
Atmos. Chem. Phys., 9, 57–70, 2009
www.atmos-chem-phys.net/9/57/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

PM10 data assimilation over Europe with the optimal
interpolation method

M. Tombette1,2, V. Mallet2,1, and B. Sportisse1,2

1CEREA, joint laboratory ENPC – EDF R&D, Université Paris-Est, Marne la Vallée, France
2INRIA, Paris-Rocquencourt research center, France

Received: 26 March 2008 – Published in Atmos. Chem. Phys. Discuss.: 27 May 2008
Revised: 27 November 2008 – Accepted: 29 November 2008 – Published: 7 January 2009

Abstract. This paper presents experiments of PM10 data as-
similation with the optimal interpolation method. The ob-
servations are provided by BDQA (Base de Données sur la
Qualit́e de l’Air), whose monitoring network covers France.
Two other databases (EMEP and AirBase) are used to evalu-
ate the improvements in the analyzed state over January 2001
and for several outputs (PM10, PM2.5 and chemical compo-
sition). The method is then applied in operational-forecast
conditions. It is found that the assimilation of PM10 obser-
vations significantly improves the one-day forecast of total
mass (PM10 and PM2.5), whereas the improvement is non
significant for the two-day forecast. The errors on aerosol
chemical composition are sometimes amplified by the assim-
ilation procedure, which shows the need for chemical data.
Since the observations cover a limited part of the domain
(France versus Europe) and since the method used for as-
similation is sequential, we focus on the horizontal and tem-
poral impacts of the assimilation and we study how several
parameters of the assimilation system modify these impacts.
The strategy followed in this paper, with the optimal interpo-
lation, could be useful for operational forecasts. Meanwhile,
considering the weak temporal impact of the approach (about
one day), the method has to be improved or other methods
have to be considered.

1 Introduction

State-of-the-art models, in meteorology or in air quality, rea-
sonably approximate the atmospheric state (meteorological
fields and chemical composition). However, there are still
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a lot of uncertainties in modeling atmospheric components
(Hanna et al., 1998; Mallet and Sportisse, 2006), in partic-
ular aerosols (Roustan et al., 2008), leading to substantial
discrepancies with observational data.

Data assimilation(DA hereafter) makes use of observa-
tions in order to reduce the uncertainties in input data such
as initial conditions or boundary conditions. In some cases,
especially for air quality modeling, the purpose may be the
evaluation of the emissions fluxes, and not necessary the im-
provement of the forecast itself (Quélo et al., 2005; Chang
et al., 1997). This defines the so-calledinverse modelingis-
sue, which is not addressed in this paper.

There are many existing approaches to DA: statistical
methods (e.g.,optimal interpolation, OI hereafter), varia-
tional methods (3D- and 4D-Var) and sequential methods
(Kalman filters). We refer toBouttier and Courtier(2001)
for an overview.

DA could be applied with different objectives: to produce
an analysis, in other words to compute a field as close as pos-
sible to the “true” state; to improve the initial conditions in
order to improve the forecasts; or to identify uncertain pa-
rameters, such as the emission fluxes.

DA is a relatively recent research field in atmospheric
chemistry (Austin, 1992; Fisher and Lary, 1995; Riishoj-
gaard, 1996), even if it has been widely applied in meteo-
rology. However, numerous studies were carried out for spe-
cific gases and with measurements of diverse nature: in-situ,
airborne, satellites. Ozone columns are assimilated with an
OI approach inJeuken et al.(1999) andPlanet(1984), and
with a 4D-Var approach inRiishojgaard(1996). In Levelt
et al. (1998), ozone and carbon monoxide profiles are as-
similated within the Mozart model.Elbern et al.(1997),
Elbern et al.(2007) and Segers(2002) present several as-
similation studies of terrestrial data with a 4D-Var approach
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and a sequential approach for the latter.Wu et al. (2008)
compare four assimilation methods for assimilation of ozone
ground measurements: OI, ensemble Kalman filter, reduced-
rank square root Kalman filter and 4D-Var.

Aerosol models are now a component of most of avail-
able chemistry-transport models (CTMs). Performance ob-
tained for PM10 with various models could be disappointing
in comparison to the performance obtained for gas species.
For example, the correlation of simulated versus observed
concentrations rarely exceeds 50% for hourly PM10 over Eu-
rope (Van Loon et al., 2004), and the Root Mean Square Er-
ror (RMSE) is of the order of the concentration values, i.e.
10µg m−3. On the contrary, ozone peaks forecasts, for ex-
ample, show correlations that may exceed 70% or 80% and
RMSEs around 20% of the concentrations. Meanwhile, per-
formance obtained with purely statistical models for PM10,
which are mainly based on observational data, is much more
impressive: the correlations inHooyberghs et al.(2005) are
approximately 70%. It is therefore relevant to investigate
data assimilation with physical models for aerosols, in order
to take into account the information contained in measure-
ments. In this paper, the aerosol model is SIREAM – SIze-
REsolved Aerosol Model,Debry et al.(2007) – embedded in
the POLYPHEMUSplatform (Mallet et al., 2007). The assimi-
lation method is partially determined by the constraints orig-
inated from the thermodynamic model – ISORROPIA, Nenes
et al.(1998). Indeed, there is currently no adjoint model for
SIREAM. First, the thresholds set by ISORROPIA, which is a
discontinuous model because of its phase transitions, raise a
theoretical problem : how to define the derivatives at the dis-
continuity points? Second, the code of ISORROPIAhas not
been written so that it may be automatically differentiated. A
variational approach is thus not practical at the moment.

