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Abstract. Influences of specific sources of inorganic PM2.5
on peak and ambient aerosol concentrations in the US are
evaluated using a combination of inverse modeling and sen-
sitivity analysis. First, sulfate and nitrate aerosol measure-
ments from the IMPROVE network are assimilated using
the four-dimensional variational (4D-Var) method into the
GEOS-Chem chemical transport model in order to constrain
emissions estimates in four separate month-long inversions
(one per season). Of the precursor emissions, these obser-
vations primarily constrain ammonia (NH3). While the net
result is a decrease in estimated US NH3 emissions relative
to the original inventory, there is considerable variability in
adjustments made to NH3 emissions in different locations,
seasons and source sectors, such as focused decreases in the
midwest during July, broad decreases throughout the US in
January, increases in eastern coastal areas in April, and an
effective redistribution of emissions from natural to anthro-
pogenic sources. Implementing these constrained emissions,
the adjoint model is applied to quantify the influences of
emissions on representative PM2.5 air quality metrics within
the US. The resulting sensitivity maps display a wide range
of spatial, sectoral and seasonal variability in the susceptibil-
ity of the air quality metrics to absolute emissions changes
and the effectiveness of incremental emissions controls of
specific source sectors. NH3 emissions near sources of sulfur
oxides (SOx) are estimated to most influence peak inorganic
PM2.5 levels in the East; thus, the most effective controls of
NH3 emissions are often disjoint from locations of peak NH3
emissions. Controls of emissions from industrial sectors of
SOx and NOx are estimated to be more effective than surface

Correspondence to:D. K. Henze
(daven.henze@colorado.edu)

emissions, and changes to NH3 emissions in regions domi-
nated by natural sources are disproportionately more effec-
tive than regions dominated by anthropogenic sources. NOx
controls are most effective in northern states in October; in
January, SOx controls may be counterproductive. When con-
sidering ambient inorganic PM2.5 concentrations, interconti-
nental influences are small, though transboundary influences
within North America are significant, with SOx emissions
from surface sources in Mexico contributing almost a fourth
of the total influence from this sector.

1 Introduction

The persistence of airborne fine particulate matter in heav-
ily populated areas poses a significant health hazard (Pope,
2000; Pope et al., 2002). In the United States, it is estimated
that 90 million people live in areas where yearly average
mass concentrations of particles with an aerodynamic diam-
eter less than 2.5µm (PM2.5) exceed the National Ambient
Air Quality Standards (NAAQS) (EPA, 2002, 2004). On av-
erage, about half of the mass of such aerosol is composed
of the inorganic species sulfate (SO2−

4 ), nitrate (NO−

3 ) and
ammonium (NH+4 ), which will be the focus of the present
work. Formation of effective regulatory measures for control
of inorganic PM2.5 requires both comprehensive estimates of
existing inorganic aerosol distributions and also a means of
assessing how emissions abatement would alter such distri-
butions. Both of these tasks are made difficult by the fact
that inorganic PM2.5 is generally not directly emitted; rather,
it is formed secondarily in the atmosphere via chemical and
thermodynamic transformations of gas-phase precursors that
may potentially emanate far from nonattainment regions.
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Existing studies of sources of secondary inorganic aerosol
within the continental US follow several approaches. De-
tailed field measurements combined with meteorological
back trajectories and process analysis provide insight into
the nature of the governing chemical mechanisms and con-
tributing sources (e.g.,Quinn et al., 2006; Brock et al., 2008;
de Gouw et al., 2008). Lagrangian chemical trajectory mod-
els are used to further assess the role of various physical and
chemical processes along specific source – receptor paths
(Yu et al., 2008). Factor analysis of PM2.5 concentrations
is used to statistically estimate contributions from emissions
source sectors to a set of measurements (Brinkman et al.,
2006; Lee et al., 2008), typically on the scale of individ-
ual metropolitan areas. Eulerian chemical transport mod-
els can reveal the influence of sources of inorganic PM2.5
by comparing model simulations with and without emissions
(toggling) from specific sectors or locations, such as trans-
boundary vs. local emissions (Park et al., 2004; Knipping
et al., 2006; Chin et al., 2007). Direct decoupled sensitivity
analysis is a more efficient method than emissions toggling
for estimating the sensitivity of aerosol concentrations over
the entire model domain with respect to a large number of
sources without perturbing the forward model state (Nape-
lenok et al., 2006). More directly, tracking sources of inor-
ganic PM2.5 using emissions-labeled tracers is used to explic-
itly apportion aerosol estimates by source on local to hemi-
spheric scales (Kleeman and Cass, 2001; Ying and Kleeman,
2006; Ying et al., 2007; Liu et al., 2008). Additional ex-
amples of these approaches to source analysis for secondary
aerosols in studies throughout the Northern Hemisphere can
be found inBenkovitz et al.(2006). Ultimately, analysis of
inorganic PM2.5 sources on a continental scale is contingent
upon comprehensive knowledge of the aerosol distribution.
However, observations are often incomplete in their spatial
or temporal coverage, and model estimates can be subject
to significant uncertainties. Hence, continued analysis of in-
organic PM2.5 sources comprises both further utilization of
aerosol measurements and improvement of forward model
estimates.

The approach to inorganic PM2.5 source analysis taken in
this work consists of two stages. The first stage is to constrain
model estimates of aerosol precursor emissions and the re-
sulting aerosol distributions by assimilating chemically spe-
ciated measurements of aerosol concentrations. Data assim-
ilation techniques provide a framework for combining ob-
servations and models to form an optimal estimate of the
chemical state of the atmosphere. Methods based in pa-
rameter optimization (as opposed to interpolation or nudg-
ing) can be used for inverse modeling, wherein observations
are used to constrain estimates of model parameters that are
both influential and uncertain (typically emissions). For in-
organic PM2.5, the key emissions of gas-phase precursors
are sulfur dioxide (SO2, often considered collectively with
SO2−

4 emissions as SOx), nitrogen oxides (NOx) and ammo-
nia (NH3). NH3 is recognized as being both highly uncertain

and influential for aerosol formation and thus a critical fac-
tor for improving estimated distributions of nitrate aerosol
in the continental US (Park et al., 2004; Yu et al., 2005;
Nowak et al., 2006; Park et al., 2006; Liao et al., 2007; Zhang
et al., 2008; Wu et al., 2008; Stephen and Aneja, 2008).
Previous inverse modeling studies of NH+

4 in the US using
a Discrete Kalman filter (Gilliland and Abbitt, 2001) esti-
mated improved monthly emissions scaling factors for to-
tal US NH3 emissions using observations of ammonium wet
deposition (Gilliland et al., 2003, 2006). In a separate ef-
fort, Mendoza-Dominguez and Russell(2000, 2001) opti-
mized domain-wide emissions scaling factors for eight types
of emissions (including SOx, NOx and NH3) over the eastern
US using observations of gas-phase inorganic and organic
species and speciated fine particles. In these studies, the spa-
tial distributions of emissions were assumed to be known;
the magnitude of the emissions were adjusted using domain-
wide scaling factors. For a sensitivity study inGilliland et al.
(2006), two separate scaling factors for Eastern and Western
locations were considered. These studies provide valuable
constraints on total emissions budgets and highlight the im-
portance of improving estimates of inorganic PM2.5 precur-
sor emissions.

The present works seeks to improve upon previous inverse
modeling studies via application of the four-dimensional
variational data assimilation technique (4D-Var) (Kalnay,
2003) using the adjoint of the GEOS-Chem chemical trans-
port model (Henze et al., 2007). The adjoint of the GEOS-
Chem model was developed specifically for inverse mod-
eling of PM2.5 observations with explicit inclusion of gas-
phase chemistry, heterogeneous chemistry, and treatment of
the thermodynamic couplings of the sulfate – ammonium
– nitrate – water aerosol system; it is thus uniquely capa-
ble of exploiting aerosol-phase measurements in novel ways.
The adjoint model is used to calculate gradients of the error
weighted squared difference between model predictions and
observations with respect to emissions. An adjoint model
is an efficient means of calculating the sensitivities of this
type of model response with respect to numerous (O(106))
model parameters simultaneously, affording optimization of
parameters on a resolution commensurate with that of the for-
ward model itself. This allows refinement of both the over-
all magnitude and the spatial distributions of emissions, dis-
tinguishing between different emission source sectors, and
quantification of the influence of other uncertain model pa-
rameters such as initial conditions and heterogeneous uptake
coefficients. The feedbacks between the inorganic PM2.5
species and their gas-phase precursors have been noted as
a hindrance to inverse modeling estimates of NH3 emissions
using aerosol NH+4 measurements (Pinder et al., 2006); here
these feedbacks are exploited by using surface measurements
of sulfate and nitrate aerosol concentrations to constrain es-
timates of precursor emissions, particularly NH3.

In addition to its utility in inverse modeling, an adjoint
model itself is a novel tool for evaluating sources pertinent
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to air quality regulations (Hakami et al., 2006). In the sec-
ond stage of this work (Sect.5), the adjoint of GEOS-Chem
is used to generate maps of the influence of inorganic PM2.5
precursor emissions on representative air quality attainment
metrics. Emissions from various sectors and locations are
then ranked according to their influence on nonattainment.
These results are contingent upon the best estimate of the pre-
cursor emissions themselves, and are thus presented follow-
ing introduction of the forward model (Sect.2), description
of the adjoint method for calculating discrete model sensitiv-
ities (Sect.3), and results of the inverse modeling (Sect.4).
While adjoint sensitivity analysis is not strictly a method for
source apportionment, it does have several attractive aspects
for estimating the incremental influence of specific sources
on air quality attainment. Unlike analysis of meteorolog-
ical back trajectories or statistical factor analysis, this ap-
proach accounts for chemical and physical processing and
transport combined. The influence of emissions are readily
obtained for each location and for all types at a computa-
tional expense of no more than three times that of a nor-
mal forward model simulation. This is an advantage over
emissions-labeling, Lagrangian modeling or emissions tog-
gling, each of which increases in computational expense as
the number of source regions/types/times is refined. Finally,
the analysis can be performed around the current model state,
providing estimates of the immediate consequences of emis-
sions changes, in contrast to estimates that rely in part on
non-physical emissions-free simulations, potentially trigger-
ing nonlinear model responses (Liu et al., 2008).

2 Forward model description

The GEOS-Chem chemical transport model is used to esti-
mate ambient concentrations of inorganic aerosol over the
US for the months of January 2001, through January 2002.
The model is driven using assimilated meteorology from the
Goddard Earth Observing System (GEOS-3) of the NASA
Global Modeling and Assimilation Office (GMAO). GEOS-
3 data sets are down-sampled to a resolution of 4◦

×5◦ to fa-
cilitate detailed simulation of tropospheric gas-phase chem-
istry, discussed fully in works such asBey et al.(2001), Li
et al.(2001) andMartin et al.(2002). The present study uses
model version 6-02-05, which includes an online secondary
inorganic aerosol simulation introduced and described in de-
tail by Park et al.(2004). Model estimates of inorganic PM2.5
have been compared to surface measurements (Park et al.,
2004, 2006; Liao et al., 2007) and measurements from air-
craft campaigns (Heald et al., 2005, 2006b); here we reiterate
key features of the inorganic aerosol simulation.

