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Abstract. Tropical forests are a strong source of bio-
genic volatile organic compounds (BVOCs) to the atmo-
sphere which can potentially impact the atmospheric oxida-
tion capacity. Here we present airborne and ground-based
BVOC measurements representative for the long dry sea-
son covering a large area of the northern Amazonian rainfor-
est (6–3◦ N, 50–59◦ W). The measurements were conducted
during the October 2005 GABRIEL (Guyanas Atmosphere-
Biosphere exchange and Radicals Intensive Experiment with
the Learjet) campaign. The vertical (35 m to 10 km) and di-
urnal (09:00–16:00) profiles of isoprene, its oxidation prod-
ucts methacrolein and methyl vinyl ketone and methanol
and acetone, measured by PTR-MS (Proton Transfer Re-
action Mass Spectrometry), have been used to empirically
estimate their emission fluxes from the forest canopy on
a regional scale. The mixed layer isoprene emission flux,
inferred from the airborne measurements above 300 m, is
5.7 mg isoprene m−2 h−1 after compensating for chemistry
and ∼6.9 mg isoprene m−2 h−1 taking detrainment into ac-
count. This surface flux is in general agreement with pre-
vious tropical forest studies. Inferred methanol and acetone
emission fluxes are 0.5 mg methanol m−2 h−1 and 0.35 mg
acetone m−2 h−1, respectively. The BVOC measurements
were compared with fluxes and mixing ratios simulated with
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a single-column chemistry and climate model (SCM). The
inferred isoprene flux is substantially smaller than that simu-
lated with an implementation of a commonly applied BVOC
emission algorithm in the SCM.

1 Introduction

Tropical forest ecosystems are important sources (and sinks)
for many gas and aerosol species, producing almost half
of the estimated 1.3 Pg C yr−1 globally emitted biogenic
volatile organic compounds (BVOCs) (Guenther et al., 1995;
Guenther, 2002). The total BVOC budget is estimated to
comprise of: 44% isoprene, 11% monoterpenes, 22.5% other
reactive VOCs, and 22.5% other VOCs (e.g. methanol and
acetone). Global atmospheric chemistry models rely on
emission inventories to provide accurate fluxes of BVOCs.
Such emissions vary as a function of many parameters e.g.
temperature, light, species, age etc. (e.g. Monson et al.,
1992; Kesselmeier and Staudt, 1999) and hence are subject
to large uncertainty due to enormous species diversity, un-
characterised landscapes and limited datasets.

Recently, a new parameterised inventory named the
Model of Emissions of Gases and Aerosols from Nature
(MEGAN) (Guenther et al., 2006), has been developed to
better quantify net terrestrial biosphere BVOC emissions.
Leaf area index and plant functional type are among the
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parameters considered within MEGAN to simulate BVOC
emissions. The annual global isoprene emission estimated
with MEGAN, ranges from about 500 to 750 Tg C yr−1, de-
pending on the applied input data. Like isoprene, acetone and
methanol are also strongly emitted by terrestrial vegetation
but their budgets are currently not well constrained (Galbally
and Kirstine, 2002; Jacob, 2002). Therefore a comparison of
modelled and in situ measured values is helpful in assessing
our current understanding of BVOC fluxes. A further moti-
vation for such comparisons is that the oxidation chemistry
of BVOCs over low NOx tropical ecosystems is currently not
well understood (Lelieveld et al., 2008), and again by com-
parison the measured values with various model simulations
possible causes for discrepancies can be investigated.

In this study we present in situ airborne measurements of
BVOCs for the long dry season in October 2005, monitored
by a Proton Transfer Reaction Mass Spectrometer (PTR-MS)
together with other trace gases over Guyana’s tropical rain-
forest. Most notable within the context of this study, are
the observations of hydroxyl (OH) and hydroperoxy (HO2)

radicals, reactive oxidized nitrogen (NOx) and ozone (O3),
during the GABRIEL (Guyana’s Atmosphere-Biosphere ex-
change and Radicals Intensive Experiment with the Lear-
jet) campaign. The GABRIEL campaign was a successor to
the LBA/CLAIRE (Large-scale Biosphere-Atmosphere ex-
periment) which was conducted in the short dry season in
March 1998 (e.g. Williams et al., 2001). The main focus
of GABRIEL was to quantify OH and key BVOC species
over the Amazonian rainforest and to compare these values
to those simulated by state of the art models. Ten flights
were performed between 300 m to 10 km altitude, at differ-
ent times of day and extents of rainforest influence, provid-
ing a data set suitable for studying horizontal, vertical and
diurnal cycles over the pristine rainforest. This large scale
approach is inherently less prone to scaling errors than sin-
gle leaf or tower based studies (Greenberg and Zimmerman,
1984; Rinne et al., 2002; Greenberg et al., 2004a; Karl et al.,
2004). The spatial and temporal distribution in the observed
mixing ratios of isoprene, methacrolein, methyl vinyl ketone,
methanol and acetone have been used together with an em-
pirically derived convective boundary layer (CBL) height (or
“mixing height”) to estimate their emission fluxes as a func-
tion of time. These inferred fluxes, vertical profiles and di-
urnal cycles for these species are then compared with those
simulated with a Single-Column atmospheric chemistry and
climate Model (SCM). The SCM has been applied previously
to interpret GABRIEL campaign observations of boundary
layer meteorology and ozone and NOx atmosphere-biosphere
exchange (Ganzeveld et al., 2008). It is used here to com-
plement our analysis of BVOC observations as a function of
transport and chemistry in the CBL.

Several recent papers have reported large discrepancies be-
tween measured and modelled isoprene concentrations in the
tropics (Ehhalt and Prather, 2001; von Kuhlmann et al., 2004;
Jöckel et al., 2006). These discrepancies seem to occur in all

these model simulations despite the use of well established
isoprene emission algorithms (Guenther et al., 1995, 2006).
A more recent study by Karl et al. (2007) reported agreement
between observed direct flux measurements and the MEGAN
model predictions, suggesting that the fluxes of BVOC into
photochemical models are better represented than the chem-
istry schemes currently used. The SCM, a state-of-the art
chemistry-transport model was applied in this study to aid
interpretation of the observations by exploring the effect on
chemistry of varying emission rates and to provide infor-
mation regarding parameters that were measured during the
GABRIEL campaign.

The following analysis of the GABRIEL data is struc-
tured as follows: an introduction of the site characteristics
and meteorology; experimental details and the SCM descrip-
tion. Subsequently, an analysis of the observed and simu-
lated vertical profiles and diurnal cycles in BVOC mixing
ratios is presented as well as an assessment of chemical and
mixing timescales. Finally, the results of, rainforest emission
flux calculation for isoprene, acetone and methanol from ob-
served mixing ratios are shown and comparisons with mod-
elled data discussed.

2 Site description and meteorology

Meteorological conditions over the northeast coast of South
America are strongly influenced by the annual migration of
the Inter-Tropical Convergence Zone (ITCZ). Two rainy and
two dry seasons can be distinguished, and the long dry sea-
son takes place from mid August until November. In October
2005 the ITCZ was located north of Suriname at approx-
imately 10–15◦ N. Although geographically in the North-
ern Hemisphere, the Guyana’s were located in the atmo-
spheric Southern Hemisphere, under the influence of the
south-easterly trade winds. At the surface, the trade winds
advected clean marine boundary layer air westwards over the
pristine tropical rainforests of French Guyana and Suriname.

Despite the fact that GABRIEL was conducted during the
dry season, meteorological observations indicated that the re-
gion was still relatively moist with short rain showers oc-
curring almost daily, subsequent to the development of shal-
low cumuli in the afternoon and increased cloudiness towards
the evening. The low level cloud base over land during the
GABRIEL-campaign varied from 300–550 m in the morn-
ing, to 900–1200 m in the afternoon (based on visual, civil
aircraft and satellite observations). The cloud cover was
comparable over Suriname and French Guyana throughout
the campaign; generally building up to 3 octas, and occasion-
ally 5 octas in the afternoon (Scheeren et al., 2007). Cloud
shadows reduce the upward heat flux from the surface into
the atmosphere (Schumann et al., 2002) as well as the light-
dependent trace gas emissions. The average surface temper-
ature for October 2005 was 33◦C and the relative humidity
generally varied between∼70% (morning) and∼50% (after-
noon) with surface easterlies of 5–6 m/s.
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3 Experimental set-up

During the GABRIEL campaign measurements were per-
formed from on-board a Learjet (35A) to monitor the distri-
bution of species vertically (300 m–10 km), and horizontally
(range ca. 1800 km) by day. Morning-, noon- and late af-
ternoon flights were performed to examine the regional di-
urnal variations within the boundary layer and to a lesser
extent the free troposphere. Details on the airborne instru-
mentation for the measurements of CO2, H2O, CO, O3, NO,
JNO2, H2O2, total peroxides, OH, HO2, HCHO, besides
VOCs can be found elsewhere (Stickler et al., 2007; Mar-
tinez et al., 2008). The measurement of volatile organic com-
pounds by the airborne proton transfer reaction mass spec-
trometer (PTR-MS) are described here, whereas VOCs mea-
sured with Thermo Desorption-Gas chromatography – Mass
Spectrometry (TD-GCMS) and halogenated VOC canister
GC-MS analysis are described by Williams et al. (2007) and
Gebhardt et al. (2008), respectively. A second PTR-MS was
sited in the forest approximately central in the measurement
region (Brownsberg, Suriname) to provide 24 h ground level
data for comparison with the aircraft (Sinha et al., 2008).