Aerosol measurements seldom correspond to model state
variables – which, for a size-resolved model, give the size
distribution of the aerosol chemical composition. They are
often aggregated data (PM10, PM2.5) or optical data (extinc-
tion coefficient, optical thickness). It is therefore not straight-
forward to assimilate this data. A reason for the choice of
assimilating PM10 data in this study is that the networks giv-
ing PM10 data are the most widely extended. Moreover,
since policies about particulate matter have mainly focused
on PM10 up to now, it is important to accurately forecast its
concentrations, primarily in urban areas. For example, in Eu-
rope, the limit is set to a maximum of 35 days per year during
which PM10 exceeds 50µg m−3 (directive of the European
Commission 1999/30/CE). However, the numerical models
sometimes miss important events, e.g., because of the lack of
description of some emission sources, like for example wild-
fires (Hodzic et al., 2007). DA could be useful in order to
compensate for these model deficiencies.

In this paper, we use a simple method for PM10 DA,
namely the OI method. This method was applied for the as-
similation of aerosol optical thickness (Generoso et al., 2007;
Collins et al., 2001). Variational methods for aerosol assim-

ilation have also been investigated, like the 1D-Var method
in Huneeus(2007) or the 4D-Var method inBenedetti and
Fisher(2007), but for simplified aerosol models.

This paper addresses the following questions:

1. Are forecasts improved after the assimilation of PM10
hourly observations over Europe? If so, to what time
extent?

2. Do the analyses produced by the PM10 assimilation over
a sub-domain (here, France) result in an improvement
over the remaining part of the domain (western Eu-
rope)?

3. Does the analysis produced by the PM10 assimilation
improve the computed chemical aerosol composition?

The first question has no obvious answer. First, the
thermodynamic equilibria between the aerosol and gaseous
phases could annihilate the corrections after DA if the
gaseous concentrations are not corrected at the same time.
Second, the aerosol residence time in the atmosphere is of
the order of few days and particles are known for having
mostly a regional effect. For this reason, it may be necessary
to perform a joint state-parameter estimation. For instance,
it would be useful to make corrections on the aerosol emis-
sions.

The second question is related to the timescales of atmo-
spheric transport. It aims to determine whether the improve-
ments in a part of the domain, where most of the measure-
ments are available, can improve the simulation in places
where the wind transports the air masses. This could be im-
portant for regions where only sparse data is available. The
choice of the scale parametersLh andLv see Eq. (5) might
then be important, since they determine the distance at which
the measurements have an influence in the analysis.

The last question deals with the effects of DA on chem-
istry. Assimilating a total mass only brings a coarse informa-
tion about chemistry; we cannot, a priori, expect an improve-
ment in the aerosol chemical composition, unless the errors
are similar for all the species, which may not be a realistic
assumption.

2 Methodology

2.1 Optimal interpolation

In the OI method, observations, as soon as available, are used
to produce ananalysis. This analysis is supposed to be a
better estimate of the true state: it replaces the current state
of the model and it therefore serves as initial conditions for
the next model iterations. This procedure is repeated at the
frequency of measurements.
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The analysis is given by the best estimate (linear and un-
biased) in the least-squares sense. The analysis, or analyzed
state vector,xa , is solution of the minimization problem

xa = argminJ, (1)

with J the followingcost function:

J(x)=(x−xb)
T B−1(x−xb)+(y−H[x])T R−1(y−H[x]) .(2)

xb is the background state vector, or a priori state vec-
tor (i.e., the PM10 forecast provided by the model),y is the
vector of observations (measured PM10), andH is an inter-
polation function that maps the statex to the observational
data.B andR are the matrices of error covariances, for back-
ground and observations, respectively.

Upon minimization and under the assumption of the lin-
earity ofH, xa is given by:

xa = xb + K (y − H[xb]) , (3)

whereK is the so-calledgain matrixdefined as

K = BHT
(
HBHT

+ R
)−1

. (4)

During the assimilation period, the process is repeated
each time observations are available. So, at timeh, the assim-
ilation produces an analysisx(h)

a , which serves as new model
state. Starting from that new state, the model computes a
forecastx(h+1)

f at timeh + 1. This forecast is actually called
“background”,xb, in previous paragraphs. The assimilation
takes place to computex(h+1)

a ; and so on and so forth.

2.2 Specification of the error covariance matrices

The specification of the covariance matrices is crucial, be-
cause these matrices determine the corrections to be applied
to the background field in order to better match the truth. The
main parameters are the variances (diagonal terms), but the
covariances are also important because they specify how the
information should be distributed over the domain.

A first estimate of the background error variances can be
obtained by taking an arbitrary fraction of the climatologi-
cal variance of the field itself. It is also conceivable to take
an estimate of the model-to-observation error. More com-
plex methods, like the Hollingsworth-Lönnberg method, ex-
ist (Daley, 1993; Hollingsworth and L̈onnberg, 1986).

It is impossible to accurately approximate all coefficients
of B. We therefore need a simplified representation of the
covariances between the grid points. A classical method is
the Balgovind approach (Balgovind et al., 1983) according
to which the covariance is a function of the horizontal and
vertical distances (rh and rv respectively) between the two
points of interest,

f (rh, rv) =

(
1 +

rh
Lh

exp
(
−

rh
Lh

))
×

(
1 +

rv
Lv

exp
(
−

rh
Lv

))
× v ,

(5)

whereLh andLv are two homogeneous influence radii andv

is the variance estimate.
The covariances between the observation errors are set

to zero since the instruments errors are independent; soR
should be diagonal. This may not be the case for measure-
ments from the same platform (radiosonde, airborne sensor
or satellite), but it is a reasonable assumption for instruments
located at different ground stations. We also assume that all
stations have the same error variance:R=rI whereI is the
identity matrix andr the error variance.

