
Atmos. Chem. Phys., 9, 4855–4867, 2009
www.atmos-chem-phys.net/9/4855/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

On the extraction of wind information from the assimilation of
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Abstract. By applying four-dimensional variational data-
assimilation (4-D-Var) to a combined ozone and dynam-
ics Numerical Weather Prediction model (NWP), ozone ob-
servations generate wind increments through the ozone-
dynamics coupling. The dynamical impact of Aura/MLS
satellite ozone profiles is investigated using Mét́eo-France
operationalARPEGENWP 4-D-Var assimilation system for
a period of 3 months. A data-assimilation procedure has been
designed and run on 6-h windows. The procedure includes:
(1) 4-D-Var assimilating both ozone and operational NWP
standard observations, (2)ARPEGEtransporting ozone as a
passive-tracer, (3)MOCAGE, the Mét́eo–France chemistry
and transport model re-initializing theARPEGEozone back-
ground at the beginning time of the assimilation window.
Using observation minus forecast statistics, it is found that
the ozone assimilation reduces the wind bias in the lower
stratosphere. Moreover, the Degrees of Freedom for Sig-
nal diagnostics show that the MLS data covering the 68.1–
31.6 hPa vertical pressure range are the most informative and
their information content is nearly of the same order as tro-
pospheric humidity-sensitive radiances. Furthermore, with
the help of error variance reduction diagnostics, the ozone
contribution to the reduction of the horizontal divergence
background-error variance is shown to be better than tropo-
spheric humidity-sensitive radiances.
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1 Introduction

Over the years, data assimilation schemes have evolved into
very sophisticated systems, such as four-dimensional varia-
tional 4-D-Var (Rabier et al., 2000), which is operational in
the numerical weather prediction (NWP) system of Mét́eo–
France,ARPEGE. The scheme combines a large variety of
both space- and surface-based meteorological observations
with background information of the atmospheric state. Dur-
ing the 4-D-Var process, the evolution of the linearized fore-
cast model and its adjoint act as an additional constraint (An-
dersson et al., 1994).
Ozone is a radiatively important atmospheric trace gas and
4-D-Var is adapted to produce four-dimensional ozone anal-
yses consistent with atmospheric dynamics, e.g.: (i) assimi-
lation of ozone observations in a modern four-dimensional
variational data assimilation (4-D-VAR) will have a di-
rect impact on the wind field (Eskes et al., 2005); (ii) in
chemistry-transport model (CTM) studies, the ECMWF 4-
D-Var operational analyses have been seen to produce better
age-of-air values (Geer et al., 2006); (iii) because 4-D-Var
includes the time dimension, the temporal discrepancy be-
tween the initial state is accounted for (Lahoz et al., 2007).
The assimilation of ozone can have a beneficial impact on
the dynamics forecast modeling. Ozone influences the model
temperature through the radiation parametrization, often re-
ferred to as “ozone/radiation interaction” (Cariolle and Mor-
crette, 2006). Moreover, an accurate ozone knowledge may
improve the use of satellite radiances sensitive to ozone such
as long-wave channels of both the High Infrared Resolu-
tion Sounder HIRS (e.g.,Derber and Wu, 1998) and the
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Advanced Microwave Sounder AMSU-B (e.g.,John and
Buehler, 2004). In addition to these potential benefits, 4-D-
Var ozone assimilation can improve the wind field through
dynamics-ozone coupling. This takes advantage of the fact
that the photochemical lifetime of ozone is relatively long
in the upper troposphere-lower stratosphere (UTLS) region
where vertical and horizontal motions associated with synop-
tic scales systems lead to similar ozone and isentropic poten-
tial vorticity (IPV) anomalies (Reed, 1950; Danielsen, 1968;
Davis et al., 1999; Semane et al., 2002). This could bring
a valuable correction of model uncertainties in the UTLS re-
gion. Daley(1995) highlighted the feasibility of inferring dy-
namical information on wind fields from the assimilation of
chemical constituent observations, given sufficiently dense,
frequent and accurate measurements.Riishøjgaard(1996)
demonstrated the use of ozone measurements to reconstruct
the flow field in a barotropic vorticity equation model. The
study ofHolm et al.(1999) showed in detail the wind-ozone
coupling in a 4-D-Var system.Peuch et al.(2000) demon-
strated the dynamical impact of total ozone column observa-
tions in Observing System Simulation Experiments (OSSEs)
using theARPEGE4-D-Var suite. All studies agree that two
prerequisites for producing a beneficial interaction between
the ozone and wind fields within 4-D-Var are the use of high
quality observations and background ozone fields. These
have proven to be very strong constraints and, up to now, few
results obtained with actual ozone observations have been
presented. In this work, the dynamical impact of ozone 4-
D-Var assimilation is thus investigated within a framework
in which ARPEGEis run during a period of 3 months from
23 January to 22 April 2006 with the following input:

