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Abstract. This study originated from recent results reported 1  Introduction

in literature, which support the existence of long-range

(power-law) persistence in atmospheric temperature fluctuThe traditional stochastic approach to climate approximation
ations on monthly and inter-annual scales. We investigateds mostly based on the concept of “scale separation” (Has-
the results of Detrended Fluctuation Analysis (DFA) carried selmann, 1976). The basic idea of such an approach is that
out on twenty-two historical daily time series recorded in Eu- climatic variability can be interpreted on the basis of a set
rope in order to evaluate the reliability of such findings in of cycles and characteristic time scales which account for a
depth. More detailed inspections emphasized systematic desoncentration of variance in relatively well-separated spec-
viations from power-law and high statistical confidence for tral bands. The most direct consequence of this assumption
functional form misspecification. Rigorous analyses did notis the well-known separation between weather and climate:
support scale-free correlation as an operative concept for Clifast meteorological fluctuations, which are intrinsic to the at-
mate modelling, as instead suggested in literature. In ordemosphere, are mostly uncorrelated over long time periods;
to understand the physical implications of our results betterthe accumulation of variance on low frequencies (redness) is
we designed a bivariate Markov process, parameterised oi fact due to slow-responding climatic sub-systems such as
the basis of the atmospheric observational data by introduceceans, ice cover and so on.

ing a slow dummy variable. The time series generated by In the stochastic framework, meteorological variability has
this model, analysed both in time and frequency domainspeen traditionally explained by low-order autoregressive pro-
tallied with the real ones very well. They accounted for cesses such as the paradigmatic first-order autoregressive
both the deceptive scaling found in literature and the cor-process (AR1):

relation details enhanced by our analysis. Our results seem

to evidence the presence of slow fluctuations from anotheti = axi—1 + & (1)
climatic sub-system such as ocean, which inflates tempera- . . . . .

ture variance up to several months. They advise more precis§1€re+: is the meteorological variable, is the first-order
re-analyses of temperature time series before suggesting dg;\_utocorrelatlon coefficient, angl represents uncorrelated

namical paradigms useful for Climate modelling and for the Caussian noise (white noise). According to this model, the
assessment of Climate Change. parameter: accounts for rapid correlation decay so that the

asymptotic behaviour, starting from scales of a few weeks, is
uncorrelated and unpredictable~¢;.

More recently, in the wake of the great success of empir-
ical fractal tools devised for enhancing power-law correla-
tion in noised and biased observational data (e.g., Peng et
al., 1995; Konscielny-Bunde et al., 1998; Freeman et al.,
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Fraedrich, 2003; Varotsos et al., 2005), Fractional Gaussiaficient condition and alternative correlation structures should
Noise (FGN) (Mandelbrot and van Ness, 1968) has been sugse explicitly excluded.
gested as a realistic model for explaining the statistical de- Here we analysed atmospheric temperature time series in
pendence of atmospheric temperature anomalies (deviationsrder to investigate the reliability itself of the power-law
from the mean annual trend) on climatic time scales (e.g.fit. We applied the Detrended Fluctuation Analysis (DFA)
Konscielny-Bunde et al., 1996, 1998; Govindan et al., 2001;(Peng, 1995) to twenty-two atmospheric temperature time
Eichner et al., 2003; Kurnaz, 2004; Varotsos et al., 2006) series recorded in Europe in order to investigate the estimated
The FGN correlation expresses a scale-free interdependengswer-law persistence minutely. Some of these (Prague,
c(t) = t77 (O<y<1) and, fory>0.5, the process is clas- St. Petersburg, Wien, Potsdam) had already been analysed in
sified as persistent since the theoretical correlation impliediterature. We focused on patterns described by the residuals
a non-zero probability that disturbances survive for times asfrom the best fits in order to verify that they have the random
long as infinite (long-range memory). This picture is truly character expected in the case of appropriate fitting function.
different from that described by the exponentially decayingSince our results indicated instead functional form misspec-
correlationc(r)=exp(—t/7). This has a characteristic time ification for the power-law approximation, we tried to eval-
scaler and short memory, since the mean life time of the uate whether the empirical results were consistent with the
disturbances has a finite value The correlation functional  presence of a short-memory slow component beyond meteo-
form on long time scales reveals the deep dynamic natureology. To this aim we built up a bivariate Markov process on
of the interactions between atmosphere and other climati¢he basis of the observational data and repeated the analyses
components. Therefore, a correct assessment of this functiopn simulated time series, too. Our final goal was to demon-
provides useful insights for Climate modelling, also within a strate that a single time-scale, longer than the meteorological
non-stochastic approach to the problem. one, provides a satisfactory description of the sample corre-
Most of the studies reported above agree on the presendation and is sufficient for tricking fractal tools by generating
of power-law persistence, which emerges after the meteoa deceptive fractal regime like that observed in atmospheric
rological correlation is decayed-@0 days) and goes on for temperature time series.
several years. Therefore long-range memory has been sug-
gested as an operative concept for Climate modelling (Govin-
dan et al., 2002). Atmospheric temperature variability iS5 petrended
often cited as an example of fractal natural process despite
the contradictory results about the universality of the scal-
ing and the dependence of the exponent on sea distance (€.9.,  \ethods
Vyushin et al., 2004a, 2004b; Blender and Fraedrich, 2004)
as well as the existence of many drawbacks in the method ; ;
ologies adopted (e.g., Hu, 2001; Kantelhardt, 2001; Metzler,z'l'1 Detrended Fluctuation Analysis
2003; Mauran et al., 2004; Gao et al., 2006; Rust, 2006).
The approach of the studies on this subject is the same. |
practice, they try to establish whether the asymptotic ngise
in Eq. (1) is really uncorrelated or shows long-range correla-
tion. Only two possibilities are considered in the long term:
white noise or FGN. This point of view is well-expressed in
the work t.)y Kitély gr_1d anosi .(200.2)' Since white noise (null In each box, a least square polynomjal(k), represent-
hypothesis) is a trivial scale invariant, power-law is expected

