi, Xk, Xl, . . .)1≤i,k,l≤q; 1≤j≤p. In the present
study we confined ourselves to univariate terms, and obtain
a model forX andY with p = q.

y = f1(X1) + . . . + fp(Xp) + ε (6)
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In the implementation of the “mgcv” package
(Wood, 2006) used in our work (and available from
cran.r-project.org ), fitting Eq. (5) is performed by
optimizing Eq. (3) individually for each model termfj ,
and iterating the procedure over all functional modelsfj

until convergence – a procedure referred to as backfitting
(Hastie and Tibshirani, 1986). The individual model terms
fj are assumed to be additive. Furthermore, while the
sum of the model terms, resulting from the backfitting
algorithm, is unique, the model terms themselves are not,
since dependence among the covariatesXj can lead to
more than one representation for the same sum (Hastie
and Tibshirani, 1986): a seasonal model componentfann,
modeling dependency on theXann = day in the year,
for example, would be assumed to be unrelated from the
effects a weekly trendfweek with Xweek = day in the week

would have onη, as would be the wind componentfwind
with Xwind = wind direction. We note that there are
little restrictions on the type of model components to
be used for the terms in Eq. (6) – we could, for ex-
ample, easily introduce a rain componentfrain that has
Xrain = amount of rainf all during last 24 h as an
argument without any specific normalization ofXrain to
match the other argumentsXi .

3.2 Model definition and identification of relevant func-
tional terms

Functionsfi of the structural relationship betweenY andXi

in (6) can easily be estimated from the data in a nearly auto-
mated fashion: Optimizing Eq. (3) overλi according to the
cross-validated prediction error allows us to generate a large
amount of hypotheses on the functional form offi , and to
test them accordingly (Wood, 2006). The more fundamental
definition of the additive model, however, i.e. the identifi-
cation of the relevant predictorsXi and the specification of
the additive termsfi in Eq. (6), will require some amount of
user-interaction: Although a concise model (Eq.6) with few
explanatory featuresXi is preferred over a model with too
many predictors, it is possible to start with a model incor-
porating all available sources of information, and the maxi-
mal amount of available observablesXi . After fitting such a
model, a visual inspection of the functional model termsfi

will allow us to identify irrelevant parametersXi and a suc-
cessive optimization of the model (compare Fig. 2): A func-
tional termfi , which models an irrelevant variableXi , can be
removed and the set of potential explanatory featuresX can
be reduced successively. An quantitative approach in such
a recursive elimination of irrelevant terms in Eq. (6) is pro-
vided by an analysis of variance (ANOVA). This procedure
compares predictions of a model including a specific term
fi , and predictions of a model without this term, for exam-
ple also using predictions in a generalized cross-validation.
A subsequent statistical test on the significance of the dif-
ference between the two distributions allows us to score the

importance of the tested model term by a p-value (Touten-
burg and Heumann, 2008). If predictions of the complete
model are significantly better than the reduced model – mea-
sured, for example, by a paired parametric t-test (Toutenburg
and Heumann, 2008), or a non-parametric Cox-Wilcoxon
test (Toutenburg and Heumann, 2008) – the tested model
term will be retained. If the reduced model outperforms the
complete model, or does not differ significantly from the full
model, the model term can be dropped. Providing a quan-
titative score, the outcome of the test can also be used to
compare the relevance of a specific termfi for the observa-
tions Y at different locations, and, hence, to map the local
relevance of the different additive termsfi of the functional
model (Eq.6).

3.3 Application to the spatio-temporal distributions of
NO2

The model used in the following consists of four termsfi :
An additive constantµ, the linear trendflin = s·t (thus, from
a purist point of view, one might refer to our realization of
Eq. (5) also as a mixed model), the annual cyclefann, the
weekly cyclefweek, and a componentfwind modeling the de-
pendence of the NO2 TVCD y = η + ε (see Eq.1) from the
wind directionθ :

η = µ + s · t + fann(t mod 365) + fweek(t mod 7)+ (7)

fwind(θ(t))

While the focus of our study is on the consideration of the
wind direction as a new influencing parameter, the other in-
fluencing parameters – linear trend, seasonal and weekly cy-
cle – have to be included in the study to ensure convergence.
Their influence on the TVCD was worked out in several stud-
ies on these parameters (cited later in the subsections for
the discussion of the results of the respective model terms),
which partly include more complex data retrieval schemes
and/or observations from sensors with higher spatial resolu-
tion.

