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Abstract. The organic aerosol (OA) dataset from an Aero- tors would be required to explain the remaining variance.
dyne Aerosol Mass Spectrometer (Q-AMS) collected at theThis residual structure appears to be due to variability in the
Pittsburgh Air Quality Study (PAQS) in September 2002 wasspectra of the components (especially OOA-2 in this case),
analyzed with Positive Matrix Factorization (PMF). Three which is likely to be a key limit of the retrievability of com-
components — hydrocarbon-like organic aerosol OA (HOA), ponents from AMS datasets using PMF and similar meth-

a highly-oxygenated OA (OOA-1) that correlates well with ods that need to assume constant component mass spectra.
sulfate, and a less-oxygenated, semi-volatile OA (OOA-2)Methods for characterizing and dealing with this variabil-
that correlates well with nitrate and chloride — are identified ity are needed. Interpretation of PMF factors must be done
and interpreted as primary combustion emissions, aged SOAcarefully. Synthetic data indicate that PMF internal diagnos-
and semivolatile, less aged SOA, respectively. The complextics and similarity to available source component spectra to-
ity of interpreting the PMF solutions of unit mass resolution gether are not sufficient for identifying factors. It is critical
(UMR) AMS data is illustrated by a detailed analysis of the to use correlations between factor and external measurement
solutions as a function of number of components and rotatime series and other criteria to support factor interpretations.
tional forcing. A public web-based database of AMS spectraTrue components withk<5% of the mass are unlikely to be

has been created to aid this type of analysis. Realistic synretrieved accurately. Results from this study may be useful
thetic data is also used to characterize the behavior of PMFor interpreting the PMF analysis of data from other aerosol
for choosing the best number of factors, and evaluating thanass spectrometers. Researchers are urged to analyze future
rotations of non-unique solutions. The ambient and synthetidatasets carefully, including synthetic analyses, and to evalu-
data indicate that the variation of the PMF quality of fit pa- ate whether the conclusions made here apply to their datasets.
rameter (0, a normalized chi-squared metric) vs. number
of factors in the solution is useful to identify the minimum
number of factors, but more detailed analysis and interpre-

tation are needed to choose the best number of factors. The Introduction

maximum value of the rotational matrix is not useful for de-

termining the best number of factors. In synthetic datasetsFine particles have important effects on human health, visi-
factors are “Sp"t” into two or more Components when solv- blllty, climate forcing, and deposition of acids and nutrients
ing for more factors than were used in the input. Elementsto ecosystems and crops. Organic species represent an im-
of the “splitting” behavior are observed in solutions of real portant fraction of the submicron aerosol at most locations
datasets with several factors. Significant structure remain§Kanakidou et al., 2005; Zhang et al., 2007a). Typically re-
in the residual of the real dataset after physically-meaningfulferred to as organic aerosols (OA), they are the sum of mul-

factors have been assigned and an unrealistic number of fadiple primary and secondary sources that can evolve due to
aging processes. Apportioning organic aerosols into their
sources and components correctly is a critical step towards
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The organic source apportionment problem has beerysis (CPCA) method applied to OA data from the Pittsburgh
approached by several techniques. Turpin and HuntzSupersite from 2002. The resulting factors were identified as
icker (1991) utilized the ratio between elemental carbon anchydrocarbon-like organic aerosol (HOA, a reduced OA) and
organic carbon (EC/OC) from filter samples to estimate pri-oxygenated organic aerosol (OOA) and were strongly linked
mary and secondary OA. Schauer et al. (1996) used molecuo primary and secondary organic aerosol (POA and SOA),
lar markers with a chemical mass balance (CMB) approaclrespectively, based on comparison of their spectra to known
to apportion OA extracted from filters and analyzed by GC-sources and their time series to other tracers. OOA was found
MS. Several sources with unique markers can be identifiedto dominate OA {2/3 of the OA mass was OOA), in con-
but source profiles must be known a priori, sources withouttrast to previous results at this location (Cabada et al., 2004).
unique markers are not easily separated, and only primaryhang et al. (2007a) used the Multiple Component Analy-
OA sources are identified. Szidat et al. (2006) have sepasis technique (MCA, an expanded version of the CPCA) for
rated anthropogenic and biogenic OA based on water solubilseparating more than two factors in datasets from 37 field
ity and 14C/12C ratios and found a major biogenic influence campaigns in the Northern Hemisphere and found that the
in Zurich, Switzerland. The technique has very low time res-sum of several OOAs comprises more of the organic aerosol
olution (many hours to several days) and can identify onlymass than HOA at most locations and times, and that in rural
a few categories of sources. Traditional OA filter measure-areas the fraction of HOA is usually very small. Marcolli et
ments suffer from low time resolution (several hrs. to days)al. (2006) applied a hierarchical cluster analysis to Q-AMS
and positive and negative artifacts (Turpin et al., 2000). data from the New England Air Quality Study (NEAQS)

The last 15 years have seen the development of a new gerfirom 2002. Clusters in this data represented biogenic VOC
eration of real-time aerosol chemical instrumentation, mostoxidation products, highly oxidized OA, and other small cat-
commonly based on mass spectrometry or ion chromatograegories. Lanz et al. (2007) applied Positive Matrix Factor-
phy (Sullivan et al., 2004; DeCarlo et al., 2006; Williams ization (PMF) (Paatero and Tapper, 1994; Paatero, 1997)
et al., 2006; Canagaratna et al., 2007; Murphy, 2007). Curto the organic fraction of a Q-AMS dataset from Zurich in
rent real-time instruments can produce data over timescalethe summer of 2005. The six factors identified in this study
of seconds to minutes and have reduced sampling artifactarere HOA, two types of OOA (a highly-oxidized, thermody-
compared to filters. Single-particle mass spectrometers (e.gnamically stable type called OOA-1 that correlates well with
PALMS, ATOFMS, SPLAT) have used particle classification aerosol sulfate; and a less-oxidized, semi-volatile type called
systems to group particles based on composition or othe©OA-2 that correlates well with aerosol nitrate), charbroil-
characteristics (Murphy et al., 2003). A fast GC-MS sys- ing, wood burning, and a minor source that may be influ-
tem (TAG) has been developed that may allow the applica-enced by food cooking. Lanz et al. (2008) applied a hybrid
tion of the molecular marker technigue with much faster timereceptor model (combining CMB-style a priori information
resolution than previously possible (Williams et al., 2006). of factor profiles with the bilinear PMF model) specified by
However GC-MS as typically applied discriminates againstthe Mulilinear Engine (ME-2, Paatero, 1999) to apportion the
oxygenated organic aerosols (OOA) (Huffman et al., 2009),organic fraction of a Q-AMS dataset from Zurich during win-
which is the dominant ambient OA component (Zhang et al.,tertime inversions, when no physically-meaningful compo-
2007a), and thus may limit the applicability of this technique nents could be identified by the bilinear model alone. Three
by itself. It is highly desirable to perform source apportion- factors, representing HOA, OOA, and wood burning aerosol,
ment based on the composition of the whole OA. This infor- were identified, with OOA and wood-burning aerosol ac-
mation cannot be obtained at the molecular level with currenttounting for 55% and 38% of the mass, respectively. More
techniques, however several techniques are starting to chaadvanced source apportionment methods based on Bayesian
acterize the types/groups of species in bulk OA (Fuzzi et al. statistics, which output a probability distribution instead of
2001; Russell, 2003; Zhang et al., 20054, c). scalars for each element of the source profiles and time se-