3.1 Proton transfer reaction mass spectrometer
(PTR-MS)

The PTR-MS technique, described in detail elsewhere, (de
Gouw and Warneke, 2007) and references therein, has been
employed to measure several mass to charge ratios (m/z)
69, 71, 33, 59 and 42 which have been attributed to proto-
nated isoprene, the sum of methacrolein and methyl vinyl ke-
tone, methanol, acetone and acetonitrile respectively. These
identifications are consistent with previous studies although
minor contributions from other isobaric compounds, such
as protonated propanal tom/z59 (Lindinger et al., 1998;
Williams et al., 2001) and fragments of 2-methyl-3-buten-2-
ol (MBO) to m/z69 (Eerdekens, 2001; de Gouw et al., 2003a)
cannot be ruled out.

3.1.1 Airborne instrumentation

A main flow of more than 10 L min−1 was drawn through
a 9 mm I.D forward facing Teflon fast flow inlet (length
∼30 cm) coupled inside the aircraft to a 6.35 mm I.D (length
1 m) Teflon tube. From the fast flow inlet, the PTR-MS sys-
tem drew a flow of between 1.5 L min−1 at ground level to
150 ml min−1 at 10 km, through 2.5 m of 3.18 mm I.D. Teflon
tubing. A fraction of this flow was sampled at between 25–
30 ml min−1 directly into the drift tube. Measurements were
done under isobaric and isothermal conditions for the drift
tube. The drift tube pressure was set at 2.2 mbar and was
automatically adjusted to its set point value in flight. The
drift tube was temperature controlled to 40◦C when the cabin
air was sufficiently cool. However, under the extremely hot
cabin temperatures which were often experienced at the end

Fig. 1. Orthogonal distance regression of PTR-MS vs. TD-GCMS.
Error bars represent the total measured uncertainty for each mea-
surement technique within each interval of comparison.

of the flights this was not possible. Under such circumstances
the drift tube temperature has been assumed to be equal to
the cabin for the calculation of concentration. Data were ob-
tained from 8 of the 10 flights. The time resolution was al-
most 30 s with dwell times of 0.9–2 s per mass. The average
airspeed of the Learjet above the rainforest was∼128±6 m/s.

3.1.2 Ground-based measurements

The ground based site (Brownsberg National Park, Suri-
name) was located in the middle of the operational area of
the aircraft, which ranged from 6◦–3.5◦ N and 57◦–50◦ W.
The Brownsberg measurement site (4◦53′ N, 55◦13′ W) was
situated on the Mazaroni Plateau ca. 450 m above the sur-
rounding lowlands and adjacent to a 55×40 km2 lake situ-
ated east of the measurement site. Upwind from the site is
250–300 km of pristine rainforest before the coast of French
Guyana.

An existing radio communication tower situated in a jun-
gle clearing served as a stand for the inlet line. A mem-
brane pump was used to draw air down from canopy top
level (∼35 m) through a 50 m PFA tubing (6.35 mm I.D.) to
the instrument operated at 2.1 mbar, 45◦C for the drift tube.
The main flow was restricted to 5 L min−1 mainly by a 5µm
Teflon filter. The PFA tubing was shrouded with black tubing
to minimise the potential of photochemically induced arte-
fact signals. Continuous monitoring of the aforementioned
BVOCs by PTR-MS (time resolution of 2 min) at the ground
based site was only possible for∼3 days starting from the 3
of October until the 6 of October from midday to midday.
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3.1.3 Calibration

Both PTR-MS instruments were calibrated in the field
against the same gravimetric prepared synthetic mix (Apel-
Riemer Environmental, Inc., Denver, USA) comprising 13
non-methane hydrocarbons in the order of∼500 ppbv per
substance, stated accuracy 5%. This standard was diluted dy-
namically for calibration with synthetic air to achieve atmo-
spheric mixing ratios (covering ppbv to pptv levels). In-field
and post-flight calibrations started and ended with measure-
ments of synthetic air cleaned by passing it through a cat-
alytic converter. The catalytic converter (Platinum on quartz
wool at 360◦C) stripped the air of organics and converting
them to CO2 and H2O so as to provide a background signal.
The difference between the sample and background signals
was used to determine the mixing ratios present in the ambi-
ent air.

Subsequent to the campaign, humidity controlled calibra-
tions were performed in the laboratory. The corrections for
humidity driven sensitivity changes led to a small decrease in
the mixing ratios for isoprene (2.7% to 9.1%), MACR+MVK
(6.1%–12.3%), methanol (19.3% to 28.5%) and acetone
(<1%). Although the calibration factor for methanol over
the humidity interval 20%–100% changed only a little, for
dry conditions its calibration factor was substantially lower.
The effect was smaller for acetonitrile (5.5 to 7%). Similar
effects were found for the ground-based instrument.

The precision or statistical uncertainty in the volume mix-
ing ratio was calculated conservatively using Gaussian er-
ror propagation. The overall accuracy of the determination
depends on the accuracy of each signal used in the cal-
culation and their respective systematic errors. Reported
values should be accurate to within 5–10% assuming no
unaccounted-for systematic errors are present and using the
stated accuracy of the calibration standard and measurements
of calibrated instrument response. The total measurement er-
ror (calculated as the geometric sum of accuracy and preci-
sion) for the airborne instrument for isoprene ranged from
25% (at 0.5 ppbv), and 8% (at 6 ppbv). For MACR+MVK
volume mixing ratios between 0.4 and 2.5 ppbv the corre-
sponding total measurement errors were between 20% and
9%. For acetone the total measurement errors were 25–
10%, for measurements ranging between 0.4–1.5 ppbv; and
50–20% for methanol between 2–6 ppbv. If noise at each
channel is taken as the signal observed upon sampling zero
air (sampling with a catalytic converter in-line), the detec-
tion limits for the unsmoothed data using a threshold signal-
to-noise ratio of three were 0.27 ppbv (methanol), 0.07 ppbv
(acetonitrile), 0.09 ppbv (acetone), 0.10 ppbv (isoprene) and
0.09 ppbv (MVK).

3.2 Measurements of VOCs by TD-GCMS

Airborne sampling of isoprene and monoterpenes over the
tropical rainforest was performed using a custom built 18-

cartridge sampling device installed within a standard aircraft
wing pod. Within the wing pod, outside air was drawn by a
metal bellows pump into the system. The sample tubes were
fitted into the flowpath approximately 80 cm after the pump
with Swagelok Ultra-Torr stainless steel fittings and sealed
with 2-way electromagnetic valves at the entrance and the
exit. To minimise the sample contamination from airport air,
the pump was generally started 15 min after take-off. The
sample tubes were fitted into the flow path after the pump
and sealed with 2-way electromagnetic valves at the entrance
and the exit.

Calibrated mass flow-controllers regulated the air flow
through the system and a custom made process controller
was used to set the parameters and record the sampling
times. All pertinent sampling and analysis parameters and
further details on the Thermo Desorption-GCMS system can
be found in (Williams et al., 2007). Briefly, a stainless steel,
two-bed sampling cartridge (Carbograph I and II) was filled
every 10 min for 5 min continuous sampling (at least one
blank was flown i.e. cartridge that was not opened in flight).
Prior to flight, the cartridges were cleaned with the Thermo-
conditioner. Laboratory multipoint calibrations showed good
linearity within the concentration ranges measured. Blanks,
showed no high levels for the compounds discussed. One-
point calibrations of VOC and of a terpene standard (both
Apel-Riemer Environmental, Inc., Denver, USA, stated ac-
curacy 5%) were carried out at the beginning and the mid-
dle of each flight analysis. The total measurement uncertain-
ties were around 15% and the detection limit ranged from
0.5 pptv to 5 pptv.

3.3 Comparison PTR-MS – GCMS

The number of PTR-MS data points that could be averaged
over the 5 min sampling time of the cartridges varied be-
cause the PTR-MS periodically measured background values
through the aforementioned catalytic converter. Therefore, a
minimum threshold of 5 PTR-MS data points per cartridge
was imposed for the intercomparison with the TD-GC-MS
as presented in Fig. 1. The error bars show the total mea-
surement uncertainty for isoprene. The y-axis error bars are
calculated by the root mean square of the total measurement
errors of all PTRMS data points within each interval. These
total errors were found to be less than 16% for values higher
than the median mixing ratios measured by the PTR-MS and
15% for the TD-GC-MS.

The orthogonal distance analysis expresses a linear re-
lationship between the PTRMS and the TD-GCMS with a
slope of 0.81 and an off-set of 34 pptv (R2=0.895). From
all the diagnostic information we have on both measurement
systems, no irregularities have been found. Since GC-PTR-
MS measurements were not performed, the relative contri-
butions from known and unknown interferants (protonated
molecules, or fragments e.g. fromm/z87 tom/z69) could not
be determined. Such interferences are assumed to be minor
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Fig. 2. Oceanic vertical profiles for methanol, acetone and acetonitrile used for SCM-model initialisation.

as isoprene will be most abundantly present over the tropical
rainforest and the furan interferences from biomass burning
were low.