The annual cyclefann is modeled using smoothing splines
with periodic boundary conditions:

fann(0) = fann(365),f ′
ann(0)=f ′

ann(365). (8)

The weekly cyclefweek is a discrete function of the day in
the week. Although each of the first three terms is a func-
tion of the time, we can assume independence between the
explaining variables as we expect different processes to be
responsible for changes at the time scales offlin, fweek and
fann. The termfwind is a cyclic spline over the wind direction
θ with the additional border conditions:

fwind(0) = fwind(2π),f ′

wind(0)=f ′

wind(2π) (9)

Both information about wind direction and wind speed
were available from the ECMWF wind data. For reasons
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Fig. 2. Examples of the GAM components for China, Central Australia, the North Sea, and the Po Valley.(a) The original TVCD time series.
(b) The trend component.(c) The annual cycle.(d) The weekly cycle.(e) The wind component. The dots in (b–e) illustrate the individual
measurements corrected for all other GAM components. The numbers give the GAMp-values, indicating the significance of the respective
component.p-values below 1‰ are considered as significant and marked in red.

of simplicity we confined ourselves to consider the direction
of the wind at the surface only. Of course, the wind speed
and its vertical variation can also have an influence on the
observed NO2 patterns, but using the wind direction at the
surface alone already has a strong influence on the observed
NO2 fields, especially close to strong sources near the sur-
face (Sect.4.4). In future studies using data sets of trace gas
concentrations and winds with higher spatial resolution and
better coverage, more properties of the wind field might be
included.

It should also be noted that considering the wind speed in
addition to the wind direction is not a trivial task, since the
components modeled by GAM have a given (additive) form.
One solution would be to apply a model with splines in two

variables (direction and magnitude of the wind). We leave
this as an extension for further studies.

4 Results and discussion

All additive terms in Eq. (7) can be visualized. Inspecting the
regression coefficients for each of the terms allows to gain
insight into the functional relationship modeled – for exam-
ple between observed NO2 and time of the year – and also
to check the regression results for plausibility. In particular
one may compare the non-parametric regression function ob-
tained with the shape of the corresponding parametric mod-
els to see whether the latter would have been an appropriate
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alternative. In Fig. 2, we show the different additive func-
tional relationshipsfi for four exemplary locations. Here,
the first row shows the model coefficients of the differentfi

for a location close to Beijing (37.75◦ N, 114.75◦ E), repre-
senting an example with both a strong annual cycle and a
strong linear trend. The second row provides an example for
south Australia (22.25◦ S, 125.25◦ E), where the seasonal cy-
cle is the only significant component. In the third row results
for a location in the North Sea, (54.25◦ N, 7.75◦ E) are given,
with both a dependency tofann andfwind. In the bottom row
the result for a location close to Milano (44.75◦ N, 11.25◦ E)
provides an example for a significant linear trend, weekly and
seasonal cycle, but a non-significant wind component (here
even with a constant functionfwind).

Unfortunately, an inspection of all functional terms for all
pixels in a global map may be impossible (or at least im-
practical). So, we chose specific features of the model term
highlighting properties of interest in the differentfi and we
mapped these scalar features instead of the full set of regres-
sion coefficients: Fig. 3 shows the logarithm of the p-values
of the different model terms, indicating the significance for
the different components. Amplitudes of the differentfi are
shown in Fig. 4 as an indicator of sign and magnitude of the
respective functional term. Figures 5 to 8, map individual
coefficients of the weekly cycle, seasonal cycle and the wind
term. For the wind term we also map the local wind direc-
tions correlating with the maximum tropospheric NO2 pollu-
tion, both locally for the Johannesburg example (Fig. 9), and
at a regional level for South Africa and Europe (Fig. 10).