The Aerodyne Aerosol Mass Spectrometer (AMS) be-ries and thus contain information necessary for a statistical
longs to the category of instruments that seeks to measurevaluation of the uncertainty of the output, are under de-
and characterize the whole OA. It has been designed to quanrelopment (Christensen et al., 2007; Lingwall et al., 2008).
titatively measure the non-refractory components of submi-Bayesian models can also incorporate prior information in a
cron aerosol with high time resolution (Jayne et al., 2000;natural and probabilistically rigorous way by specification of
Jimenez et al., 2003) and produces ensemble average specthae “prior distribution” for each variable. Bayesian methods
for organic species every few seconds to minutes (Allan etare expensive computationally, and the more complex output
al., 2004). Several groups have attempted different methodsequires greater review by the researcher. Bayesian methods
to deconvolve the OA spectral matrix measured by a Q-AMShave not been applied to aerosol MS data to our knowledge.
(Zhang et al., 2005a, c, 2007a; Marcolli et al., 2006; Lanz et Of the analysis techniqgues mentioned above, PMF is the
al., 2007). Zhang et al. (2005a) first showed that informationmost widely used in the atmospheric research community
on OA sources could be extracted from linear decompositionLee et al., 1999; Ramadan et al., 2000; Kim et al., 2003;
of AMS spectra by using a custom principal component anal-Xie et al., 1999; Larsen and Baker, 2003; Maykut et al.,
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2003) and its application to PM has been recently summa-

rized in two separate reviews (Reff et al., 2007; Engel-Cox ™ oo 1 Mets’ e
and Weber, 2007). PMF is a receptor-only, factorization ] B e _ -] A
model based on mass conservation which requires no a pri- = |- 2 K h
ori information about factor profiles or time trends. PMF e § E
has generally been applied to long-term, low-time-resolution 2] : 3 |4 P ! H“
datasets, though there has been a call for greater applicationF = ‘g 4 + ?E . LY
of source apportionment techniques to air pollution events g E g |f
to facilitate understanding of specific sources for regulatory E 2k
purposes (Engel-Cox and Weber, 2007). As shown schemat- § >< {
ically in Fig. 1, PMF is a bilinear unmixing model in which a

N - J —

dataset matrix is assumed to be comprised of the linear com- N
bination of factors with constant profiles that have varying Mass Spectrur ank Time Series
contributions across the dataset. All of the values in the pro-

files and contributions are constrained to be positive. Therjg 1. schematic of PMF factorization of an AMS dataset. The
model can have an arbitrary number of factors; the user mus§me series of the factors make up the ma@iand the mass spectra
select the solution that “best” explains the data. This is oftenof the factors make up the matrixin Eq. (1).

the most subjective and least quantitative step of PMF anal-
ysis and relies greatly on the judgment and skill of the mod-

eler (Engel-Cox and Weber, 2007; Reff et al., 2007). In ad-mixing data from different instruments for which the relative
dition, mathematical deconvolution of a dataset often yieldserrors may be more difficult to quantify precisely, or that may
non-unique solutions, in which linear transformations (collo- drift differently, etc.

quially referred to as “rotations”) of the factors are possible |, ihis work, we apply PMF to data obtained with the

while thg positivity constraint is maintaineq. The nec.essityqu.jujrupme Aerosol Mass Spectrometer (Q-AMS) during the
of choosing a number of factors and a particular rotation Of'Pittsburgh Air Quality Study. Three factors, interpreted as

ten complicates the interpretation of the solutions. As clearlyyoa aged regional OOA, and fresh, semivolatile OOA are

ar’gcglated by P. Paatero, personal communication, 2007:  yanarted for the Pittsburgh ambient dataset. The ambigui-
~ “ltis unfortunate thatintroducing a priori information also ieq associated with choosing the number of factors and their
introduces some subjectivity in the analysis [...] However, yo; rotations are reported. In addition, sensitivity analyses
the tradeoff is often between a successful albeit subjectively, e herformed with synthetic datasets constructed to retain
aided analysis and an unsuccessful analysis. [....] subjectivg,q inherent structure of AMS data and errors. We explore
decisions must be fully and openly reported in publications. ,athods that can inform the choice of the appropriate num-

[...] Hiding the details of subjective decisions or even worse, e, of factors and rotation for AMS OA datasets, as well as
pretending that no sub!ectl\{lty is mclut_jed_m the analys's'investigate the retrievability of small factors.
should not be tolerated in scientific publications”.

Although the application of PMF analysis to data from the
AMS and other aerosol mass spectrometers is relatively new,
it is quickly becoming widespread. Thus, a detailed charac2 Methods
terization of the capabilities and pitfalls of this type of anal-
ysis when applied to aerosol MS data is important. UMR 2.1 Aerosol Mass Spectrometer (AMS)
AMS datasets are very large with typically several million
datapoints £300m/Zs per sample, with~8000 samples for The Q-AMS has been described in detail elsewhere (Jayne
a month-long campaign with 5 min averaging) and fragmen-et al., 2000; Jimenez et al., 2003) and only a brief sum-
tation of molecules during ionization gives each mass specmary is given here. The AMS consists of three main parts:
trum strongly interrelated data. AMS datasets differ in two an inlet system which generates a particle beam, a particle
fundamental ways from most atmospheric datasets to whiclsizing section, and a particle composition analysis section.
PMF has been applied. The structure, internal correlationThe inlet focuses submicron particles into a narrow beam. A
between somen/Zs created by significant fragmentation of mechanical chopper allows all particles (“beam open”), no
molecules in the vaporization and ionization processes in thgarticles (“beam closed”), or a packet of particles (“beam
AMS, and precision of AMS data are significantly differ- chopped”) to pass to the particle sizing region. Particles im-
ent from datasets of multiple aerosol components (metalspact on a flash vaporizer (600) at the rear of the sizing
organic and elemental carbon, ions, etc.) measured by sewvegion under high vacuum~10~7 Torr). The vapors from
eral instruments typically used with PMF in previous studies.non-refractory components are ionized by electron impact
The error structure is also more coherent and self-consister(70 eV) and the resultant positively charged ions are analyzed
due to the use of data from a single instrument, rather tharby the quadrupole mass spectrometer.
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The Q-AMS can be operated in any of three modes: massis on the total spectrum without removing inorganic species
spectrum (MS), particle time-of-flight (PToF), or jump mass (but still removing the large air signals), however this is out-
spectrum (JMS). In MS mode, the chopper alternates beside the scope of this paper.
tween the beam open and closed positions while the mass
spectrometer scans acrasizl to 300. Each e.g. five-minute 2.2 Factorization methods
average is the difference between the total open and closed
signals and is the ensemble average mass spectrum of thog-2 1 Positive Matrix Factorization (PMF)
sands of particles. In PToF mode, the beam is chopped and
packets of one or a few particles enter the particle sizing rePositive Matrix Factorization (PMF) (Paatero and Tapper,
gion. Particles achieve size-dependent velocities at the exi1994; Paatero, 1997) is a model for solving a receptor-only,
of the lens which allows measurement of particle size dis-bilinear unmixing model which assumes that a measured
tributions, but only at~10-15 selectedh/Zs. JMS mode is  dataset conforms to a mass-balance of a numberoat
identical to MS mode except in that onlylOm/Zs are mon-  stantsource profiles (mass spectra for AMS data) contribut-
itored to maximize signal-to-noise ratio (SNR) (Crosier et ing varying concentrations over the time of the dataset (time
al., 2007; Nemitz et al., 2008). We use the MS mode dataseries), such that
for this study because it has high signal-to-noise and con-
tains the full structure of the mass spectra and thus the mostii = Zgipfpj + eij 1)
chemical information. Each sample is the linear combina- P

