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Abstract. This study originated from recent results reported
in literature, which support the existence of long-range
(power-law) persistence in atmospheric temperature fluctu-
ations on monthly and inter-annual scales. We investigated
the results of Detrended Fluctuation Analysis (DFA) carried
out on twenty-two historical daily time series recorded in Eu-
rope in order to evaluate the reliability of such findings in
depth. More detailed inspections emphasized systematic de-
viations from power-law and high statistical confidence for
functional form misspecification. Rigorous analyses did not
support scale-free correlation as an operative concept for Cli-
mate modelling, as instead suggested in literature. In order
to understand the physical implications of our results better,
we designed a bivariate Markov process, parameterised on
the basis of the atmospheric observational data by introduc-
ing a slow dummy variable. The time series generated by
this model, analysed both in time and frequency domains,
tallied with the real ones very well. They accounted for
both the deceptive scaling found in literature and the cor-
relation details enhanced by our analysis. Our results seem
to evidence the presence of slow fluctuations from another
climatic sub-system such as ocean, which inflates tempera-
ture variance up to several months. They advise more precise
re-analyses of temperature time series before suggesting dy-
namical paradigms useful for Climate modelling and for the
assessment of Climate Change.
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1 Introduction

The traditional stochastic approach to climate approximation
is mostly based on the concept of “scale separation” (Has-
selmann, 1976). The basic idea of such an approach is that
climatic variability can be interpreted on the basis of a set
of cycles and characteristic time scales which account for a
concentration of variance in relatively well-separated spec-
tral bands. The most direct consequence of this assumption
is the well-known separation between weather and climate:
fast meteorological fluctuations, which are intrinsic to the at-
mosphere, are mostly uncorrelated over long time periods;
the accumulation of variance on low frequencies (redness) is
in fact due to slow-responding climatic sub-systems such as
oceans, ice cover and so on.

In the stochastic framework, meteorological variability has
been traditionally explained by low-order autoregressive pro-
cesses such as the paradigmatic first-order autoregressive
process (AR1):

xi = axi−1 + εi (1)

wherexi is the meteorological variable,a is the first-order
autocorrelation coefficient, andεi represents uncorrelated
Gaussian noise (white noise). According to this model, the
parametera accounts for rapid correlation decay so that the
asymptotic behaviour, starting from scales of a few weeks, is
uncorrelated and unpredictable:xi∼εi .

More recently, in the wake of the great success of empir-
ical fractal tools devised for enhancing power-law correla-
tion in noised and biased observational data (e.g., Peng et
al., 1995; Konscielny-Bunde et al., 1998; Freeman et al.,
1999; Matsoukas et al., 2000; Haggerty et al., 2002; Bunde
et al., 2002; Kandelhardt et al., 2003, 2006; Blender and

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


4538 M. Lanfredi et al.: Short vs long range correlation in atmosphere

Fraedrich, 2003; Varotsos et al., 2005), Fractional Gaussian
Noise (FGN) (Mandelbrot and van Ness, 1968) has been sug-
gested as a realistic model for explaining the statistical de-
pendence of atmospheric temperature anomalies (deviations
from the mean annual trend) on climatic time scales (e.g.,
Konscielny-Bunde et al., 1996, 1998; Govindan et al., 2001;
Eichner et al., 2003; Kurnaz, 2004; Varotsos et al., 2006).
The FGN correlation expresses a scale-free interdependence
c(t) = t−γ (0<γ<1) and, forγ>0.5, the process is clas-
sified as persistent since the theoretical correlation implies
a non-zero probability that disturbances survive for times as
long as infinite (long-range memory). This picture is truly
different from that described by the exponentially decaying
correlationc(t)=exp(−t/τ ). This has a characteristic time
scaleτ and short memory, since the mean life time of the
disturbances has a finite valueτ . The correlation functional
form on long time scales reveals the deep dynamic nature
of the interactions between atmosphere and other climatic
components. Therefore, a correct assessment of this function
provides useful insights for Climate modelling, also within a
non-stochastic approach to the problem.

Most of the studies reported above agree on the presence
of power-law persistence, which emerges after the meteo-
rological correlation is decayed (∼20 days) and goes on for
several years. Therefore long-range memory has been sug-
gested as an operative concept for Climate modelling (Govin-
dan et al., 2002). Atmospheric temperature variability is
often cited as an example of fractal natural process despite
the contradictory results about the universality of the scal-
ing and the dependence of the exponent on sea distance (e.g.,
Vyushin et al., 2004a, 2004b; Blender and Fraedrich, 2004)
as well as the existence of many drawbacks in the method-
ologies adopted (e.g., Hu, 2001; Kantelhardt, 2001; Metzler,
2003; Mauran et al., 2004; Gao et al., 2006; Rust, 2006).