In the following we will discuss observations arising from
these maps in detail, focusing on understanding the differ-
ent components of the additive model (Eq.7). It should be
kept in mind, however, that the purpose of these maps is only
to highlight specific features such as “significance”, “ampli-
tude” or “extremum” of the model terms, and that patterns
identified in the maps are to be checked with the actual func-
tional form of the differentfi , i.e., by inspecting regression
functions of the different terms as shown in Fig. 2.

4.1 Linear trend

In Fig. 4, we show the spatial distribution of those areas
where the linear trends contributed significantly (with p-
values less than 0.001) to the NO2 time series for the period
1996–2001. Significant linear trends can be found in areas
with dominant anthropogenic sources. We also observe low
p-values for linear trends with almost constant behavior – i.e.
negligible slope – such as in wide areas of the Indian and Pa-
cific Ocean. This is supported by the fact that these areas
show low seasonal significance (Fig. 3).

Significant positive trends appear in China (up to ap-
prox. 15% year−1), in the western USA (up to ap-
prox. 11% year−1) and in the Middle East (up to ap-
prox. 11% year−1). Negative slopes occur less often and with
lower statistic significance. Examples are some European re-

gions (up to approx.−12% year−1, see also Fig. 2) and the
east of USA (up to approx.−8% year−1).

The linear trends are in reasonable qualitative agreement
with those of other studies (Richter et al., 2005; van der A et
al., 2008; Stavrakou et al., 2008) in the sense that the trends
show the same signs. However, the two main areas detected
in van der A et al.(2008); Richter et al.(2005) that have
a strong negative trend (Europe, east coast of USA) do not
show a trend of high significance in our study (Fig. 3). Con-
versely, we detected other regions with a significant trend,
such as the west coast of the USA and the western Middle
East (the north of the Arabian peninsula, mainly Iraq), which
were not reported so far. Explanations for the differences in
the results can be the different time periods studied.

4.2 Annual cycle

The p-values for the annual cycle (Fig. 3) vary in space on
continental scales mainly. This indicates that climatic condi-
tions are expected to have the major impact instead of human
sources.

In Fig. 5, the months with the maximum NO2 TVCD are
shown. According toJaegĺe et al. (2004); van der A et
al. (2008), the major climatic influences are biomass burn-
ing (central Africa, large parts in Brazil), lightning activity
(equatorial Africa) and soil emissions (Australia, Canada and
the area ranging from the Sahara over the Arabian peninsula
into the south of Asia till anthropogenic sources start to dom-
inate in eastern China). In the respective regions, we observe
maxima at months that agree quite well with the months re-
ported inJaegĺe et al.(2004); van der A et al.(2008).

In regions with high anthropogenic emissions, the high-
est values are typically observed in winter time, indicating
strong emissions (due to heating) and long atmospheric life-
times. Examples are the US east coast, central Europe, east
Asia and the track along the Trans-Siberian Railway connect-
ing the biggest cities in Siberia.

An interesting example for the relation to wind speed and
direction is the observed high significance of the annual
model component over the central Indian Ocean (Fig. 3).
Here, the Monsoon causes a seasonal reversal of winds (Kun-
hikrishnan et al.(2004)) and we find that the total maximum
of the seasonal component in these regions is during the
Monsoon transition period of September/October (Fig. 5a).
For most of the central areas of the Indian Ocean (latitudes
between 20◦ and 30◦ S), we observe mostly two local max-
ima in the annual signal, again in good agreement withKun-
hikrishnan et al.(2004). In this example, an apparent wind
pattern (“Monsoon”) has been absorbed into the annual cy-
cle.