The value of the observation error variancer is determined
with aχ2 diagnosis (e.g.,Ménard et al., 2000). Let the fore-
cast at timeh bex

(h)
f , and the observation at timeh bey(h).

Under the usual assumptions of data assimilation, the depar-
tured(h)

=y(h)
−H x

(h)
f (called “innovation”) should have the

covariance matrixHBHT
+R. If that is true, the scalar

χ2
h = d(h)T (HBHT

+ R)−1d(h) (6)

should be equal, on average, to the number of observations
(at timeh). Let Nh be that number of observations. In the
previous equations, we assumed thatNh is constant sinceH
andR do not depend on time. In practice,Nh is not con-
stant because not the same stations will be available at two
different times.

In practice, theχ2 diagnosis should lead to check that
χ2

h/Nh is about 1. We determined the value ofr so that
χ2

h/Nh remains reasonably close to 1. This can be a diffi-
cult optimization because the innovationsd(h) depend onr.

2.3 Redistribution over sections and chemical species

The correction applied to the simulated PM10 at ground is
provided by the OI method. The controlled variable is thus
the PM10 concentrations over the whole horizontal domain,
in the first layer only (in the reference configuration) or in
more layers. Forecast PM10 are computed by summing the
concentrations of all aerosol species simulated over all sec-
tions (size discretization).

After DA, the analyzed PM10 concentrations are redis-
tributed over the model variables following the initial chem-
ical and size distributions. If(PM10)

b and(PM10)
a are the

PM10 mass concentrations for the background and the anal-

ysis respectively, and
(
P

j
i

)b

and
(
P

j
i

)a

are the concentra-

tions of the chemical speciesj in the sectioni for the back-
ground and the analysis respectively, then:

(
P

j
i

)a

=
(PM10)

a

(PM10)
b

×

(
P

j
i

)b

. (7)

The underlying assumption is that the aerosol relative
chemical composition and size distribution are well repre-
sented in the model.
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3 Experimental setup

3.1 Simulations

The aerosol model used in this study is SIREAM, plugged
to the chemistry-transport model Polair3D. SIREAM stands
for SIze-REsolved Aerosol Model, and is described in de-
tails in Debry et al.(2007). SIREAM includes 16 aerosol
species: 3 primary species (mineral dust, black carbon and
primary organic species), 5 inorganic species (ammonium,
sulfate, nitrate, chloride and sodium) and 8 organic species
predicted with the Secondary Organic Aerosol Model –
SORGAM,Schell et al.(2001). In the usual configuration,
SIREAM includes 5 bins logarithmically distributed over the
size range 0.01µm−10µm. All these models are embedded
in the POLYPHEMUS system, available athttp://cerea.enpc.
fr/polyphemus/and described inMallet et al.(2007).

The simulations presented here with and without assimila-
tion are carried out at a continental scale, over Europe, and
for one month (January 2001). A previous study,Sartelet
et al.(2007), evaluated the model configuration for the year
2001 with comparisons to three databases (also used in this
study and described hereafter) and with respect to the perfor-
mance of other CTMs used in Europe (Chimere, EMEP, ...).
Polyphemus shows a tendency to underestimate PM10, and
to overestimate nitrate concentrations in wintertime. Other
models also show similar behaviour. The configuration of the
simulations of this paper is essentially the same as inSartelet
et al. (2007). The main characteristics of the configuration
are summarized below.

The domain covers the area from 10.75◦ W to 22.75◦ E in
longitude and from 34.75◦ N to 57.75◦ N in latitude, with a
0.5◦ step. There are five vertical layers: 0–50 m, 50–600 m,
600–1200 m, 1200–2000 m and 2000–3000 m.

The meteorological fields are provided by the European
Centre for Medium-range Weather Forecast (ECMWF,http:
//www.ecmwf.int/products/data/operationalsystem/). The
ECMWF raw data for 2001 is that of the 12-h forecast cycles
starting from analyzed fields, and this data has a resolution of
0.36◦ horizontally, 60 sigma-levels vertically and a timestep
of 3 h.

The boundary conditions for aerosol species are interpo-
lated from outputs of the GOddard Chemistry Aerosol Radi-
ation and Transport model – GOCART,Chin et al.(2000) –
for 2001.

The anthropogenic emissions for gases and aerosols are
generated from the EMEP expert inventory for 2001 (avail-
able athttp://www.emep.int/).

The Regional Atmospheric Chemistry Mechanism –
RACM, Stockwell et al.(1997) – is used to simulate chem-
istry. Aerosol and gases are scavenged by dry deposition,
rainout and washout. We take into account coagulation and
condensation. Nucleation is not included because the diam-
eters of nucleated particles (typically about 1 nm) are below
the lowest diameter bound of the model. Aqueous-phase

chemistry inside cloud droplets is also taken into account
– Variable Size Resolved Model, VSRM,Fahey and Pandis
(2001) andStrader et al.(1998).

3.2 Observational data for assimilation and comparison

In this paper, just like inSartelet et al.(2007), three databases
are used for comparisons:

– the EMEP (European Monitoring and Evaluation Pro-
gramme) database, available on the EMEP Chemical
Co-ordinating Centre (EMEP/CCC) web site athttp:
//www.emep.int/;

– the AirBase database, available on the European Envi-
ronment Agency (EEA) web site athttp://air-climate.
eionet.europa.eu/databases/airbase/;

– the BDQA database (“Base de Données sur la Qualité
de l’Air”: the French national data base for air quality
that covers France).

EMEP data is provided only on a daily basis. Hence, in
this paper, it is not used for assimilation but for performance
assessment.