The approach of the studies on this subject is the same. In
practice, they try to establish whether the asymptotic noiseεi

in Eq. (1) is really uncorrelated or shows long-range correla-
tion. Only two possibilities are considered in the long term:
white noise or FGN. This point of view is well-expressed in
the work by Kiŕaly and J́anosi (2002). Since white noise (null
hypothesis) is a trivial scale invariant, power-law is expected
in any case; the only difference being in the numerical value
of the exponents. Therefore, the actual descriptive skill of
the power-law is not verified.

Nevertheless, the ability of low-order autoregressive pro-
cesses to describe fast atmospheric variability lies in the con-
cept of scale separation itself. AR1 is a reasonable model on
“meteorological time-scales” where possible slower mecha-
nisms which drive correlation do not induce remarkable vari-
ations. In other words,εi represents asymptotic weather and
not climate.

In order to support long-range persistence against short
memory it is not sufficient to exclude white noise. Since frac-
tal tools are extremely sensitive to any kind of non-stationary
behaviour (Gao et al., 2006), this is a necessary but not suf-

ficient condition and alternative correlation structures should
be explicitly excluded.

Here we analysed atmospheric temperature time series in
order to investigate the reliability itself of the power-law
fit. We applied the Detrended Fluctuation Analysis (DFA)
(Peng, 1995) to twenty-two atmospheric temperature time
series recorded in Europe in order to investigate the estimated
power-law persistence minutely. Some of these (Prague,
St. Petersburg, Wien, Potsdam) had already been analysed in
literature. We focused on patterns described by the residuals
from the best fits in order to verify that they have the random
character expected in the case of appropriate fitting function.
Since our results indicated instead functional form misspec-
ification for the power-law approximation, we tried to eval-
uate whether the empirical results were consistent with the
presence of a short-memory slow component beyond meteo-
rology. To this aim we built up a bivariate Markov process on
the basis of the observational data and repeated the analyses
on simulated time series, too. Our final goal was to demon-
strate that a single time-scale, longer than the meteorological
one, provides a satisfactory description of the sample corre-
lation and is sufficient for tricking fractal tools by generating
a deceptive fractal regime like that observed in atmospheric
temperature time series.

2 Detrended Fluctuation Analysis of temperature
anomalies

2.1 Methods

2.1.1 Detrended Fluctuation Analysis

We used the Detrended Fluctuation Analysis, which is one
of the most utilized tools for minimizing externally-induced
non-stationary effects describable in the form of low-order
polynomials (Peng et al., 1995). We will shortly recall
how this methodology works. The time series to be anal-
ysed is integrated and divided intoN boxes of lengthn.
In each box, a least square polynomialyn(k), represent-
ing the trend in that particular box, is fitted to the inte-
grated datay(k). Then, the root-mean-square fluctuation

F(n)=

√
N∑

k=1
[y(k) − yn(k)]2/N is calculated. This compu-

tation is repeated on many time-scales (box sizes) in order
to characterizeF(n) as a function ofn. Power-law (fractal)
scaling implies a linear relationship in a log-log plot. Under
such conditions fluctuations can be characterized by a scal-
ing exponentα(γ=2−2α for FGN). The valueα=0.5 is ex-
pected for uncorrelated noise, and valuesα>0.5 characterize
persistent time series.

In this work we have adopted the 2nd-order detrending
(DFA2) in order to minimize the effects of discontinuities
and linear trends.
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Table 1. Historical time series: estimated power-law coefficients
α obtained from DFA2 and relativeZ-scores for random residuals
probability. The considered time scale range is 20÷104 days.