As discussed in Sect.2.1, the seasonal variation of the tro-
pospheric NO2 VCD derived in this study probably not only
contains the signal of the tropospheric NO2 concentrations,
but also those of several other parameters, such as the height
of the NO2 layer or longitudinal gradients of the stratospheric
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Fig. 3. The significance (log10 of the p-value) of the different GAM terms, i.e. trend, annual cycle, weekly cycle, and wind component (from
top). Dark blue areas are affected significantly by the respective term.
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Fig. 4. The strength of the different GAM terms.(a) Absolute trend in 1014molec/cm2 per year.(b) Amplitude of the annual cycle (peak to
peak in molec/cm2). (c) Amplitude of the weekly cycle (peak to peak in molec/cm2). (d) Amplitude of the wind component (peak to peak
in molec/cm2). Only data of p-values less than 0.001 are shown.
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Fig. 5. Month with (a) maximum and(b) minimum TVCD. Only data of p-values less than 0.001 are shown.

NO2 distribution. In addition, usually the wind direction (and
speed) depends systematically on season, and part of the sea-
sonal signal might be also attributed to the influence of the
wind direction as visible from the Monsoon example. In the
same way, the significant annual cycle in the source free re-
gions over the north Atlantic Ocean may be both attributed to
transport processes, or to secondary effects from the prepro-
cessing mentioned above. The latter is in accordance to re-
sults fromRichter and Burrows(2002), who observed a large
variability over the Atlantic Ocean at latitudes of 55◦–60◦ N
mainly in winter and spring. Their explanation for this arti-
fact (that the reference sector method fails at high latitudes)
could also explain the significant annual cycles in polar and
sub-polar regions in Fig. 3. Also, in some highly polluted
regions, where highest values are found in other than in win-
ter months (see also Fig. 2, North Sea), this might be due
to the preprocessing and/or due to the influence of the wind
speed and direction. Here, we find (Fig. 10) this region to
be strongly influenced by transport processes due to wind
(Sect.4.4). Thus the results derived for the seasonal cycle
should be treated with caution, especially when compared to
the results from other studies (van der A et al., 2008; Jaegĺe
et al., 2004).

However, in some regions, systematic differences were
found, which can be explained not by the differences in the

data observation, but by the different applied models. So, in
our studies, the region in the western part of the USA show-
ing an annual signal with a maximum in summer is signifi-
cantly more extended to the east than in the study ofvan der
A et al. (2008). In these regions (in the middle of the USA),
we found mainly annual cycles with two or more local max-
ima, and an unimodal sinusoidal model of the annual cycle –
with the one annual maximum reported in (van der A et al.,
2008) – may have been a too coarse approximation. Here,
the seasonal cycle exhibits a good example for using a non-
parametric formulation of the seasonal term in Eq. (7), be-
cause the functional relationship of the seasonal cycle might
deviate strongly from simple parametric forms – the standard
sinusoid (Fig. 2).

4.3 Weekly cycle

The significance of the weekly cycle changes on much
smaller spatial scales than, for example, the annual cycle
(Fig. 3). We find a highly significant contribution of this term
in densely settled and highly industrialized regions. A closer
look confirms that many significant points in the global map
coincide with large cities. We also note a light swath pattern,
in particular in regions of low latitudes. Also inBeirle et
al. (2003), stripe-like structures parallel to the satellite tracks
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Fig. 6. Day of week with(a) maximum and(b) minimum TVCD. Only data of p-values less than 0.001 are shown.

were recognized in maps concerning the weekly cycle. Ac-
cording toBeirle et al.(2003), the swath pattern arises due to
the 35 day periodicity of the ERS-2 flight tracks, introducing
a systematic weekly pattern in the viewing geometry.

In Fig. 2 (river Po) the minimum of the weekly cycle is a
prominent feature. As expected, we find here a minimum on
Sunday. In Fig. 6, we summarize thefweek term by mapping
the weekday with maximal and minimal NO2 TVCD. We can
confirm a number of earlier findings: In the USA, the minima
occur mostly on Sunday, when traffic and industrial activity
is reduced. The same is true for most regions in Europe and
Japan. In cities in the Middle East, the minimum day is on
Friday. In Israel, a significant minimum is on Saturday. No
weekend effect could be detected in the large anthropogenic
sources of China and South Africa. These findings agree
very well with the results of former publications (Beirle et
al., 2003; Boersma et al., 2009).