On the contrary, BDQA data is used for assimilation. The
reasons for this choice is that it includes hourly concentra-
tions and that the station characteristics are specified: back-
ground (rural), suburban, urban, industrial and traffic. The
scale at which a station is representative depends on the sta-
tion type. In the assimilation procedure, the traffic and in-
dustrial stations, generally with high concentrations due to
the proximity of sources, have been removed.

Since the characteristics of the AirBase stations are not
available, AirBase data will only be used for validation, as
the EMEP network. Also note that AirBase compiles several
European databases, including BDQA.

Figure1 shows the locations of the BDQA stations, except
the traffic and industrial stations whose high concentrations
cannot be represented by our model (at a resolution of 0.5◦).

3.3 Data-assimilation parameters

The covariances for the background errors are assumed
to be in Balgovind form, with a scale parameterLh set
to 1 mesh cell (about 50 km). The background variance
is set to 200µg2 m−6, which derives from a RMSE of
about 15µg m−3 for annual model-to-observation compar-
isons (Sartelet et al., 2007).

We performed several simulations, over January 2001,
with different observation error variancesr in order to sat-
isfy the χ2 criterion – see Sect.2.2. We finally selected
r'49µg2 m−6. This value is significantly greater than the
variance of the measurement error which is probably less
than 25µg2 m−6. With this variance for observation error
and with the 200µg2 m−6 variance for background, the time
evolution ofχ2

h/Nh is shown in Fig.2. On average the ratio
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Fig. 1. Location of BDQA stations used for PM10 DA. The background stations are located with a red triangle, the other ones with a black
point. The model grid is also shown.

χ2
h/Nh is almost 1, as expected. The ratio shows no clear

temporal trend, which is also desirable. Nevertheless, there
are significant time variations, even if there are 107 observa-
tions per hour (on average) and therefore 2568 observations
per day – so the samples seem to be large enough for the
averaged values to be statistically significant. This suggests
that further error modeling would be useful.

4 Comparisons with other networks

As a first step, we evaluate the improvements due to the as-
similation process on other networks than the one used for as-
similation. For this purpose, two simulations over one month
(January 2001) are carried out: one without DA (Model) and
one with DA. For the simulation with DA, every hour, the
model forecast is modified by OI, using the data from BDQA
stations. This produces a sequence of analyzed states (or
analyses), which are thereafter compared to hourly observa-
tions.

The statistical measures to evaluate the results are: the
Root Mean Square Error (RMSE), the correlation, the Mean
Fractional Error (MFE), the Mean Fractional Bias (MFB).
Let {oi}i=1,n and{si}i=1,n be respectively the observed and

the simulated concentrations. The RMSE – (inµg m−3) –
and the other indicators (dimensionless) are defined as:

RMSE=

√√√√1

n

n∑
i=1

(oi − si)2

correlation=

∑n
i=1(oi − o)(si − s)√∑n

i=1(oi − o)2 ×
∑n

i=1(si − s)2

MFE =
1

n

n∑
i=1

|si − oi |

(si + oi) /2

MFB =
1

n

n∑
i=1

si − oi

(si + oi) /2

whereo =
1
n

∑n
i=1 oi ands =

1
n

∑n
i=1 si .

We first present statistics for the comparison with the Air-
Base data. The large number of AirBase stations makes it
possible to compute statistics for each country, as shown in
Table1. Figure3 represents the RMSEs and the correlations
with circles whose diameters are proportional to the statisti-
cal indicator, e.g., the higher the value of RMSE or the cor-
relation, the larger the diameter of the circle. It is noteworthy
that the statistics for PM10 are globally improved: the global
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Table 1. RMSE, correlation, MFE and MFB of the simulated PM10 without and with DA (for the model, the analysis and the one-hour
forecast), computed with the observations from the AirBase network. The total is computed over all stations, without distinguishing the
country. Countries are: Austria (AT), Belgium (BE), Switzerland (CH), Czech Republic (CZ), Germany (DE), Spain (ES), France (FR),
Great Britain (GB), Ireland (IE), Italy (IT), the Netherlands (NL), Poland (PL), Portugal (PT), Slovenia (SI) and Slovakia (SK). Period: 01
January 2001 to 31 January 2001.

Stat Country AT BE CH CZ DE ES FR GB IE IT NL PL PT SI SK Total

# stations 12 17 12 45 161 18 120 49 2 17 14 27 5 1 3 503
RMSE Model 27.6 43.6 16.4 35.3 20.7 16.5 11.2 15.0 19.9 23.3 34.1 39.0 25.3 30.2 26.5 21.4
(µg m−3) Analysis 27.6 36.5 15.1 35.4 19.6 16.5 6.5 13.3 19.5 22.9 31.1 39.1 25.4 30.2 26.5 19.6

One-hour forecast 27.6 37.1 15.3 35.3 19.8 16.4 6.9 13.5 19.5 22.9 31.3 39.1 25.3 30.2 26.5 19.4
Correlation Model 36.0 79.5 54.8 53.8 65.9 54.7 36.7 43.8−3.4 35.7 65.8 46.6 −26.6 54.6 44.5 51.1
(%) Analysis 35.0 91.8 59.7 53.9 70.2 54.4 72.0 64.7 6.3 27.3 78.1 46.5−26.4 54.0 44.4 63.8

One-hour forecast 35.6 92.3 59.1 54.2 70.0 54.8 69.3 62.9 5.6 27.7 78.7 46.8−26.5 54.5 44.7 63.0
MFE Model 83.1 58.4 53.3 78.1 54.7 90.5 45.2 40.4 56.0 59.8 49.5 86.5 61.5 89.0 83.5 57.2
(%) Analysis 83.1 52.3 48.2 77.9 51.1 90.8 26.8 40.8 55.5 57.7 46.4 86.5 61.5 88.3 83.5 51.2