The intercept is approximately zero in contrast to the iso-
prene inter-comparison for the LBA/CLAIRE campaign in
1998 (Warneke et al., 2001). In 2005, the cartridges were
analysed immediately after each flight in order to minimise
possible storage time artefacts. Storage tests on alkenes in-
cluding isoprene captured in canisters have shown that the
concentration of these species tend to grow after storage
(Colomb et al., 2006), possibly explaining the larger 1998
offset. The high pumping rate through the wingpod system
prevented the testing of sample integrity with a gas standard.
If a reactive compound such as isoprene had been destroyed
in the pump then isoprene would have been underestimated
by the TD-GCMS analysis against PTR-MS and this was not
observed.

As the inter-comparison of the GC and the PTR-MS is just
within the stated uncertainties, we do not correct the PTR-
MS data in our subsequent calculations.

4 SCM Model

Since the Single-Column, chemistry climate Model has been
described elsewhere (Ganzeveld et al., 2008 and references
therein), only the salient features of the model are sum-
marised below.

The SCM, as used in this study, included an explicit rep-
resentation of atmosphere-biosphere trace gas exchanges us-
ing a multi-layer canopy exchanges model, distinguishing a
crown- and understorey layer. It accounted for exchange pro-
cesses and turbulence within the canopy as a function of the
SCM’s meteorological, hydrological and atmospheric chem-
istry parameters. In the default version, processes were re-
solved using, similar to the commonly applied vertical reso-

lution of global models (e.g. ECHAM4/5), 19 layers (here-
after referred to as L19 version) from the surface up to 10 hPa
with 5 layers representing the daytime CBL. However, be-
cause of the demonstrated impact of a higher vertical reso-
lution on tracer transport (Ganzeveld et al., 2008), the mea-
surements were also compared with a 60 layer (L60) version
of the SCM with 13 layers in the CBL.

The SCM’s chemistry scheme is based on the CBM4
mechanism (Roelofs and Lelieveld, 2000 and references
therein), and has been modified to include the oxidation
of terpenes by ozonolysis (Ganzeveld et al., 2006) and
H2O2 production through the formation and decomposi-
tion of long-chain hydroxyalkyl-hydroperoxides (Valverde-
Canossa, 2004). For more details on NOx and ozone chem-
istry during the Gabriel campaign we refer to Ganzeveld et
al. (2008).

Model simulations were performed in the “Lagrangian
mode”, which implies that during the simulations, the air
column is advected from the Atlantic Ocean over the Ama-
zon rainforest along a transect along 4.5◦ N from 45◦ E to
60◦ E at an average wind speed of∼6 m/s, as observed
within the PBL (see Fig. 2 in Gebhardt et al., 2008 for
the vertical profiles for the wind direction and wind speed
for the whole campaign). Modelled air masses were first
advected over the ocean (1 day, 2 October) and then for
2 days over land (3–4 October), simulating the response of
the column to changes in surface cover properties including
the transition from an atmosphere-ocean to the atmosphere-
biosphere exchange regime. Land cover properties, NO and
VOC emission factors were determined by the distribution
of the 72 ecosystem classes of the Olson (1992) ecosystem
database. Biogenic NO emissions were calculated according
to Yienger and Levy (1995) whereas isoprene emissions were
simulated using the MEGAN (Model of Emissions of Gases
and Aerosols from Nature) algorithm (Guenther et al., 2006).
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Fig. 3. Virtual potential temperature and specific humidity profiles
between 13:00 and 15:00 gathered from several flights above the
Guyana’s rainforest in comparison to their SCM simulated profiles.

All other biogenic fluxes, including terpenes and oxygenated
VOCs were based on an alternative algorithm. Since for
methanol and acetone bi-directional exchanges have been ob-
served (Karl et al., 2004), the exchange of these compounds
in the SCM was simulated using a compensation point ap-
proach, in which the emission or deposition of a compound
was calculated depending on leaf- and ambient air concen-
trations.

One particular feature of the model set-up relevant to the
analysis presented here was an applied scaling of the online
simulated isoprene emission flux. From the observations pre-
sented in this paper (see Sect. 5.7) we have inferred an iso-
prene emission flux which is apparently a factor 2 smaller
than that calculated with the implementation of MEGAN in
the SCM. It should be noted that isoprene simulated by the
SCM according to Guenther et al. (1995) has been shown
to be in good agreement with isoprene measurements from
Manaus (Kuhn et al., 2007). Moreover a comparison of
MEGAN driven modelled isoprene with the same measure-
ment data from Manaus also yielded good agreement (unpub-
lished results) without scaling. In order, to focus on the role
of CBL transport and chemistry rather than differences be-
tween atmosphere-biosphere flux simulations, the SCM sim-
ulations based on a factor 2 decrease in simulated emissions
were initially used for comparison with the measured results.

The North Atlantic oceanic vertical profiles of methanol
and acetone were used to initialise the model at 45◦ E up
to 5 km (see Fig. 2). Since isoprene mixing ratios over the
ocean were close to or below the detection limit, its vertical
initialisation profile was set to zero on all levels in the SCM.
The reader is referred to Ganzeveld et al. (2008) for further
details.

5 Results and discussion

5.1 Observations and simulations of the CBL

At the outset of this analysis it was important to characterise
the evolution and structure of the CBL over the tropical for-
est, since the boundary layer dynamics control the dilution
and vertical turbulent transport of the chemical species (see
also Vilà-Guerau de Arellano et al., 2009) and hence the in-
ferred emission fluxes.

Surface winds were rather constant (surface easterlies of
5–6 m/s) throughout the campaign, consistent with stable
trade wind conditions. Figure 3 shows the characteristic ther-
modynamic vertical profiles during GABRIEL in 5–95 per-
centile box and whisker plots with highlighted means and
medians (13–15 local time, LT=UTC−3) for the virtual po-
tential temperature (θv) and the specific humidity (q) θv was
calculated according to Bolton (1980) from the static air
temperature andq was calculated from the measured water
vapour mixing ratio using an NDIR absorption spectrome-
ter (Gurk, 2003). The observed morning profiles ofθv were
typical for dry convective boundary layers without clouds
and strong persistent winds above the CBL (marked by clear
differences in temperature and humidity). The exchange
of compounds with the atmosphere aloft occurs particularly
when the CBL develops. The growth may continue in the
afternoon or the CBL height may stabilize, depending on the
synoptic conditions and surface buoyancy flux.

In the course of a typical day as clouds formed, the pro-
files ofθv over the rainforest showed a conditionally unstable
layer caused by the high moisture content, above the first vir-
tual temperature inversion (see below). The sub-cloud layer
buoyancy was driven by upward thermals, and in the cloud
layer positive buoyant motions were caused by the release of
latent heat from the condensation process. Both sub-layers
are components of the CBL or mixed layer. As a result of the
clouds, chemical compounds were transported to higher ver-
tical heights compared to clear sky conditions, causing the
CBL mixing ratios of emitted compounds to change (Schu-
mann et al., 2002; Vil̀a-Guerau de Arellano et al., 2005).
The clouds also acted to reduce radiation dependent biogenic
emissions, photolysis rates and photochemical processes un-
derneath (Lelieveld and Crutzen, 1991; Tang et al., 2003).

To support our analysis and to verify the occurrence of
clouds, we have used a parcel method calculation. In short,
a parcel is released with initial surface valuesθv=310.2 K
andqt=16 g/kg which follows a dry adiabatic until it conden-
sates at the lifting condensation level (LCL: 1590 m). Be-
yond this level the parcel follows a moist adiabatic. The re-
sults are shown in Fig. 3a, indicating a well-mixed sub-cloud
layer below the LCL. By comparing the slope of the ob-
served virtual potential temperature gradient with the moist
adiabatic, we conclude that the stratification was condition-
ally unstable, characteristic for shallow cumuli. The analysis
does not show a clear limit of free convection (LFC), which
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Fig. 4. (a)Fluctuation of the Static Air Temperature (SAT) upon constant climbing of the aircraft;(b) low and higher estimate of the CBL
height evolution for the dry season (October) over the Guyana rainforest as explained in the text in comparison to that simulated by the (L19
and L60) SCM for the 1st day over land. The different markers represent the different inversions encountered in the vertical.

may indicate that the cloud extension could be higher than
5000 m. It should be noted that the aforementioned situation
was not in a steady-state and important processes like hori-
zontal and vertical advection have been ignored. However,
the parcel method allows us to get a better insight into the
significance of shallow cumuli cloud in boundary layer evo-
lution during the Gabriel campaign (Siebesma et al., 2003;
Vil à-Guerau de Arellano, 2007).

In order to determine the CBL height over the rainforest
as a function of time inversions (fluctuations) in the static air
temperature measured on-board the aircraft have been exam-
ined. An example of one such capping inversion (at 941 m) is
shown in Fig. 4a, while Fig. 4b shows all observations. Data
from coastal areas, (25 km from the coastline), were omitted
in these estimates (see next section). Note there are several
inversions present in most vertical profiles and these inver-
sions generally occur at comparable levels above the rainfor-
est for a particular time of day.