It is interesting to take a closer look at the day of the
minimum NO2 TVCD in the plume of large anthropogenic
sources with a strong weekly cycle, as in Europe (see
Fig. 8). Here, the original Sunday minimum in western Eu-
rope (5◦ E–15◦ E) moves eastwards with the dominating west
winds: The minimum in east Poland (20◦ E–23◦ E) is ob-
served on Monday, in the Ukraine (23◦ E–28◦ E) on Tues-
day, and in western Russia (30◦ E–38◦ E) on Wednesday.

Thus, the signal travels about 24◦, or 1700 km (at 50◦ N),
within 3 days, corresponding to a day-of-minimum velocity
of 6.6 m/s.

Given the artificial swath pattern, caused by the 35 days re-
peat cycle, one may argue that these observations may not be
attributed to a west-east translation of the weekly NO2 min-
imum, but result from the temporal sampling of the satellite
passes. This, however, might be ruled out for several reasons:
Firstly, the artificial swath pattern – visible over the oceans in
the tropical regions, mostly in regions which are free of an-
thropogenic NO2-sources – cannot be found for the northern
Atlantic Ocean (at the latitudes of the region affected by the
studied plume). Secondly, the weekly signal for areas shown
in Fig. 8 is much stronger than the weekly signal along the
equatorial sampling artifact. Thirdly, we do not find a sys-
tematic pattern – as in Fig. 8 – when mapping the frequency
of the passes for eastern Europe. Furthermore, stripes of the
width, observed in the plume, could not be found in the swath
pattern.

From a more conceptual point of view one should note the
very difference of

1. Tracking single “negative” plumes from Sunday to
Thursday – similar to tracking plumes of unique atmo-
spheric events, for example from volcanic outbursts, as
reported for example inSchneider et al.(1999). This
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Fig. 7. Wind direction with(a) maximum and(b) minimum TVCD. Only data of p-values less than 0.001 are shown.

may be in fact impossible given the temporal and spa-
tial coverage of the given observations.

2. The patterns visible from model terms in the GAM.
These are estimated from time series of lengths of years,
here averaging over multiple negative plumes.

So, Fig. 8 represents the average pattern of several hundred
plumes over the whole time of observations.

Such a systematic drift of the NO2 plume has – to the best
of our knowledge – not been reported before. The detection
of a significant weekly cycle with a shift of the day of mini-
mum up to 3 days is only possible for a quite high NO2 life-
time of the order of a day or more, which however could be
reached in wintertime. The analysis of the downwind evo-
lution of the weekly pattern thus holds information on the
signal travel velocity, which generally provides lifetime in-
formation if combined with the NO2 loss along the track.
However, quantitative studies of such kind should be per-
formed with new datasets with improved spatial resolution,
data preprocessing, and separately for different seasons.

When applying this model, we obtain information not only
about the temporal behavior of sources, but also about the
area influenced by a source that shows a characteristic tem-
poral behavior. Such results might be important input for
model simulations of the source strengths. As illustrated for

the west-European NO2 plume, the GAM may be able to give
a first estimate on the distance up to which sources have to be
taken into account for atmospheric models. A more general
approach for identifying areas influenced by specific emis-
sion sources may be obtained from the wind term in Eq. (7)
discussed in the following.

4.4 Influence of wind

As discussed above, we find wind related processes absorbed
in other terms – i.e., the annual trends (Sect.4.2), the weekly
term (Sect.4.3) – both representing a consistent temporal
correlation with the variable modeled in these terms. How-
ever, introducingfwind as an explicit term in Eq. (7) still in-
creased the accuracy of the model over large areas over the
whole globe (Fig. 3, bottom). As expected, we find areas
with a highly significant contribution of the wind term close
to strong continuous sources, such as the east coast of the
USA and east Asia, the west coast of European countries
and the Arabian peninsula, and in the environments of point
sources like Johannesburg and Hong Kong (see also Fig. 1).
In this study, we can now illustrate the size of the areas influ-
enced by these point sources.