– Frequent and accurate UTLS ozone profiles from the
Microwave Limb Sounder (MLS) aboard the Aura satel-
lite with a vertical resolution of 2.7 km in the UTLS and
a horizontal resolution of 165 km (Waters et al., 2006).

– Ozone background provided byMOCAGE, a com-
prehensive chemistry and transport model (CTM) of
Mét́eo–France (Peuch et al., 1999). This background
is consistent with dynamical fields of ARPEGE as
MOCAGE is driven by ARPEGE dynamics.

The observation minus forecast (OMF) statistics are used
to examine how the wind fields are affected by the assimi-
lation of MLS data. In addition, the information content of
MLS data is examined by using the Degrees of Freedom for
Signal diagnostics. With the help of the error variance re-
duction diagnostic ofDesroziers et al.(2005), the reduction
of the initial background error variance of wind fields due to
MLS ozone data assimilation is also described. The results
are compared to humidity-sensitive radiances of HIRS and
AMSU-B sounders. The paper is outlined as follows: Sect. 2
presents the MLS ozone assimilation procedure, Sect. 3 de-
scribes the dynamical impact of ozone data, and Sect. 4 sum-
marizes the results and discusses their implication.

2 MLS ozone assimilation procedure

Thanks to the 4-D-Var assimilation process, ozone observa-
tions affect not only the analysis of the ozone field itself, but
also the analysis of the wind field through the adjoint of the
ozone advection model. In this study, the 4-D-Var ozone-
wind relationship within the assimilation window is, thus,
investigated in an univariate approach in which the wind
and ozone are only coupled via the tracer transport equa-
tion and not via the background error covariances. Accord-
ing to Peuch et al.(2000), ozone observations will improve
the wind field only if they are sufficiently accurate and nu-
merous, if the linearized ozone advection model is appro-
priate for simulating time-space evolution over the assimila-
tion window and finally if the background is consistent with
the observations. The 4-D-Var experiment carried out in this
study attempts to meet these requirements as closely as pos-
sible through the use of MLS observations and ozone back-
ground derived from theMOCAGECTM at the beginning of
each 4-D-VarARPEGEdata-assimilation cycle.

2.1 MLS measurements

The Aura satellite was launched on 15 July 2004 and placed
into a near-polar Earth orbit at∼705 km. It orbits the Earth
around 14 times per day. The MLS instrument aboard Aura
uses the microwave limb sounding technique to measure
chemical constituents between the upper troposphere and
the lower mesosphere. It is an advanced version of the
MLS instrument on the Upper Atmosphere Research Satel-
lite (UARS). This is because it provides more dense spa-
tial coverage with its daily 3500 profiles, between 82◦ N and
82◦ S, while UARS MLS could only produce up to 1300 ev-
ery day. In addition, Aura MLS ozone profiles are retrieved
with a horizontal resolution of 165 km and a typical verti-
cal resolution of about 2.7 km in the stratosphere (Froide-
vaux et al., 2006; Jackson, 2007; Stajner et al., 2008; Feng
et al., 2008). Although Aura MLS observations contain use-
ful information on ozone concentrations between 316 hPa
and 0.1 hPa, only the data between 215.4 and 0.46 hPa are
recommended for scientific research. Precision is around
20–50 ppbv (parts per billion by volume) and 0.1–0.2 ppmv
(parts per million by volume) in the vertical ranges 215.4–
22 hPa and 21.5–0.46 hPa, respectively (Waters et al., 2006).
In this study, the first publicly available Aura MLS dataset,
version 1.5, of ozone profiles from 23 January to 22 April
2006, is used. As high biases exist at 215.4 hPa for equa-
torial latitudes, data for this level covering the 30◦ N–30◦ S
latitude range are discarded. The observational error in the
used data-assimilation experiment is prescribed directly from
the precision estimate supplied with the Aura MLS data; no
bias correction is applied.
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2.2 MOCAGE model