tion of the spectra from all particles and species vaporizedyherei and j refer to row and column indices in the ma-
during the sample period. If JMS data is available, it may betrix, respectively,p is the number of factors in the solution,
used to replace the Mi@/Zs as the JMS data has much better andx;; is an element of the:xn matrix X of measured data
SNR (Crosier et al., 2007). Preliminary analyses show thaklements to be fit. In AMS data, the rows ofX are ensem-
PToF data contains significant information that can be ex-ple average mass spectra (MS) of typ|ca||y tens of thousands
ploited by PMF-like methods (Nemitz et al., 2008), however of particles measured over each averaging period (typically
this also introduces additional complexities and it is outsides min) and the: columns ofX are the time series (TS) of
of the scope of this paper. eachm/zsampled. g;; is an element of the:xp matrix G
Newer versions of the AMS include the compact time- whose columns are the factor T, is an element of the
of-flight mass spectrometer (C-ToF-AMS, Drewnick et al., px, matrix F whose rows are the factor profiles (MS), and
2005) and the high-resolution ToF-AMS (HR-ToF-AMS, ¢;; is an element of thenxn matrix E of residuals not fit
DeCarlo et al., 2006). These instruments operate in MSpy the model for each experimental data poltX —GF).
and PToF modes. Conceptually the MS mode from the C-A schematic representation of the factorization is shown in
ToF-AMS produces identical data to those from the Q-AMS, Fig. 1. The model requires no a priori information about
except with higher SNR, and thus the results from this Pa-the values ofG and F. We normalize the rows iifr (MS)
per should be applicable to PMF analyses of such data. Thﬁ) sum to 1, g|v|ng units of mass Concentratimg(rn?’) to
MS mode from the HR-ToF-AMS contains much additional the columns ofs (TS). The values ofs andF are iteratively
chemical information such as time series of high resolutiongit to the data using a least-squares algorithm, minimizing a
ions (e.g., both §1—|;r and GH3O™ instead of totaim/z43) quality of fit parameten, defined as
that facilitates the extraction of PMF components. The first
application of PMF to HR-ToF-AMS MS-mode data has LA 2
been presented in a separate publication (Aiken et al., 2009).Q - Z Z(eij/aij)
The datasets used in this study are comprised of only the
organic portion of the AMS mass spectrum measured bywhereo;; is an element of the:xn matrix of estimated er-
the Q-AMS, which is determined from the total mass spec-rors (standard deviations) of the points in the data maix,
trum by application of a “fragmentation table” (Allan et al., In the “robust mode” of the algorithm, outlierk(/o;;|>4)
2004) for removing ions from air and inorganic species. Theare dynamically reweighted throughout the fitting process so
atomic oxygen to carbon ratio (O/C) for UMR MS can be that they cannot pull the fit with weight4. The Q-value
estimated from the percent of OA signalmatz44 (predom-  reported by PMF is calculated using the reduced weights for
inately Cq) in the OA MS (Aiken et al., 2008). Percent the outliers. This scaling makes optimal use of the informa-
m/z44 is reported here as an indication of the degree of oxy+ion content of the data by weighing variables by their de-
genation of representative spectra. gree of measurement certainty (Paatero and Tapper, 1994).
The time series of inorganic species (non-refractory am-It is possible that there may be multiple local minima of the
monium, nitrate, sulfate, and chloride) are not included in theQ function (Paatero, 1997); additional solutions can be ex-
PMF analysis and are instead retained for a posteriori complored by starting the PMF2 algorithm from different pseu-
parison with the time series of the factors and for use in theirdorandom values known as “seeds” within the PMF algo-
interpretation. Itis also of interest to perform the PMF analy- rithm. Additionally, the values its andF are constrained to

@)

i=1j=1
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g. 2. Screenshot of PMF Evaluation Tool developed for general examination of PMF solutions.

be positive, reflecting positive contributions of each factor to Choosing the number of factors
the measured mass and positive signal in eath respec-

tively. The number of factorsy, in the real dataset is generally un-
The bilinear model can be solved by the PMF2 (Paateroknown. Choosing the best modeled number of factors for a

2007) and multilinear engine (ME) (Paatero, 1999) algo- . " - . .
rithms developed by P. Paatero, or by custom algorithms degjatas;et is the most critical decision to the interpretation of the

veloped by others (Lu and Wu, 2004; Lee and Seung, 1999!2'\/;'.: drgzgtrsrﬁ.:;Ygrr‘a;fr?ﬁtshe;?agcil fn: ;tréﬁe?% \;]e_sbt:en used
Hoyer, 2004). Here we use PMF2 because of its robustnests : inatl IS value. Al iterion is tge

and wide use in the research community. Future work willv‘ﬁluei the.tOtﬁl sum 9f the ?_quare_shqf tr;]e _scaled res(;duals. I
explore more complex models using the ME program. All ‘1 pombts "_1. t/ e”n_‘latrl)l< ared |thto within their expecte elrror,
analyses in this study were done with PMF2 version 4.2 inthen abs §;)/oi; is ~1 and the expecte@ (Qexp) equals

the robust mode, unless otherwise noted. The default convef® degrees of freedom of the fitted datarm—p(m-+n)

gence criteria were not modified. Since the output of PMF iS(Paatero et al,, 2002). For AMS dgtasevtm>>p(m+:_1),
S0 Qexp@mn, the number of points in the data matrix. If

very large and evaluating it is very complex, we developed ' . .
y'arg g y b b athe assumptions of the bilinear model are appropriate for the

custom software tool (PMF Evaluation Tool, PET, Fig. 2) in . :
Igor Pro (WaveMetrics, Inc., Portland, Oregon) to evaluatepmblem (data is the sum of variable amounts of components

PMF outputs and related statistics. The PET calls the PMF%’; Iiﬁ:?:sbirgagai?s sascrt):i?g'?e) ig?u:;igivuiﬂax;g;g%f ;;ZES
algorithm to solve a given problem for a list of valuesof P '

tors that giveQ/Qexp Near 1 should be obtained. Values of

and FPEAK or SEED, stores the results for all of these com- ey X ) T
binations, and allows the user to rapidly display and com__Q/Qexp>>1 indicate underestimation of the errors or variabil-

pare many aspects of the solution matrix and residuals and tgy in the factpr profiles that cannot be simply modeled as the
sum of the given number of components fQexp<k1, the

systematically evaluate the similarities and differences of the rrors of the inbut data have been overestimated. As addi-
output spectra and time series with known source/componer{? P . ; )
Ional factors are considered) is expected to decrease, as

spectra and tracer time series. o .
P each additional factor introduces more degrees of freedom
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that should allow more of the data to be fit. A large decreaseRotational ambiguity of solutions

in Q with the addition of another factor implies that the addi-

tional factor has explained significantly more of the variation Despite the constraint of non-negativity, PMF solutions may
in the data and has also been used as a metric for choosirgpt be unique, i.e., there may be linear transformations (“ro-
a solution (Paatero and Tapper, 1993). A second metric fofations”) of the factor time series and mass spectra that result
choosing a best solution is based on the values of the rotalh an identical fit to the data, such that:

tional matrix (RotMat, output by PMF and explained below). GE — GTT-IF )
Some have used the criterion of a solution with the least ro-~—
tation (lowest maximum value of Rotmat) as one of severalwhereT is a transformation matrix a1 is its inverse. A