One-hour forecast 83.0 52.8 48.8 77.9 51.1 90.5 28.3 40.0 55.1 57.9 46.8 86.5 61.4 88.4 83.4 51.5
MFB Model −60.6 −52.3 −8.1 −65.9 −37.5 −81.8 −9.7 −16.5 −24.9 −44.8 −41.0 −75.4 −6.1 −89.0 −81.8 −35.5
(%) Analysis −60.0 −49.2 4.4 −65.6 −33.8 −77.2 −0.0 −25.6 −26.8 −36.3 −39.7 −75.4 −6.2 −88.3 −81.7 −32.2

One-hour forecast −60.0 −49.7 2.4 −65.6 −34.0 −78.0 0.5 −23.3 −26.0 −37.5 −40.2 −75.4 −6.1 −88.4 −81.7 −32.0

Table 2. Statistics of the simulation results without and with DA (for the model, the analysis and the one-hour forecast) on AirBase network
for different species. Period: from 1 to 31 January 2001.

Species Simulation # stations Obs. Sim. RMSE Correlation MFE MFB
Mean Mean

µg m−3 µg m−3 µg m−3 % % %

PM2.5 Model 10 18.8 17.7 12.5 61.4 45.4 8.3
Analysis 19.9 8.4 87.7 36.1 17.7
One-hour forecast 19.5 9.1 87.2 34.8 11.4

Sulfate Model 11 2.4 1.7 2.2 62.1 64.1 3.9
Analysis 1.8 2.0 63.5 62.4 4.9
One-hour forecast 1.8 2.0 64.0 62.4 4.8

Nitrate Model 8 4.4 7.8 4.2 66.3 71.9 68.8
Analysis 8.2 4.9 70.1 72.6 71.0
One-hour forecast 8.2 4.8 70.4 72.5 70.7

Ammon. Model 8 2.2 2.6 1.3 81.6 52.9 34.0
Analysis 2.7 1.3 83.3 51.6 36.2
One-hour forecast 2.8 1.2 83.8 51.4 36.0

Chlorine Model 6 0.9 2.8 3.0 45.7 93.6 81.6
Analysis 2.7 2.8 39.8 93.9 85.6
One-hour forecast 2.7 2.7 39.9 94.7 79.7

RMSE decreases from 21.4 to 19.6µg m−3 for the analysis,
the correlation increases from 51.1% up to 63.8%, MFE de-
creases from 57.2% to 51.2% and MFB decreases by 3%.

The statistics are clearly better over France: the RMSE de-
creases by more than 4µg m−3 and the correlation increases
by more than 30%. This is obviously due to the fact that
the BDQA stations are located in France. In addition, in
France, the BDQA and AirBase networks share many sta-
tions. The statistics of most border- or nearby-countries (Bel-
gium, Switzerland, Germany, Great Britain or the Nether-
lands) are also improved with the exception of the MFB for
Great Britain. Countries that are relatively far from France,
like Portugal, Poland or Slovakia show no changes in their
statistics. Also, the statistics for Spain do not change, cer-
tainly because there are few stations in the south-west of

France, and the scale parameterLh is not large enough to
influence Spain. On the contrary, RMSE, MFE and MFB for
Italy are improved, but the correlation decreases by 8%. In-
deed, the number of BDQA stations in the south-eastern part
of France, which could influence Italy, is significant. This
remark raises the question of the distance over which the sta-
tions of southern France are representative of PM10 pollution
in the direction toward Italy. It is possible that the Alps con-
stitute for aerosols at ground a high barrier, that the error
statistics model does not take into account, with an overesti-
matedLh.

Table 2 shows that DA also improves the statistics for
PM2.5 (4µg m−3 decrease for RMSE and 26% increase for
correlation), which could indicate that the a priori layout over
the model bins is relatively reliable.
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Table 3 shows statistics for the comparisons with the
EMEP data. Most statistics on PM10 for the simulation with
DA (analysis and one-hour forecast) are deteriorated com-
pared to the simulation without DA. Nevertheless, the sim-
ulated mean is better with assimilation because DA globally
increases the concentrations, and thus lessens the underesti-
mation over all stations. EMEP stations are background sta-
tions, whereas the assimilated observations are measured at
both background and urban or suburban stations. Some DA
updates might not be consistent with background concentra-
tions levels. Besides, there may not be enough stations to
draw reliable conclusions.

The statistics for sulfate, chlorine and sodium are slightly
better with DA. On the other hand, the statistics for nitrate
are worse. For ammonium, the statistics are stable. Actually,
the model underestimates the PM10 over the period, so DA
tends to add material to the existing aerosol mass. As the
repartition over the chemical species is homogeneous, DA
tends to add mass to all species. Then, the species that were
overestimated at first, like nitrate and ammonium, are even
more overestimated. Sulfate was underestimated, so DA al-
lows its concentration to be greater and the statistics are im-
proved. The overestimation of the nitrate concentration plays
a role in thermodynamic equilibrium, by reducing the mass
of chlorine that condensates on the particles. The change
of the sodium concentrations is essentially due to DA. The
number of stations that provide measurements for chemical
species is lower than the stations providing PM10 observa-
tions and these stations maybe not taken into account for
the PM10 statistics. It is therefore difficult to draw conclu-
sions about a general behavior. Moreover, the overestima-
tion for nitrate concentrations is specific to winter conditions
(Sartelet et al., 2007).
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Fig. 3. Map of correlations (a) and RMSEs (b) for each country between the simulation and the AirBase observations for the
simulation without DA (blue points) and for the one-hour forecast after assimilation (red points). The circle diameters are
proportional to the statistical indicator.