Station Record α Z

Wien (AT) 1901–2004 0.63 −97
Sarajevo (BA) 1901–2004 0.55 −98
Uccle (BE) 1833–1999 0.61 −95
Basel Binningen (CH) 1901–2004 0.60−97
Lugano (CH) 1901–2004 0.61 −98
Saentis (CH) 1901–2004 0.56−98
Zuerich (CH) 1901–2004 0.60 −98
Prague (CZ) 1775–2004 0.63−96
Bamberg (DE) 1879–2001 0.63 −97
Hamburg (DE) 1891–2001 0.63 −96
Hohenpeissenberg (DE) 1879–2001 0.58−98
Potsdam (DE) 1893–2001 0.63−96
Marseille (FR) 1900–2002 0.58 −98
Paris (FR) 1900–2004 0.59 −96
Zagreb (HR) 1862–2001 0.58 −97
Bologna (IT) 1814–2003 0.62 −96
Milan (IT) 1763–2003 0.67 −98
De Bilt (NL) 1901–2004 0.64 −96
Eelde (NL) 1907–2004 0.66 −97
Maastricht (NL) 1906–2004 0.58 −95
St. Petersburg (RU) 1881–1998 0.66−97
Stockholm (SE) 1756–1999 0.67−97

2.1.2 Runs test

The Runs Test (Bradley, 1968) determines the probabil-
ity P that a curve, a power-law in this specific case, de-
viates systematically from experimental data. A “run”
is a consecutive sequence of points whose residuals are
all either positive or negative. If there areN+ and N−

points above and below the curve respectively, the num-
ber of runsR in the hypothesis of fully random residuals
has mean valueµR=2N+N−/N+ + N−)+1 and variance
σR=(µR−1)(µR−2)/(N+N−−1). The test is performed
by estimating the probability that the value of the variable
Z=(R−µR)/σR belongs to the normal distribution. ThisZ-
scoreexpresses the divergence of the experimental resultR

from the most probable resultµR as a number of standard
deviationsσR: the more negative the value ofZ, the greater
the probability of functional form misspecification due to a
trend in the residuals. We wish to recall that a valueZ<−2
is sufficient for excluding randomness with the probability
P>0.98%.

2.2 Data

DFA was applied to twenty-two time series (see Table 1)
extracted from the ECA&D catalogue (Klein Tank et al.,
2002), available athttp://eca.knmi.nl/. In particular, the data
recorded in Prague, St. Petersburg, Wien, and Potsdam had
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Fig. 1. DFA results for four temperature anomaly time series.
From the top to the bottom: Prague (filled squares), Wien (stars),
St. Petersburg (empty squares), Potsdam (triangles). Continuous
line shows the theoretical power-lawn0.63 (γ =0.74) obtained from
the power law best fits ofF(n) in the range 20÷104 days. Plots
were shifted vertically to separate the patterns.

already been analysed in literature (Konscielny-Bunde et al.,
1998; Govindan et al., 2001; Eichner et al., 2003; Monetti et
al., 2003; Mauran et al., 2004). By following the procedure
adopted in these studies we analysed temperature anomalies
(deviations form the mean annual cycle).

3 Results

Figure 1 shows the results of DFA2 applied to the four obser-
vational time series already analysed in literature. Plots seem
to agree with slightly persistent FGN on time-scales starting
from a few weeks, in complete agreement with previous stud-
ies. Temperature anomalies are basically unpredictable on
such scales and possible non fractal correlations should ex-
plain very low percentages of variance. In this case,F(n) is
expected to describe patterns close to the trivial background
power-lawn0.5. However, although small, hypothetical de-
partures from the fractal behaviour should exhibit system-
atic features. In order to check the correctness of the fractal
model, we focused on local details which are lost in the log-
log plots ofF(n). If the power-law fitnα is right, the ratio
F(n)/nα is constant in theory, and its values estimated on ob-
servational data are expected to show uncorrelated variabil-
ity. Instead, such a ratio is strongly patterned in a non-linear
way (Fig. 2). The unfitting character of the scale invariant
paradigm is especially evident on sub-annual scales where
non-linearity is particularly impressive.

Although the simple naked eye inspection of our results
was sufficient to draw conclusions on the misrepresentation
of the power-law, we applied the Runs Test in order to quan-
tify the goodness of fit anyway. Table 1 shows the power-
law exponents and the values of the variableZ for the whole
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Fig. 2. Plots of the ratioF(n)/nα in logarithmic scale for the four time series of Fig. 1:(a) Prague;(b) Wien; (c) St. Petersburg;(d) Potsdam.
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Fig. 3. Plots of the functionα(n) for the four time series of Fig. 1:(a) Prague;(b) Wien; (c) St. Petersburg;(d) Potsdam.
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twenty-two time series. Note that all the estimated values of
Z are less than−90. This means that the number of runs is
placed at a distance greater than 90σR from the mean value
µR expected for random residuals; its value is always dra-
matically less than that expected for a reliable fitting func-
tion. If the data were randomly scattered above and below
the power-law, the probability of observing so few runs in
all the examined cases wasP∼=0. In practice, the data were
fitted to the wrong equation.