As is visible from Fig. 7, we find that for locations with
significant wind component, the dominant wind direction
matches the main sources in the close environment. We show
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Fig. 8. Day of week with minimum TVCD (see Fig. 6b) for Europe. Over most regions, the minimum occurs on Sunday. In eastern Europe
the minimum is shifted to the beginning of the week indicating the transport of the temporal emission patterns of the strong western NOx
sources with the dominating westerly winds. Only data of p-values less than 0.001 are shown. Colors coded as in Fig. 6.

the dependence on the wind direction in more detail for sev-
eral points located on a circle around the point of maximal
mean NO2 TVCD (Fig. 9). One may notice that the angle
corresponding to the maximum NO2 TVCD changes accord-
ing to the position. The highest NO2 TVCD are consistently
observed from the direction of the strong emission source.

For a larger area around Johannesburg (South Africa),
these directions are shown in Fig. 10a (white/black arrows),
together with an indicator of the significance of the wind
component (blue color). It is interesting to note that the lo-
cation of the source corresponds to low significance of the
wind component, as the wind direction is not of importance
at this point, and the local source dominates the observed
NO2 distribution. Around Johannesburg the directions of the
maximally contributing winds form a highly ordered vector
field, even for areas with a rather low significance of the wind
term. Tracking the directions – the arrows in Fig. 10a – leads
to large continuous “path ways”, all leading to the Johannes-
burg region, and indicating those regions where the central
emitter is the major source for non-local NO2. In the Jo-
hannesburg region these zone of wind-related transportation
extends in particular over the sea, in western and eastern di-
rections, over distances of more than 1000 km. Similar de-
pendencies on the wind-related transport and characteristic
emitting point sources in the center could be found for Hong
Kong, Los Angeles, Ar Riyad (Saudi Arabia), Jakarta, al-
though they were not as sharp as for Johannesburg.

Another example for an extended emitting source of NO2
is western Europe, as already discussed above. Areas with a
highly significant contribution of wind (Fig. 10b) are found
for areas such as the North Sea and north-west France/south-
east England, which are located close to the main industrial

areas of western Europe. For the regions of the main emis-
sion sources e.g. in Benelux/Germany and in the Po valley,
the wind component is not significant, similar to the source
point of the Johannesburg example (compare also Fig. 2, Mi-
lano). Here the observed NO2 is dominated by local (con-
stant) sources. It should be noted that the wind directions for
the maximum observed NO2 TVCD do not necessarily indi-
cate the directions of the sources contributing the most to the
observed NO2.

In general, the question may be raised regarding which
part of the transported NO2 is modeled when modeling the
dependence on only surface winds, but not winds of higher
altitudes. For the example of Johannesburg, we made the
estimation for the part of the TVCD affected by the data of
the surface winds. Therefore, we investigated the correla-
tions between the winds and wind directions at different lev-
els. The winds inclusive ECMWF level two (925 hPa, 766 m
height) correlate with more than 90% with the surface winds.
At level three, we still have a correlation of about 80% (see
Table 2).

Since we are interested in the wind direction, we also cal-
culated the mean absolute deviation of the wind directions.
Not including level three, we can approximate NO2 up to
a height of 800 m to be exposed to winds reasonably close
to the winds we used for our studies. According to numer-
ous ground based measurement studies (e.g.Schaub et al.
(2006); Wittrock et al.(2004)), this corresponds to a height
below which most of the tropospheric NO2 occurs, especially
in polluted regions.
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Fig. 9. The dependencies of the NO2 TVCD (red circle indicates the fitted spline) on the wind direction for 8 points around Johannesburg (see
image in the center). The wind direction of maximum NO2 TVCD (pink pointer indicate the direction of the air flux) changes accordingly
to the position relative to the center.

Table 2. Comparison of the winds at different ECMWF levels to the
ECMWF surface level:δθ = the mean absolute deviation of wind
direction, andr = correlation.

level pressure/hPa height/m δθ r

1 1000 111 11.5◦ 0.98
2 925 765 16.0◦ 0.93
3 850 1476 27.1◦ 0.80
4 775 2252 45.5◦ 0.64
5 700 3107 60.5◦ 0.49
6 600 4402 72.9◦ 0.39
7 500 5933 82.7◦ 0.32

Overall, for large areas – in particular in vicinity to the ma-
jor industrial areas in the Northern Hemisphere – the use of
the wind component increased the prediction accuracy sig-
nificantly (Fig. 3). We would like to emphasize that here a

more accurate model may also help to reduce bias and to get a
clearer signal from the other effects, discussed at Sects.4.2–
4.3. Furthermore, with the correlation between wind and ob-
served NO2 resulting from a local transport of the trace gas,
this model extension may help to uncouple the signal from
transport and local generation, providing more information
about the sources of locally observed NO2.