Fig. 3. Map of correlations(a) and RMSEs(b) for each country
between the simulation and the AirBase observations for the simu-
lation without DA (blue points) and for the one-hour forecast after
assimilation (red points). The circle diameters are proportional to
the statistical indicator.

Despite this remark, these results highlight the need for
more chemical measurements in the DA method presented
here. The partitioning in different species could then be cor-
rected by assimilation, while it is constant here. At the mo-
ment, without chemical data, a more deeper knowledge of
the uncertainties on modeled concentrations for each aerosol
component would certainly improve the system. Actually,
the repartition after DA could be changed according to ten-
dencies in uncertainties.

5 Operational forecast

In operational conditions, at timet0, only the data for the past
is available. It is possible to assimilate the past data over a
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Table 3. Statistics of the simulation results without and with DA (for the model, the analysis and the one-hour forecast) on the EMEP
network for different species. Period: from 1 to 31 January 2001.

Species Simulation # stations Obs. Sim. RMSE Correlation MFE MFB
Mean Mean

µg m−3 µg m−3 µg m−3 % % %

PM10 Model 16 20.2 17.4 17.8 45.3 65.7 19.5
Analysis 18.9 18.3 44.2 66.2 24.2
One-hour forecast 18.7 18.1 50.5 66.5 23.9

PM2.5 Model 7 20.4 17.3 17.2 57.0 68.8 19.9
Analysis 20.4 18.7 55.4 68.8 28.4
One-hour forecast 19.9 18.2 55.5 68.3 28.0

Sulfate Model 55 2.3 1.2 1.9 52.5 63.5−30.0
Analysis 1.4 1.9 50.7 63.7 −22.3
One-hour forecast 1.3 1.9 50.7 63.3−23.1

Nitrate Model 14 3.2 6.4 4.2 38.3 92.1 84.3
Analysis 6.6 4.5 38.1 93.1 85.8
One-hour forecast 6.5 4.5 38.0 93.0 85.6

Ammon. Model 9 2.2 2.3 1.6 48.6 57.4 22.0
Analysis 2.5 1.7 47.8 58.5 24.3
One-hour forecast 2.4 1.7 47.7 58.3 24.1

Sodium Model 3 1.2 3.2 3.0 60.6 88.3 81.3
Analysis 3.2 2.9 62.1 88.1 80.8
One-hour forecast 3.2 2.9 61.1 88.1 80.8

Table 4. Description of the European simulations carried out in
operational-forecast conditions and of their outputs that are com-
pared to observations.t0 is a given day between 3 and 30 January
2001. “d” stands for day.

Simulation Data Period of Outputs
assimilation

Without DA − − Model
With DA BDQA t0-3d tot0 One-day forecast

(t0 to t0+1d)
(all stations) Two-day forecast

(t0+1d tot0+2d)

few days beforet0. The model results fromt0 to (t0+1 day)
are calledone-day forecasts, the results from (t0+1 day) to
(t0+2 days) are calledtwo-day forecasts, etc. This opera-
tion can be repeated every day (“moving window”); one-day
forecast and two-day forecast are then available every day.

Several five-day DA experiments were carried out: the
BDQA data are assimilated every hour during the first three
days, after which the model runs freely and produces fore-
casts for the next two days. The first experiment assimilates
data from 1 to 3 January 2001 and forecasts the days 4 and
5 January 2001; the second experiment assimilates data from
2 to 4 January 2001 and forecasts the days 5 and 6 January

2001; and so on. Consequently, one-day forecasts are avail-
able from 4 to 30 January 2001, and two-day forecasts are
available from 5 to 31 January 2001. Table4 describes the
simulations carried out.

Table5 summarizes the performance of the model without
assimilation, and of the one-day and two-day forecasts, when
compared to BDQA observations. It is noteworthy that, as
expected, the one-day forecast clearly shows better statistics
for PM10 and PM2.5 than the simulation without assimila-
tion. The decrease of the RMSE is 1.5µg m−3 for PM10 and
1.4µg m−3 for PM2.5, that is, about 10%. The increase of the
correlation is more than 10% for PM10 and PM2.5. MFE and
MFB are also markedly improved; the improvement in MFE
brings the model to satisfy the performance objective of 50%
defined byBoylan and Russell(2006) – see alsoSartelet et al.
(2007).

Since the OI method only changes the initial conditions,
the model tends after all to its reference trajectory (without
assimilation). Here, the two-day forecasts show a less ob-
vious improvement. Two-day forecasts show slightly better
statistics than the free-running model, but the decrease of the
RMSE is only 0.2µg m−3 and the increase of the correlation
is 2%. The time period after which the corrections due to
DA become essentially ineffective are discussed in the next
section.

Figures4, 5, and6 show the daily evolution (averaged over
the period 4 to 30 January 2001) of the RMSE, the correla-
tion and the mean concentrations respectively for the model
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Table 5. Statistics of the simulations (model, one-day forecast and two-day forecast) on the BDQA network for PM10 and PM2.5. Period: 4
to 30 January 2001.

Species Simulation # stations Obs. Sim. RMSE Correl. MFE MFB
Mean Mean

µg m−3 µg m−3 µg m−3 % % %

PM10 Model 156 21.8 17.4 16.6 35.7 55.3 −9.2
One-day forecast 18.7 15.1 46.8 49.9 −3.5
Two-day forecast 17.7 16.4 37.9 54.6 −8.2

PM2.5 Model 8 19.8 15.8 15.0 30.2 57.9 −10.3
One-day forecast 16.9 13.6 43.2 53.3 −3.9
Two-day forecast 15.9 14.8 32.3 57.4 −9.4

Table 6. Configuration of DA for the evaluation of the impact of
the assimilation parameters on the forecasts.