qualitative metrics for making the determination of the num- givens;>0 would create a rotation by adding the mass spec-
ber of factors (Lee et al., 1999; Lanz et al., 2007). Many tra and subtracting the time series of factomnd j, while
studies have concluded that source apportionment modelg; <0 would create a rotation by subtracting the mass spectra
must be combined with supplementary evidence to choos@nd adding the time series of factomndj. An infinite num-
and identify factors (Engel-Cox and Weber, 2007). ber of “rotations” may exist and still meet the non-negativity
Choosing the best number of factors requires the modelegonstraint. Note that orthogonal or “solid body” geometric
to determine when additional factors fail to explain more of rotations of the factors are only a subset of the possible lin-
the variability in the dataset. Note that it is possible for one ear transformations.
true factor to be mathematically represented by multiple fac-  PMF2 does not report the possible valuesTobut does
tors which, in total, represent the true factor (Paatero, 2008a)eport the standard deviation of possible valued afs the
Consider a case in which two true factors make up the dataRotMat” matrix. Larger values iff imply greater rotational
with no error, such that freedom of a solution. Specifically, a larger valuepfsug-
X = GF 3) gests th_at théan_d Jj factors can be _m_ixed in varying o!egrees
while still satisfying the non-negativity constraint. Diagonal
whereG=[ab], the matrix of the time series of the two fac- elements off are always 1, and their standard deviations are
tors, andF" =[s¢]", the matrix of the profiles of the two fac- therefore 0. RotMat for a one-factor solution is always O.
tors, andg, b, s andr are column vectors. If the same dataset The value of RotMat as a diagnostic has been debated in the
X is solved with three factors, an exact solution could be ob-jiterature (Lanz et al., 2007; Lee et al., 1999; Paatero, 2007),
tained as and we explore its use as a qualitative indicator of rotational
X = [efb] x [sst]” (4) freedom of a given solution (Sect. 3.1.2, 3.2.2).

With PMF2, once the approximate best number of factors
if e+ f=a. In fact, a case could be constructed in which two 35 heen determined, a subset of the rotational freedom of the
factors reconstruds instead ofa, generating a second type gg|ution may be explored through use of the FPEAK parame-
of 3-factor solution. More combinations are possible whenie; FPEAK allows for examining approximate or “distorted”
the sameX created with 2 factors is solved with 4 factors, yotations that do not strictly follow Eq. (7) and thus produce

€.g., a higher value ofD. Of greatest interest are FPEAK values

X = [efbb] x [ssuv]” (5) fqr which Q does not increasg siglnificqntlly O\Q‘:PEAKZO, .
since the PMF model (Eq. 2) is still satisfied with little addi-

wheree+ f=a andu+v=t, or tional error. Some researchers recommend exploring a range

X = [defb] x [ssst]” (6) of FPEAKSs such tha)/Qexp increases from its minimum

) ) .. bye.g.10% (P. K. Hopke, personal communication, 2007).
whered +e+ f=a. We refer to this type of behavior as “split- - 5|y tions reported in the literature generally have an FPEAK
ting” of the real factors, where either the MS or TS from a \ 51 e between-1 and +1 (Reff et al., 2007). Not all pos-

real factor are split into two new factors. Linear transfor- gipje rotations can be explored by varying FPEAK, and the
mations (‘rotations”, discussed further in the next section)characterization of rotations outside of that realm is a topic

of these solutions are also possible. A rotation of the threews «rrent research (Paatero and Hopke, 2008; Paatero et

factor solution shown in Eq. (4) could be represented by 51 2002). As stated above, none of these metrics or crite-

X = [efb]T x T sst]” 7) ria can unequivocally pinpoint the “best” or “true” solution,
but a chosen PMF solution can be justified through compar-

1 , : ) ison of factor profiles with known profiles and comparison
T ists inverse and is a valid solution to the PMF model ¢ tactor time series with the time series of tracer species.

i -1 T
as long as the rotated factor matriceg/] T andT = [ss1] If several plausible solutions are found, e.g. with different
all have positive values. Thus the rotated solutions need NOEpEaks the differences in the solutions are a good indica-

necessarily contain repetitions of the factors from the original;q, of the uncertainty of the PMF solution (Nemitz et al.
solution (Paatero, 2008a). We refer to this later behavior asqng. paatero 2007). ’

“mixing” of the real factors.

whereT is a 3x3 non-singular transformation matrix and
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Uncertainty of the solutions data, version 1.41 or later of the standard data analysis soft-
ware is used for estimation the errors for use with PMF,
The difficult issue of the uncertainty of the solutions is rarely as corrections to the error calculation algorithms have been
addressed in PMF studies in the literature (Reff et al., 2007)made from previous versions and error matrices calculated
We address this point in this work in two ways: in a qualita- from earlier versions may give different factors because of
tive way by running the PMF algorithm from many different different weighting. Nonsensical behavior of the factors (MS
random starting points (SEEDs; Paatero, 2007), and quantiwith one dominant fragment or TS that oscillate between
tatively with bootstrapping with replacement of MS (Norris zero and severatg/m® over 5-min periods) were observed

etal., 2008; Press et al., 2007a). with this dataset when the error estimates from older ver-
. . sions of the Q-AMS data analysis software, but not when
2.2.2  Singular value decomposition v1.41 was used. Second, a minimum error estimate of one

measured ion during the sampling time (equivalent to 11 Hz
or 0.12 ng/rd, which reflects the duty cycle used during this
campaign)or the average of the adjacent error values is ap-

In contrast to PMF, the singular value decomposition (SVD)
of a matrix produces only one factorization (as in Eqg. 1) with
orthogonal factors. Starting with the factor that explains the ~ . . .

. . . . . “plied to any elements of the error matrix;{) with values
most variance of the original matrix, factors are retained in )

. . : : below this threshold by

order of decreasing variance of the matrix to explain enough
(usually 99%) of the variance of.the original matrix. Thesz_a 0, = Maxo;,j, max(1/t,, (0, 1 j+0i+1,)/2) (9)
orthogonal factors usually contain negative values. SVD is _ _ _ _
applied to selected data matrices and residual matrices to devherez is the time, in seconds, spent sampling eavia
termine the number of factors needed to explain 99% of theThird, the 3-point box smoothing applied to the dataset was
variance of the matrix. The relationship between SVD andPropagated in the error estimates by summing the error of the

PMF is described by Paatero and Tapper (1993). 3 smoothed points in quadrature. This has the effect of de-
creasing the noise estimate by a factorafgrt(3). Fourth,

2.3 Data sets we follow the recommendation of Paatero and Hopke (2003)
to remove variables (TS oh/zin our case) with signal-to-