MOCAGE (MOdèle de Chimie Atmosphérique à Grande
Echelle) is a three-dimensional chemistry transport model of
the troposphere and stratosphere. It provides a number of
optional configurations with varying domain geometries and
resolutions, as well as chemical and physical parametriza-
tion packages. It is used for operational chemical weather
prediction (e.g.,Dufour et al., 2004; Hollingsworth et al.,
2008; Rouil et al., 2009) and chemical data assimilation
research (e.g.,Semane et al., 2007; Massart et al., 2007;
El Amraoui et al., 2008a, 2008b). The transport scheme of
MOCAGE is semi-lagrangian (Rasch and Williamson, 1990)
and the chemical one used in this study is the comprehen-
sive scheme RACMOBUS, which combines the stratospheric
scheme REPROBUS (Lefèvre et al., 1994) and the tropo-
spheric scheme RACM (Stockwell et al., 1997). MOCAGEis
forced by external wind and temperature fields from the op-
erational meteorological model of Ḿet́eo-France,ARPEGE
(Courtier et al., 1991) and is used with its global horizontal
resolution of 2◦ both in latitude and longitude, including 47
hybrid levels from the surface up to 5 hPa. The vertical reso-
lution is about 800 m in the vicinity of the tropopause and in
the lower stratosphere.

2.3 Assimilation methodology

The notation in this paper will follow Ide et al. (1997) as
closely as possible. Ḿet́eo-France uses the 4-D-Var scheme
as part of its ARPEGE NWP system (Rabier et al., 2000).
This scheme minimizes the following functionJ (δx):

J (δx) = Jb(δx) + Jo(δx) + Jc(δx) (1)

where the increment vectorδx is the difference between the
model statex and the background statexb. TheJb(δx) term
in Eq. (1) refers to the background cost function

Jb(δx) = δxT B−1δx (2)

and theJo(δx) term refers to the observation cost function

Jo(δx) = (d − H(δx))T R−1(d − H(δx)) (3)

whered=y◦-H(xb) is the departure between the observa-
tion vectory◦ and its model equivalent in observation space
H(xb). The operatorH is a generalized interpolator (in-
cluding model integration to observation time over the as-
similation window) from the model grid to the observation
location andH represents its tangent-linear. The fact that
the generalised interpolator includes an atmospheric model
and interpolation means that it may include a modelling of
the observed quantity, such as a radiative transfer code. The
Jc(δx) in Eq. (1) is a penalty term controlling gravity waves.
In Eqs. (2) and (3),B andR respectively represent the back-
ground and observation error covariance matrices. In order
to assimilate MLS observations, the following changes in

the operational version of the 4-D-VarARPEGEsystem have
been applied. First, the ozone variable is incorporated in the
model state vectorx. Hereafter, the ozone part ofx is de-
notedxO3. The time-space evolution ofxO3 is simulated by
a passive-tracer advection equation using a semi-lagrangian
transport scheme. Second, MLS ozone observations are in-
cluded in Eq. (3). Third, in contrast to the other meteorolog-
ical variables for which the backgroundxb of Eq. (2) is pro-
vided by the ARPEGE 3-h forecast run, the ozone part ofxb

(hereafter represented byxbO3
) is provided by MOCAGE at

the beginning time of each 6-h assimilation window. Figure 1
depicts a vertical cross section from 90◦ N to 90◦ S of the
normalized differences in the zonal mean ozone fields from
MOCAGE(comprehensive chemistry) and ARPEGE (where
ozone is only advected) after 6, 12, 18 and 24 h of simula-
tion. It clearly shows that, after 6 h, ozone fields computed
by ARPEGEremain very close to the one computed with
the dedicatedMOCAGECTM; discrepancies grow after 12–
24 h of simulation, both due to a less appropriate representa-
tion of transport and to the lack of chemical source and sink
terms in the ARPEGE model. Finally, in the operationally
used version of ARPEGE, the part of background-error co-
variance matrixB for dynamical meteorological variables is
estimated using Analysis Ensemble Method (Houtekamer et
al., 1996). In this study, the part of theB related toxO3