i an - the onlv difference beind in the numerical val ing the trend in that particular box, is fitted to the inte-
any case, the only difference being € numerica .auegrated datay(k). Then, the root-mean-square fluctuation
of the exponents. Therefore, the actual descriptive skill of

. L N
the power-law is not verified. . F(n)=Y [y(k) — yo(k)]?/N is calculated. This compu-
Nevertheless, the ability of low-order autoregressive pro- k=1

cesses to describe fast atmospheric variability lies in the contation is repeated on many time-scales (box sizes) in order
cept of scale separation itself. AR1 is a reasonable model oito characterize”(n) as a function of.. Power-law (fractal)
“meteorological time-scales” where possible slower mecha-scaling implies a linear relationship in a log-log plot. Under
nisms which drive correlation do not induce remarkable vari-such conditions fluctuations can be characterized by a scal-
ations. In other words;; represents asymptotic weather and ing exponentr(y =2—2« for FGN). The valuex=0.5 is ex-
not climate. pected for uncorrelated noise, and valueg).5 characterize

In order to support long-range persistence against shorpersistent time series.
memory itis not sufficient to exclude white noise. Since frac- In this work we have adopted the 2nd-order detrending
tal tools are extremely sensitive to any kind of non-stationary(DFA2) in order to minimize the effects of discontinuities
behaviour (Gao et al., 2006), this is a necessary but not sufand linear trends.

Fluctuation Analysis of temperature
anomalies

We used the Detrended Fluctuation Analysis, which is one
3 the most utilized tools for minimizing externally-induced
non-stationary effects describable in the form of low-order
polynomials (Peng et al., 1995). We will shortly recall
how this methodology works. The time series to be anal-
ysed is integrated and divided int¥ boxes of lengthn.
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Table 1. Historical time series: estimated power-law coefficients 1,E+04 -
« obtained from DFA2 and relativ&-scores for random residuals ]
probability. The considered time scale range is-20* days. 1,E+03 _
: - z
Station Record o Z £ 1E+02 ]
Wien (AT) 1901-2004 0.63 —97 LL :
Sarajevo (BA) 1901-2004 0.55-98 1,E+01 -
Uccle (BE) 1833-1999 0.61 —95 E
Basel Binningen (CH) 1901-2004 0.60—97 1
Lugano (CH) 1901-2004 0.61 —98 1,E+00 s
Saentis (CH) 1901-2004 0.56-98 1 10 100 1000 10000

Zuerich (CH)
Prague (C2)

1901-2004 0.60 —98
1775-2004 0.63-96
Bamberg (DE) 1879-2001 0.63-97
Hamburg (DE) 1891-2001 0.63 —96
Hohenpeissenberg (DE) 1879-2001 0.58-98
Potsdam (DE) 1893-2001 0.63—-96
Marseille (FR) 1900-2002 0.58 —98

n(days)