2.3.1 Real Pittsburgh dataset noise ratio (SNR) less than 0.2 (“bad” variables) and down-

] ) ) ) weight variables with SNR between 0.2 and 2 (“weak” vari-
The real Pittsburgh dataset investigated here is the same agjes) py increasing their estimated error values. For this

thatanalyzed by Zhang etal. (2005a) with the CPCAmethod y4aset, 'no columns are “bad” by this definition and 76 of
Versions without pretreatments and with pretreatments apz,o higher mass fragmentsi{z167—168, 207, 210, 212, 214
pIied_ (filterin_g for high-noise spikes, 3-poi_nt smoothing of 220-223, 230-238, 240—249, 254-300) are “weak” and their
m/ztime series, and use of cluster analysis (Murphy et al..qror estimates are increased by a factor of 2. Finally, in or-
2003) to remove unusual ;pectra as desc_r!bed in Zhang .et a'd-erto appropriately weight/Zs 44, 18, 17, and 16 (since the
2005a) were analyzed with PMF2. Additional information |5tter 3 peaks are related proportionally onlynitzd4 in the

on the Pittsburgh study can be found in previous publlcat|on§)rg(,miC “fragmentation table” (Allan et al., 2004) whose in-
(Zhang etal., 2004, 2005a, b c,2007b). The stUdY took placg;sion therefore gives additional weight to the strong signal
7-22 September, 2002 in Pittsburgh, Pennsylvania as part of 1744, the error values for each of thesé’s are all mul-

the Pittsburgh Air Quality Study (PAQS) at the EPA Super- yisjied by sqrt(4) (N. L. Ng, personal communication, 2008:
site. 3199 time-averaged mass spectra (5-10 min averagingle Sypp.  Info. http://www.atmos-chem-phys.net/9/2891/
were pollected fom/z1 to 3QO. Fragments with plausible 2009/acp-9-2891-2009-supplement)pdihere are two sets
organic fragments were retained, leaving Bv@fragments. ¢ /75 that are directly proportional to only one otherz
Th|rty_ fragments_ were removed because they c_ould not _hav‘fm/z48 andm/z62: m/z80 andm/z94), but these signals are
plausible organic fragments, have overwhelming contribu-y,ch smaller than those of the/z44-group and the effect of
tion from inorganic or gaseous species, or high instrumentys adjustment is negligible. Note that the order of steps four
background (Zhang et al., 2005a). In addition, organic frag-ynq five are arbitrary; even after changing the error estimates
ments atm/z19 and 20 are omitted as the signals at thesex,r 25 44, 18, 17, and 16 their SNR's are approximately 25
m/zs are directly proportional ton/z44 and have negligible 4 they are not “weak” variables. The downweighting of so
contribution «0.05% of the total signal) and therefore do many m/Zs in the datasets lowers the calculat@dvalues:

not add new information to the factorization analysis. The re'Q/Qexp-values reported in this work have therefore beeﬁ re-
maining matrix had 268 columnen(3 and 3199 rows (time- 50 lated by undoing this scaling (but still applying the ro-
averaged mass spectra) with 857 332 data points. bust criterion) so thaD/Qexp-values are related to the error

The error values for use with PMF were calculated in five ogimated for each point from the data prior to downweight-
steps. First, the initial error values were calculated by the;

ing.
method of Allan et al. (2003) by the standard Q-AMS data g
analysis software (v1.41). We recommend that for Q-AMS
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No adjustments are made to the errors in this analysis tdotal) than in the real data. The weakZs in the synthetic
reflect “model error” that may occur because the true factorsdatasets include the sam#Zs as in the real dataset, as well
are not constant as assumed by the PMF model. Increasingsm/Zs 150, 185 (2-factor case only), 216, 227, 239 (3-factor
the error values to reflect this error may downweight real phe-case only), and 250-253.
nomena that are part of the true data. Note that small negative
values that are the result of differences (caused by noise) beFwo-factor synthetic dataset
tween the beam open and beam closed measurements in the
instrument data are not changed, nor are their corresponding two-factor synthetic base case was created using the HOA

error values altered. and OOA MS and TS as determined by Zhang et al. (2005a,
_ c) for the Pittsburgh dataset. Difference spectra may con-
2.3.2 Synthetic datasets tain negative values for very small signals, akin to below-

) o detection limit values in other datasets. Zhang et al. (2005a)
Each synthetic dataset was created by combining selectegioveq their method to fit these small negative values and
MS and TS intoFinput and Ginput Matrices, respectively, he resyiting factors include small negative numbers. Neg-
which were then multiplied to form arKinput MatriX  4tive values in the Zhang solution were converted to their
(Xinpu=Ginput Finput, the forward calculation of Eq. (1) with  gpqo1yte value before creating tF@yput and Ginpyt Matri-
¢ij=0). _ ) . ces, so that the input has only positive numbers. The resul-
Synthetic noise was added to the difference spectrum syney ¢ increase in signal is much smaller than the residual from
thetic data, such that the noisy synthetic datayere calcu- e 7hang factorization and does not affect the results of the
lated by PMF factorization.

x{j = (Poissomoper;j) — Poissoficlosed;)) = CF (10)

+Gaussiar0, 0.0002 Three-factor synthetic datasets

where random noise is generated from a Poisson random three-factor synthetic base case was created from the three-
number generator (Igor Pro v6.03) with a mean and vari-factor PMF solution with FPEAK=0 of the real Pittsburgh
ance of the number of ions observed in the open and closedataset (described below). All factor elements were positive
MS of that point (opep and closeg, respectively), CF is  for this solution, so no treatment of negative values was nec-
the conversion factor from ions pemn/z per averaging pe- essary.
riod to ug/m®, and electronic noise is estimated from a  Variations on the three-factor base case were made to ex-
normal Gaussian distribution with a standard deviation ofplore the ability of PMF to retrieve factors which have a
0.0002ug/m®. The amount of 0.0002g/m® is an estimate  small fraction of the total mass. Three-factor synthetic cases
of the electronic noise present during periods of low signalwere created by replacing the mass spectrum of the smallest
in severaim/Zs>239. Poisson noise is used for ion counting factor in the previous three-factor synthetic case with refer-
noise instead of Gaussian noise because many of the smadhce mass spectra (see Sect. 2.4.1) of fulvic acid (FA) (Al-
signals do not have sufficient counts to reach a Gaussian digarra, 2004), biomass burning organic aerosol (BBOA, Pal-
tribution to a good approximation. The sum of ion counting metto leaf smoke from the Fire Lab at Montana Experiment
and electronic noises represents most of the noise in a QFLAME-1) in June 2006), or fresh chamber SOA (methy-
AMS dataset, but does not reflect “particle-counting statis-lene cyclohexane+§) Bahreini et al., 2005), each of which
tics noise” from events when a large particle is vaporized anchas a different correlation to the other MS in the input. Vari-
“extra” (much greater than average) signal is detected at onlations on this case were made in which the average mass of
onem/zduring the scanning of the quadrupole acrosate  this factor was decreased (cases with 11.4%, 5.7%, 2.9%,
range (Zhang et al., 2005a). 1.4%, and 0.7% average mass fraction) and used in a new
The synthetic Poisson-distributed error values for theseGinpyt to create a newinput.
datasets were approximated by a method parallel to the
estimation of errors for real data (see description in Ap-2.4 Statistical comparisons of mass spectra
pendix A). The real and synthetic errors are similar, and thus
the synthetic datasets retain the error structure of the reat.4.1 Reference spectra
data. The treatments described in Sect. 2.3.1 (above) for ap-
plying a minimum error threshold, downweighting “weak” An AMS Spectral Database (Ulbrich et al., 2007) has been
variables, and weightingy/Zs related tan/z44 were also ap- created to collect published AMS spectra for public use.
plied to the error estimates for the synthetic datasets. No erAMS spectra are similar, but not identical to, spectra from
ror propagation for box smoothing is applied to the syntheticstandard electron-impact databases such as the NIST Chem-
data because these data are not smoothed. The SNR for tligtry WebBook bttp://webbook.nist.gov/chemistryétein et
m/Zs in the synthetic datasets are therefore higher by a factoal., 2001), primarily because of thermal decomposition of
of ~sqgrt(3), and there are more “weak” variables (&4s molecules during vaporization in the AMS and additional
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thermal energy of the ions leading to increased fragmensubscript describes what data are being compared (here, the
tation (Alfarra, 2004; Dzepina et al., 2007). Different input HOA and output HOA for a synthetic dataset). Cor-
AMS instruments operating with the same vaporizer temper+elations are calculated using only the points common to
ature produce similar spectra (Alfarra, 2004; Dzepina et al. both vectors being correlated; e.g., MS from the AMS Spec-
2007). These reference spectra are used to aid the identiral Database may have 3@0zwhile factor MS have only
fication of spectra in PMF factors. The database containghe 268n/7Zs that were retained, thus missingzvalues are
spectra for several categories of aerosol, including ambienbmitted from the vectors before calculating the correlations;
aerosol, direct measurements from sources (e.g., vehicle§,S from different instruments may be missing different peri-
biomass burning), laboratory-generated aerosol of chemicabds of data, thus only the points when both instruments report
standards, laboratory SOA, laboratory heterogeneously oxidata are included.