Fine mode (aerodynamic diameter less than 2.5µm) in-
organic aerosol is calculated as the mass of aerosol-phase
SO2−

4 , NH+

4 and NO−

3 that forms from the gas-phase pre-
cursors sulfuric acid (H2SO4), NH3, and nitric acid (HNO3).
H2SO4 is formed from oxidation of SO2 by OH in the gas-

phase, and, more importantly, by H2O2 and O3 in clouds.
As H2SO4 readily partitions into the particle phase, it is al-
ways treated as aerosol sulfate. Thermodynamic equilibrium
of aerosol NH+4 and NO−

3 with their gas-phase counterparts
(NH3 and HNO3) is calculated using the MARS-A routine
of Binkowski and Roselle(2003), which allows for forma-
tion of (NH4)2SO4 and, if excess NH3 is available, NH4NO3,
though formation of aerosol NO−3 can be enhanced by cold
or moist conditions. Additional couplings between gas and
aerosol phases treated in the model include formation of
HNO3 through heterogeneous reaction of N2O5 with water,
where the reaction probability is calculated as a function of
aerosol type, available surface area, temperature, and rela-
tive humidity (Evans and Jacob, 2005). Uptake of NO2 and
NO3 on aerosol surfaces is described inMartin et al.(2003).
The formation of H2O2 from heterogenous uptake of HO2
(Thornton and Abbatt, 2005) is also considered.

Anthropogenic emissions of NOx and SOx are taken from
the Global Emission Inventory Activity (GEIA) database for
the year 1985 (Benkovitz et al., 1996), scaled according to
fossil fuel usage for the year 1998 (Bey et al., 2001). NH3
emissions from anthropogenic sources (domesticated ani-
mals, fertilizers, human bodies, industry, fossil fuels) and
natural sources (oceans, crops, soils, wild animals) are based
on data from the 1990 GEIA inventory ofBouwman et al.
(1997), with additional contributions owing to biomass burn-
ing and biofuel use from inventories byDuncan et al.(2003)
and Yevich and Logan(2003). The total yearly source of
NH3 in the United States is scaled to match that ofGilliland
et al.(2003), while monthly variability is calculated accord-
ing to an exponential temperature scaling (Adams et al.,
1999). Dry deposition of all types of aerosol is calculated us-
ing a resistance-in-series model (Wesely, 1989; Wang et al.,
1998); wet removal is described inJacob et al.(2000).

3 Adjoint modeling

Founded in optimal control theory and variational calcu-
lus, adjoint methods were initially suggested as approaches
to source analysis of atmospheric tracers several decades
ago (Lions, 1971; Marchuk, 1974). By the late 1990s, the
method was applied to chemical transport models of the
stratosphere (Fisher and Lary, 1995) and troposphere (El-
bern et al., 1997). The method was used to constrain emis-
sions in an Eulerian air quality model of chemically active
species in the troposphere byElbern et al.(2000). Subse-
quent investigations of emissions have been explored with
adjoints of chemical transport models such as CHIMERE
(Vautard et al., 2000; Menut, 2003; Schmidt and Martin,
2003), Polair (Quelo et al., 2005), the CIT model (Martien
et al., 2006; Martien and Harley, 2006), STEM (Sandu et al.,
2005a; Hakami et al., 2005), DRAIS (Nester and Panitz,
2006), CMAQ (Hakami et al., 2007), IMAGES (Müller and
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Stavrakou, 2005; Stavrakou and Muller, 2006; Stavrakou
et al., 2008), and GOCART (Dubovik et al., 2004, 2008).

While previous chemical transport adjoint models have fo-
cused largely on gas-phase processes and observations, the
focus of the present work is on aerosols.Henze et al.(2004)
andSandu et al.(2005b) used the adjoint method for inverse
modeling of aerosol distributions in box model simulations.
Hakami et al.(2005) used the adjoint of STEM for inverse
modeling of black carbon aerosol, treated as an inert tracer.
The inverse modeling ofDubovik et al.(2008) focused on
constraining global estimates of SOx and primary aerosol
emissions with MODIS observations using the adjoint of the
GOCART model; GOCART considers secondary formation
of sulfate from SO2 using prescribed oxidant fields, as well
as carbonaceous, dust and sea salt aerosol (Chin et al., 2000).

The GEOS-Chem aerosol simulation is based on the GO-
CART model, particularly for wet scavenging, with updates
described byPark et al.(2004). GEOS-Chem and its adjoint
also includes ammonium and nitrate aerosol, the thermody-
namics of the sufate-ammonium-nitrate-water aerosol sys-
tem, and detailed tropospheric gas-phase chemistry for on-
line calculation of oxidation of aerosol precursors. A full de-
scription of the GEOS-Chem adjoint model is given inHenze
et al. (2007), where the adjoint of each individual physical
and chemical model operator is derived and validated, and
pseudo-observations are used to assess the potential inverse
modeling performance. Subsequently, the GEOS-Chem ad-
joint model has been updated to include online calculations
of the heterogenous reaction rates (and the corresponding
adjoint), and sensitivities with respect to emissions of NOx
from soil and lightning. The GEOS-Chem adjoint has also
been further developed for inverse modeling CO emissions
using remote sensing observations (Kopacz et al., 2009). In
the remainder of this section, the general approach to adjoint
sensitivity analysis is reviewed.

A chemical transport model can be viewed as a numerical
operator,F , acting on a vector of initial concentrations,c0,
and a vector of parameters,p, to yield an estimate of the
evolved concentrations at a later time,N ,

cN
=F(c0, p), (1)

where c is the vector of all K tracer concentrations,
cn

=[cn
1, . . ., cn

k , . . ., cn
K ]

T at time stepn. In practice,F com-
prises many individual operators representing various physi-
cal processes. For the moment, letF n represent a portion of
the discrete forward model that advances the concentration
vector from time stepn to stepn+1.

cn+1
=F n(cn, p), (2)

The adjoint model is used to calculate the sensitivity of a
scalar model response function,J , with respect to the model
parameters,p. The response function may depend only upon
a temporal subset of concentrations,�n, or a subset of chem-

ical species or locations,̂cn
k , k∈�k, and may include a term

explicitly depending upon the parameters,Jp(p),

J =

∑
n∈�n

J n(ĉ
n
) + Jp(p). (3)

Assuming the parameters are constant,Jp(p) does not have
a time step index. In practice the definitions of�, J n andJp

are very application-specific. For the following derivation
it is simply assumed that the response domain includes all
species at all times such that

J =

N∑
n=0

J n(cn) + Jp(p). (4)

The purpose of the adjoint model is to calculate the sensi-
tivity of the response with respect to the model parameters.
As will become evident, it is first necessary to calculate the
sensitivity of the model response with respect to species con-
centrations at every time stepn in the model,

∇cnJ=

(
∂J
∂cn

)T

=

N∑
n′=n

(
∂J n′

∂cn

)T

(5)

(
note:

∂J n′

∂cn
= 0 for n′ < n

)
.

The Jacobian matrix of the model operator around any given
time step can be written as

∂cn+1

∂cn
=

∂F n(cn)

∂cn
≡ Fn

c (6)

and similarly,

∂cn+1

∂p
=

∂F n(cn)

∂p
≡ Fn

p. (7)

Using the chain rule, the sum on the right hand side of Eq. (5)
is expanded,

∇cnJ = (Fn
c )

T (Fn+1
c )T· · · (FN−1

c )T
(

∂JN

∂cN

)T

+ (Fn
c )

T (Fn+1
c )T· · · (FN−2

c )T

(
∂JN−1

∂cN−1

)T

+ · · ·

+

(
∂J n

∂cn

)T

.

(8)

The sensitivity of the response with respect to the model pa-
rameters (assumed here not to depend on the time stepn) can
then be written as

∇pJ = (FN−1
p )T ∇cNJ

+ (FN−2
p )T ∇cN−1J + . . .

+ (F0
p)T ∇c1J +

(
∂Jp

∂p

)T

.

(9)
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In this context, the adjoint method is essentially just an ap-
proach to evaluating Eqs. (8) and (9) that is computation-
ally efficient when dim{c} and dim{p}>dim{J } (Giering
and Kaminski, 1998). The adjoint sensitivity variables are
defined asλn

c=∇cnJ andλp=∇pJ , where the subscriptsc
andp indicate sensitivity with respect toc andp, respec-
tively. Initializing

λN
c =

(
∂JN

∂cN

)T

andλp=

(
∂Jp

∂p

)T

,

adjoint sensitivities are found by evaluating the following up-
date formulas iteratively fromn=N, . . ., 1,

λn−1
c = (Fn−1

c )T λn
c +

(
∂J n−1

∂cn−1

)T

, (10)

λp = (Fn−1
p )T λn

c + λp, (11)

The ∂J n

∂cn terms are referred to as the adjoint forcings as their
role in the adjoint model is analogous to that of emissions
in the forward model (for further details, see the continuous
forward and adjoint model equations inSandu et al., 2005a).
While calculation of adjoint values using this algorithm is
straightforward, there are a few subtleties worth mention-
ing. First, evaluating sensitivities with respect to model pa-
rameters requires having first calculated sensitivities with re-
spect to concentrations. Since evaluation of Eq. (8) is much
more computationally expensive than evaluation of Eq. (9),
the overall computational cost is largely invariant to the num-
ber of parameters considered. Second, while solving Eq. (11)
iteratively along with Eq. (10) is not necessary, it is computa-
tionally preferable as values ofλn

c andFn
p need not be stored

for more than a single step.