Fig. 1. DFA results for four temperature anomaly time series.
From the top to the bottom: Prague (filled squares), Wien (stars),
St. Petersburg (empty squares), Potsdam (triangles). Continuous
line shows the theoretical power-la}-63 (=0.74) obtained from

Paris (FR) 1900-2004  0.59 —96 the power law best fits of (n) in the range 26-10% days. Plots
Zagreb (HR) 1862-2001  0.58 —97 were shifted vertically to separate the patterns.
Bologna (IT) 1814-2003 0.62 —96

Milan (IT) 1763-2003 0.67 —98

De Bilt (NL) 1901-2004 0.64 —96 I .

already been analysed in literature (Konscielny-Bunde et al.,
Eelde (NL) 1907-2004 0.66 —97 ) . g ] .
Maastricht (NL) 1906-2004 058 —95 1998; Govindan et al., 2001, Eichner et al., 2003; Monetti et

St. Petersburg (RU) 1881-1998 0.66-97

1756-1999 0.67-97

al., 2003; Mauran et al., 2004). By following the procedure
adopted in these studies we analysed temperature anomalies

Stockholm (SE)

(deviations form the mean annual cycle).

2.1.2 Runstest
3 Results

The Runs Test (Bradley, 1968) determines the probabil- )
viates systematically from experimental data. A “run” Vationaltime series already analysed in literature. Plots seem
is a consecutive sequence of points whose residuals ar® agree with slightly persistent FGN on time-scales starting
all either positive or negative. If there ané, and N_ from a few weeks, in complete agreement with previous stud-
points above and below the curve respectively, the numJes. Temperature anomalies are basically unpredictable on
ber of runsR in the hypothesis of fully random residuals Such scales and possible non fractal correlations should ex-
has mean valug.g=2N4N_/N4 + N_)+1 and variance Plain very low percentages of variance. In this cas@) is
or=(ur—1)(ug—2)/(N.N_—1). The test is performed €xpected to describe patterns close to the trivial background
;o i . 05 i
by estimating the probability that the value of the variable POWer-lawn™>. However, although small, hypothetical de-
Z=(R—r)/or belongs to the normal distribution. This partures from the fractal behaviour should exhibit system-
deviationsok: the more negative the value af the greater 09 plots of F(n). If the power-law fitz* is right, the ratio
the probability of functional form misspecification due to a £ (2)/n" is constantin theory, and its values estimated on ob-
trend in the residuals. We wish to recall that a vailile—2  Servational data are expected to show uncorrelated variabil-

is sufficient for excluding randomness with the probability ity. Instead, such a ratio is strongly patterned in a non-linear

P~>0.98%. way (Fig. 2). The unfitting character of the scale invariant
paradigm is especially evident on sub-annual scales where
2.2 Data non-linearity is particularly impressive.

Although the simple naked eye inspection of our results
DFA was applied to twenty-two time series (see Table 1)was sufficient to draw conclusions on the misrepresentation
extracted from the ECA&D catalogue (Klein Tank et al., of the power-law, we applied the Runs Test in order to quan-
2002), available atttp://eca.knmi.nl/ In particular, the data tify the goodness of fit anyway. Table 1 shows the power-
recorded in Prague, St. Petersburg, Wien, and Potsdam hddw exponents and the values of the variabléor the whole
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Fig. 2. Plots of the ratiaF'(n) /n® in logarithmic scale for the four time series of Fig.(&) Prague(b) Wien; (c) St. Petersburgd) Potsdam.
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twenty-two time series. Note that all the estimated values of 1 00 -
Z are less thar-90. This means that the number of runs is S
placed at a distance greater tharr@Grom the mean value
ur expected for random residuals; its value is always dra-
matically less than that expected for a reliable fitting func-
tion. If the data were randomly scattered above and below
the power-law, the probability of observing so few runs in
all the examined cases w#s=0. In practice, the data were
fitted to the wrong equation.