dized particles, other laboratory-generated aerosol, and spec-
tra derived from mathematical deconvolutions of ambient
OA. Organic aerosol spectra in the database span a rang%
of representa}tlvg hydrocarbon—llke (e.g., diesel b.us exhaust&1 Real Pittsburgh data
fuel, and lubricating oil) and oxygenated (e.g., various cham-
ber SOA, oxalic acid, and fulvic acid) OA.

Results

We explored the effect of data pretreatment (Zhang et al.,
2005a), downweighting of “weak” variables by a factor of 2
(Paatero and Hopke, 2003), and use of the robust mode in
PMF. Differences in the factor MS and TS were minor in

2.4.2 Statistics of correlation

Throughout this work we report “uncentered” correlations ) .
between MS and TS as a qualitative metric to support fac_all_cases for this dataset. Comparisons of the 3-factor so-
tor identification and compare factors amongst different PMFIu.tlonSszfrommthe. /r/obust and nor;}-robusr: mOdf/Zngegi?fg)ng/m
solutions (Paatero, 2008a). The uncentered correlation coe]E'g' ; Seattp://www.atmos-chem-phys.ne

ficient (UC) reports the cosine of the angle between a pair O@gp-9-2891-2009—supplement.dee note, howgver, that
MS or TS as vectors, such that this dataset has good SNR, that pretreatment aids the analy-

sis by removing spikes whose cause is understood (poor sam-

UC = cosd — Xy (11) pling statistics of high-mass, low-number particles mainly in

el yll HOA m/Zs, Zhang et al., 2005a), and that these techniques
can make a bigger difference for a dataset with much lower
signal-to-noise (Canagaratna et al., 2006). We report results
for the case with pretreatment, with downweighting, and in
the robust mode in order to capture the broad characteristics
of the dataset. Throughout this section, a “case” refers to an
input dataset and a “solution” refers to PMF2 results.

where x and y denote a pair of MS or TS as vec-
tors. The uncentered correlation is very similar to the
well-known PearsonR for mass spectra, and quite cor-
related with Pearson’'sRk for time series (when com-
puted with a large number of different MS and TS; see
Fig. S1, seénttp://www.atmos-chem-phys.net/9/2891/2009/
acp-9-2891-2009-supplement.pdf Correlations between 31 1 gojytions as a function of number of factors

MS are complicated because the signal values span several

orders of magnitude and a few high intensity masses (gengp.values and maximum value of RotMat for the real Pitts-
erally all atm/z=44) can dominate the correlation (Hemann pyrgh dataset for solutions up to 7 factors are shown in

et al., 2009). For correlations between factor.anq referencig. 3a and mass fractions of these solutions are shown in
MS, we also report UC fom/z-44 to remove this bias (Al-  Fig, 4a, all for FPEAK=0. There is a large drop in the

farra et aI., 2006, 2007, Lanz et a.l., 2007) These two StatiS'Q/Qexp value from one to two factorS, arQ/Qexp is 1.9

tics represent one way to numerically match factor profiles togt 2 factors. Additional factors continue to redu@éQexp
reference profiles for AMS datasets and improve the sourcoward 1, but no strong change in slope is observed (largest
identification process (as suggested by Reff et al., 2007). Asteps are 9% from 2—3 factors and 4-5 factors). With seven
rank-correlation method, Spearm&nin which correlations factors, 0/ Qexp is 1.3. The(Q criterion clearly implies that
are made using the rank order of values (highestew- 5t |east two factors are necessary to explain the data, but
est=1) instead of the actual data values (Press et al., 2007bhere is no strong indication for choosing another solution.
was also considered as well as several variations on it (e.gpax(RotMat) has a distinct maximum at 2 factors and much
removing ions with low signal in both spectra before calcu- smajler values for larger numbers of factors. There is a local
lation), but this often gave too much weight to small signals minimum at 3 factors and another at 7 factors (confirmed by
and otherwise did not aid interpretation beyond that providedsg|ytions with>7 factors). Based on the trends 6f Qexp

by UC for m/z-44. Correlations are presented in the text asgnd the max(RotMat) from Lee et al. (1999), solutions with
UCL%A in.HOA out UCMSA in.HOA oupr @nd U(ﬂg'Arri‘r{bHéi outr 2 or more factors would be suitable. SVD analysis of the
where the superscript describes whether MS or TS are bedata matrix shows that 3 factors are required to explain at
ing compared (using onlyn/Zs>44 when specified) and the least 99% of the variance (Fig. 3d). We proceed to analyze
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Fig. 3. Values of 9/ Qexp and the maximum value of RotMat f¢a) the real Pittsburgh casgh) the two-factor synthetic case, agg) the
three-factor synthetic casé) Percent variance explained by factors from SVD analysis of the Pittsburgh real data matrix and the residual
matrices from the Pittsburgh real case solution with 3 factors and the synthetic 3-factor base case solution with 3 factors.
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each solution stepwise and attempt to interpret them base@d009/acp-9-2891-2009-supplement)pdf clearly not a lin-
on correlations with reference MS and tracer TS and use thigar combination of the HOA and OOA-1 spectra, and is un-
interpretability as a guide for choosing the number of factors.likely to arise due to noise. The lack of significantZs 60
and 73 strongly suggests that this OOA-2 does not arise
2-factor solution from a biomass burning source (Alfarra et al., 2007; Schnei-
der et al., 2006). The OOA-2 time series correlates well
The MS and TS of the two-factor solution are shown with ammonium nitrate and ammonium chloride from the
in Fig. S3a, seenttp://www.atmos-chem-phys.net/9/2891/ AMS, two secondary inorganic species which were not in-
2009/acp-9-2891-2009-supplement.pdfhese two factors  cluded in the PMF analysis (€, . onium Nitrateoon_2=0-79,

reproduce the MS and TS found by Zhang et al. (2005a) forucl\%monium Chiorideoon_»=0-82; diumnal cycles are shown

this dataset using their original 2-component CPCA method, Fig. S5, seehttp://www.atmos-chem-phys.net/9/2891/
(UCI'\-|A8A ZhangHOA pmr=0-98, UdgCS)A ZhangOOA pme>0-99, 2009/acp-9-2891-2009-supplement)pdNote that we can
UC{2a zhanghon pmMe=0-9: UG5oa zhangooa pme=>0-99) at  confirm that nitrate and chloride signals from the AMS in
FPEAK=0. The OOA factor has 12%h/z44 and the HOA  this study are indeed dominated by the inorganic ammo-
factor has 3%n/z44 at FPEAK=0. All interpretations of the nium salts, not fragments of organic species, based on the
factors made by Zhang et al. (20054, c) hold for these factorsammonium balance (Zhang et al., 2005b, 2007b). The