It was determined empirically that between 09:00 and
15:00 LT the boundary layer over the forest grew from∼500
to ∼1450 m (1st inversion, blue triangles in Fig. 4b) by ap-
plying a sinusoidal fit and a 5th order polynomial fit for
undisturbed conditions. Both fits reproduce a diurnal cycle
in boundary layer height with realistic boundary layer growth
rates. The uncertainty in the boundary layer height estimate
was directly related to the scatter and the number of observed
temperature inversions. However, in many cases several in-
versions were present beyond the 1st inversion above the
rainforest, marking a 2nd inversion (red circles in Fig. 4b)
with maxima at around 1900 m and another at around 2550 m
(open squares in Fig. 4b) in the afternoon. Note that due to
the partial cloud cover, the boundary layer height may not
have been uniform over the entire domain. Weather observa-
tions by Scheeren et al. (2007) report higher altitude scattered
clouds which could be passive remnants that are no longer
connected to the boundary layer and occasionally there may
have been clouds up to the 2.5 km altitude.

The observationally inferred boundary layer evolution
compared reasonably well with the findings of Krejci et
al. (2005), for the same area during LBA-CLAIRE 1998 and
by Martin et al. (1998), who investigated the regions of Man-
aus further inland. Both reported boundary layer heights of
1200–1500 m and a cloud base of 1600–1800 m altitude.

Comparison of the observed and simulated boundary layer
evolution for the first day over land shows that the SCM sim-
ulated boundary layer growth rates (for the L19 and L60 ver-
sion) which were larger in the early morning, and smaller
between 09:00 and 14:00 LT, compared to the observations
(see Ganzeveld et al., 2008 for details on the SCM boundary
layer representation). The difference between the observed
and simulated boundary layer representation was likely due
to different potential temperature lapse rates. Note that the
SCM could only be provided with very limited ECMWF data
over the Tropics. Observations showed a 3–4 K higher vir-
tual potential temperature for an observed specific humidity
between 14 and 16 g/kg throughout the day below 1000 m.
The SCM L19 and L60 versions simulated initial (morning)
higher boundary layer moisture contents (16–17 g/kg) which
did not decrease in the L19 version but which decreased by
almost 2 g/kg in the L60 version over the course of the day.
The water vapour was transported deeper in the L60 tropo-
sphere, resulting in an improved agreement between the sim-
ulated and observed moisture content in the afternoon. How-
ever, it results in a slightly wetter and cooler layer between
1.5 km and 3.5 km compared to observations. The sensitivity
of the boundary layer evolution to the potential temperature
lapse rate for the GABRIEL conditions has been discussed
by Vil à-Guerau de Arellano et al. (2009).

The depth of the marine boundary layer (MBL) is not
expected to vary much over the course of the day. The
observed inversions occurred at∼460 m pressure altitude
at 08:30, around 575 m around noontime, and at∼500 m
around 15:15. The observed MBL depth was therefore a little
less than the simulated MBL depth (∼640 m).
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Fig. 5. Map of the geographical area over which the flights were conducted, superimposed onto a vegetation map (UNEP-WCMC, 2000)

5.2 Data selection criteria

BVOC emissions are inherently highly variable, being a
function of plant type, solar intensity, temperature and other
factors. In order to present the flight data as clearly as possi-
ble and to ensure a fair comparison with the simulated fluxes
and CBL concentrations, a number of geographical, temporal
and altitude filters have been applied. The intention was to
reduce the possibility masking trends in the dataset. Details
of each filter applied are presented below.

Biogeographical filter: a vegetation map of South-
America (Eva et al., 2004) was used to filter only data col-
lected over rainforested regions for analysis. The northern-
most 100 km of Suriname is covered along the coast by man-
grove forest), fresh water swamp forest (wetland forest) and
cultivated crops and non-forest land cover (UNEP-WCMC).
Data from this region have been filtered out so as to leave
only rainforested areas under analysis (see Fig. 5). The total
rainforested area under investigation was approx. 775 km by
220 km.

Vertical filter: data were also filtered for the time evolu-
tion of the CBL height as discussed in the section on the
GABRIEL 2005 boundary layer conditions. Hereafter, only
data within the mixed layer are retained.

Temporal filter: to ensure fluxes were derived from air-
masses that had spent the entire daylight period over the rain-
forest, the “startpoint” of the measured air parcel at sunrise
(ca. 06:25) was calculated based on the specific wind direc-
tion and wind speed measured by the aircraft. If the airmass
at dawn, for a certain data point measured in flight, was sit-
uated above the Atlantic Ocean or the coastal periphery, the
data point was not considered.

The remaining post-filter data points were deemed to re-
flect the rainforest emissions into air masses crossing the
forested region between dawn and the moment of measure-
ment, and were characterised by their Forest Contact Time
(FCT) with the Guyana’s rainforest. The FCT has been de-
fined as the time an air parcel spends in the CBL above the
rainforest starting from the rainforest’s periphery near the
east coast of French Guiana. For this study, we focus on a
transect which corresponds to the distance over the rainfor-
est covered by an air mass between sunrise and sunset. The
column of air was advected with an average speed of 5.4 m/s
over the rainforest, being exposed to the surface emissions
between the east coast of French Guiana and the eastern
shore of the reservoir (54.9◦ W). This transect will be re-
ferred to as “the first day over land”. Filtered data are used
to infer the diurnal cycle of BVOCs above the rainforest and
will be compared to the simulated diurnal cycle for the 3 Oc-
tober.

5.3 Isoprene chemistry

Isoprene is oxidised in the air, primarily by OH. Main
sources of HOx (OH+HO2) are photolysis of ozone,
formaldehyde and higher aldehydes whereas main sinks are
the reaction with CO, methane and isoprene emitted from the
rainforest, forming methacrolein (MACR), methyl vinyl ke-
tone (MVK) and formaldehyde as first order products (Carter
and Atkinson, 1996).

Isoprene chemistry for low-NOx conditions is still poorly
understood (Paulson and Seinfeld, 1992) but several studies
e.g. (Montzka et al., 1993; Goldan et al., 1995; Biesenthal et
al., 1998; Stroud et al., 2001) have shown that ambient NOx
levels can influence the relationship between isoprene and
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Fig. 6. Measured and modelled vertical profiles for isoprene, the sum of methacrolein and methyl vinyl ketone, methanol and acetone over
the rainforest for the first day over land.

MACR+MVK (see also Sect. 5.6). Laboratory studies have
shown that in the absence of NO, oxidation product yields
of MACR and MVK are 22% and 17% respectively and
34% for formaldehyde in addition to organic hydroperoxides
(Miyoshi et al., 1994; Benkelberg et al., 2000). Slightly dif-
ferent but comparable yields for MACR/MVK were obtained
by Ruppert and Becker (2000) (17.8%/15.3%) and Lee et
al. (2005) (19.0%/14.4%). Ruppert and Becker (2000) in-
dicated that small amounts of methanol may be formed as a
primary product from the OH-initiated oxidation of isoprene
under low NOx. As NO was found to be generally less than
40 pptv during the GABRIEL campaign (Ganzeveld et al.,
2008), isoprene oxidation was expected to produce MACR
and MVK with a yield resembling that for the low NOx stud-
ies. This is important for this analysis since the isoprene
flux was inferred using a chemically conservative tracer de-
rived from the measured mixing ratios of isoprene, MACR
and MVK. For this study we assume a summed MACR and
MVK product yield of 39% (note that the chemistry scheme
in the SCM assumed a 55% yield).

5.4 Mixing ratio vertical profiles

Isoprene and MACR+MVK mixing ratios decreased with
increasing altitude, reflecting the role of photo-oxidation
chemistry and mixing (Fig. 6a and b). In order to com-
pare surface layer and mixed layer isoprene mixing ra-
tios, a correction for chemical loss was required (as dis-
cussed in further detail below). The vertical profiles show
that isoprene was well mixed in the boundary layer, with
average mixing ratios of 3.2±1.0 (1σ ) ppbv for isoprene
itself and 1.5±0.3 ppbv for the photo-oxidation products
MACR+MVK between 14:00 and 17:00 LT below 1.5 km.

Enhanced isoprene and MACR+MVK mixing ratios ob-
served above∼1500 m altitude were most likely a result of
convection associated with the shallow cumuli clouds. Dur-
ing flight 6, the upward transport appeared to be limited to
a smaller vertical domain compared to the other flights pos-
sibly due to differences in land-atmosphere interactions and
cloud cover conditions.

The afternoon mixed layer average isoprene mixing ratio
for GABRIEL was comparable to the 3.3 ppbv obtained by
Warneke et al. (2001) over the southern part of Suriname
during LBA-CLAIRE 1998 though less than the 5.2 ppbv
average observed further inland near Manaus (Karl et al.,
2007), and the 6.7 ppbv measured in the mixed layer over
Jaru (Rond̂onia) by Greenberg et al. (2004).