5 Conclusions

We have successfully used generalized additive models
(GAM), so far primarily to analyse local time series in or-
der to study spatio-temporal patterns in global satellite ob-
servations of tropospheric NO2 (i.e., NO2 TVCD) from 1996
to 2001. Since GAM do not require regularly sampled data
(as is the case for Fourier analysis), it can be easily ap-
plied to satellite observations, which usually contain gaps
(e.g. caused by clouds). Thus, our results are based on daily
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Fig. 10. Wind direction of maximum TVCD as quiver-plot (compare Fig. 7a) for the region(a) around Johannesburg, South Africa and(b)
over Europe. Also the significance as in Fig. 3d is shown (strength of the blue color).
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satellite observations. This high temporal resolution and the
flexibility of the additive model allowed us to systematically
investigate the influence of the wind direction (average dur-
ing the last 24 h) on the observed tropospheric NO2 VCD.

We focused on studying transport processes of NO2
plumes for polluted regions and isolated point sources. The
non-parametric modeling approach allowed us to visualize
the average west-eastern drift of the west-European NO2
plume, a characteristic so far not yet reported on. When in-
cluding the wind direction from ECMWF data in the model,
the wind component was found to be of high importance
wherever strong sources border on regions free of permanent
sources, like oceans. It was also possible to identify possi-
ble pathways of atmospheric pollution and to determine the
extent of areas influenced by strong NO2 emission sources.
Such information is important for the correct description of
emission sources in atmospheric models.

The inclusion of the wind influence is interesting in itself,
but improves also the accuracy of the results for the other
relevant model terms.

Besides the influence of the wind direction, we could de-
tect a number of features of the temporal behavior of the time
series of the global tropospheric NO2 distribution. Signifi-
cant linear trends could be found in industrialized regions.
Annual cycles could be mainly attributed to natural sources
or variations of the atmospheric lifetime. (Results for the sea-
sonal cycle should be treated with care as they may also be
affected by other seasonal factors which do not relate to the
overall NO2 concentration (Sect.2.1).) Clear weekly cycles
appeared in urban areas indicating anthropogenic sources.
The location of extremes during the cycles (months of maxi-
mal NO2 TVCD or weekdays of minimal NO2 TVCD) gave
additional insight in the kind of sources or transport pro-
cesses. Most results were in general agreement with former
studies using parametric rather than non-parametric model
terms.

A major incentive of our study was to introduce GAMs to
the global analysis of trace gas dynamics. In addition, we
may summarize our main findings as follows:

– The wind term increases the accuracy of a model with
linear, annual, and/or weekly terms as used by, for ex-
ample (van der A et al., 2008).

– We find highly consistent flow fields spatially correlat-
ing with the NO2 time series. Tracking these flow fields
allows to estimate the areas influenced by sources. The
question of how these areas correlate with average trans-
port will be left open for further (simulation) studies.

– We may have identified an approach to uncouple the
part of NO2 signal correlating with local wind fields –
and possibly with short-term transport processes – from
that part of the signal which can be attributed to locally
generated NO2.

Our study was limited with respect to several aspects,
which should be improved in future studies. The spatial res-
olution and coverage as well as the temporal sampling of
the GOME observations is rather coarse. Also the radia-
tive transfer effects and the stratospheric correction were ad-
dressed in a rather simplified way. In the future, increasing
satellite data sets with improved spatio-temporal coverage,
higher spatial resolution and improved cloud correction will
become available. Using such data sets will allow much more
detailed studies, taking into account, for example, the wind
speed, vertical wind profiles or additional quantities like tem-
perature and precipitation. Here generalized additive models
will provide ideal means for a joint, exploratory analysis of
observational data from multiple sources, allowing one to ac-
cess information of complex spatio-temporal patterns easily
and to visualize them at a global level.
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Einführung mit R und SPSS, Springer, Berlin, Germany, 2008.