OOA-2 factor is less-oxygenated than OOA-1 and more oxy-
3-factor solution genated than HOANG/z44 of OOA-1 is 12.5%, of OOA-

2 is 6%, and of HOA is 2.5%). Since both nitrate and
The MS and TS of the three factor solution at chioride show a semivolatile behavior in Pittsburgh (Zhang
FPEAK=0 are shown in Fig. 5 (correlations between et al., 2005b), these correlations imply that OOA-2 is also
selected PMF and tracer TS are shown in Table Slgemivolatile. Most likely OOA-2 corresponds to less oxi-
see http://www.atmos-chem-phys.net/9/2891/2009/ dized, semivolatile SOA, while OOA-1 likely represents a
acp-9-2891-2009-supplement.pdf The three-factor solu-  more aged SOA that is much less volatile. Direct volatil-
tion has HOA and OOA factors very similar to the Zhang jty measurements with a thermal-denuder AMS combina-
et al. (2005a) HOA and OOA (UfSa znangrion pme=0-97,  tion indeed show that in Mexico City and Riverside, CA,
uchHsS, Zhangooa puE>0-99; UGaa ZhangHoa pme>0-99, :Ee I(e)sg:gygenated O?,(A\I_-lzf(f:ompor:er]t iszr(;g)s;)e voAIatiIe_'ihan

TS - I e -1 component (Huffman et al., . A similar

UCoon ZhangOOA p=0-98) that_correlate WEH Wlth_prlmary OOA-2 factor with a less oxidized spectrum and a high cor-
combustion  tracers (UE%HOA_O'%’ UCIIOX,HOA_O'%) relation with nitrate was reported by Lanz et al. (2007) for
and AMS sulfate (UG .c004=0-95), respectively. Note their dataset in Zurich in summer of 2005, though the ra-
that HOA likely encompasses both gasoline and diesekigs of OOA-2 to nitrate differ 1 in the present work;-2
engine emissions, plus other sources of reduced aerosolg zyrich). These authors also interpreted OOA-2 as fresh
such as meat cooking (Mohr et al., 2009). PMF analysis ofsoa. No evidence is available to support the identification

molecular markers results in a similar phenomenon in whichgt 0OA-1 or OOA-2 as either “anthropogenic” or “biogenic”
the composition of gasoline and diesel emissions are togy grigin,
similar and a factor representing the sum is often retrieved
(Brinkman et al., 2006). 4-factor solution
The third factor represents 10% of the OA mass

and has a MS with strong correlation with several The TS and MS for the 4-factor solution are shown
primary, secondary, and biomass burning OA spectran Fig. S3b, see http://www.atmos-chem-phys.net/
from the AMS Spectral Database (Figs. 6a, S4a, Ta-9/2891/2009/acp-9-2891-2009-supplement.pdf  The
ble S2, seenttp://www.atmos-chem-phys.net/9/2891/2009/ four-factor solution has clear HOA, OOA-1, and
acp-9-2891-2009-supplement.jpdfWe identify this spec- OOA-2 factors with high similarity to those in the
trum as a second type of OOA, OOA-2, because of the3-factor case (Ugffamor OOA1.4—factor 00A_1=0-96,
strong presence ofm/z44 (high resolution aerosol mass ycMs =0.99:

. . .. 3—factor OOA-1,4—factor OOA-1 !
spectrometer data of ambient aerosols confirm that this i3)cTs
most likely CGJ, DeCarlo et al., 2006; Huffman et al., ~ 3 factor OOA-24-factor OOA-2" _
2009), and the correlation with OOA/SOA spectra. TheU 3—factor OOA-2,4—factor 00A-20-99;
OOA that accounts for most of the mass is very simi- YC3 tactor HOA4—factor HOA'
lar to that identified by Zhang et al. (2005a) and Lanz etUCYS, . 1oas_factor Hoa>0-99)  Which are inter-
al. (2007) and is termed OOA-1, following the nomencla- preted as in the 3-factor case. The fourth factor corre-
ture of Lanz et al. (2007). The OOA-2 spectrum lies 23 de-lates well with sulfate (U@lphatm_factor Unname30-84)
grees out of the HOA/OOA-1 plane (calculation describedand has a similar mass fraction as OOA-1 (39% and
in Supp. Info, sedttp://www.atmos-chem-phys.net/9/2891/ 24%, respectively). The MS of the fourth factor has
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Fig. 5. Factors from the three-component PMF solution of the real Pittsburgh dataset for FPE@KMass spectra of the three components.
The fraction of the signal abowa/z100 is 3.4%, 24.3%, and 9.7% for OOA-1, OOA-2, and HOA, respectiyblyTime series of the three
components and tracers.

UCMS | ace specteafactor Unnamed 0-8 With database mass for a distinctive, separate component is not present. This
spectra of the Zhang Pittsburgh OOA, three types ofadditional component shows many (but not all) of the signs
SOA, and four types of biomass burning (Figs. 6b, S4b,of the “component splitting” of the solutions of the synthetic
Table S2, seehttp://www.atmos-chem-phys.net/9/2891/ data cases discussed below (Sect. 3.2.1). In addition, the
2009/acp-9-2891-2009-supplement)pdfHowever, strong analysis of the residuals (below) does not suggest that adding
independent evidence (such as a strong tracer correlatiorgomponents after the first 3 fits more of the data. Thus in the
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Fig. 6. UCMS between representative spectra from the AMS
Mass Spectral Databashtip://cires.colorado.edu/jimenez-group/
AMSsd) and (a) the third factor mass spectrum from the 3-factor
PMF solution of the real Pittsburgh datas@t) the fourth factor

mass spectrum from the 4-factor PMF solution of the real Pitts-

burgh dataset, anft) the “mixed” factor mass spectrum from the
3-factor PMF solution of 2-factor base case.
in Table S1 (seehttp://www.atmos-chem-phys.net/9/2891/2009/
acp-9-2891-2009-supplement.pdBuperscripts denote the source
of the reference spectra as follow&) Zhang et al., 2005a(b)
Canagaratna et al., 200&) Alfarra et al., 2004(d) Alfarra, 2004;

(e) Bahreini et al., 2005(f) Sage et al., 2007¢g) I. M. Ulbrich,

J. Kroll, J. A. Huffman, T. Onash, A. Trimborn, J. L. Jimenez, un-
published spectra, FLAME-I, Missoula, MT, 2008) Schneider et
al., 2006.
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the HOA factor

S —
TS (Udg‘*facmr HOA 5—factor HoA a=0-85,
UC5 tactor HOA5—factor HoA a=0-68) and has

MS . .
UCDatabase Spect@—factor HOAa>0'8 with  five _types of
SOA and eight types of BBOA, but there is no strong

correlation with any available tracer. The HOA and H@A
factors have 23% and 15% of the mass, respectively. As
before, we conclude that this “splitting” of the HOA is most
likely a mathematical artifact and not a real component.