4 Inverse modeling

4.1 Cost function

Inverse modeling is the process by which measurements are
used to reduce the set of possible models from all that are
consistent with prior information to a reduced set (the inverse
model solution) by rejecting those that do not likely represent
the observations (Tarantola, 2006). A range of models is typ-
ically constructed using control parameters,

σ=[σ1, σ2, . . . , σM ]
T ,

which are used to adjust elements of the vector of model pa-
rameters,p, via application as scaling factors1,

p = pae
σ ,

1The use of scaling factors to adjust the model parameters is
advantageous as it gives equal weight to all parameters, regard-
less of magnitude or unit. The use of log-normal scaling factors
(σ=ln(p/pa)) has several benefits over linear scaling (σ=p/pa)
for the current application (Tarantola, 2005). Increasing or decreas-

 GEOS-Chem NO3
-  IMPROVE NO3

-

Apr

Jul

Oct

Jan

NA

Fig. 1. Predicted (GEOS-Chem) and observed (IMPROVE)
monthly average surface NO−3 .

wherepa is the prior parameter estimate.
The inverse problem seeksσ that minimizes the cost func-

tion,J , given by

J =
1

2

∑
c∈�

(Hc − cobs)
T S−1

obs(Hc − cobs)

+
1

2
γr(σ − σ a)

T S−1
a (σ − σ a),

(12)

wherec is the vector of species concentrations mapped to the
observation space byH , cobs is the vector of species obser-
vations,Sobs is the observation error covariance matrix,σ a

is the prior estimate of the parameter scaling factors (equal
to 0), Sa is the error covariance estimate of the parameter
scaling factors,γr is a regularization parameter, and� is the
domain (in time, space, and chemical species) over which
observations and model predictions are available. Overall,
the cost function is a specific model response, the minimum
value of which balances the objectives of improving model
performance while ensuring the model itself remains within
a reasonable range (as dictated byS−1

a ) of the initial model.

4.2 Observations

Model predictions of sulfate and nitrate aerosol are com-
pared to observations from the Interagency Monitoring of

ing order of magnitude changes top are reflected as changes to the
absolute value ofσ and are thus penalized equally in the cost func-
tion, values ofp are implicitly not allowed to change sign, and the
uncertainty of the scaling factors can be represented as a normal
distribution about 0 (forp that are strictly positive, the normal dis-
tribution of σ=p/pa about 1 is nonphysical as it allows a nonzero
probability thatp<0).
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 GEOS-Chem SO42-  IMPROVE SO42-

Apr

Jul

Oct

Jan

NA

Fig. 2. Predicted (GEOS-Chem) and observed (IMPROVE)
monthly average surface SO2−

4 .

Protected Visual Environments (IMPROVE) network (Malm
et al., 1994) during the months of April, July and October
2001, and January 2002. Mass concentrations of sulfate and
nitrate are determined from analysis of fine aerosol (aero-
dynamic diameter less than 2.5µm) collected on teflon and
nylon filters, respectively, sampled over a 24 h period every
third day. Measurements from each of the∼120 IMPROVE
sites are averaged on the GEOS-Chem grid, and the result-
ing monthly average distributions are shown in Figs.1 and
2. The observation error covariance matrix,Sobs, includes
a contribution of the reported measurement error, typically
5%–10% for sulfate and 5%–30% for nitrate. As the distri-
bution of the observations within any given model grid cell is
not uniform, a representational error is also included inSobs,
here assumed to be 30%.

4.3 Model parameters

In general, the parameters of a chemical transport model in-
clude emissions, boundary conditions, initial conditions, and
rate parameters for deposition and chemical reactions. For
this study, the parameters initially considered are scaling fac-
tors for the emissions of SOx, NOx and NH3 from the source
sectors listed in Table1. Use of a global model means there
are no additional boundary conditions to consider (neglecting
stratospheric – tropospheric ozone exchange). Also consid-
ered are scaling factors for the initial concentrations of each
tracer (initial conditions) and for several kinetic parameters,
such as the heterogeneous reaction probability for formation
of HNO3 from N2O5, which is an important (Dentener and
Crutzen, 1993), yet still highly uncertain (e.g.,Brown et al.,
2006), mechanism for loss of NOx.

After a single evaluation of the adjoint model, the resulting
sensitivities indicate which parameters are the most influen-

tial in determining the cost function. Figure3 shows the sen-
sitivity of the cost function with respect to stack emissions of
SOx, surface emissions of NOx, anthropogenic emissions of
NH3, and natural emissions of NH3 for January. These sensi-
tivities are fully normalized values,λpi,m

=
∂J

∂pi,m

pi,m

J , shown
as a percent response ofJ to fractional changes in emis-
sions of sourcem in location i. These, in addition to sur-
face emissions of SOx and stack emissions of NOx, have the
largest sensitivities of all the emissions sectors considered in
each of the months. Sensitivities of the discrepancy between
observed and modeled aerosol concentrations with respect
to sources of aerosol precursors outside North America are
shown in the top row of Fig.4 for April, when transport of
pollution across the Pacific Ocean is most common (Yienger
et al., 2000). The largest influences are from stack emissions
of SOx and surface emissions of NOx, though with maxi-
mum sensitivities of less than 1% these sensitivities are gen-
erally several orders of magnitude smaller than those from
within North America. Note that the sensitivity of the con-
centrations themselves (instead ofJ ) with respect to distant
emissions can be more significant, see Sect.5.2. The second
row of Fig. 4 shows sensitivities with respect to initial con-
ditions, displaying just the values at 933 hPa for sulfate and
nitrate, which exhibit the largest influence of the initial con-
ditions of any tracer. Values peak in the 950–750 hPa range
(initial concentrations closer to the surface are less influen-
tial owing to quick depositional losses), but are still one to
two orders of magnitude smaller than emissions sensitivities
over the course of the simulation, as the average aerosol life-
time is much shorter than one month. Also considered are
the sensitivities of the cost function with respect to rates that
affect the lifetime of NOx, and are hence critical for esti-
mating HNO3 and NO−

3 . For example, sensitivities with re-
spect to heterogeneous uptake of N2O5 over the course of the
month is found to occasionally be 35% as large as the sen-
sitivity with respect to NOx emissions. While this is likely
a critical parameter for further research in focused areas, the
overall effect of NOx emissions was generally an order of
magnitude larger in the present study. In theory, all parame-
ters could be optimized simultaneously, even those for which
the uncertainty or sensitivity is relatively small. However, to
simplify the optimization process, the scaling factors for ini-
tial conditions and rate parameters are not allowed to vary,
as, assuming all are equally uncertain, they are found to be
much less critical than emissions parameters. Overall, the
set of variable model parameters comprises monthly scaling
factors in each grid cell for emissions of each species listed
in Table1.

A key aspect of inverse modeling is specification of the
error covariance matrix,Sa , of the variable parameters. For
the base case inversion, the emissions of anthropogenic NOx
and SOx are assigned a standard error in each grid cell of
30% and 10%, respectively. The error for emissions from
all other sectors is taken to be 100%. Additional inversions
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Table 1. Emissions inventories treated as variable parameters.

Emitted species Source sectors considered

SOx surface (anthropogenic), stack (anthropogenic), ships, biomass burning, biofuel
NH3 anthropogenic, natural, biomass burning, biofuel
NOx surface (anthropogenic), stack (anthropogenic), lightning, soil

(a) Stack SOx (b) Surface NOx

(c) Natural NH3 (d) Anthropogenic NH3

-10 -5 5 10 [%]0

Fig. 3. Normalized sensitivities of the cost function in January with respect to emissions from:(a) stack SOx, (b) surface NOx, (c) natural
NH3, and(d) anthropogenic NH3. Positive sensitivities indicate regions where a decrease in emissions would improve the overall agreement
between the model and the observations (J ), and conversely for negative sensitivities.

are also performed using 50% and 100% standard error for
NOx, and 25% and 100% for SOx; however, unless otherwise
noted, results will be shown for the base case. In all cases,
the errors are assumed to be uncorrelated between spatial lo-
cations and between emissions from different source sectors,
henceSa is diagonal. While ultimately convenient, the as-
sumption that the errors are not correlated is in part justified
in that the correlation length scale of the individual emission
sources can be much less than the spatial resolution of the
model (Stephen and Aneja, 2008), and partly through use of
a regularization parameter to enforce a smooth solution, as
discussed in the following section.

4.4 Optimization

Gradients of the cost function with respect to the parame-
ter scaling factors calculated with the adjoint model,∇σJ ,
are supplied to an optimization routine (the quasi-Newton L-
BFGS-B optimization routine (Byrd et al., 1995; Zhu et al.,
1994)) and the minimum of the cost function is sought iter-
atively. At each iteration, improved estimates of the model
parameters are implemented and the forward model solution
is recalculated. Figure5 shows a typical evolution of the cost

function and the gradient norm for successive function eval-
uations. In this case (each parameter assumed a 100% error),
the cost function is reduced by 70%, and the norm of the
gradient (a measure of the size of the adjoint sensitivities)
is reduced by more than two orders of magnitude after 14
function evaluations, at which point the minimization is con-
sidered to have converged. Minimization of the cost function
in all cases is achieved in less than 20 function evaluations.

As mentioned previously,Sa is assumed to be diagonal.
The significance of the prior information is thus more of a
smoothness constraint than a rigorous estimate of prior un-
certainty (Rodgers, 2000). The regularization parameter,γr ,
is used to balance the two terms of the cost function, which
can be written as:

J=Jprediction+ γrJparameter.

These terms represent the total prediction error incurred
for departure of model predictions from the observations,
Jprediction, and the penalty error incurred for departure from
the prior parameter estimates beyond the range of prior un-
certainty,Jparameter. The consequence of changingγr on con-
verged values ofJ is shown in Fig.6 for several inverse
modeling tests using data from January. High values ofγr
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(a) Stack emissions of SOx (b) Surface emissions of NOx

-0.10 -0.05 0.05 0.10 [%]0

(c) Initial conditions (933 hPa): SO42- (d) Initial conditions (933 hPa): NH4+

Fig. 4. Normalized sensitivities of the cost function in April with respect to(a) stack SOx emissions,(b) NOx surface emissions,(c) SO2−

4
initial conditions, and(d) NH+

4 initial conditions. Note the scale is from−0.1% to +0.1%.
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Fig. 5. Convergence of cost function (red) and gradient norm
(green). The blue line shows function evaluations; open circles rep-
resent accepted iterations. Quantities are normalized with respect
to their values at the initial iteration.

lead to over-smoothing of the solution with less improvement
to the prediction error term, while low values ofγr minimize
the error term at the cost of greatly increasing the parameter
penalty term. An optimal value can be identified at the cor-
ner near the origin of the so called L-curve (Hansen, 1998),
panel (a). Another way of visualizing the balance between
the two terms is shown in panel (b) of Fig.6, where the pre-
diction error and the penalty error are shown as a function of
γr . In this plot the prediction error is normalized to the initial
value of the cost function (J0=JpredictionasJparameteris zero

for the first iteration), while the penalty error is normalized
to the value ofJparameterwhenγr=0.01. The total error is the
sum of the normalized prediction error and the normalized
penalty error; the optimal value ofγr is that which minimizes
the total error. Based on combined analysis of Fig.6a and b,
the value ofγr is taken to be 50, conservatively preferring
to over-smooth the solution to the inverse problem. It is as-
sumed that a similar range ofγr is optimal for the remaining
months, though a smaller value ofγr=10 is used in April,
July and October asJprediction is more than twice as large in
January than in the other months.