Figure 6 shows for comparison in situ measurements with
simulated vertical profiles of BVOCs for the L19 and the
L60 versions. It is clear that the L19 (with 5 layers repre-
senting the CBL) version of the SCM version underestimates
the vertical mixing within the CBL resulting in an overes-
timation of surface layer mixing ratios. It can also be in-
ferred from Fig. 6 that isoprene mixing ratios simulated with
the L60 version (with about 13 layers representing the CBL)
was in better agreement with observations. Furthermore, the
enhanced resolution resulted in well mixed profiles and con-
vective transport beyond the clear sky boundary layer height
(∼1500 m). The discrepancies between the model simulated
and observed profiles were much smaller in the morning and
early afternoon when clouds and convection were not yet
playing an important role (see diurnal cycles in next sec-
tion). Furthermore, the agreement in the morning was also
likely due to a better agreement between simulated and ob-
served OH-concentration in the PBL due to relatively large
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Fig. 7. Measured and modelled vertical profile of OH, HO2 and O3 over the Tropical rainforest.

NOx mixing ratios associated with the accumulation of soil-
biogenic NOx in the nocturnal inversion layer.

Less steep vertical mixing ratio profiles have been ob-
served for methanol and acetone. These species are less reac-
tive towards OH and O3 and can therefore serve to interpret
the role of transport in and above the CBL for conditions
with no significant influence of biomass burning (Lelieveld
et al., 2008). Low acetonitrile mixing ratios of generally 100
to 300 pptv – except of flight 6 and 7 for which local acetoni-
trile mixing ratios reached a maximum of 450 pptv between 2
and 3 km – confirm the low impact of biomass burning emis-
sions during the measurement period. Acetonitrile mixing
ratios were only slightly elevated between 1 and 3.5 km over
the ocean on a few flights as shown in Fig. 2. Observed de-
creases in marine boundary layers’ mixing ratios are prob-
ably due to an oceanic uptake of methanol (Williams et al.,
2004; Sinha et al., 2007), acetone (Marandino et al., 2005)
and acetonitrile (Hamm et al., 1984; de Gouw et al., 2003b).

Figure 6c and d showS well mixed methanol and acetone
profiles over the rain forest reflecting surface emissions and
turbulent transport in the boundary layer. The average mix-
ing ratios below 3 km were 2.4±0.5 (1σ) ppbv for methanol
and 1.0±0.2 ppbv for acetone between 14:00 and 17:00 LT.
The methanol values reported here are therefore significantly
higher than the average value of 1.1 ppbv from the 1998
LBA-CLAIRE campaign over the same height range (0–
3 km). In contrast, the 2005 acetone data reported here are
significantly lower than the 2.7±0.8 ppbv reported for 1998.

Since methanol and acetone have relatively long atmo-
spheric lifetimes it is important to consider their background
oceanic mixing ratios for the initialization of the SCM (see
Fig. 2). This initialization resulted in simulated acetone and
methanol in reasonable agreement with the observations after

more than one day of transport over the ocean before arriv-
ing at sunrise at the coast (∼51.5◦ E). The simulated verti-
cal profiles, in particular those for the L60 version, are in
good agreement with the observations as a consequence of
the deeper CBL and more efficient upward transport com-
pared to the L19 version. Increasing the vertical resolution
within the boundary layer of the model effectively reduced
the boundary mixing ratios by about 30% between 09:00 and
16:00 LT.

The simulated vertical profile of ozone, relevant to the in-
terpretation of the HOx concentration profiles, is in reason-
able agreement with the observations though the SCM under-
estimates the ozone mixing ratios between 2 and 3.5 km. The
OH and HO2 profiles in Fig. 7 show that observations exceed
the simulated OH-concentrations by an order of magnitude.
Increasing the vertical resolution within the SCM and con-
sequently influencing the transport of trace gases and water
vapour results in an increase in OH and HO2. The produc-
tion of HO2 and OH (and its recycling) was much stronger in
the boundary layer (and up to 3 km) and has been discussed
in more detail in Ganzeveld et al. (2008) and in Kubistin et
al. (2008).

5.5 Mixing ratio diurnal cycles

To infer the area-average diurnal cycle in BVOCs, all mixed
layer mixing ratios from the airborne observations were used
after filtering according to the data selection criteria pre-
sented in Sect. 5.2. Restricting the dataset to the first day
over land has the advantage of avoiding influences of resid-
ual layers from previous days (discussed in next section
and in Ganzeveld et al., 2008). Since the aircraft sam-
pled over undulating terrain (particularly south of 5◦ N, with
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Fig. 8. Mixed layer diurnal cycles for isoprene and its oxidation products, methanol and acetone over the Guyana’s rainforest (first day over
land).

maximum height of 1280 m a.s.l.), sampling effectively oc-
curred at various heights above surface. Therefore the height
above ground has been explicitly considered (calculated with
SRTM3 digital elevation model data) instead of the pressure
altitude. Median values of the quarter hourly 5 p–95 p box
and whisker plots have been fitted to both a 5th order polyno-
mial fit and a sinusoidal fit. Such fits have been also applied
in combination with the CBL depth to infer surface fluxes
from mixing ratio observations as discussed in Sect. 5.7. The
green vertical lines indicate the time interval for which the
vertical profiles were taken.

Airborne and ground-based observations of isoprene mix-
ing ratios show a distinct diurnal cycle, being very low in the
morning, reaching peak values around mid-afternoon, and
decreasing towards the evening. Strong gradients in isoprene
from the canopy source to the top of the mixed layer were the
reason for the wide range of values measured at any given
time in the diurnal plot. The ground-based measured values
(25 p / med. / 75 p / 95 p: 3.3 / 4.3 / 5.4 / 6.2 ppbv, 14:00–
16:15 LT) were higher than those taken in the mixed layer
above 300 m (25 p / med. / 75 p: 3.0 / 3.3 / 3.7 ppbv, 14:00–
16:15 LT), indicating the role of turbulent exchange in di-
luting as well as the high reactivity of isoprene towards the
oxidants OH and O3. K34 tower measurements near Manaus
(July 2001, beginning of the dry season, LBA-CLAIRE-2001
campaign) by Kuhn et al. (2007) showed lower mean canopy
level daytime mixing ratios of 3.4 ppbv with a maximum of
6.6 ppbv for isoprene. Higher mean noontime surface layer
isoprene mixing ratios of 7.8±3.7 ppbv, with peak values up
to 15 ppbv, were obtained during the TROFFEE campaign

on the Z14 tower in September 2004 (end of the dry sea-
son). The observed mixed layer mixing ratios show a range
between 0.6 and 6.7 ppbv with a mean of 5.2 ppbv (Karl et
al., 2007). These results are comparable to, though slightly
higher than the mixing ratios reported here.

Figure 8b shows that mixed layer MACR and MVK mix-
ing ratios show less variability compared to isoprene. This
is because they are formed aloft in the well-mixed boundary
layer and have significantly longer chemical lifetimes. Their
average summed median mixing ratio was 1.4 ppbv, rang-
ing between 1.2–1.8 ppbv (25 p–75 p) and which is similar to
the observations reported by Karl et al. (2007), 2.1 ppbv, and
by Warneke et al. (2001), 2.5 ppbv, whereas observations by
Kuhn et al. (2007) were substantially smaller (∼0.5 ppbv).

Figure 8 shows that both the L19 and L60 model sim-
ulations reproduced the mixed layer diurnal cycles of the
BVOCs before 14:00 LT reasonably well and that afterwards,
only L60 simulations are in reasonable agreement with the
observations. This suggests that the discrepancy between the
modelled and the observed BVOC mixing ratios was likely
associated with a misrepresentation of turbulent and con-
vective transport and cloud formation, also affecting surface
emissions and photolysis. Furthermore, Fig. 9 shows that
increasing the vertical resolution in the SCM from L19 to
L60 resulted in an increase in simulated OH. However, dif-
ferences in simulated turbulent and convective mixing appar-
ently do not adequately explain the discrepancy between the
modelled and the measured OH-concentrations. Measured
OH data exhibited a much less pronounced diurnal variation
in the mixed layer over the rainforest than in the model (see
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Fig. 9. Measured and modelled diurnal cycles of OH, HO2 and O3 above the rainforest for October 2005.

Fig. 9a). The best agreement is obtained between 09:00 and
09:30 LT when isoprene is still low and simulated NOx con-
centrations are relatively large. This reflects the release of
NOx, accumulated in the nocturnal inversion layer, out of the
canopy into the mixed layer. Later in the day the discrep-
ancy increases, pointing to a potential misrepresentation of
the afternoon sources and/or sinks reactive tracers and OH,
e.g. OH and HO2-recycling involved in the isoprene oxida-
tion mechanism (Butler et al., 2008; Lelieveld et al., 2008).

Canopy level observations of MACR+MVK (25 p / med.
/ 75 p: 5.0 / 6.4 / 8.0 ppbv, 14:00–17:00 LT) at Brownsberg
were slightly higher but comparable to the average noontime
mixing ratios of 2.3 ppbv reported by Kuhn et al. (2007) and
2.5 ppbv by Karl et al. (2007).

Figure 8c and d shows strong increases in both methanol
and acetone in the mixed layer as a function of time of
day. The observed morning mixing ratios for acetone and
methanol are∼0.6 ppbv. The diurnal increase in methanol
is larger compared to that in acetone. Afternoon methanol
mixing ratios increased to 2–3 ppbv and those for acetone to
0.9–1.1 ppbv, and 0.18–0.20 ppbv for acetonitrile.