As a simple alternative, it is also possible to evaluate the
consistency of the fluctuation function with the scaling law
F(kn)=kαF(n). Such a relation should hold for anyk and
n in the range of the scaling regime. Figure 3 shows, as an
example, the plot ofα(n)=log2(F (2n)/F (n)) whose theoret-
ical value should be constant for anyn higher than∼20 days.
Once again, the results show a continuous change of the lo-
cal exponent, which is close to 1 for short time-scales and
decays progressively while approaching a final very irregu-
lar regime. Altogether, these findings show that the agree-
ment between sample estimations and power-law is merely
apparent since more thorough investigations enhance func-
tional form misspecification. From a physical point of view
a systematic decay ofα(n) suggests a dependence on scale
and confirms that the fractal paradigm is not suitable for de-
scribing the actual temperature variability on the scales in-
vestigated.

4 A bivariate Markovian simulation of daily atmo-
spheric temperature anomalies

4.1 Model development

The simplest short memory multivariable model, which
might be able to approximate atmospheric temperature vari-
ability, is the bivariate Markov process which has been sug-
gested, as an example, to describe coupling phenomena be-
tween atmosphere and sea surface temperature (SST) (e.g,
Mosedale et al., 2005):{

Ti = a11Ti−1 + a12Si−1 + σεεi

Si = a21Ti−1 + a22Si−1 + σηηi
(2)

whereTi is daily temperature anomaly,εi and ηi are nor-
mally distributed white noises, the 2×2 matrix (aij ), σε and
ση are the model parameters, andSi denotes SST. According
to the model above, the processζi=a12Si−1+σεεi represents
innovations forTi . On scales greater than the meteorological
one, local persistence exponents could be detected since the
correlation ofTi is mainly dominated by that ofSi , which is
characterized by the slower variability of the oceans.

Here we followed the suggestion provided by the model
Eq. (2) and tried to build up a bivariate Markov process able
to roughly reproduce temperature statistical dependence. We
would like to clarify that our goal was rather general. We
aimed at evaluating whether plausible mechanisms alterna-
tive to long-range memory are able to reproduce the observed
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Fig. 4. Estimated autocorrelation function̂ρ(k) of the Prague’s
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variate process contaminated by a linear trend (continuous line);
estimated autocorrelation function̂ρ11(k) in the absence of trend
(empty circles). The 95% confidence band (∼0.007) does not ex-
ceed the size of the symbols.

persistence. Thus, we kept the symbolSi to denote the twin
variable ofTi in the bivariate model, specifying that it is a
(non observed) dummy variable and does not necessarily rep-
resent SST. In order to show that it is rather easy to mix up a
mere low frequency component for the superposition of long
range persistent fluctuations, we simplified the problem by
eliminating the feedback ofTi on Si (a21=0) so as to handle
Si as a truly external forcing of unknown origin. Anyway,
a rough estimation of this parameter provides a value that is
one/two magnitude orders less than the other “memory” pa-
rameters, just as in the modelling of Mosedale et al. (2005).
Covariancesγ (k)ij at any lag timek were generated recur-
sively by using scalar relations (Jenkins and Watts, 1968)
which, in the hypothesisa21=0, are:

γ22(k) = a22γ22(k − 1)

γ12(k) = a22γ12(k − 1) k ≥ 1 (3)

γ11(k) = a11γ11(k − 1) + a12γ12(k − 1)

with initial values:

(1 − a2
22)γ22(0) = σ 2

η

(1 − a11a22)γ12(0) = a12a22γ22(0) (4)

(1 − a2
12)γ11(0) =

(
a2

12γ22(0) + 2a11a12γ12(0) + σ 2
ε

)
The theoretical model was parameterised by fitting
sample temperature autocorrelation to the function
ρ11(k)=γ11(k)/γ11(0), which represents the autocorre-
lation of the componentTi . As a trainer for our model
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Fig. 5. Power spectra of real temperature measures and synthetic data:(a) Prague (1) and simulated data (2);(b) Wien; (c) St. Petersburg;
(d) Potsdam. Spectral peaks sign the annual and sub-annual frequencies; plots were shifted vertically. 
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law.