Figure1 shows the initial model predictions and observed
monthly average aerosol nitrate, where model results are av-
eraged over the 24 h time periods and locations for which
there are observations (∼10 each month in∼45 locations).
Similar comparisons for sulfate are shown in Fig.2. Es-
timates of individual 24 h sulfate concentrations over the
course of the year have a mean of 1.90µg/m3, a root mean
square (RMS) error of 1.92µg/m3 (n=1832), and normalized
mean bias (NMB) of−0.08. The nitrate estimates have a
RMS error of 1.10µg/m3, which is more than twice as large
as the mean of 0.52µg/m3, and a NMB of 0.41. Previous
studies comparing GEOS-Chem simulations to IMPROVE
measurements have also found better agreement for sulfate
than nitrate (Park et al., 2004, 2006; Liao et al., 2007). A
possible source of model error is uptake of HNO3 on mineral
dust, which is a source of nitrate aerosol not considered in
the model, and thus a possible model bias for locally formed
aerosol in the Southwest as well as long-range transport of
aerosol with dust (Malm et al., 2004; Liao et al., 2007; Fairlie
et al., 2007). Formation of sulfate aerosol on sea salt is also
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Fig. 6. The dependence of the inverse modeling solu-
tion on the regularization parameter,γr . Tested values are
γr=0.01, 0.1, 1, 10, 20, 50, 100, 200, 500. (a) The L-curve; opti-
mal value ofγr=10−20. (b) Total error minimization: optimal
value ofγr=20−50.

not included in the model, which can impact sulfate aerosol
and HNO3 concentrations over the ocean and near coastlines
(Alexander et al., 2005). However, the largest differences be-
tween the observed and modeled nitrate (in the central US)
are not likely to be heavily influenced by such interactions.

Figure7 shows the nitrate adjoint forcing in each month
before and after minimization of the cost function. This ad-
joint forcing is a distribution of the difference between pre-
dictions and observations of aerosol nitrate weighted by the
certainty in the observations,S−1

obs. The +/– values in the cor-
ners of each panel give the forcing range. The cost function
is reduced by 30% in April and July, 40% in October, and
63% in January, The reduction in forcing shows where the
nitrate simulation has improved, which is mainly in the cen-
tral Midwest, the Northeast, and along the northern border.
The total RMS error for nitrate over the course of the year

 Nitrate forcing

 Using prior emissions Using optimized emissions

Apr

Jul

Oct

Jan

 -28                           +304  -28                             +99

 -30                            +94  -30                             +26

 -27                           +163  -27                             +21

 -31                           +143  -31                             +39

-200 -100 100 2000

Fig. 7. Adjoint forcing of nitrate (NO−3 ) before and after opti-
mization. Adjoint forcing is the sum of the discrepancy between
modeled and observed aerosol concentrations weighted by the in-
verse observational error covariance. Each row corresponds to the
month listed on the left. The numbers in the lower left and lower
right corners of each panel give the minimum and maximum values,
respectively.

is reduced to 0.63µg/m3. The sulfate aerosol forcing (not
shown) is±30µg/m3 both before and after the optimization.
The RMS error for sulfate decreases by only a few percent
in April and October, by less than a percent in July, and does
not change in January. That the sulfate simulation is not sig-
nificantly altered is partly a consequence of the prior error
specification being tighter for SOx than for NOx and NH3
emissions.

Table2 shows the change in RMS error for two additional
inverse modeling solutions starting with different constraints
on anthropogenic emissions of SOx and NOx. The looser the
constraint is for these emissions, the more sulfate RMS error
is improved by the inversion, while the nitrate error is rel-
atively unaffected. However, even when all emissions con-
straints are equal, the decrease in the RMS error for the sul-
fate simulation (−8.6%) is relatively small compared to the
error decrease for the nitrate simulation (−43.5%).

The representational error that contributes toS−1
obs also af-

fects the optimization. The sulfate simulation is closer to
the observations on a fractional basis. Specification of the
representational error inS−1

obs on a fractional basis causes the
sulfate prediction error to contribute less to the cost function
than the nitrate prediction error, and hence the error in the
sulfate simulation is not as much of a driving force for the
inversion. When assumed to be a uniform fraction of the ob-
served value throughout the model, the representational er-
ror only affects the balance betweenJpredictionandJparameter.
For example, with 30% representational error andγr=10, the
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NH3 prior NH3 opt ln(opt/prior)
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Fig. 8. Anthropogenic NH3 emissions. The left column shows the prior inventory, the center the optimized inventory, and the right column
the logarithmic scaling factors (σ ).

Table 2. The effects of prior parameter error on inversion results. Changes in the total continental US emissions from all source sectors and
changes in the root mean squared error (RMSE) obtained using the inverse modeling solutions obtained starting from three different sets of
assumed standard errors for anthropogenic emissions of NOx and SOx. In each case, errors from all other source sectors have a 100% prior
error. Changes (4) are reported as (optimized-prior)/prior×100%.

Initial assumed errors Total emissions changes Resulting error reduction
sa,NOx,anth sa,SOx,anth 4NH3 4NOx 4SOx 4RMSE NO−

3 4RMSE SO2−

4

30% 10% −25.3% −1.4% −2.5% −42.7% −1.1%
50% 25% −25.8% −2.1% −7.9% −43.0% −3.6%
100% 100% −22.0% −9.6% −5.3% −43.5% −8.6%

cost function in July reduces by 28%, and the nitrate RMS
error reduces from 0.67µg/m3 to 0.44µg/m3. Using 10%
(50%) representational error, the cost function reduces by
33% (26%), and the nitrate RMS error reduces to 0.43µg/m3

(0.45µg/m3). Repeating the regularization analysis and se-
lecting a larger (smaller)γr would thus likely result in yearly
results quite similar to those presented for a 30% representa-
tional error. After optimization, the yearly NMB for nitrate
is −0.32 and for sulfate is−0.10. An unintentional conse-
quence of specification of representational error as 30% of
the measured value is that model overestimates contribute
more toJ than underestimates; as a result, the bias in the
inverse modeling solutions is always less positive (or more
negative) than the initial model bias. Perhaps a better esti-
mate of representational error for future analysis would be
similar to the mean normalized factor bias (Yu et al., 2006),
wherein the error is considered to be 30% ofHc if Hc<cobs
and 30% ofcobs if Hc>cobs.

To explore the possibility that the local minimum found
during the optimization is not the global minimum ofJ , ad-
ditional optimization tests can be performed starting with dif-
ferent initial guesses for the emissions scaling factors. To
demonstrate, the optimization is repeated for July using a
range of initial guesses for NH3 emissions. The results from
these tests are presented and analyzed in the following sec-
tion.

4.5 Analysis of optimized emissions

4.5.1 Ammonia

The prior and posterior (optimized) emissions of NH3 from
anthropogenic sources are shown in Fig.8. Scaling factors
for emissions of NH3 from other source sectors are shown in
Fig. 9, though note the scale of the plots is magnified com-
pared to Fig.8. The overall result is a reduction in NH3
emissions. The largest reductions occur sharply in the central
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Fig. 9. Logarithmic scaling factors for NH3 emissions from biomass burning, biofuel and natural sources.

Midwest during July and October, with decreases during Jan-
uary and April in the southern Midwest and, more broadly,
throughout northern areas. There is also a small increase in
anthropogenic NH3 in California during spring, along east-
ern coastal areas in April, and in the Northeast during July.
Emissions adjustments in individual locations cover a wide
range of values, effectively altering the spatial distribution
of NH3 emissions. That the control parameters are assumed
independent is an upper bound for this variability. The emis-
sions of NH3 in any place is simply the sum of the emissions
from the individual source sectors. Given a spatially uniform
adjoint forcing, the result would be a collective rescaling of
NH3 emissions that retains the original fractional distribu-
tion amongst the individual sectors. However, the adjoint
forcing is not uniform so the fractional contribution to total
NH3 from the individual sectors changes. For example, the
contribution to NH3 emissions in the US from biomass burn-
ing, biofuel, anthropogenic sources, and natural sources in
April is 1%, 8%, 64% and 27% in the prior model. After
optimization, the contributions are 2%, 10%, 59% and 29%.
Such reapportionment can be larger in individual locations.
While the total emissions from each sector are decreased, the
NH3 emissions have been effectively redistributed amongst
the sectors. The degree to which the resulting scaling factors
for different sectors of the same chemical species are corre-
lated is addressed in Sect.4.5.3.

That the most significant difference between prior and op-
timized emissions scaling factors for any species considered
is for NH3 emissions is not an artifact of these emissions be-
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Fig. 10. Monthly emissions scaling factors for US emissions of
NH3 from all sources. Scaling is with respect to the NEI99 monthly
value of 3.6 Tg N/yr. The initial GEOS-Chem simulation is shown
in dark blue, with the optimized monthly scaling factors comprised
of separate scaling factors in each grid cell are in light blue. The red
striped bars show the inverse modeling estimates ofGilliland et al.
(2006) (horizontal lines) and the process based estimates ofPinder
et al.(2006) (diagonal lines). Note the modeling domain and prior
emissions inventories for the latter two works are different than that
of the present work.

ing ascribed the largest prior uncertainty, as it is true even
when each type of emission is assumed a prior uncertainty
of 100%, see Table2. Hence, additional discussion of NH3
emissions estimates is warranted. Emissions of NH3 in the
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NH3 prior NH3 opt ln(opt/prior)
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Fig. 11. Anthropogenic NH3 emissions optimized using a range of initial emissions. On the left is the initial (prior) emissions inventory and
its associated scaling factor,σ a . In the center are the optimized inventories, and on the right are the optimized logarithmic scaling factors.

US have been analyzed in several recent studies (Gilliland
et al., 2003, 2006; Pinder et al., 2006; Stephen and Aneja,
2008) and are cited as a significant source of model uncer-
tainty (Yu et al., 2005; Nowak et al., 2006; Zhang et al.,
2008). The inverse modeling efforts ofGilliland et al.(2003,
2006) focused on imparting seasonality to the aseasonal Na-
tional Emissions Inventory (NEI) (EPA, 2001).Pinder et al.
(2006) used a process-based approach to develop bottom-up
NH3 emissions for the Eastern US. Based on conclusions
from Gilliland et al. (2006) that the NEI99 NH3 inventory
was still too high,Park et al.(2006) kept NH3 emissions the
same as inPark et al.(2004).

To compare with these previous works, results from the
adjoint model-based inversion have been summarized as to-
tal adjustments to US NH3 emissions. The total monthly
values are shown in Fig.10 as a percentage of the NEI99
constant monthly estimate of 3.6 Tg N/yr. Actual adjust-
ments in the inversion were made at the inventory specific,
model resolution level. The sum of all adjustments from the
adjoint-based inversion results in a net reduction in total NH3
emissions from the NEI99 monthly values. The results of
the present work (blue) are compared to those fromGilliland
et al. (2006) andPinder et al.(2006) (red), noting that their
monthly scaling factors shown in Fig.10 have been adjusted
to account for the fact that their basis is that of the NEI2001
inventory, which is 25% lower than the NEI99 inventory. For
January, the aggregated inverse modeling results (light blue)
are consistent with those ofGilliland et al.(2006) (horizontal
stripes). The inversion ofGilliland et al.(2006) lead to an in-
crease in April, while the present work estimates a decrease.