(hereafter represented byBO3) is computed statistically us-
ing the NMC method (Parrish and Derber, 1992) with 12/36-
h forecast differences. The 12/36-h forecasts are both con-
structed by integrating the passive-tracer advection equation
from an ozone initial condition given byMOCAGE. It must
be noticed, here, that the constructedBO3 matrix corresponds
more to the ozone short-term forecasts errors of ARPEGE
rather than to the MOCAGE ones, but both errors should be
similar for the following reasons: (1) the photochemical life-
time of ozone is relatively long in the UTLS region and (2)
MOCAGE uses a dynamical forcing provided by ARPEGE.
Further, this way ofBO3 matrix construction has the advan-
tage to provide it on the ARPEGE grid directly. Figure 2a,
b, and c respectively depict pressure, ozone average verti-
cal correlations and ozone horizontal correlation scale as a
function of model levels in the UTLS. Figure 2b shows that
the vertical correlation length ofxbO3

errors is small in the
stratosphere and increases towards the tropopause. Further-
more, ozone is assimilated in a univariate manner: no corre-
lation is specified between ozone and wind (relative vortic-
ity) in the formulation of theB matrix. The univariate ozone
background errors were chosen because they minimize the
feedback effects of ozone on other meteorological variables
(Dethof and Holm, 2004). Therefore, ozone observations af-
fect the analysis of the meteorological fields only through
the coupling of trace gas concentration and air transport. No
ozone/radiation interaction is included: the ozone climatol-
ogy of Fortuin and Langematz(1995) is used in the radia-
tion scheme. Observation operator calculations within satel-
lite radiances assimilation (e.g., ozone-sensitive channel 9 of
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Fig. 1. MOCAGE and ARPEGE ozone zonal mean difference percentage, 100×
|ARPEGE−MOCAGE|

MOCAGE
, after 6(a), 12 (b), 18 (c) and 24 h

(d) of simulation.

HIRS and channel 18 of AMSU-B) also use ozone climatol-
ogy instead of the new introduced model ozone.

The use of MOCAGE for the background initialization at
the beginning of each assimilation cycle is a key compo-
nent of this study. This initialization replaces the ARPEGE
transported ozone field by more realistic values given the fact
that the MOCAGE CTM takes into account many processes,
which simulate more accurately the ozone evolution in com-
parison to the only advection process of the ARPEGE model.
Moreover, the ARPEGE ozone transport scheme is not very
robust, even in places where the photochemical lifetime is
very important as the UTLS, in comparison to the MOCAGE

transport scheme. Therefore, the ozone field of ARPEGE is
updated after 6 hours of simulation in order to prevent its
divergence.

2.4 Experiment setup

In order to investigate the impact of the assimilation of MLS
ozone profiles on ARPEGE wind fields, two assimilation ex-
periments have been run at a regular low resolution of T107
truncation on 41 levels from the ground up to 1 hPa. The op-
erational version was at a resolution of T358 (stretched grid)
on 41 levels in 2006; the current (2008) operational version
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Fig. 2. (a)Pressure as a function of model levels in the UTLS,(b) Ozone average vertical correlations, and(c) Ozone horizontal correlation
scale as a function of model levels in the UTLS.

is at a resolution of T538 on 60 levels. In the first experi-
ment (denoted CTL), MLS data are not assimilated. In the
second experiment (denoted MLS), MLS ozone profiles, be-
tween 215.4 and 1 hPa in the extratropics and between 147
and 1 hPa in the latitudes range (30◦ S–30◦ N), are assimi-
lated. The MLS and CTL experiments are run over a pe-
riod of 3 months from 23 January to 22 April 2006. The
ozone field is produced by MOCAGE and is only transported
over the 6 h assimilation window via ARPEGE. The spin-
up time was taken into account in the MOCAGE simula-
tion, which was performed 2 months before the beginning
of the assimilation experiment starting on 23 January 2006.
Other assimilated observations in the CTL and MLS exper-
iments are based on the operational data including surface
observations, radiosondes, aircraft reports, and wind profil-

ers, as well as satellite observations such as winds from the
geostationary satellites, MODIS winds, QuikSCAT winds,
and radiance data from both HIRS and AMSU (Unit-A and
Unit-B) sounders aboard the National Oceanic and Atmo-
spheric Administration polar-orbiting satellites (NOAA-15,
NOAA-16 and NOAA-17). 4-D-Var assimilates observations
within +/−3 h of the analysis time (00:00, 06:00, 12:00 and
18:00 UTC). This is in line with the current operational set-
up inARPEGE, as this study aims at being in a fully realistic
NWP context. The flow of 4-D-Var procedure for the case of
12:00 UTC analysis time is given in Fig. 3.
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Fig. 3. Flow of 4-D-Var procedure for the case of 12:00 UTC
analysis time.(a) 3-h forecast from previous ARPEGE analysis is
used as backgroundxb, (b) The ozone background field is provided
by MOCAGE, (c) 6-h forecast fromxb to perform the innovation
vector,d=y◦-H(xb), over a 6-h assimilation window (09:00 UTC–
15:00 UTC), and(d) After the 4-D-Var minimization, the increment
analysis is added to the first guess field (valid at 12:00 UTC) to ob-
tain the analysisxa at 12:00 UTC.