Parameter Reference Alternative

Lh Balgovind 2 cells 0.5 cell
Lv Balgovind 30 m 200 m
Lv Balgovind 30 m 300 m
Lv Balgovind 30 m 600 m
Redistribution all species primary

inorganics
α=v/r 18 1

without assimilation and for the one-day forecast. These fig-
ures underline the tendency of the assimilation procedure to
be almost ineffective after 24 h of forecast. Actually, after
12:00 UTC, the differences in RMSE and in mean concen-
tration are lower than 1µg m−3, and the difference in corre-
lation is about 2%.

The fact that DA with the OI method has some influence
only during such a short period of time (one day in this ex-
periment) is not only a limit of the OI method. Actually, in
air quality models, concentrations are not much influenced
by initial conditions. Also, it depends on several parameters
– see Sect.6 – and on the pollutant. For ozone, the influence
is a bit longer – seeWu et al.(2008).

6 Sensitivity to DA parameters

Because the OI method only modifies the initial conditions,
and not the model itself, one may want to evaluate the time
and space scales for which DA affects the results. Tests with
different configurations were carried out over a shorter pe-
riod to estimate the effective time scales of the DA impact.
The data is assimilated over a period and then the model is
running without assimilation for the remaining days. The
aim of these tests is to find out key parameters.
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Fig. 4. Hourly evolution (averaged over the 04-01-2001 to 30-01-
2001 period) of the RMSE for the PM10 forecast without assimila-
tion (blue line) and for the one-day forecast (green line).

The configuration for the present simulations is the same
as in the previous section, over the period from 1 to 6 January
2001. As in the previous sections, the simulation without as-
similation is compared to the other simulations with DA. For
the simulations with DA, hourly data from BDQA stations
is assimilated from 1 to 5 January 2001. The forecast starts
on the 6 January 2001 at 00:00 UTC. Eight simulations are
presented here: the reference test and seven alternatives. The
different configurations are summarized in Table6.

In one experiment, the variance for observation errors is
equal to the background variance: ifR=r I whereI is the
identity matrix andr a scalar variance, the ratioα=v/r (with
v from Eq.5) is then equal to 1. Note that the results of the
OI method are the same for all pairs(r, v) such that the ratio
r/v is constant (hence equal to 1) – the actual value of the
variancer=v has no impact.

The Balgovind method is used to represent the horizontal
and vertical covariances for the background. The impact of
theLh andLv parameters is tested. Horizontally,Lh is taken
equal to one grid cell (about 50 km) in the reference simu-
lation, and it is changed to two grid cells (about 100 km).
Vertically, the reference test performs assimilation only in
the first model level (centered at 25 m); hence the results are
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Fig. 5. Hourly evolution (averaged over the 04-01-2001 to 30-01-
2001 period) of the correlation for the PM10 forecast without as-
similation (blue line) and for the one-day forecast (green line).
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Fig. 6. Hourly evolution (averaged over the 04-01-2001 to 30-01-
2001 period) of the mean concentration for the PM10 observations
(red line), for the forecast without assimilation (blue line) and for
the one-day forecast (green line).

independent ofLv. Three other tests are carried out: respec-
tively with a verticalLv parameter equal to 200 m with two
controlled model levels, 300 m with three controlled levels,
and 600 m with three controlled levels.

The redistribution of analyzed PM10 on chemical species
is also investigated. The following cases are considered:

– redistribution on all species (default): it is assumed that
the model uncertainties are equivalent for all species;

– redistribution of the corrections only on primary
species: it is assumed that the uncertainties are mainly
due to the emissions;

– redistribution of the corrections only on inorganic
species: it is assumed that the uncertainties are mainly
due to the condensation of inorganic species.

The redistribution only on the organic species is not tested.
Actually, the mass of low volatile material in aerosols is gen-
erally not or only partially measured by the instruments used
in automatic stations. In most of PM10 measurement instru-
ments, the samplings are heated to measure the mass of dry
particulate matter. For example, the sample temperature of a

Table 7. Table of the scores of the different tests at BDQA stations
for the first day forecast (6 January 2001).

Simulation RMSE Correlation Concentration
Mean

Observations 14.1
No assimilation 13.9 30% 14.8
All species 11.3 50% 14.4
(Reference)
Primary species 12.5 52% 15.1
Inorganic species 11.3 50% 14.4
Lh=2 11.5 44% 14.3
alpha=1 11.5 52% 14.3
Lv=200m 11.1 50% 14.0
Lv=300m 11.1 53% 13.9
Lv=600m 11.1 48% 13.7

TEOM (Tapered Element Oscillating Microbalance), which
received the certification of US-EPA, is 50◦C. At this tem-
perature the volatile material, such as organic aerosols, is
evaporated (Allen et al., 1997; Smith et al., 1997; Salter and
Parsons, 1999; Soutar et al., 1999; Green et al., 2001; Josef
et al., 2001; Charron et al., 2003). We assume that the obser-
vations slightly depend on organic species and then, we can-
not assume that the difference in total mass is only attributed
to organic species.