In July, the present work estimated a value similar to that
of the process-based estimates ofPinder et al.(2006), which
is again opposite the direction of adjustments ofGilliland
et al. (2006). Overall, the seasonal cycle of the adjoint-
based inversion results matches that ofPark et al.(2004),
further supporting emissions estimates in which total NH3
emissions peak in July rather than April, which is contrary to
the emissions estimates ofPinder et al.(2006) andGilliland
et al.(2006). However,Pinder et al.(2006) do note that the
process-based emissions inventory lead to overestimates of
NHx (NHx≡NH3+NH+

4 ) in April and underestimates NHx
in July compared to monthly average measurements in Pitts-
burgh, which may further support a peak in NH3 emissions
in summer rather than spring.

Figure 11 shows the optimization results for anthro-
pogenic NH3 emissions during the month of July using a
range of initial guesses for NH3 emissions. Results for the
standard optimization (initiated withσ a=0.0) are compared
to results that begin with the following factors:σ a=0.69,
0.41 and−0.69, which correspond to doubling, increasing
by 50% and halving the emissions, respectively. The re-
sults demonstrate consistency of certain features across each
optimization test. Most visibly, the scaling factors in the
south-central US are always−1.0 or less. Scaling factors
stretching from Michigan to New York are between−0.5
and −0.3, even when obtained by increasing emissions in
those area from the test that began withσ a=−0.69. While
certain cells are estimated to have a positive scaling factor in
some tests but negative scaling factors in other tests, the rank-
ing of emissions adjustments in these cells relative to other
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Fig. 12. The left column gives the standard error estimate of the optimized scaling factors for anthropogenic NH3 emissions,sNH3. The
center column shows the correlation of the scaling factor for anthropogenic NH3 emissions with the least uncertainty (NH′

3) with other
scaling factors for the same inventory. The right column shows the correlation of the scaling factors for the anthropogenic NH3 emissions
with the least uncertainty (NH′3) with the scaling factors for surface emissions of NOx.

areas within the same optimization test are mostly similar
regardless ofσ a . Exceptions are locations such as South-
ern California, where emissions increased whenσ a=0.0 and
σ a=0.69 but not whenσ a=0.41. The final cost function is
actually lowest for theσ a=−0.69 test, for whichJ=1366.
The cost function forσ a=0.0, 0.41 and 0.69 is 1469, 1615
and 1789, respectively. For the latter two tests, the total opti-
mized US NH3 emissions are greater than or equal theσ=0.0
emissions. For theσ a=−0.69 test, the optimized US NH3
emissions were 53% lower than theσ=0.0 emissions. Given
the cost function values, it is most likely that the optimiza-
tion results presented forσ a=0.0 in July are an upper bound
on total US NH3 emissions, which may be even lower, but
not likely higher. This is reasonable given that observed ni-
trate aerosol concentrations are typically very low during the
summer. Any exception to that would require much higher
NH3 emissions, but any number of lower NH3 emissions are
plausible as long as the nitrate concentrations remain within
the range of model and instrument uncertainty.

4.5.2 SOx and NOx

While the most substantial adjustments were made to NH3
emissions, NOx and SOx emissions were also adjusted. As
noted inPark et al.(2006), the NEI99 inventory compared
to the prior inventory in GEOS-Chem has a change in total
US anthropogenic NOx emissions of−7.5% (from 6.7 from

6.2 Tg N/yr). For the base case, the inverse modeling re-
sults here indicate a small total change of−1.4% from all
NOx sources over the course of the year, see Table2, most
of which comes from changes to anthropogenic emissions.
The tendency given looser constraints on NOx emissions is
greater reductions, as much as−9.6%. Remote sensing as-
sessments of trends in NOx emissions over the Eastern US
also indicate reductions in NOx (Kim et al., 2006; Stavrakou
et al., 2008; van der A. et al., 2008) that may not be captured
by the initial NOx inventory, which at best represents NOx
levels three to four years prior to the observations. While
US sulfur emissions in the NEI99 inventory are 9 Tg S/yr,
compared to 8.3 Tg S/yr in the current model, recent revi-
sions of inventories over Canada and Mexico are lower, from
2 and 1.9 down to 1.2 and 1.3 Tg S/yr (Park et al., 2006).
Here we find SOx inventories in the base case inversion es-
sentially unchanged (−2.5 %). As mentioned in Sect.4.4,
this is partly a consequence of specifying tight constraints on
SOx emissions. The results of additional inverse modeling
tests for different values of the assumed initial uncertainties
in NOx and SOx emissions from anthropogenic sources are
given in Table2. When the constraints of the SOx emissions
are relaxed, there is a more significant reduction in the total
yearly SOx emissions. Also, the month to-month variations
(not shown) for SOx become very large using the 100% un-
certainty inversion: the adjustments to total SOx emissions
range from−32.7% in April to 32.1% in July. In contrast,
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when the initial uncertainty is 100%, adjustments to monthly
total emissions of NOx range from−3.6% in January to
−14.5% in October, and adjustments to total NH3 emissions
range from−18.5% in July to−27.9% in January. Thus, the
inversion of sulfate and nitrate observations gives the most
robust constraints on NH3 and, to a lesser extent, NOx emis-
sions.

4.5.3 Estimated uncertainty of optimized emissions

As noted in works such asThacker(1989) andMüller and
Stavrakou(2005), the inverse Hessian of the cost function,
IH =Hess(J )−1, is a linear estimate of the uncertainty of the
optimized control parameters. Calculation of the full inverse
Hessian (M×M) itself being computationally prohibitive,
low-rank estimates of the inverse Hessian can be generated
from gradient-based minimizations ofJ by tracking succes-
sive changes from iterationi to i+1 in the control param-
eters,σ̂ i=σ i+1−σ i , and the gradients,̂λσi

=λσi+1−λσi
. In

Müller and Stavrakou(2005), two different schemes for it-
eratively approximatingIH were assessed for a study using
the adjoint of a chemical transport model. The DFP algo-
rithm was found to give better estimates ofIH than the BFGS
algorithm when compared toIH evaluated using finite dif-
ferences. Based on their conclusions, the DFP algorithm is
implemented, whereinIH is approximated as,

IH i+1=IH i +
σ̂ i σ̂

T
i

λ̂
T

σi
σ̂ i

−
IH i λ̂σi

λ̂
T

σi
IH i

λ̂
T

σi
IH i λ̂σi

, (13)

whereIH 0=Sa . The square root of the diagonal ofIH are
the estimated standard errors of the optimized scaling factors,

sσm=(IHm,m)
1
2 , where here the indexm refers to elementsm

of the control vector and elementsm, m of the inverse Hes-
sian matrix.

The standard errors for the optimized emissions scale fac-
tors for the NH3 emissions in each month are shown in
Fig. 12. Starting from an assumed estimate of 100% error in
the emissions2, the error percent has decreased in locations
where the scaling is nonzero, to as little as 50%. In general
the largest error reductions occur where there is the most sig-
nificant rescaling. For example, in July, the most significant
scaling occurs in the same place as the greatest error reduc-
tion. However, the greatest error reduction is one grid cell to
the east of the most significant scaling in October. The re-
duction in uncertainty appears similar from month-to-month,
indicating that measurements of sulfate and nitrate may pro-
vide year-round constraints on NH3 emissions. A subtle but
crucial point in interpreting values ofsσm is that Eq. (13) is
an approximation toIH that is limited to information gleaned

2Note, if parameterpa has a prior fractional error ofx, then the
absolute parameter error isspa =xpa , and the error in the scaling
factorσ=ln(p/pa) is sσ =spa /pa=x. Hence, a fractional error in
pa is the same as the absolute error inσ , and, conversely, the error
in the estimated parameters aresp=psσ .

from minimization ofJ . Since this minimization proceeds
along the direction of the largest contributions to the model
prediction error, the estimate ofIH does not contain much
information on parameters whose influence onJ is mini-
mal because they affected model concentrations that either
agreed with observations or did not coincide with any obser-
vations. The full Hessian is required to completely determine
the power of the observations to resolve the model parame-
ters (Tziperman and Thacker, 1989).

Also shown in Fig.12are error correlations, which for two
scaling factorsσm1 andσm2 are computed as

ρσm1,σm2
=

IHm1,m2

(IHm1,m1IHm2,m2)
1
2

.

As the initial estimate ofSa is diagonal, nonzero correlations
between two scaling factors indicate that these factors are
not independently constrained by the observations during the
inversion. The correlation between most pairs of parame-
ters is near zero, particularly for pairs of parameters whose
values were relatively unchanged during the optimization.
However, definite correlations become evident for param-
eters whose values were rescaled during the inversion. In
both the center and right columns of Fig.12, correlations are
shown with respect to the most certain parameter,σNH′

3
, iden-

tified from the minimum of the plot in the left column of each
row. The panels in the center column show the correlation
of σNH′

3
with those of the scaling factors for anthropogenic

NH3 emissions in other locations. The error correlation of
σNH′

3
with otherσNH3 usually has a strong negative correla-

tion nearby. This anti-correlation between neighboring grid
cells is an indication that the mixing of NH3 emitted from
the neighboring cells is collectively influencingJ in a non-
separable fashion.

The right column of Fig.12 shows correlation ofσNH′

3
with scaling factors for surface emissions of NOx in other
locations. In these locations in each month, the largest com-
ponent of the adjoint forcing comes from overestimation of
NO−

3 . In April and January, emissions of NOx and emis-
sions of NH3 both favor formation of NO−3 in the form of
NH4NO3, hence their emissions are positively correlated.
However, co-located emissions of NOx have a strong neg-
ative correlation withσNH′

3
in July and October. When NH+4

is predominantly in the form of(NH4)2SO4, and the amount
of NO−

3 is only from NH4NO3 that forms when there is a sur-
plus of NH3 (as(NH4)2SO4 formation takes precedence over
NH4NO3 in warmer, dryer conditions), the consequence of
NOx emissions can be to reduce the amount of surplus NH3
by increasing the amount of SO2−

4 , thereby reducing the for-
mation of NH4NO3. Therefore, the scaling factors for emis-
sions of NOx and NH3 can be anti-correlated under certain
conditions.