we used the time series recorded in Prague which is the
longest among those illustrated in the previous Section. An
increasing trend associated to urban warming (Govindan
et al., 2001) is likely to be the main responsible for the
slow decay of the autocorrelation̂ρ(k) estimated for this

time series (see Fig. 4). In fact, the first autocorrelation
coefficient which falls within the 95% confidence interval for
zero correlation (∼0.007) is estimated fork=1210 days but,
if we computeρ̂(k) by using only the first 100 years of the
time series, this first value is estimated fork=155 days. Here
we assumed that the effect of the trend on autocovariance
for time-scales of a few years is approximately the addition
of a non-zero asymptotic constant. So, we represented
the fitting autocorrelation in the form̃ρ(k)=ρ11(k)+ρ0
and determined the model parameters by minimizing the

root-mean-square errorE=

√
M∑

k=1
(ρ̃(k)−ρ(k̂))2/M, where

M=3650 days (ten years). In any case, we specify that only
the functionρ11(k) was used in the simulations.

The results of the minimizing procedure provided the
best fit coefficients (a11=0.74,a12=0.06,a22=0.98,σε=0.98,
ση=0.39, ρ0=0.01) and the autocorrelation functioñρ(k).
The corresponding value of the root-mean-square error is
Emin∼0.007, that is comparable with the 95% uncertainty on
the correlation coefficients estimated on the Prague’s anoma-
lies. Thus, we considered the optimal agreement between
ρ̃(k) and the temperature sample autocorrelationρ̂(k) quite
satisfactory for our general purposes (Fig. 4) and sufficient to
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Fig. 7. As in Figs. 2 and 3 but for synthetic data:(a) F(n)/n0.63 in logarithmic scale;(b) α(n).

continue with time series simulation. Obviously, the autocor-
relationρ̂11(k) of the time series generated by the model de-
cays faster than the total theoretical autocorrelationρ̃(k) due
to the absence of the trend contribution, but the comparison
of the power spectra (Fig. 5) evidences a good performance
of our model despite the lack of this contribution. Note that
the spectra of the real data are quite similar so that Prague’s
simulated time series is in a rather good agreement with the
other time series too.

4.2 Comparison between real and synthetic data

Figure 6 shows the results of DFA2 applied to real and syn-
thetic data. The agreement is very impressive. No evidence
of any significant difference of dynamical value on the in-
vestigated scales was found in repeated Markovian simula-
tions. Figure 7 shows the residuals from power-law and the
estimates ofα(n) for the synthetic series of Fig. 6. Also in
this case the agreement with the results obtained for real data
(Figs. 2 and 3) is very evident.

Simulated time series account for common properties of
atmospheric temperature anomalies even if they are intrin-
sically not fractal. DFA is just tricked by the separation be-
tween the two scales governingTi . Figure 8 shows this effect
on the fluctuation function of the processζi=a12Si−1+σεεi ,
which represents innovations for the processTi . Due to the
strong correlation ofSi, σ

2
ζ ∼σ 2

ε on the shortest time scales
and the slope is about 0.5, as expected for weather on uncor-
related scales. Also on long asymptotic scales such innova-
tions are uncorrelated, but here we haveσ 2

ζ ∼a12σ
2
S +σ 2

ε ; in
other words the explained variance is slightly greater than
the initial one. This hidden increase in time also causes
the increase in the fluctuation function ofTi and the over-
all effect is an apparent uniform scaling. Note that alsoSi is
able to produce a long lasting power-law (about 2 decades).
The slope of this apparent scaling isα=1.4, which curiously
agrees with the values estimated on the same time-scales for
the North Atlantic SST (Monetti et al., 2003).
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Fig. 8. Results of DFA forζi (bold solid line),εi (solid line), and
Si (circles). ζi behaves as a white noise on short time scales and
approaches a white noise with larger variance on the longest ones.
This difference in variance between the extreme regimes of the in-
novations creates the illusory existence of persistence in tempera-
ture variability.

5 Conclusions

The crucial result of our work was that the existence of long-
range memory mechanisms on time-scales ranging from
weeks to several years has not been demonstrated yet. On
such scales, where previous studies claimed the evidence of
power-law correlation, persistence exponents vary with the
scale instead. A simple search for straight lines in a log-log
plot is not sufficient for assessing long-range memory and the
reliability of the proposed correlation functional form should
be explicitly tested. Moreover, a simple bivariate Markov
model is able to account for the whole results, apparent scale
invariance included.

More in general, the model derived in this work represents
one of the many possible dynamical scenarios which can
trick fractal tools. Therefore, more precise re-analyses
of temperature time series are required before suggesting
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dynamical paradigms useful for Climate modelling and for
the assessment of Climate Change.
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