In the absence of significant anthropogenic activity and
low biomass burning influences, the observed increases in
acetone and methanol must reflect direct biogenic emission
from the rainforest and/or secondary production. The aver-
age simulated acetone mixing ratios, based on the compen-
sation point approach with daytime emissions and night time
deposition, agreed well with the measurements. Methanol
mixing ratios were overestimated by the model by about
0.6 ppbv for the 3rd day of the SCM L60 simulation despite
initialisation of SCM with the observed mixing ratio profiles
over the ocean. This difference may be caused by the vari-
ation in the free troposperic methanol mixing ratios present
in the advected air. Ganzeveld et al. (2008) showed that the
model underestimated the mixing as well as the nocturnal de-
position of all tracers discussed here; this issue is especially
relevant for the evaluation of the observations further inland.

5.6 Chemical and mixing time scales

The photochemical aget , or the extent of chemical process-
ing of isoprene in the encountered air masses will be used
in the flux calculation (next section). An expression for this
age can be derived by solving Eq. (1) fort , using the ratio
of [product] to [precursor], based on the Reactions (R1, R2,
R3) assuming pseudo first order reactions and a dominance
of the OH sink:

MACR + MVK

ISOP
=

(
γMACRk1

(k2 − k1)

) (
1 − e((k2−k1)[OH]t)

)
(1)

+

(
γMVK k1

k3 − k1

) (
1 − e((k1−k3)[OH]t)

)
ISOP+ OH

k1=kisop,OH
−→ γMACRMACR + γMVK MVK (R1)

MACR + OH
k2=kmacr,OH

−→ products (R2)

MVK + OH
k3=kmvk,OH

−→ products (R3)

γmacr and γmvk are the OH oxidation yields for
MACR and MVK respectively under low NOx, the
reaction rate constants were taken accordingly as
kisop,OH=2.7 E-11*exp(390/T);kmacr,OH=8 E-12*exp(389/T)
andkmvk,OH=2.6 E-12*exp(610/T) (IUPAC, 2007b, a, c) and
[OH] as measured over the rainforest.

The ratio of [MVK+MACR]/[isoprene] has been studied
elsewhere e.g. (Biesenthal et al., 1998; Stroud et al., 2001;
Apel et al., 2002) and has shown a NOx dependency. Here we
compare the observed vertical profile (14:00–17:00 LT) and
diurnal cycle to the model simulation for the surface and the
mixed layer in Fig. 10a and b. The observed profile is compa-
rable to the one obtained for the TROFFEE campaign by Karl
et al. (2007). However, [MVK+MACR]/[isoprene] varied
over a large range and an interpretation of this ratio is compli-
cated since it depends on the history of the air mass (forest
contact time), on vertical mixing and on chemistry (domi-
nated by OH as O3 mixing ratios were low (10–20 ppbv)).
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Fig. 10. Comparison of the measured to the modelled vertical (14:00–17:00 LT) and diurnal cycle of [MACR+MVK]/[isoprene] (first day
over land). Comparison of compensation for chemical loss of isoprene (see text).

The OH concentrations measured during GABRIEL (Fig. 9)
were on average of 5.0×106 molec. cm−3 in the mixed layer
and ∼8.1×106 molec. cm−3 between 2 and 5 km. These
measured concentrations are substantially higher than the
OH concentrations estimated by Karl et al. (2007) and Kuhn
et al. (2007) in a convective boundary layer budget analy-
sis. The observed [MVK+MACR]/[isoprene] ratios above
the CBL height were higher than those in the CBL reflect-
ing low mixing ratios of isoprene and upward transport of
oxidation products.

Surface layer data from Brownsberg revealed a diel pattern
in the ratio [MACR+MVK]/[isoprene] that drops at sunrise
from∼0.8 to∼0.3 around 08:00 LT, then remains rather con-
stant at∼0.3 until noon, followed by an increase until sunset
(see Fig. 10b, lower panel). The drop in ratio in the morning
hours could possibly reflect breakup of the nocturnal bound-
ary layer and mixing in of residual layer air. However, obser-
vations of meteorological parameter to support this hypoth-
esis were unfortunately not available. The model assumes
an equilatitudinal transect (at 4.5◦ N) exclusively above the
ocean before sunrise and consequently the bottom panel of
Fig. 10b shows an almost constantly increasing ratio between
sunrise and sunset in the surface layer. In addition, the sim-
ulated [MACR+MVK]/[isoprene] ratio is lower for L19 than
for L60 version but both are lower than observed, also re-
flecting the fact that the model calculates lower OH concen-
trations.

Differences in measured and modelled product-precursor
ratio suggest a much shorter “measured” photochemical age
of isoprene (19 and 27 min) than the simulated age (0.5 to
∼2 h). It should be noted that solving Eq. (1) fort using high
NOx rather than low NOx branching yields generally a 23%
longer photochemical age.

For the GABRIEL boundary layer conditions, calculated
atmospheric lifetimes for isoprene, MACR, and MVK with
respect to both OH and O3 were on average 0.5, 2 and 2.75 h,

respectively. For acetone and methanol, we calculate atmo-
spheric lifetimes of 2.5 and 13.5 days, respectively. Due to
the misrepresentation of OH and the different mixing in the
model, the actual atmospheric lifetime of isoprene is much
shorter than simulated (1 to 3.5 h before 14:00 LT to 6 h and
more afterwards.

In order to compare the mixing and chemistry timescales
we estimate the convective timescale, i.e. the time scale for
the air to circulate between the surface and the top of the
mixed layer (large Eddy). For this we assume typical tropical
meteorological parameters (as observed during the TROF-
FEE campaign in September 2004, T. Karl, personal com-
munication, 2007) to estimate the timescale for convective
mixing (t*) based on the convective velocity scale (w*) and
the boundary layer height (zi). We used a maximum sensi-
ble heat flux∼200 W m−2 (also simulated by the SCM) be-
fore noon declining to∼100 W m−2 in the afternoon (due
to cloud cover) and a surface temperature diurnal cycle as
observed at Brownsberg (24–26◦C). In this way we obtain
a maximum convective velocity scale of 2 m/s which is in
the range of the convective velocity scale obtained for the
TROFFEE campaign. The result is an inferred convective
time scale between 8 min in the morning to 16 min in the af-
ternoon which is substantially shorter than the chemical time
scale and the photochemical age calculated above.

5.7 Flux calculations

The emission surface flux was derived from the airborne
measurements over the rainforest by the CBL budgeting ap-
proach based on Eq. (2). This CBL budgeting approach as-
sumes a quasi-stationary steady state for the vertical profiles,
and as a result vertical linear flux profiles are obtained. It
uses the natural integrating properties of the well-mixed at-
mospheric boundary layer, allowing average surface fluxes to
be obtained over relatively larger regions.
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Table 1. Maximum median observed mixed layer and surface layer
emission fluxes for isoprene methanol and acetone in a CBL height
up to∼1450 m.

(mg m−2 h−1) Fs−Fe F
Brownsberg
s

isoprene 2.5 2.2
isoprene+MACR+MVK 3.7 3.7
isoprene+(MACR+MVK)+
(MACR+MVK)/39*61 5.7 6.3

methanol 0.50 0.36
acetone 0.35 0.36

Vil à-Guerau de Arellano et al. (2009) discusses this
method and addresses the quantitative importance of each of
the four terms. In short, the surface emission flux (Fs) is
inferred from observations using:

Fs = h

[
∂ 〈S〉

∂t
− R +

(
U

∂ 〈S〉

∂x
+ V

∂ 〈S〉

∂y

)]
+ Fe (2)

This method is time dependent reflecting the role of chem-
istry and the mixing (vertical transport). We assume that the
tendency term∂<S>/∂t (the change in the concentration of
a BVOC as function of time, taken from the inferred diurnal
profile) within a boundary layer volume (h, determined in
Sect. 5.1), results in the net flux of the tracer. Although this
term was mainly important in the early morning, the con-
tribution for chemical loss term (R) was imperative during
the day. The longer the atmospheric lifetime, the smaller
the contribution chemical losses term will be and for inert
species, concentration changes with time are only due to the
surface emission/deposition and entrainment of free tropo-
sphere air masses while neglecting the advection term.

As a consistency check, CO2 data measured on board
of the Learjet during GABRIEL to determine the day-
time CO2 uptake assuming a boundary layer height up to
∼1450 m. A median value of 2.73 g CO2 m−2 h−1 and an
average of 4 g CO2 m−2 h−1 (sinusoidal fit through 15 min
binned data between 300 and 800 m over the rainforest)
are found to be in reasonable agreement with the daytime
CO2 uptake measured under high irradiance state of 2.53–
3.01 g CO2 m−2 h−1 over an old-growth tropical forest in
Para, Brazil from July 2000 to July 2001 using an eddy co-
variance technique by Goulden et al. (2004).

For chemical reactive species like isoprene the reactivity
term (R) needs to be taken into account. We propose here
two different ways to calculateR:

1) In case OH has not been measured, we estimate iso-
prene at the canopy level by summing up the precursor and
product concentrations as follows

R1 =
∂ 〈isoprene+(MACR+MVK )+(MACR+MVK )/39∗ 61〉

∂t
(2a)

based on the low NOx oxidation yield. Note that although
formaldehyde has been measured, it cannot exclusively be
attributed to the oxidation of isoprene.