3 Ozone data dynamical impact study

3.1 OMA and OMF ozone statistics

Figure 4 displays 100×OMA
yo (solid line with squares) and

100×OMF
yo (dashed line with circles) both averaged in time

from 23 January to 21 February 2006 (00:00 and 12:00 UTC
analysis times) and over the following latitude bands (a)
30◦ N–90◦ N, (b) 30◦ N–30◦ S, and (c) 30◦ S–90◦ S. Here,
OMA and OMF respectively refer to Observation minus
Analysis and Observation minus First-guess for ozone. This
shows that when MLS data are assimilated, the departures
are reduced and the analysis agrees better with the MLS data
in comparison to the background. For instance, the assimila-
tion of MLS profiles corrects the background overestimation
of ozone in the Northern Hemisphere, by driving the analy-
ses to a value slightly close to MLS observations owing to the
negative correction induced by the analysis increment. This
overestimation feature of the background has been already
diagnosed byEl Amraoui et al.(2008a) during winter months
inside the vortex. The reverse process occurs in the tropics
and the Southern Hemisphere at pressure levels greater than
46.4 hPa, where there is a substantial correction of the model
underestimation of ozone.

It must be noticed, here, that OMA and OMF ozone statis-
tics only shows that the system is behaving properly. There-
fore, further information on system performance can be ob-
tained by comparison against independent data.

3.2 OMF wind statistics

The OMF residuals produced by a data assimilation system
provide a convenient metric of evaluating global analyses.
Here, OMF statistics fromARPEGEare used to examine
how wind assimilation output and their associated OMF bias
and standard deviation are affected by the additional assimi-
lation of MLS ozone data. Specifically, ARPEGE wind fields
(zonal and meridional components) from the first-guess, 24-
h and 48-h forecasts are compared against radiosondes for
experiments with and without MLS ozone data. OMF are av-
eraged in time from 23 January to 22 April 2006 (for 00:00
and 12:00 UTC) and over the globe. The number of observa-
tions per pressure level, used in the OMF statistics, is given
in Table 1. Figure 5 depicts vertical profiles of OMF bias
for the CTL (solid line) versus the MLS experiment (dashed
line) for both zonal (left hand-side panels) and meridional
(right hand-side panels) wind components. The top, middle
and bottom panels correspond to the first guess, 24-h and
48-h forecasts, respectively. In comparison to the CTL, the
MLS experiment has smaller biases in the lower stratosphere
for both zonal and meridional winds. The middle and bot-
tom panels of Fig. 5 confirm that information added in the
MLS experiment is successfully retained in the 24/48-h fore-
casts in the lower stratosphere. OMF standard deviations,
not shown here, are very close for both experiments. Over-
all, the addition of MLS ozone data improves the agreement
between the wind fields and the verifying radiosondes data
over the globe. The observation minus first guess biases (top
panels of Fig. 5) show that the wind response signal due to
the MLS data assimilation is nearly vertically uniform be-
tween 20 and 100 hPa for the zonal component. It has, how-
ever, a pronounced positive peak between 30 and 50 hPa for
the meridional wind component. This response signal differ-
ence between the two components of the wind has also been
pointed out byRiishøjgaard(1996). In fact, the direction of
the flow with respect to the gradient of the tracer concen-
tration is a key parameter that governs the wind response to
the tracer data assimilation. Indeed, when the flow is aligned
with the gradient of the tracer concentration, the tracer as-
similation affects considerably the wind during the adjoint
calculation (this can be easily inferred from the simplified
Euler-Lagrange equations used by Holm et al. 1999). In the
top right-hand side panel of Fig. 5, the peak in the bias re-
duction of the wind meridional component corresponds to
the altitudes where the meridional component of ozone gra-
dient is large; this is typically true for the middle and high
latitudes. To summarize, the MLS ozone data provide a ben-
eficial signal in the ARPEGE wind fields. Even though the
ozone data dynamical impact is not very large, it is not neu-
tral and mostly positive over a meteorological data sparse re-
gion (e.g., the lower stratosphere). It must be noticed that
the dynamical impact of the MLS data depends very much
on how the information contained in the data is extracted
and incorporated into the initial condition. Yet, a good MLS
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Fig. 4. 100×OMA
yo (solid line with squares) and 100×