As a simple alternative, it is also possible to evaluate the
consistency of the fluctuation function with the scaling law °
F (kn)=k® F (n). Such a relation should hold for ayand 0,01 " -
n in the range of the scaling regime. Figure 3 shows, as an 1 10 100 1000
example, the plot ok (n)=logz(F (2n)/ F (n)) whose theoret- )
ical value should be constant for ampigher than~20 days. lag time k (days)

Once again, the results show a continuous change of the lo-
cal exponent, which is close to 1 for short time-scales and19- 4. Estimated autocorrelation functigik) of the Prague’s
decays progressively while approaching a final very irregu_anqmahes (filled C|rcles)_; autocorrela_non functigik) of_ the bi- o
lar regime. Altogether, these findings show that the agreeyar.Iate process contar_nmated byA a Ilngar trend (continuous line);
- . . estimated autocorrelation functigi 1(k) in the absence of trend
ment betW(_een sample estlmathns an_d p_ower-law IS mere'¥empty circles). The 95% confidence banredd(007) does not ex-
apparent since more thorough investigations enhance funGseeq the size of the symbols.
tional form misspecification. From a physical point of view
a systematic decay af(n) suggests a dependence on scale
and confirms that the fractal paradigm is not suitable for de-persistence. Thus, we kept the symBpto denote the twin
scribing the actual temperature variability on the scales in-variable of7; in the bivariate model, specifying that it is a
vestigated. (non observed) dummy variable and does not necessarily rep-
resent SST. In order to show that it is rather easy to mix up a
mere low frequency component for the superposition of long
range persistent fluctuations, we simplified the problem by
eliminating the feedback df; on S; (a21=0) so as to handle
S; as a truly external forcing of unknown origin. Anyway,
a rough estimation of this parameter provides a value that is
The simplest short memory multivariable model, which one/two magnitude orders less than the other “memory” pa-
might be able to approximate atmospheric temperature varirfameters, just as in the modelling of Mosedale et al. (2005).
ability, is the bivariate Markov process which has been sug-Covariances (k);; at any lag timek were generated recur-
gested, as an example, to describe coupling phenomena bgively by using scalar relations (Jenkins and Watts, 1968)
tween atmosphere and sea surface temperature (SST) (e\yhich, in the hypothesig;1=0, are:
Mosedale et al., 2005):

T; = a11Ti -1 + a12S; -1 + 0:&;
Si = ap1Ti—1 4 a28i—1 + oyn;

0,10

autocorrelation function

4 A bivariate Markovian simulation of daily atmo-
spheric temperature anomalies

4.1 Model development

v22(k) = azoy22(k — 1)

@ viz2(k) = azoy12(k — 1) k=1 3)
whereT; is daily temperature anomaly; and»; are nor-
mally distributed white noises, the<2 matrix (g;;), o, and
o, are the model parameters, aficlenotes SST. According
to the model above, the process-a12S; _1+0.¢; represents
innovations forT;. On scales greater than the meteorological (1 — a%z)yzg(O) = 0,72
one, local persistence exponents could be detected since the
correlation of7; is mainly dominated by that of;, whichis (1 — a11a22)y12(0) = a12a22y22(0) (4)
characterized by the slower variability of the oceans.

Here we followed the suggestion provided by the model (1 — a2,)y11(0) = (afzyzz(O) + 2a11a12y12(0) + 03)
Eq. (2) and tried to build up a bivariate Markov process able
to roughly reproduce temperature statistical dependence. Wehe theoretical model was parameterised by fitting
would like to clarify that our goal was rather general. We sample temperature autocorrelation to the function
aimed at evaluating whether plausible mechanisms alternap11(k)=y11(k)/y11(0), which represents the autocorre-
tive to long-range memory are able to reproduce the observetiation of the component;. As a trainer for our model

v11(k) = a11y11(k — 1) + a1zy12(k — 1)

with initial values:

www.atmos-chem-phys.net/9/4537/2009/ Atmos. Chem. Phys., 9, 45342009
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Fig. 5. Power spectra of real temperature measures and syntheticdpRrague (1) and simulated data (&)) Wien; (c) St. Petersburg;
(d) Potsdam. Spectral peaks sign the annual and sub-annual frequencies; plots were shifted vertically.