Correlations between emissions of different species in the
same location are generally small, between−0.2 and 0.2, and
vary between positive and negative values depending upon
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Fig. 13. CASTNet observations of monthly average surface level NH+

4 concentrations (averaged on the GEOS-Chem model grid) are shown
in the left column for each month. Also shown is the difference between these observations and the GEOS-Chem model estimates based on
the original emissions inventories (center) and the optimized emissions inventories (right). The numbers in the corner of the difference plots
are coefficient,m, andR2 for regression through the origin.

the local chemical conditions. However, the adjustments to
the emissions of a given species are correlated to adjustments
of the same species from a different sector in the same loca-
tion. In general, such correlations are negative, range be-
tween 0 and−0.5, and are strongest for NH3 from anthro-
pogenic sources with NH3 from natural sources. The mag-
nitude of the anti-correlations indicates the degree to which
the observations have constrained total NH3 emissions, but
can not distinguish between source sectors. Hence, the in-
verse modeling solution does not give entirely independent
estimates of the contributions from different source sectors
for a given species.

4.6 Comparison to CASTNet NH+

4

Inverse modeling using NH+4 observations alone may not
provide robust constraints on NH3 emissions (Pinder et al.,
2006). However, as a check of the inverse model results us-
ing sulfate and nitrate observations, measurements of NH+

4
from the CASTNet network (Baumgardner et al., 2002) are
compared to model estimates using both the prior emissions
inventory and the optimized emission scaling factors from
Sect.4.4. In Fig. 13, the left column displays the observa-
tions, averaged onto the GEOS-Chem grid, while the center
and right columns show the difference between the model
and the observations using the prior and optimized emissions
inventories. From a visual comparison, it is evident that esti-
mates of NH+4 are largely improved throughout the Midwest,
while the predictions are persistently high in the Northeast.

Panels in the latter columns also contain the slopes andR2

values of regressions through the origin. Using the optimized
emissions inventory brings the regression coefficients closer
to unity for all months and captures more of the variance
of the observations in all months except January. Overall,
changes in estimated NH+4 from inversion of sulfate and ni-
trate observations are in a direction consistent with indepen-
dent CASTNet observations. Though total performance is
worst in October, improvement is shown in each month, indi-
cating the year-round potential of inverse modeling based on
sulfate and nitrate observations to constrain NH3 (and hence
NH+

4 ).

In Park et al.(2004), seasonally-averaged model estimates
are compared to CASTNet NH+4 using nearly the same ver-
sion of GEOS-Chem as the prior estimates in the present
study, though at a finer resolution (2◦

×2.5◦). In Park et al.
(2006), the model is again compared to CASTNet NH+

4 , this
time using a nested 1◦

×1◦ simulation with updated SOx and
NOx emissions, though NH3 emissions are the same asPark
et al.(2004) and the prior estimates of the present work. The
overall agreement between estimated NH+

4 and the CAST-
Net observations is markedly improved betweenPark et al.
(2004) andPark et al.(2006). The prior and optimized mod-
els in the present work are not as good as the seasonally aver-
aged comparisons inPark et al.(2004) or Park et al.(2006).
ThatPark et al.(2004) considered seasonal averages, rather
than monthly averages, likely contributes to better apparent
agreement with CASTNet. Some of the discrepancy of the
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present work may also be owing to the coarse model res-
olution. As the number and distribution of subgrid obser-
vations are not uniform, agreement is expected to improve
using a finer resolution simulation. Comparing the results
using the prior emissions in the present work withPark et al.
(2004), the estimated resolution error of 30% may be under-
estimated.

5 Nonattainment influence maps

In the second stage of this work, the observationally con-
strained model is used to assess the influence of aerosol
precursor emissions on PM2.5 air quality metrics. Previous
works have highlighted how PM2.5 air quality attainment
may be complicated by the interactions between the inor-
ganic species. The nonlinear relationship between sulfate
and total PM2.5 mass has been noted to reduce effectiveness
of SOx control in colder seasons (West et al., 1999; Vayenas
et al., 2005). Pinder et al.(2007) examined the tradeoffs be-
tween SOx controls and NH3 controls in the Eastern US dur-
ing two weeks of 2002 though a matrix of simulations apply-
ing uniform changes throughout the model domain to total
emissions SOx, NOx and NH3. Based on a combined analy-
sis of chemical effectiveness and the cost of SO2 emissions
controls,Pinder et al.(2007) demonstrated the effectiveness
of abatement of SO2 emissions over NH3 emissions in July
and the reverse in January. In the present work, we use ad-
joint sensitivities to explore the effectiveness of incremental
changes to emissions from tens of thousands of individual
emissions locations and sectors on both peak concentrations
and ambient levels of the modeled inorganic component of
PM2.5.

5.1 Peak PM2.5 episodes

The model response is now defined as a representative metric
of nonattainment for peak aerosol concentrations,

Ja =
1

2

∑
i∈US

∑
day j

θ(ai,j )a
2
i,j , (14)

where

ai,j=

∑
k̂

c̄
i,j,k̂

− c̄a, k̂ = {SO2−

4 , NO−

3 , NH+

4 },

with c̄
i,j,k̂

being the 24 h average model estimated aerosol

concentration of specieŝk in locationi on dayj , andθ is the
following simple function,

θ(a)=

{
0 a ≤ 0
1 a > 0

.

The air quality threshold is̄ca , taken to have a value of
10µg m−3. Although this threshold is much lower than
the actual 24 h NAAQS of 35µg m−3, here carbonaceous

aerosol has not been included in the set of active species,
k̂, and the coarse model resolution is not expected to repre-
sent the magnitude of localized maximums during acute pol-
lution episodes. To compensate, the metric is squared (i.e.,
it is anL2 norm) to emphasize episodes of peak concentra-
tions, which are of most concern for exceedences of daily air
quality standards.

The nonattainment metric is evaluated for each of the four
months considered, and the results are shown in Fig.14. In
the left column is the average contribution to the nonattain-
ment metric from each of the aerosol species. This is essen-
tially the adjoint forcing, where the forcing is divided in each
cell by the number of days for which concentrations in that
cell exceeded the threshold. These plots display the regions
in which the 24 h average aerosol concentration at some point
during the month was in the nonattainment regime (θ=1).
Throughout the year, the only regions of nonattainment are
in the Eastern US. This is likely owing to the model resolu-
tion, which is not well suited for assessing pollution episodes
in the Western US that are likely to be much more localized.
For each month, the different rows in Fig.14show the contri-
bution to nonattainment from the individual aerosol species.
In April, July, and October, SO2−

4 dominates the peak con-
centrations. NO−3 plays a significant role in October and Jan-
uary, while NH+

4 contributes fairly consistently throughout
the year.

Column (b) of Fig.14 shows emissions of SOx, NOx and
NH3, each given as a percent of the total emissions for each
species in the US. This includes contributions from each
of the source sectors listed in Table1. Column (c) shows
the semi-normalized sensitivities of the cost function with
respect to emissions of each of these species, shown as a
percent,∂Ja

∂pi

1
Ja

×100%, wherepi is the total emissions of
a chemical species in locationi. These are referred to as
nonattainment susceptibilities, as they indicate the per-unit-
emissions influence of emissions of a particular species on
nonattainment, regardless of the current value of the emis-
sions (except in the case that emissions are zero, for which
the sensitivities are not defined). Column (d) shows the fully
normalized sensitivities,∂Ja

∂pi,m

pi,m

Ja
×100%, wherepi,m is an

emission from a specific source sectorm in locationi. Here
we show only the normalized sensitivities for the sectors with
the greatest influence for each species. For small perturba-
tions, these normalized sensitivities give an estimate of the
percent change in the cost function per fractional change
in emissions,4Ja/Ja×100%

4pi,m/pi,m
. Thus, these sensitivities are

first order approximations of the effectiveness of specific
emissions changes on affecting nonattainment. The nonat-
tainment sensitivities in (d) are likely valid over a modest
range of emissions perturbations commensurate with typical
emissions abatement strategies (10–30%). Over this range,
the most significant sensitivities for the aerosol species con-
sidered here have been shown to be robust (Henze et al.,
2007; Koo et al., 2007). For the following discussion, it is

Atmos. Chem. Phys., 9, 5877–5903, 2009 www.atmos-chem-phys.net/9/5877/2009/



D. K. Henze et al.: Inorganic PM2.5 source analysis with the GEOS-Chem adjoint 5893
A

PR
IL

JU
LY

NO3-

SO4
2-

NH4
+

NOx

SOx

NH3

NOx

SOx

NH3

NO3-

SO4
2-

NH4
+

NOx

SOx

NH3

NOx

SOx

NH3

Stack SOx

Anthropogenic NH3

Stack NOx

Surface NOx

Stack SOx

Anthropogenic NH3

(a) Nonattainment (b) Emissions (c) Susceptibility (d) Control effectiveness

Fig. 14. Peak aerosol nonattainment analysis showing(a) average contribution from each aerosol species to the nonattainment metric,Ja ,
(b) emissions of aerosol precursors normalized with respect to total US emissions,(c) the susceptibility of the nonattainment with respect to
emissions of aerosol precursors,pi (i.e., semi-normalized sensitivities,∂Ja

∂pi

1
Ja

× 100%), and(d) the effectiveness of incremental controls

of emissions from specific sectors,pi,m, on reducing nonattainment (i.e., normalized sensitivities,∂Ja
∂pi,m

pi,m

Ja
× 100%). Model simulations

use the optimized emissions estimates from Sect.4.4.

important to note the variations in the scale of the nonattain-
ment sensitivity plots. Also note the magnitudes of NOx,
SOx and NH3 emissions are typically in the range of 1010–
1012 molec/cm2/s.