OMF
yo (dashed line with circles) for ozone, both averaged in time from 23 January

to 21 February 2006 (00:00 and 12:00 UTC analysis times) and over the following latitude bands(a) 30◦ N–90◦ N, (b) 30◦ N–30◦ S, and(c)
30◦ S–90◦ S.

dataset, which is unbiased with respect to the background,
could probably improve the wind analysis even more. Note
that, in this work, no bias correction has been applied in the
first approach.

3.3 Degrees of Freedom for Signal

A traditional way of estimating data impact in a assimilation
system is to perform Observing System Experiments (OSEs).
It consists of removing one particular dataset over a long as-
similation period. One then evaluates the forecast scores,
compared to a reference assimilation using the complete set
of observations (Bouttier and Kelly, 2001). This procedure
provides the impact of observations on the forecasts and not

on the analyses themselves (Desroziers et al., 2005). In the
perspective of diagnosing the direct impact of observations
on the analyses, other diagnostics such as Degree of Free-
dom for Signal and variance reduction were developed. This
study is based on these two diagnostics. The Degrees of Free-
dom for Signal (DFS) provide a measure of the gain in infor-
mation brought by the observations (Rodgers, 2000; Fisher,
2003). In a linear framework, DFS is algebraically defined
by the trace of theHK matrix

DFS= T r(HK ) (4)

whereK refers to the Kalman gain matrix, which only de-
pends on the specified statistics of the assimilating system

K = BHT (HBHT
+ R)−1 (5)
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Fig. 5. Comparison ofARPEGEwinds against radiosondes. Observation minus forecast residuals (OMF) are globally and time averaged
from 23 January to 22 April 2006 for the CTL experiment (solid line) and the MLS experiment (dashed line) for both zonal (left hand-side
panels) and meridional (right hand-side panels) wind components. The top, middle and bottom panels correspond to the first guess, 24-h and
48-h forecasts, respectively.

Like in Chapnik et al.(2006), the DFS is approximated
here by using the method ofDesroziers and Ivanov(2001).
Indeed, one normal ozone analysisxa and a perturbed one
xa∗, performed with perturbed observationsyo∗ based on the
method ofDesroziers et al.(2005), are used to estimate the
partial Degrees of Freedom for Signal associated with a par-
ticular subset of observations (called DFSi) through the fol-
lowing expression:

DFSi = δyo
i
T R−1

i 5iHδxa(δyo) (6)

where the subscripti refers to a specific subset andRi

presents its observation error covariance matrix.5i is the
projection operator that allows us to pass from the complete

dataset used in the assimilation to the subseti. δyo
i = 5iδy

o

is the projection of the vector of perturbationsδyo onto the
subseti,

δyo
= yo∗

− yo (7)

andδxa(δyo) is the perturbation on the analysis produced by
a perturbation on the complete assimilated dataset:

δxa(δyo) = xa∗
− xa (8)

The partial Degrees of Freedom for Signal associated with
a particular subset of observations can be determined if the
associated error characteristics of these observations are not
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Fig. 6. (a)Observation number averaged in time from 23 January to 21 February 2006 (00:00 and 12:00 UTC analysis times) and over the
globe for the following specific subsets: MLS ozone data on specific pressure levels and humidity-sensitive channel radiances from the HIRS
sounder on NOAA-16 (channels 11 and 12) and the AMSU-B sounders on NOAA-16 and NOAA-17 (channels 18, 19 and 20),(b) 100×σ oi

yoi

averaged over the globe and over the same period and for the same data as before,(c) DFSi averaged over the same period and for the same
data as before.

correlated to the rest of the observation errors in the specified
R matrix. In fact, if it is assumed that the complete set of
observations can be split between observation subsets with
independent errors, then matrixR is block-diagonal. The
complete assimilated dataset over a 6-h assimilation window
is perturbed one-time and the Eq. (6) is evaluated for each
assimilation cycle for a one-month period.