1,E+04 time series (see Fig. 4). In fact, the first autocorrelation
coefficient which falls within the 95% confidence interval for

1,E+03 - zero correlation0.007) is estimated fot=1210 days but,
if we computep (k) by using only the first 100 years of the
_ 1E+02 - time series, this first value is estimated terl55 days. Here
= we assumed that the effect of the trend on autocovariance
LL . . . L.
1,E+01 - for time-scales of a few years is approximately the addition

of a non-zero asymptotic constant. So, we represented
1,E+00 + the fitting autocorrelation in the fornp(k)=p11(k)+p0
and determined the model parameters by minimizing the

1,E-01 : ; : 7
1,E+00 1,E+01 1,E+02 1,E+03 1,E+04  root-mean-square err0E=\/ > (6(k)—p(k))?/M, where
k=1
n(days) M=3650 days (ten years). In any case, we specify that only

the functionp;1(k) was used in the simulations.
Fig. 6. Results of DFA for real (filled squares) and simulated (empty L .
squares) anomalies. Continuous line shows the theoretical power The_ resulj[s_ of the minimizing procedure provided the
law. best fit coefficientsd;y1=0.74,a12,=0.06,a2,=0.98,0,=0.98,

0,=0.39, pp=0.01) and the autocorrelation functigi(k).

The corresponding value of the root-mean-square error is
we used the time series recorded in Prague which is thetyin~0.007, that is comparable with the 95% uncertainty on
longest among those illustrated in the previous Section. Arnthe correlation coefficients estimated on the Prague’s anoma-
increasing trend associated to urban warming (Govindaries. Thus, we considered the optimal agreement between
et al., 2001) is likely to be the main responsible for the 5(k) and the temperature sample autocorrelafioh) quite
slow decay of the autocorrelatiofi(k) estimated for this  satisfactory for our general purposes (Fig. 4) and sufficient to

Atmos. Chem. Phys., 9, 453544 2009 www.atmos-chem-phys.net/9/4537/2009/
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Fig. 7. As in Figs. 2 and 3 but for synthetic dai@) F (n)/n%83 in logarithmic scale(b) a(n).

continue with time series simulation. Obviously, the autocor- 1,E+02 -
relationp11(k) of the time series generated by the model de- F
cays faster than the total theoretical autocorrelafigr) due [
to the absence of the trend contribution, but the comparison ~ 1,E+01
of the power spectra (Fig. 5) evidences a good performance F
of our model despite the lack of this contribution. Note that -
the spectra of the real data are quite similar so that Prague’srl_:/ LE+00
simulated time series is in a rather good agreement with the i
other time series too.

1,E-01 :

F ]
4.2 Comparison between real and synthetic data Leop Lt a=14

1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05

Figure 6 shows the results of DFA2 applied to real and syn-
thetic data. The agreement is very impressive. No evidence
of any significant difference of dynamical value on the in- rig g Results of DFA forz; (bold solid line),e; (solid line), and
vestigated scales was found in repeated Markovian simulas; (circles). ¢; behaves as a white noise on short time scales and
tions. Figure 7 shows the residuals from power-law and theapproaches a white noise with larger variance on the longest ones.
estimates ofv(n) for the synthetic series of Fig. 6. Also in This difference in variance between the extreme regimes of the in-
this case the agreement with the results obtained for real dataovations creates the illusory existence of persistence in tempera-
(Figs. 2 and 3) is very evident. ture variability.

n(days)

Simulated time series account for common properties of _
atmospheric temperature anomalies even if they are intrin® Conclusions
sically not fractal. DFA is just tricked by the separation be-
tween the two scales governifig Figure 8 shows this effect The crucial result of our work was that the existence of long-
on the fluctuation function of the procegs=a1»S;_14+0.¢;,  fange memory mechanisms on time-scales ranging from
which represents innovations for the proc&ssDue to the ~ Weeks to several years has not been demonstrated yet. On
strong correlation of;, UQ?NGEZ on the shortest time scales such scales, where previous studies claimed the evidence of
and the slope is about 0.5, as expected for weather on uncopower-law correlation, persistence exponents vary with the
related scales. Also on long asymptotic scales such innovascale instead. A simple search for straight lines in a log-log
tions are uncorrelated, but here we ha\gevalzgSZJrgEZ; in  plotis not sufficient for assessing long-range memory and the
other words the explained variance is slightly greater tharreliability of the proposed correlation functional form should
the initial one. This hidden increase in time also causesbe explicitly tested. Moreover, a simple bivariate Markov
the increase in the fluctuation function @f and the over- model is able to account for the whole results, apparent scale
all effect is an apparent uniform scaling. Note that éfsgs ~ invariance included.
able to produce a long lasting power-law (about 2 decades). More in general, the model derived in this work represents
The slope of this apparent scalinguis1.4, which curiously  one of the many possible dynamical scenarios which can
agrees with the values estimated on the same time-scales farick fractal tools. Therefore, more precise re-analyses
the North Atlantic SST (Monetti et al., 2003). of temperature time series are required before suggesting
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