The combination of the four plots in each row of Fig.14
maps the influence of inorganic PM2.5 precursor emissions
on attainment in a manner that is well suited for informing

decision making concerning emissions abatement (Hakami
et al., 2006). The distribution of nonattainment, column (a),
shows locations that will benefit from implementation of
emissions regulations that enforce air quality attainment. The
distribution of the emissions, column (b), shows the areas
that would be most heavily burdened by any simple emis-
sions abatement strategy based on absolute emissions caps,
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Fig. 14. Continued.

while the nonattainment sensitivities in column (d) show lo-
cations where reducing existing emissions would actually be
the most effective towards achieving air quality attainment.
The maps in column (c) indicate regions where nonattain-
ment is most susceptible to total emissions changes, indicat-
ing areas where introduction of new sources (e.g., owing to
land use changes) would have the largest consequence even
if current emissions are small. The disparity between the
maximums in these types of plots concisely depicts the chal-
lenges in designing regulation measures to control long-lived
secondary pollutants. For example, consider the results for
the month of July. While the bulk of the NH3 is emitted
in the northern Midwest, it is sources of NH3 in the East-

ern US that ultimately most substantially influence nonat-
tainment. Sources of NH3 in the latter regions are co-located
with sources of SOx, leading to more aerosol formation per
emitted NH3. Additionally, the nonattainment is most sus-
ceptible to emissions in the Southeast. In October and Jan-
uary, the effectiveness of anthropogenic NH3 controls are
again linked to the locations of the SOx emissions, with peak
effectiveness and susceptibilities consistently east of peak
emissions. In general, it is evident from the spatial dispar-
ities noted between maximums in columns (b) and (d) that
regulating emissions near the largest sources can sometimes
have only minimal benefits for air quality attainment.
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For each month, it is also interesting to compare the ef-
fectiveness of reductions in one emitted species vs another.
In April, nonattainment is 20 times more susceptible to NH3
emissions than stack SOx emissions, and peak anthropogenic
NH3 emissions are by far the most effective targets for con-
trol. In July, controls of stack SOx are more effective than
control of anthropogenic NH3. In October, although nonat-
tainment is nearly 10 times more susceptible to NH3 emis-
sions, anthropogenic NH3 controls are more effective than
stack SOx controls in some locations, and vice versa in oth-
ers, owing to the magnitude of the emissions from these sec-
tors. The effect of surface NOx controls is much weaker than
either anthropogenic NH3 or stack SOx controls in April,
and much weaker than stack SOx controls in July. Despite
the susceptibility to NOx emissions being about five times
less than that of anthropogenic NH3 controls in July, effec-
tiveness of their controls are similar in magnitude. In Octo-
ber, surface NOx controls are more effective than either stack
SOx controls or anthropogenic NH3 controls in northern lo-
cations. The susceptibility to NOx emissions is also much
more focused in October as opposed to January, where the
NOx susceptibility is much more diffuse, even though the
non-attainment is highly focused. This may indicate the dif-
ference between immediate formation of NO−

3 from NOx vs
a more delayed and diffuse influence following NOx seques-
tration as peroxyacetyl nitrate (PAN).

In January, anthropogenic NH3 controls dominate by a
factor of 10, and susceptibility to NH3 emissions is nearly
200 times larger than for SOx or NOx. Reducing SOx, and
hence sulfate, is rendered ineffective owing to rapid replace-
ment of SO2−

4 by NO−

3 , formation of the latter being favored
by colder temperatures. This effect is so extreme that dur-
ing the winter, the nonattainment sensitivity of SOx emis-
sions has a value near the nonattainment region that is actu-
ally negative. If removal of sulfate aerosol in the presence of
fixed total ammonia and nitric acid concentrations cause one
mole of (NH4)2SO4 (molecular weight=132) to be replaced
by two moles of(NH4)NO3 (molecular weight=80), then the
total PM2.5 concentration would be enhanced by decreases in
SOx emissions. Also, NOx controls can potentially be coun-
terproductive in April (the mechanisms for such a feedback
is given in Sect.4.5.3), though the overall magnitude of the
latter effect is small. The existence of such feedbacks have
been noted previously (Napelenok et al., 2006; Henze et al.,
2007); here the explicit consequences for air quality attain-
ment are quantified.

So far the influences of emitted species have been consid-
ered only for the most influential source sector. The fully nor-
malized sensitivities,λpi,m

=
∂Ja

∂pi,m

pi,m

Ja
, estimate how changes

to emissions from sectorm in location i will influence the
air quality metric. Since the spatial distributions of emis-
sions in different sectors are not the same, the consequence
of changing all emissions for a given species by a certain
amount will be different from sector to sector. Naturally, a

Table 3. Precent by which changes to emissions of a given species
from particular sectors are more effective for reducing nonattain-
ment than changes to emissions of that species from all sectors
(Eq.15).

Emission sector January April July October

SOx surface −11 −14 −11 −12
SOx stack 16 17 13 13
SOx shipping −4 −2 −2 −1
NH3 anthropogenic −10 −11 −16 −23
NH3 natural 9 11 12 14
NH3 biomass burning −18 −9 −3 0
NH3 biofuel 18 9 8 10
NOx surface −2 −4 0 −6
NOx stack 13 11 26 14
NOx lightning −6 −5 −19 −6
NOx soil −4 −2 −8 −2

significant component of this sector-to-sector difference is
owing to the difference in magnitudes of the emissions from
different sectors. To distinguish between these effects, the
following statistic is calculated,

χm=

(
|
∑

i λpi,m
|

|
∑

i,m λpi,m
|
−

∑
i pi,m∑

i,m pi,m

)
× 100%, (15)

where herei is the spatial index andm is the index of a
specific source sector. For the summations, the range of
the spatial indexi is the physical range over which emis-
sions from sectorm have at least a 0.001% effect onJ (i.e.,
|λpi,m

|>10−5). The sum overm is for all the source sectors
for a given chemical species, listed in the rows of Table1.
The values forχm are presented in Table3. Overall,χm indi-
cates the net relative importance of an emission from a partic-
ular sector relative to the magnitude of the emission from that
sector. For example, in July, stack NOx emissions are 23% of
the total NOx emissions from all sources, and the sensitivity
with respect to stack NOx emissions is 43% of the sensitiv-
ity with respect to NOx emissions from all sources. From
Eq. (15), χNOx,stack=26%, which means a change to emis-
sions of NOx from industrial sources is 26% more effective
in reducing nonattainment than in reducing the total amount
of NOx emitted. Therefore, abatement strategies targeting
NOx from stack emissions are estimated to be much more ef-
fective than strategies that target NOx emissions as a whole.
Such findings are generally robust over the course of the year,
as the signs of theχm are consistent from month to month.
Overall, emissions of SOx and NOx from industrial stacks
are much more critical than emissions from the transport sec-
tor. Emissions of NH3 from natural and biofuel sources are
more important than anthropogenic NH3 emissions. Emis-
sions such as NOx from lightning and soil, SOx from ship-
ping and NH3 from biomass burning are not as influential for
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Table 4. The influence of specific emissions sectors on daily av-
erage inorganic PM2.5 concentrations. The total integrated percent
influence is presented (Total) along with a breakdown of this total
into contributions from spatial regions (ROW=rest of world).

Emission sector Total Percent from each region
US Canada Mexico ROW

SOx surface 11.1 57.8 8.2 23.9 10.1
SOx stack 30.1 75.1 16.7 3.4 4.7
SOx shipping 2.0 67.9 6.9 6.4 19. 9
SOx biomass burning 0.2 16.2 1.1 77.3 5.4
SOx biofuel 0.03 2.9 25.4 36.1 35.6
NH3 anthropogenic 19.6 90.0 6.0 2.3 1.7
NH3 natural 9.2 89.4 8.4 0.1 1.3
NH3 biomass burning 0.6 60.1 2.3 33.3 3.1
NH3 biofuel 3.5 95.4 3.9 0.4 0.2
NOx surface 6.7 84.4 5.3 8.3 2.0
NOx stack 2.7 97.7 1.1 0.4 0.8
NOx lightning 0.1 68.3 1.1 24.3 6.2
NOx soil 0.7 65.3 4.1 28.8 1.7

nonattainment owing to their spatial and temporal distribu-
tions.

While the present work considers only the contribution of
inorganic species to PM2.5, it is important to keep in mind the
role of additional species. When excess NH3 is present, the
sensitivity of HNO3 with crustal mineral species can be rel-
atively low, at times an order of magnitude less than the sen-
sitivity of nitrate aerosol to NH3 (Fountoukis et al., 2009).
However, in areas where NH3 levels are lower and min-
eral concentrations higher, the importance of NH3 in gov-
erning nitrate formation may be diminished. Hence, the non-
attainment sensitivities with respect to NH3 emissions may
be exaggerated in the Southwest owing to local dust sources
or in the western US owing to transpacific dust transport in
the springtime. Still, most of the sensitivities for the present
study were located in the central and eastern US. Primary
and secondary organic aerosol are also important for deter-
mining total levels of PM2.5. While SOA formation in the
winter is not as significant as other seasons, the potential
for sulfate to enhance SOA formation (e.g.,Surratt et al.,
2007) may increase the effectiveness of SOx controls for total
PM2.5 in other seasons. Observed dependence of secondary
organic aerosol on aerosol water content (Hennigan et al.,
2008, 2009; Volkamer et al., 2009) suggest additional path-
ways by which deliquesced inorganic aerosol could affect to-
tal particulate mass. Internal mixing of aerosols can also lead
to a relationship between primary carbonaceous aerosol and
sulfate by altering the lifetime of the agglomerated particles
with respect to wet scavenging (Stier et al., 2006). Finally,
it is again noted that the nonattainment modeled here is only
representative given the current model resolution and exclu-
sion of carbon aerosol. Detail assessment of nonattainment
regions will require high resolution nesting, or coupling of
the global adjoint model with regional scale adjoint models.

Model responses should also be considered that separately
address individual PM2.5 components, which may have dif-
ferent consequences for public health (Reiss et al., 2007).
These are important topics for future consideration.

5.2 Long-range influences

Episodes of pollution transport from East Asia have been re-
peatedly observed to contribute to PM2.5 concentrations in
the Western US (e.g.,Jaffe et al., 2003). Several modeling
studies of have been performed to provide further charac-
terization of such influences, using methods such as tagged
tracers (Benkovitz et al., 2006; Liu et al., 2008) or emis-
sions toggling (Park et al., 2004; Heald et al., 2006a; Chin
et al., 2007). Results consistently show that while emissions
from East Asia are not likely affecting PM2.5 NAAQS at-
tainment, there is a noticeable intercontinental contribution
(∼1µg/m3) on background concentrations, particularly in
the Western US. This has implications for attainment of re-
gional haze rules (Park et al., 2004, 2006), and interconti-
nental influences may be more important at higher altitudes
owing to their climate impacts (Chin et al., 2007). There is
also evidence that the mortality response with respect to sur-
face level PM2.5 concentrations persists well below current
air quality thresholds (Schwartz et al., 2002, 2008), so such
influence may yet be of concern for public health.

The classes of source regions considered in modeling stud-
ies of long-range transport are often quite broad, such as all
emissions from all sectors, tagged according to a continental
scale region. In contrast to previous work, the adjoint model-
ing approach used here distinguishes the effects from differ-
ent emitted species, sources, and source locations. In addi-
tion to the long-range influence of SOx emissions on sulfate,
here the influence of NH3 and NOx on the total mass of the
sulfate- ammonium-nitrate aerosol are also considered using
the following model response,

Ja,∞=

∑
i∈US,day j

ai,j , (16)

whereai,j is defined as in Eq. (14), except now̄ca=0. Thus,
sensitivities with respect toJa,∞ show which emissions in-
fluence 24 h aerosol concentrations in the United States.