2) In case that OH has been measured, isoprene mixing
ratios can be inferred according to:

R2 = (2b)

∂

〈
[ isop] t

exp
((

−kisop,OH[OH]−kisop,O3 [O3]+0.5(kmacr,OH+kmvk,OH)[OH]+0.5
(
kmacr,O3+kmvk,O3

)
[O3]

)
.t
)
〉

∂t

in which t corresponds to the photochemical age as discussed
earlier.

In this way, we can study the sensitivity of the surface
emission to different chemical mechanisms. Figure 10c
shows the isoprene mixing ratios calculated using the two
reaction termsR1 andR2. From the linear slope of 1.12 we
conclude that both methods provide comparable estimates of
isoprene at the canopy level.

For the entrainment flux we calculate first a diurnal profile
of Fs−Fe before takingFe into account (see below). A maxi-
mum value ofFs−Fe of 5.7 mg isoprene m−2 h−1 (method 1,
see Fig. 11) and 5.2 mg isoprene m−2 h−1 (method 2) for a
CBL up to 1450 m was obtained.

Ideally, to examine oxidation one should follow the same
air mass as it traverses the landscape as was done by the
SCM. Practically, only relatively short (few hours), discon-
tinuous periods (spread over 14 days) of airborne measure-
ments were available for analysis. The rather constant mete-
orological boundary conditions during GABRIEL 2005 sup-
port the use of this method. By limiting ourselves to the first
day over land we have eliminated the influence of residual
layer air which complicates interpretation of daytime BVOC
exchanges (Ganzeveld et al., 2008). We therefore neglect
the advection term (involving the partial derivative towards
x andy) on the right hand side of Eq. (2) as we inherently
assume that the emissions occur into clean air advected from
the ocean during the previous night. Empirically, we use si-
nusoidal and 5th polynomial fits through the median values
of 15 min binned concentrations presented in Fig. 8 to calcu-
late the mixed layer fluxes for the first day over land. Both
fits have been of equal merit for interpolation.

Methods to determine the importance of entrainment are
often: (i) based on a distinct concentration jump (1S) across
the CBL like e.g.Fe=−wentr (CCBL−CFT) with wentr being
the boundary layer growth on time as used in e.g. Goulden
et al. (2004) or (ii) related to the overshoot and exchange
of heat, moisture and compounds driven by the thermals
Fe=Ke dC/dz, where the exchange coefficientKe is propor-
tional to the convective velocity scaling and inversely propor-
tional todT/dz. It can be questioned if these methods, which
are strictly speaking valid under clear sky conditions, are ap-
plicable to clouded boundary layers with a less pronounced
concentration jump. This discussion has been further pur-
sued in Vil̀a-Guerau de Arellano et al. (2009).
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Fig. 11. (aandb) Comparison of the mixed layer median fluxes for isoprene (after correction for chemical loss), methanol and acetone to
their surface layer fluxes obtained for Brownsberg.(c andd) Estimated entrainment fluxes based on the concentration jump method.

Overshoots beyond the clear sky boundary layer due to
shallow cumuli clouds (as indicated in Fig. 4b) are important,
but the transport level is not uniform over the entire domain
due to partial cloud cover.

Based on the concentration jump method we estimate a
maximum detrainment flux (Fe) of 1.4 mg isoprene m−2 h−1

around 13:20 LT for a boundary layer that grows to
1450 m. Consequently, we obtain a surface flux (Fs) of
6.9 mg isoprene m−2 h−1. The detrainment flux for isoprene
is on the order of 45% down to 25% of the surface flux be-
tween 10:00 and 12:00 LT. This is in good agreement with the
findings of e.g. Fedorovich (1995) and Spirig et al. (2004) for
a tropical rainforest site near Manaus.

To estimate the surface flux for Brownsberg, we as-
sume the same CBL evolution as used for the airborne
data. Since OH concentrations were not measured within
the canopy, we compensate for chemical loss by using
(ISOP+MACR+MVK+(MACR+MVK)*61/39). A value for
Fs−Fe of 6.3 mg isoprene m−2 h−1 has been obtained which
is agreement with our regional surface flux derived from the
aircraft data

In Table 2, the GABRIEL results are compared with pre-
vious tropical forest emission studies. We conclude that
the isoprene fluxes obtained here are higher than e.g. mean
REA-measured isoprene fluxes of 2.5 mg isoprene m−2 h−1,
which were measured under cloudy conditions in Costa
Rica in October 1999 by Geron et al. (2002). Sim-
ilarly, Karl et al. (2004) observed on average 1.72
(max 2.5 mg isoprene m−2h−1) for a drought-stressed Costa
Rican ecosystem in April–May, 2003. These results suggest

that tropical rainforest of Costa Rica seems generally to emit
less isoprene compared to the Amazon and the Guyanas rain-
forests.

Karl et al. (2007) described how an average eddy
covariance surface flux of 8.3±3.1 mg isoprene m−2 h−1

or an average mixed layer gradient surface flux of
12.1±4.0 mg isoprene m−2 h−1 was obtained near to the cen-
tre of the Amazon (Manaus). These measurements have also
been conducted under partially cloudy sky for a boundary
layer which was defined to be∼1200 m deep, corresponding
to the bottom of the developing cloud layer. This is different
to the definition used here, as discussed earlier.

Kuhn et al. (2007) reported a mean midday isoprene flux
of 6.2 mg isoprene m−2 h−1 using the mixed layer gradient
method for a mixed layer depth of∼1100 m near Manaus in
July 2001. They state that this flux was on average about a
factor two higher than the fluxes derived from tower-based
measurements reported in the same study.

Karl et al. (2007) and Kuhn et al. (2007) used the mixed
box technique to estimate the OH concentration over the
tropical rainforest (assuming an entrainment term). Given
by:

Fs−Fe =
C

τ
zi=

(
kisop,OH [OH]t +kisop,O3 [O3]t

)
Caveragetzi (3)

in which Caverage is the average PBL concentration,zi is the
height of the PBL.

In contrast, we have measured all parameters on the right
hand side of Eq. (3) (including OH). We obtain values
for Fs−Fe that range, for the well mixed afternoon condi-
tions, between 16 and 25 mg isoprene m−2 h−1 (25 p–75 p)
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Table 2. Oceanic vertical profiles for methanol, acetone and acetonitrile used for SCM-model initialisation.

Flux (mg m−2 h−1) isoprene Location, year, (season)

Karl et al., 2007 Avg: 7.8±2.3 Manaus
EC, tower & airborne, PTR-MS Max: 12.1±4.0 September, 2004 (dry)

Karl et al., 2004 Avg: 1.72 Heredia, Costa Rica
DEC,tower, PTR-MS Max: 2.50 April & May, 2003 (dry)

Geron et al., 2002 Avg: 2.50 Heredia, Costa Rica
REA, cartridges, GC-FID Max:∼11 October, 1999 (dry)

Kuhn et al., 2007 Manaus, Brazil,
REA,tower, cartridges, CGMS Avg: 2.36 July, 2001 (dry)

Rinne et al., 2002 Tapajós, Brazil
DEA,tower, cartridges, FIS Max:∼2.40 July, 2000 (end of wet)

Greenberg et al., 2004a Tapajós, Brazil
Tethered balloon, cartridges, CGMS Max: 2.2* February, 2000 (wet)

Greenberg et al., 2004a Balbina, Brazil
Tethered balloon, cartridges, CGMS Max: 5.3* March, 1998 (wet)

Greenberg et al., 2004a Rondônia, Brazil
Tethered balloon, cartridges, CGMS Max: 9.8* February, 1999 (wet)

This study French Guyana, Suriname
airborne Median: 6.9 October 2005 (dry)

methanol acetone

Karl et al., 2004 Avg: 0.13 Avg: 0.09 Heredia, Costa Rica
DEC,tower, PTR-MS Max: 0.50 Max: 0.36 April & May 2003

Geron et al., 2002 Avg: 1.41 Avg: 2.25 Heredia, Costa Rica
REA, cartidges, GC-FID October, 1999

This study Med: 0.50 Med:0.36 French Guyana, Suriname
airborne October 2005 (dry)

∗ estimated from a box model by Guenther et al. (1999).

and a median of around 20 mg isoprene m−2 h−1 for this re-
gion. Such flux values are much higher than we have ob-
tained following the mixed layer budget approach and much
higher than observed by both studies mentioned. Further-
more, the OH-concentrations deduced over the rainforest by
the aforementioned studies (1.3±0.5×106 molecules cm−3

and 2.5±1.5×106 molecules cm−3, respectively) are sub-
stantially lower than measured during GABRIEL (on average
∼5×106 molecules OH cm−3).

For the L19 and L60 SCM simulations, after compensation
for chemical loss (by the sum of parent and product concen-
trations), we have calculated mixed layer maximum values
for Fs−Fe of 6.0 and 4.6 mg isoprene m−2 h−1 respectively
at 12:00 and 13:00, each with respect to their own simulated
boundary layer evolution.