Figure 6a, b and c respectively show the observation num-
ber, 100× σ oi

yo
i

and DFSi , all averaged in time from 23 January

to 21 February 2006 (00:00 and 12:00 UTC analysis times)
and over the globe for the following specific subsets: MLS
ozone data on specific pressure levels and humidity-sensitive
channel radiances from the HIRS sounder on NOAA–16
(channels 11 and 12) and the AMSU-B sounders on NOAA–

16 and NOAA–17 (channels 18, 19 and 20).σ oi refers to the
observation-error of the subseti. One can see that the MLS
data covering the 68.1–31.6 hPa vertical pressure range are
the most informative and their information content is nearly
of the same order as humidity-sensitive channel radiances.
The fact that the first pressure 100–215.4 hPa range does not
provide significantly more information in comparison to the
pressure 68.1–31.6 hPa range, is probably due to a combi-
nation of factors. First, the variances of observation error
for the first range are significantly greater than those of the
second one. Second, the assumed horizontal correlation of
background errors introduces a degree of redundancy into
the information provided by the observation within the scale
length of the correlation. This latter is smaller for the second
pressure range in comparison to the first one (see Fig. 2c).
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Fig. 7. Error variance reduction (ri ) mean for relative vorticity(a) and horizontal divergence(b) brought by the following specific subsets:
MLS ozone data on specific pressure levels and humidity-sensitive channel radiances from the HIRS sounder on NOAA-16 (channels 11 and
12) and the AMSU-B sounders on NOAA-16 and NOAA-17 (channels 18, 19 and 20). The mean is obtained by averaging the dailyri (00:00
and 12:00 UTC analysis times) of a one-month period from 23 January 2006 to 21 February 2006.

3.4 Error variance reduction diagnostics

The error variance reduction method introduced by
Desroziers et al.(2005) diagnoses the direct impact of a spe-
cific observation subset on a specific analysis field. It pro-
vides, hence, useful information on the use of observations
in an operational analysis. It is used here in order to objec-
tively diagnose the impact of ozone data on the wind anal-
ysis in terms of horizontal divergence and relative vorticity,
in comparison to humidity-sensitive channel radiances from
both HIRS and AMSU-B sounders. The error variance re-
duction, for horizontal divergence or relative vorticity, is es-
timated by using the following expression:

ri = δyo
i
T Ri

−15iHBL TLδxa(δyo) (9)

whereL is a mapping, which corresponds here to a projec-
tion operator onto the two selected model variables that are
directly linked to the wind field: horizontal divergence and
relative vorticity. DFSi can be derived from theri expression
by considering the special case ofL = B−1/2.
Figure 7 presentsri for relative vorticity (a) and horizon-
tal divergence (b) averaged over the same period and for
the same data as those used for the DFSi diagnostics. It
clearly shows that the contribution of MLS ozone dataset
to the reduction in error between the background error and
the analysis error of wind fields is larger for horizontal di-
vergence field in comparison to HIRS and AMSU-B chan-
nel contributions. The vertical distribution of error variance
reductions brought by ozone data for both horizontal diver-
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Table 1. Number of radiosonde observations (N. Obs) per pressure level in hPa, used in OMF wind statistics.

Pressure (hPa) N. Obs. Pressure (hPa) N. Obs Pressure (hPa) N. Obs Pressure (hPa) N. Obs