Results from the single adjoint model run are summarized
in Table4, where the adjoint sensitivities are integrated over
the following four regions: contiguous US, Canada, Mexico
and Central America, and the rest of the world (ROW). The
largest influence for each of the sectors shown here is from
the local (i.e., US) emissions. Other sectors (such as biomass
burning and biofuel), have a major influence from abroad,
but the overall magnitudes are much smaller. The emissions
sector with the largest transboundary influence is that of sur-
face emissions of SOx, largely because local emissions from
this source within the US domain are relatively small. The
sensitivities with respect toJa,∞ are shown in Fig.15. The
plot scales are purposefully capped at low values to highlight
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1
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∂pi,m

pi,m
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)
with respect to emissions in locationi from sectorm.

contributions from outside the US. The only intercontinental
emissions that the daily average concentrations are suscepti-
ble to are those of SOx, hence only the control effectiveness
of the SOx emissions are shown. Sensitivity with respect to
NOx emissions may be underestimated as the model does not
account for aerosol nitrate associated with transpacific dust
transport (Malm et al., 2004; Fairlie et al., 2007). From these
figures is evident that the main contribution to ROW comes
from eastern China, with some contribution from emission in
the Middle East.

6 Conclusions

The adjoint of the chemical transport model GEOS-Chem
(Henze et al., 2007) is applied to evaluate sources of sec-
ondary inorganic aerosol throughout the US. Using the 4D-
Var framework, the forward model parameters are con-
strained using measurements of sulfate (SO2−

4 ) and nitrate
(NO−

3 ) aerosol from the IMPROVE network of monitoring
stations (Malm et al., 1994) during the months of April,
July and October of 2001, and January of 2002. Signifi-
cant discrepancies exist for initial model estimates of NO−

3
compared to the observations. The adjoint model is used to
select variable model parameters that most significantly in-
fluence this discrepancy. Parameters initially considered in-
clude scaling factors for emissions of SOx, NOx, and NH3
from several source sectors, initial conditions of all tracers,

and heterogeneous uptake coefficients. Anthropogenic emis-
sions of NH3 are found to be most influential, followed by
natural emissions of NH3, anthropogenic stack emission of
SOx, and surface emissions of NOx. This finding is con-
sistent with recent studies that indicate NH3 emissions are
highly influential in determining the total concentration of in-
organic PM2.5 and are themselves highly uncertain (Yu et al.,
2005; Gilliland et al., 2006; Pinder et al., 2006; Nowak et al.,
2006; Zhang et al., 2008; Wu et al., 2008; Beer et al., 2008).

Inverse modeling of sulfate and nitrate using the adjoint
model affords optimization of the emissions at a resolution
commensurate with that of the forward model itself. Over-
all, the optimized emissions inventories are adjusted most
significantly for NH3 emissions, which are largely reduced
in the East and Midwest. There is considerable variabil-
ity in the rescaling of emissions from different source sec-
tors in different locations, which effectively changes the spa-
tial distribution of the emissions, and also the distribution of
emissions amongst individual emissions sectors. For exam-
ple, while the total US NH3 emissions from each sector are
reduced, the resulting fraction of NH3 emissions from an-
thropogenic sources throughout the US is 5% less than in
the initial inventory, with changes as large as 20% in indi-
vidual locations. The consequence of using the constrained
emissions inventories is a significant improvement to the ni-
trate simulation, reducing the root mean squared error by
43%. The absolute normalize mean bias is reduced by 20%,
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though underestimation of nitrate aerosol persists throughout
the West in April, July and October. The resulting magnitude
of the total NH3 inventory is similar to that found inGilliland
et al. (2006) for January, but much lower in April, July and
August. The total NH3 emissions agree withPinder et al.
(2006) in July, while overall, the seasonal cycle is that of
Park et al.(2004), with NH3 emissions peaking in July rather
than April.

Inverse modeling tests are conducted for a range of as-
sumptions concerning the prior uncertainty of the emissions.
The anthropogenic emissions of NOx and SOx are initially
assumed to be much more certain than emissions of NH3;
hence, the inverse modeling estimates of emissions of NOx
and SOx are more tightly constrained to the initial inventory.
As these constraints are loosened, the nitrate simulation re-
mains largely unaffected. When all emissions are assumed
to be equally uncertain, the solution for the SOx emissions
exhibits large month-to-month fluctuations, while the total
yearly changes to SOx and NOx are still not as significant
as the NH3 changes. Changes in anthropogenic NOx emis-
sions of−1% to −10% (for assumed uncertainty in NOx
emissions of 30% to 100%, respectively) from the original
inventory based on 1998 activity levels are consistent with
recent revisions to the anthropogenic NOx inventory used by
GEOS-Chem of−7.5% (Park et al., 2006) and with remotely
observed decreases in NOx emissions in the eastern US over
the last decade (Kim et al., 2006; van der A. et al., 2008;
Stavrakou et al., 2008). Inverse modeling estimates of NH3
emissions are found to be relatively invariant to assumed un-
certainties of NOx and SOx emissions. Overall, the inversion
results for the NH3 and, to a lesser extent, NOx emissions are
fairly robust with respect to the inverse modeling assump-
tions.

The uncertainty of the emissions after the inversion is esti-
mated to decrease most strongly in locations where observa-
tional constraints are most significant (up to 50% reduction
in uncertainty). The resulting emissions estimates show lit-
tle correlation in space, though nearest neighbor emissions
can be anti-correlated, and for a single emitted species, co-
located emissions estimates from individual sectors are mod-
erately anti-correlated. These anti-correlations are an indi-
cation that the amount of observations, in addition to the
coarse model resolution, are not entirely sufficient to distin-
guish such sources. Hence, estimated redistributions within
a sector are not entirely independent. Between species, emis-
sions of NH3 can become either correlated or anti-correlated
with emissions of NOx, depending upon the local environ-
ment, though such correlations were generally small.

Independent observations of NH+

4 from CASTNet stations
are used as an additional assessment of the optimized emis-
sions. The comparison of the model NH+

4 with the CAST-
Net observations generally shows a reduction in model bias
after the inversion. The model still overestimates NH+

4 in the
Northeast by as much as 2µg/m3; however, changes to the

NH+

4 simulation incurred by assimilating observations of sul-
fate and nitrate are overall in the right direction throughout
the year, and the model shows some improvement in the cap-
turing the observed variance, particularly in July.Gilliland
et al. (2006) concluded that observations of wet NH+

4 (i.e.,
dissolved NH3 and aerosol NH+4 ) are required to constrain
NH3 emissions unless the sulfate and nitrate budgets were
verified. Similarly, Pinder et al.(2006) found that obser-
vations of aerosol NH+4 alone can not sufficiently constrain
NH3 emissions throughout much of the year. Here we have,
in essence, taken the opposite approach by applying an in-
verse modeling tool explicitly capable of exploiting the de-
pendancy between the inorganic PM2.5 constituents, thus uti-
lizing measurements of sulfate and nitrate to provide con-
straints on estimates of NH3 emissions. A benefit of this ap-
proach is that sulfate and nitrate aerosol measurements may
be more readily available then those of NHx or precipitated
ammonium.

Adjoint models can provide detailed insight into the influ-
ence of emissions on model estimates of air quality nonat-
tainment of inorganic PM2.5. Previous works have high-
lighted the fundamental difficulties in controlling inorganic
PM2.5 arising from the interactions of inorganic aerosol com-
ponents (West et al., 1999; Vayenas et al., 2005) and for the
importance of NH3 controls, particularly in winter (Taka-
hama et al., 2004; Pinder et al., 2007), and SOx controls
in summer (Pinder et al., 2007). The present work demon-
strates how the effectiveness of emissions control strategies
for emissions changes in all model locations and source sec-
tors are readily addressed using sensitivities calculated with
the adjoint model. An attainment metric is considered that
represents the peak inorganic PM2.5 concentrations that are
of concern for NAAQS. The disparity between locations of
peak emissions, regions of nonattainment and locations of
the nonattainment sensitivities, highlights the importance of
transport, chemistry and thermodynamics in the formation of
this type of aerosol from gas-phase precursors, and the com-
plications that thus arise when devising local control strate-
gies for air quality attainment of secondary pollutants. Con-
trols of NH3 emissions are estimated to be most effective in
locations where their emissions contribute to peak concen-
trations of inorganic PM2.5. In July, October and January,
this is near sources of SOx rather than peak NH3 emissions.
As such, this analysis shows that the emissions abatement at
locations of the largest NH3 emissions may in some seasons
be inconsequential, particularly when compared to emissions
abatement elsewhere. NOx controls are estimated to be most
effective in October, and even more effective than SOx or
NH3 controls in northern areas. In January, it is estimated
that conditions could be such that reduction of SOx leads to
increases in the PM2.5 concentrations. NH3 controls are es-
timated to be more effective in January and April, and SOx
controls more effective in July, consistent with the findings
of Pinder et al.(2007).
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Analysis of the total effectiveness of emissions from indi-
vidual sectors, as compared to the distributions of the emis-
sions themselves, indicates that certain emissions sectors are
more effective targets for abatement. In particular, emissions
of SOx and NOx from stack (industrial) sources are found to
be more influential than the surface (transport) sector. Emis-
sions of NH3 from biofuel and natural sources are more in-
fluential than from anthropogenic sources. While these dis-
tinctions are dependent upon the spatial and temporal dis-
tributions of the emissions, in this case the emissions them-
selves have been constrained by observations, which is an ad-
vantage of the two-stage analysis of inorganic PM2.5 sources
taken in this present work over sensitivity analysis alone.

The utility of the adjoint model for analysis of long-range
influences is also demonstrated. Intercontinental influence is
found to be minimal for estimates of peak air quality excee-
dences; however, there is some influence in ambient concen-
trations. As noted in previous works byPark et al.(2004,
2006), such influence, while small, could have important
consequences for attainment of regional haze goals; such lev-
els may also be of concern for public health, regardless of
NAAQS thresholds (Schwartz et al., 2002, 2008). Within
North America, a substantial fraction (23.9%) of the influ-
ence by the surface SOx emissions sector comes from Mex-
ico, while 16.7% of the influence by the stack SOx sector
comes from Canada. Other sectors have large percent in-
fluences from outside the US (e.g., biofuel) but have small
overall impact. Further inverse modeling using observations
outside the US is necessary to constrain the magnitude of
distant emissions, which is evidently warranted.

Comprehensive analysis of sources of inorganic PM2.5
using an adjoint model is demonstrated to be a powerful
new framework for assessing emissions abatement strategies
aimed at PM2.5 air quality attainment. This method is advan-
tageous owing to the efficiency at which influences from all
source types and locations are revealed, and because such
sensitivities are calculated with respect to the current ob-
servationally constrained estimates of the magnitudes of the
aerosol sources. An additional benefit is that the adjoint
model affords simultaneous analysis of additional model pa-
rameters, such as chemical reaction rates and initial condi-
tions. This approach is shown to provide important insight
into the variability of the influence of emissions in different
locations, seasons, and from different sectors. In contrast
to alternative approaches to source analysis (emissions la-
beling or toggling), the adjoint model results are not source
attributions. However, interpretation of the adjoint sensitiv-
ities as the effectiveness of incremental changes to existing
emissions for attaining air quality standards is shown to be
of particular value for decision making activities focusing on
emissions mitigation strategies.
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