Due to the different CBL growth rates in each
model version, entrainment maximum detrainment fluxes
were calculated for conserved isoprene of 0.70 and
0.54 mg isoprene m−2 h−1 for the L19 and L60 version re-
spectively following the concentration jump method. In the

L60 version this maximum occurs around 10:00 whereas in
the L19 version the maximum detrainment occurs at 12:00
which matches better the temporal variance of the observa-
tions.

The maximum surface layer fluxes of 6.6 and
6.1 mg isoprene m−2 h−1 calculated for the L19 and
L60 version, respectively, reflect the result from a simulated
isoprene emission flux that has been scaled down by a
factor 2 to arrive at daytime peak fluxes which are in
agreement with the “observed” emission flux. Reducing
the isoprene emission flux in the SCM does lead to higher
OH concentrations, however, reducing the isoprene flux
such that modelled and measured OH-concentrations match,
makes the isoprene mixing ratios then fall well below the
measured values.

The CBL budgeting approach applied here inherently re-
jects outliers by using median values over distinct time spans
(here 15 min) but remains sensitive to changes in concen-
trations e.g. due to biomass burning plumes. Such events
have not been considered in the methanol and acetone flux
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calculation and this has resulted in maximum mixed layer
fluxes (Fs−Fe) of, 0.50 mg methanol m−2 h−1 and a maxi-
mum mixed layer flux of 0.35 mg acetone m−2h−1 as shown
in Fig. 11 and summarised in Table 1. Estimating the entrain-
ment flux for methanol is more complicated as the concen-
tration difference between the mixed layer and the free tro-
posphere was less pronounced than it was as for acetone. We
note in particular possible contributions to acetone from ter-
pene oxidation (α-pinene oxidation yield of 15% in absence
of NO, Nozìere et al., 1999) and methanol may be formed
in the mixed layer as secondary products from the isoprene
oxidation under low NOx (e.g. from the photolysis of glyco-
laldehyde, lifetime against OH of 6 h), as well as from the
self-reaction of alkyl peroxy radicals.

The GABRIEL data show entrainment in the early morn-
ing (<10:00 LT) for acetone and methanol, however, its im-
portance could not be quantified. Acetone shows a detrain-
ment flux profile with maximum of 0.17 mg acetone m−2h−1

between 10:00 and 11:00 LT. However, due to less signifi-
cant concentration differences across the CBL the profile for
methanol, a detrainment flux of 0.11 mg methanol m−2h−1

was obtained.
Since the surface diurnal cycles in methanol and acetone

mixing ratios were rather similar, the fluxes were consid-
ered to be predominantly due to emissions from plants with
only a relatively small fraction of these fluxes from decay
(Warneke et al., 1999 and Martius et al., 2004). In the ab-
sence of CO measurements, only acetonitrile and acetalde-
hyde mixing ratios have been used to filter the Browns-
berg data for eventual biomass burning influences. For
both methanol and acetone, we obtain maximum median
surface fluxes of 0.36 mg m−2 h−1, without correction for
en/detrainment. These fluxes are comparable to the max-
imum surface layer fluxes of 0.36 mg acetone m−2 h−1 and
0.5 mg methanol m−2 h−1 reported by Karl et al. (2004) and
higher than the average flux of 0.09 mg acetone m−2 h−1 and
0.13 mg methanol m−2 h−1 observed during these 3 weeks of
disjunct eddy covariance measurements in Costa Rica. Val-
ues are nevertheless not as high as the mean REA fluxes of
2.25 mg acetone m−2h−1 reported by Geron et al. (2002) for
October 1999.

Very low fluxes for species like acetone and methanol are
obtained by use of Eq. (3), due to their long atmospheric life-
times even though the observed mixing ratios are not sub-
stantially low.

In an alternative approach the fluxes of acetone and
methanol were also estimated from their longitudinal con-
centration gradient in the boundary layer as function of
the time over land (TOL). This gradient of relatively un-
reactive species builds up as the emissions accumulate in
the air traversing the rainforest. TOL has been calcu-
lated along the back trajectories of the air parcels as dis-
cussed by Gebhardt et al. (2008). In contrast to the halo-
genated compounds, methanol and acetone do express a di-
urnal cycle. By interpreting the observations in a Lagrangian

sense, i.e. with increasing TOL (max 14 h=sunset to sun-
rise), time of the day and consequent to the CBL height,
fluxes can be determined. In this admittedly cruder ap-
proach, as less data points remain after filtering, the obtained
mixed layer fluxes are∼0.42±0.05 mg methanol m−2 h−1

and∼0.28±0.04 mg acetone m−2 h−1 and are thereby com-
parable but slightly lower than obtained previously. The er-
rors taken into account for the Orthogonal Distance Regres-
sion are the total measurement uncertainty on the PTR-MS
measurements and an uncertainty of 20% on the time over
land. Interestingly, this method also indicates a mixed layer
methanol flux which is higher than observed for the ground-
based measurements.

6 Conclusions

The presented analyses of airborne and ground-based obser-
vations of BVOC mixing ratios, complemented by the simu-
lated tropical forest chemistry in a single column chemistry
and climate model, in combination with OH measurements,
have permitted an assessment of the chemistry occurring over
the tropical rainforest. Empirically derived isoprene fluxes
are significantly smaller (circa factor 2) than those predicted
by the implementation of MEGAN in the SCM. However, it
has been shown that even if such a “state of the art model” is
adjusted to emit isoprene at the empirically determined rates,
isoprene and OH radical levels cannot be accurately simu-
lated. This is in spite of the fact that there is reasonable agree-
ment between modelled and measured boundary layer me-
teorological parameters. The measured OH-concentrations
above the tropical rainforest were always higher than cur-
rently modelled. This suggests that for this region both the
isoprene emission flux and the subsequent photochemistry
are not well simulated by the SCM model version applied
here.

The campaign average mixed layer depth was success-
fully extracted from the occurrences of potential tempera-
ture inversions. The depth rose from∼500 m in the morn-
ing (09:00) to∼1450 m in the afternoon. The SCM repro-
duces the main characteristics and evolution of the observed
CBL. It has been shown that the deeper transport through
clouds also affects the distribution of reactive tracers like iso-
prene and accordingly of MACR+MVK to higher altitudes.
Methanol and acetone mixing ratio vertical profiles are less
steep but suggest mixing throughout a higher vertical do-
main. The importance of deeper transport through clouds
was directly related to the cloud cover which increased over
the course of a day.

The mixed layer diurnal cycle of isoprene showed low
mixing ratios (ca. 0.5 ppbv) in the morning increasing to
about 3.5 ppbv in the afternoon. Mixing ratios measured
from the aircraft were significantly lower than those mea-
sured at the surface since the transported air has been im-
pacted by chemical oxidation and by mixing in of air from
above.
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It was shown that the mixed layer isoprene diurnal cycles
can be used to empirically determine the emission flux us-
ing the CBL budgeting approach provided that other influ-
ences such as boundary layer dynamics and chemistry are
taken into account. A maximum median mixed layer flux
Fs−Fe of 5.7 mg m−2 h−1 for isoprene was corrected for
detrainment into a surface flux of 6.9 mg isoprene m−2 h−1,
which is in good agreement with surface observations at
Brownsberg. Based on this, the Guyana’s rainforest emits
93.4 mg isoprene m−2 day−1 for the dry season (∼6 month
per year). To estimate the annual emission, we assume
a surface cover of 11 million km2 for this tropical rainfor-
est ecosystem (Mayaux et al. (1998) and a 5 times higher
isoprene emission rate for the dry season than for the wet
season (based on the results from the TROFFEE and the
AMAZE campaigns around Manaus). We estimate the an-
nual isoprene emission from the tropical rainforest to be
232 Tg C yr−1. However, model simulations (Guenther et
al., 2006) and previous measurements show that the iso-
prene emission rate increases further inland and therefore
the total amount of carbon from the tropical rainforest will
in all probability be higher. Analogously, daily maximum
median surface layer fluxes of 0.5 mg methanol m−2 h−1 and
0.35 mg acetone m−2 h−1, respectively correspond to annual
emission fluxes of 6 Tg C yr−1 and 2 Tg C yr−1 from this kind
of tropical rainforest.

Higher resolved boundary layer schemes in the SCM (and
other state-of-the art atmospheric chemistry and transport
models) compared to default resolution of 5 layers in the
CBL are required in order more realistically simulate the ver-
tical distribution of water and energy, BVOCs and other trac-
ers over the course of a day. A vertical resolution of 13 layers
within the boundary layer effectively reduced boundary mix-
ing ratios by circa 30% and increased the OH concentration
by almost 50% between 09:00 and 16:00 LT. As the SCM’s
default resolution is commonly used in global chemistry-
transport models, such increase could affect the prediction
of the oxidation capacity of the atmosphere above tropical
rainforests.

Additional regional scale observations of BVOC concen-
trations and fluxes are needed over tropical continents in
combination with high resolution boundary layer meteo-
rological measurements to better constrain the budget of
BVOCs emitted by the different tropical ecosystems. Fur-
thermore in-depth investigation of the underlying low NOx,
organic oxidation chemistry in the remote troposphere is
needed to improve current atmospheric models.
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