10 137 905 70 150 144 250 196 573 600 108 615

20 165 619 100 206 210 300 199 299 700 188 118

30 170 677 150 228 913 400 190 044 850 140 236

50 159 185 200 214 988 500 186 961 925 103 808

gence and relative vorticity is not uniform as a function of
pressure. The lower pressure levels of MLS in the UTLS
(100–215.4 hPa) has the most important influence on rela-
tive vorticity. This was expected as there is a strong corre-
lation between ozone and potential vorticity in the vicinity
of the tropopause level. The difference between DFSi and
ri at these levels could be the fact that the assumed hori-
zontal correlation of background errors introduces a degree
of redundancy into the information provided by the obser-
vation within the scale length of the correlation leading to
a smaller DFSi in comparison tori . Besides, the relative
vorticity and horizontal divergence fields are not influenced
by ozone in a similar way. This is likely a manifestation of
the multivariate analysis structures implied by the balance
operator (based on the geostrophic linear balance between
mass and wind). Further, the large error variance reductions
brought by humidity radiances on relative vorticity compared
to those on horizontal divergence, can be explained by the
fact that these radiances (e.g., HIRS channels) are rather sen-
sitive to temperature (but to a lesser extent when compared
to humidity). This gives them the possibility to affect the rel-
ative vorticity not only via the 4-D-Var wind-humidity cou-
pling, but also implicitly through the balance operator ow-
ing to the temperature-relative vorticity correlations. Note
that humidity-sensitive radiances can also influence the anal-
ysis of the temperature field and thereby its background-error
variance reduction, through the model physics given the fact
that temperature analysis response is dependent on the “dry-
ing” or “wetting” analysis effect of these radiances. Model
dynamics are able to efficiently extract information on an un-
observed component of the flow (the wind) from information
on both humidity and ozone data. Intrinsically linked to the
four-dimensional nature of the assimilation, the wind-ozone
and wind-humidity couplings generate wind increments both
from ozone and humidity-sensitive measurements leading to
the reduction of the wind background error variance. As it
has been elegantly introduced byAndersson et al.(1994),

the process could be described as retrieval/assimilation of
“water-vapor winds” from humidity-sensitive radiances and
of “ozone winds” from MLS observations.

4 Conclusions

In this work, MLS ozone profiles have been assimilated
in the ARPEGE 4-D-Var together with operational obser-
vations. This was carried out to determine to what ex-
tent the wind-ozone coupling, within the forecast model and
its adjoint, could provide wind increments in response to
remotely-sensed MLS ozone information. In the designed
MLS assimilation experiment the ozone is re-initialized from
the MOCAGECTM every 6 h, however, the meteorological
fields continue their temporal evolution through the assimi-
lation cycles.

A data impact study with 4-D-Var analysis was conducted
from 23 January to 22 April 2006. The statistics on obser-
vation minus forecast produced byARPEGEallowed a de-
scription of how the ozone observations affect wind fields.
Indeed, it was found that the major impact of ozone on wind
fields, diagnosed within the MLS data assimilation experi-
ment, consists of a slight improvement in the wind fields in
the lower stratosphere where meteorological data are sparse.
In addition, the forecasts issued after assimilation of MLS
ozone data are found to be closer to the wind observations
than the forecasts issued without MLS. Further, the Degrees
of Freedom for Signal diagnostics showed that the MLS data
covering the 68.1–31.6 hPa vertical pressure range are the
most informative and their information content is nearly of
the same order as humidity-sensitive radiances. Further-
more, the error variance reduction diagnostics showed that
MLS ozone observations positively contribute to the reduc-
tion of the global initial background error variance of the
wind fields. Moreover, they bring additional information and
in terms of horizontal divergence, this contribution is larger
than that given by HIRS and AMSU-B.
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The main conclusion is that it is possible to improve the
wind simulation ofARPEGEby adding MLS ozone data to
the assimilation system. The improvement of lower strato-
spheric wind forecasts inferred from MLS data demonstrated
the potential benefit for including ozone assimilation in an
operational framework.

Now as the dynamical impact of the real ozone obser-
vations is found to be positive, the next step of this work
will concentrate more on the optimal estimation of the back-
ground error covariance matrix, which should be based on
the MOCAGE forecast differences and not on the ARPEGE
ones. Besides, given the fact that both HIRS 9 and AMSU-
B 18 channels have ozone Jacobians that peak in the UTLS,
and since assimilating EOS MLS data seems to give a more
accurate ozone analysis in this region, the use of the assimi-
lated ozone in the HIRS and AMSU-B observation operator
calculations may improve radiance assimilation, compared to
the case where ozone climatology is used.

In ongoing work, the impact of dynamical forcing resulted
from ARPEGE(from the MLS experiment) on theMOCAGE
CTM, is under examination. In fact, the new meteorological
fields produced by the MLS experiment are used as new dy-
namical forcing forMOCAGE. The impact of this new forc-
ing onMOCAGEin terms of ozone evolution will be assessed
in comparison to a control run of MOCAGE using the stan-
dard dynamical forcing derived from theARPEGEcontrol
experiment without MLS assimilation. As the MLS data are
not available in near-real time, their assimilation could not
be implemented in an operational weather forecasting. How-
ever, one could envision the assessment, as done in this work,
of the derived benefit from assimilating ozone data (IASI
and GOME-2 instruments) of Metop satellite measurements
launched on 19 October 2006, and which are available in
near-real time to operational centres.
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