Figures7, 8 and9 show the time evolution of the RMSE,
the correlation and the simulated mean respectively, aver-
aged over BDQA stations for the different tests. Table7
shows the associated statistics, over the forecast day (6 Jan-
uary 2001). All simulations with assimilation improve the
RMSE and the correlation. However, the figures show that
the influence of DA lasts no more than a few hours. The
RMSEs and the correlations are equivalent for all tests after
6 h. For the simulated mean, the figure shows that there still
could be a difference after 24 h. Theinorganicssimulation
is almost the same as the reference test where all species are
assimilated (RMSEs and correlations are equal), whereas the
primary simulation gives very different results for the sim-
ulated mean. In theinorganicssimulation, the transfer of
the PM10 changes to the inorganic species takes place essen-
tially in the fine mode (less than 2.5µm diameter), where the
major part of inorganics resides. The PM10 mass is also lo-
cated in this mode, so the size distribution of corrected PM10
will be equivalent in both thereferenceand theinorganics
simulations. For this reason, the scavenging which depends
on particle size and which could therefore explain the differ-
ences in the PM10 budgets between the simulations, is not
affected. The RMSE for theprimary simulation is the high-
est of the tests with DA. This likely means that, for this case,
the errors of the model are mostly due to secondary species,
rather than primary species. These errors could then be at-
tributed essentially to physical processes rather than to the
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Fig. 7. Time evolution of the RMSE for the PM10 forecasts. The
vertical line delimits the assimilation period from the prediction pe-
riod.

emissions description. The simulation whereα=1 is close
to the simulation without DA, particularly in the evolution
of the mean. The simulations where one of the parameters
Lh or Lv for the Balgovind method has changed give simi-
lar RMSEs on the BDQA network. However, the differences
in the concentration mean remain significant for a longer pe-
riod if the number of controlled levels and the parameterLv

are increased. This shows that DA can partially influence the
PM10 vertical profile; but increasingLv above 200 m has a
limited impact.

Figure10 shows the maps of the absolute differences be-
tween the PM10 fields of the simulations with DA and the
same field without DA, averaged over the first forecast day.
As expected, the test withLh=2 shows differences in re-
gions that were not affected with the reference assimilation
settings. The northern part of Italy is more affected. In the
reference assimilation experiment, the most impacted region
is in the north of Spain. There, the highest difference is lo-
cated in one grid cell, but it does not affect the statistics since
there is no station in that cell. Besides this point, southern
(Marseille region) and south-eastern France are the most im-
pacted regions, showing that the concentrations in these re-
gions are particularly badly reproduced by the model. This
may be due to the fact that a few stations in these regions
are influenced by the mountains, by the Mediterranean cir-
culation, and by large urban areas. Therefore, it is a region
difficult to represent with a continental-scale simulation.

It is noteworthy that the regions impacted by theinorgan-
ics and theprimary tests are rather different. Actually, the
inorganicstest shows large differences over marine regions
(see west of Corsica). Over marine areas, the changes in
thermodynamic equilibria due to DA can be amplified by the
presence of sea salt.

7 Conclusions

This paper shows that PM10 DA with the OI method may be
useful for one-day forecasts. In our tests, a mean decrease of
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Fig. 9. Time evolution of the mean concentration for the PM10
forecasts. The vertical line delimits the assimilation period from
the prediction period.

1.5µg m−3 for the RMSE and a 10% increase in the correla-
tion are obtained. For longer forecast periods, the statistics
are not improved because the concentrations converge too
quickly to the trajectory without DA.

The crosswise comparison with other networks than the
one used for DA allows to evaluate the quality of the anal-
ysis for different network types. For example, the EMEP
database only contains background stations. On the contrary,
the data assimilated in this study includes observations from
urban or suburban stations, which have much higher concen-
trations. The forecasts thus tend to increase the concentra-
tions accordingly, spoiling the statistics for rural stations as
those of the EMEP database.

The background error covariances are important compo-
nents of the assimilation. In this study, we used a simple
parameterization with an influence radiusLh, supposed to be
the same in the whole domain. This method results in worse
statistics in regions where topography would require specific
decorrelation lengthsLh.

The sensitivity tests show that, in this specific study, the
uncertainties on the condensation process might be greater
than the uncertainties on the emissions. These uncertain-
ties could originate from uncertainties in the concentra-
tions of condensable gas species or in the modeling of the
condensation process itself.
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Fig. 10. Maps of the absolute difference of the PM10 fields (in µg m−3). Comparison between the simulation without assimi-
lation and the simulation with assimilation for the eight tests over the day 06 January 2001.

Fig. 10. Maps of the absolute difference of the PM10 fields (inµg m−3). Comparison between the simulation without assimilation and the
simulation with assimilation for the eight tests over the day 6 January 2001.
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The OI method applied in this paper could be used in oper-
ational mode: the model is already running for real-time fore-
casts over Europe, in the context of tests on the Prév’air plat-
form (http://www.prevair.org/), and the additional computa-
tional cost due to OI is slight. Applying other methods like
4D-Var (providing an adjoint model is available) or an en-
semble Kalman filter (providing proper uncertainty informa-
tion is available on inputs) would be much more demanding
in terms of computational resources, and it would not neces-
sarily improve the data assimilation efficiency if the state is
to be solely controlled (for ozone, seeWu et al., 2008).

For future works, the following studies could be initiated:

1. Using more sophisticated methods to build the back-
ground covariance matrix, such as methods based
on statistical studies of the simulated fields e.g. the
Hollingsworth-L̈onnberg method,Daley(1993);

2. Implementing inverse methods in order to improve the
quality of input data (emissions) and/or parameteriza-
tions;

3. Assimilating observations of gases that are seldom mea-
sured but important for the formation of secondary in-
organic species, like nitric acid (HNO3) or ammonia
(NH3);

4. Assimilating observations of the aerosol chemical com-
position (nitrate, sulfate, ammonium, primary and or-
ganics); the bias existing for some species could then
be lowered;

5. Assimilating optical data from a lidar network, which
could improve the vertical distribution of aerosols and,
as a result, improve the persistence of DA impacts over
the domain.
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