Uno, I., Ohara, T., and Wakamatsu, S.: Analysis of wintertime
NO2 pollution in the Tokyo Metropolitan area, Atmos. Environ.,
30(5), 703–713, 1996.

van der A, R. J., Peters, D. H. M. U., Eskes, H. J., Boersma,
K. F., Van Roozendael, M., De Smedt, I., and Kelder, H.
M.: Detection of the trend and seasonal variation in tropo-
spheric NO2 over China, J. Geophys. Res., 111, D12317,
doi:10.1029/2005JD006594 2006.

van der A, R. J., Eskes, H. J., Boersma, K. F., van Noije, T. P. C.,
Van Roozendael, M., De Smedt, I., Peters, D. H. M. U., Kue-
nen, J. J. P., and Meijer, E. W.: Identification of NO2 sources
and their trends from space using seasonal variability analyses, J.
Geophys. Res., 113, D04302, doi:10.1029/2007JD009021, 2008.

Velders, G. J. M., Granier, C., Portmann, R. W., Pfeilsticker, K.,
Wenig, M., Wagner, T., Platt, U., Richter, A., and Burrows,

Atmos. Chem. Phys., 9, 6459–6477, 2009 www.atmos-chem-phys.net/9/6459/2009/

http://www.atmos-chem-phys.net/6/4461/2006/
http://www.atmos-chem-phys.net/6/4461/2006/
http://www.atmos-chem-phys.net/6/3211/2006/
citeseer.ist.psu.edu/rl99human.html
http://www.atmos-chem-phys.net/3/969/2003/


M. Hayn et al.: Analysing spatio-temporal patterns of the global NO2-distribution 6477

J. P.: Global tropospheric NO2 column distributions: Compar-
ing three-dimensional model calculations with GOME measure-
ments, J. Geophys. Res., 106(D12), 12643–12660, 2001.

Wagner, T., Beirle, S., Deutschmann, T., Eigemeier, E., Franken-
berg, C., Grzegorski, M., Liu, C., Marbach, T., Platt, U.,
and Penning de Vries, M.: Monitoring of atmospheric trace
gases, clouds, aerosols and surface properties from UV/vis/NIR
satellite instruments, J. Opt. A: Pure Appl. Opt., 10, 104019,
doi:10.1088/1464-4258/10/10/104019, 2008.

Wakamatsu, S., Uno, I., and Ohara, T.: Springtime Photochemical
Air Pollution in Osaka: Field Observation, J. Appl. Meteorol.,
37(10), 1100–1106, 1998.

Wenig, M., Spichtinger, N., Stohl, A., Held, G., Beirle, S., Wagner,
T., J̈ahne, B., and Platt, U.: Intercontinental transport of nitrogen
oxide pollution plumes, Atmos. Chem. Phys., 3, 387–393, 2003,
http://www.atmos-chem-phys.net/3/387/2003/.

Wittrock, F., Oetjen, H., Richter, A., Fietkau, S., Medeke, T.,
Rozanov, A., and Burrows, J. P.: MAX-DOAS measurements
of atmospheric trace gases in Ny-Alesund – Radiative transfer
studies and their application, Atmos. Chem. Phys., 4, 955–966,
2004,http://www.atmos-chem-phys.net/4/955/2004/.

Wood, S. N.: Generalized Additive Models: An Introduction with
R, Chapman & Hall/CRC, Taylor & Francis Group, 2006.

World Health Organization, Air quality guidelines for particulate
matter, ozone, nitrogen dioxide and sulfur dioxide – Global up-
date 2005 – Summary of risk assessment

www.atmos-chem-phys.net/9/6459/2009/ Atmos. Chem. Phys., 9, 6459–6477, 2009

http://www.atmos-chem-phys.net/3/387/2003/
http://www.atmos-chem-phys.net/4/955/2004/