Interpretation of factors in the six- and seven-factor solu-
tions becomes more complex and no independent informa-
tion from tracer correlations exists to substantiate the inter-
pretation of these factors. These factors likely arise due to
splitting of the real factors, likely triggered by variations in
the spectra of the real components (discussed below).

factor is similar to in

this

(HOAa)
solution

Uncertainty of the solutions of real data

In order to explore the possibility of multiple local minima in
the solutions of the dataset and qualitatively assess variability
in the factors, trials with 64 multiple starts were calculated
for the real Pittsburgh case with solutions up to 6 factors.
Local minima can be identified by solutions with different
O/ Qexp values, but this is not a sufficient criterion as it could
be possible for two local minima to have simil@f Qexp val-

ues with different factors; therefore similarity of the factor
MS and TS is also considered as a criterion for determining
local minima. In the solutions with 2- to 6-factors, no lo-

Values are givencal solutions were observed. The 3-factor solutions show the

greatest variation i@/ Qexp values, which however increase
by only 2x10~# Q/Qexp units above the minimum. There
are two modes of the solutions in this small range, defined
by the ratio 0fm/z43: m/z44 in the MS of the OOA-2 factor,
while the MS of the OOA-1 factor varies little and the MS of
the HOA factor is virtually identical in all solutions. The TS
of all of these solutions are virtually identical (the overlaid
TS and MS of all 64 solutions for the 3-5 factor solutions
are shown in Fig. S6, sdstp://www.atmos-chem-phys.net/

absence of any supporting evidence, we concluded that thi8/2891/2009/acp-9-2891-2009-supplemen.pdf

component represents an artificial “splitting” of the solution

(calling this factor OOA-1a) and that keeping this compo-

Quantitative assessment of the uncertainty of the factors
is made by 100 bootstrapping runs (Norris et al., 2008) of

nent would be an overinterpretation of the PMF results. Inwhich 95 reproduce all three factors. The average factor
particular we warn about trying to interpret e.g. one of the MS and TS along with & variation bars for each point are
OOA-1's as “biogenic” and the other as “anthropogenic” or shown in Fig. S7, seattp://www.atmos-chem-phys.net/9/
similar splits, in the absence of strong evidence to supporf891/2009/acp-9-2891-2009-supplement.ptifiese results

these assignments.
Five and more factor solutions

The five-factor solution (Fig. S3c,
[Iwww.atmos-chem-phys.net/9/2891/2009/
acp-9-2891-2009-supplement.pdf has  four factors
that are similar (OOA-1, OOA-la, OOA-2, HOA)
(ucls >0.96, UGS, ciors—tactor>0-90)

4—factor,5—factor- ( /
to the factors in the 4-factor solution. The fifth

seehttp:

www.atmos-chem-phys.net/9/2891/2009/

show that the uncertainty in the TS of the three components
is small, as it is for the MS of HOA and OOA-1. The MS of
OOA-2 shows some uncertainty, which is nevertheless small
compared to the general structure of the spectrum. Thus we
conclude that the results reported here are robust and that
their statistical uncertainties are small.

Atmos. Chem. Phys., 9, 28982009
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of the synthetic 3-factor base case.
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Fig. 8. (a)Distributions of scaled residuals for eamtfizfor the 3-factor solution of the real Pittsburgh case. Black markers represent medians.
Green boxes span the 25th and 75th percentiles; blue whiskers attached to the boxes extend to 10th and 90th percentiles. Grey “floating’
whiskers connect 2nd to 5th percentiles and 95th to 98th percerfb)eSxpansion of (a) showing the scaled residuals fremto 4.

Residuals of the PMF solutions residuals for allm/z from the real Pittsburgh data and
Fig. S9 shows the distribution of the scaled residuals for
selected m/Zs (see http://www.atmos-chem-phys.net/9/
2891/2009/acp-9-2891-2009-supplemenfpdfminimiza-
tion of total Q (squared scaled residuals) while meeting
non-negativity constraints drives the solutions of the

Figure 7 shows the&)/Qexp values for each point in time
and Fig. S8 shows the total residuals fesidual), total
absolute residualsX|residual), and normalized absolute

residuals Ejresidual/lX signal) for the 3- through 6- v HTve
factor solutions for FPEAK=0. Note thaDex, for a PMF algorithm. The contributions to botf®/Qex, and

time sample equals the number wfZs in the MS (268). absolute residual, even after fitting 3 to 6 factors, have
Figure 8 shows a summary distribution of the scalegconsiderable structure (above a background level) that
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3.1.2 Rotations
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The three factor solution, which is the most interpretable
as discussed above, is tested for its rotational ambiguity.
The FPEAK range required for th@/Qexp=10% criterion
in the real data is-4.2 to +4.4. Solutions with FPEAKS be-
tween—1.6 and +1.0 give an increase of 1% o\@(Qexp
at FPEAK=0 (Fig. 9). MS and TS spanning this range of
solutions are shown in Fig. 10. Note that changing FPEAK
changes both the MS and TS simultaneously. Overall, the
effect of positive FPEAK is to create more near-zero val-
1.0 e .
M‘T“““W‘Fﬁ"ﬁﬂf‘“‘%ﬁ ues in the MS and decrease the number of near-zero values
’ ) ) in the TS. The effect of negative FPEAK is to create more
near-zero values in the TS and decrease the number of near-
Fig. 9. Q/Qexp vs. FPEAK for the real Pittsburgh case with 3 fac- Zero val_ues in the .MS' Note fo_r example that the TS of the
tors, the 2-factor synthetic base case with 2 factors, and the 3-factolr:PEAKT_1'6 S,O|Ut'0n have periods ‘?f ZerF’S Fhat. do not Colr'
synthetic base case with 3 factors. relate with any interpretable events, likely indicating that this
solution represents rotation beyond the range that gives use-
ful insight for this dataset. Changes in TS occur more in
some periods than others. Mass concentration of all factors
is very similar to the OOA-2 time series from the three- re;nl’laintfairly (f:ontstar;]t atall FPEAKs duripgtperiodsin WhiChb t
i s - at least one factor has a mass concentration near zero, bu
factToSr solution (Ug‘fac“ig/ Qe 3—factor 00A-2=0- 70 periods in which all factors have non-zero mass concentra-
UC4 factorg/ Qexp 4—factor 00a-270-75: and  tions show more variation as FPEAK is changed. This is
UCLSacton0 / Qe 5—factor 00A-2=0-78). Adding more  most dramatic for the OOA-2 events on 13 and 14 Septem-
factors results in only minor changes in the TS@Qexp ber 2002, in which negative FPEAKSs give more mass to the
contributions and residual, implying that the same dataOOA-2 factor and less mass to the OOA-1 factor compared
variation fit by the lower order solution is being refit with to solutions with FPEAK 0. These differences represent one
more factors. In fact, the decrease in the TS@exp way of characterizing the uncertainty of the PMF solutions,
(improvements in the fit) in solutions with 3 to 6 factors since theQ/Qexp values change little between them and all
do not occur during periods of high HOA or OOA-2, the TS and MS appear physically plausible. The solutions
and only occasionally during periods of high OOA-1 from multiple FPEAKS (Fig. 10) show a greater range in
(Fig. S10, seehttp://iwww.atmos-chem-phys.net/9/2891/ MS than the bootstrapping d-variation bars, while the TS
2009/acp-9-2891-2009-supplement)pdThe highest spike show a similar range to the bootstrapping lrariation bars
in the residual TS, a short-lived event on the evening of 14(Fig. S7, sedittp://www.atmos-chem-phys.net/9/2891/2009/
September 2002, is likely due to a specific HOA plume (e.g.,acp-9-2891-2009-supplement.pdf
a specific combustion source) whose spectrum is similar to The MS change with FPEAK is most dramatic in the
but has some differences from the main HOA factor duringOOA-2 MS, while the OOA-1 MS changes very little
the study and shows variation im/zpeaks with higher con- with FPEAK. This is not surprising since OOA-2 ac-
tribution to HOA than OOA-2. SVD of the unscaled residual counts for a low fraction of the total signal and thus
matrix after fitting 3 factors (Fig. 3d) shows that with even its spectrum can change more without causing large in-
12 more factors, less than 95% of the remaining variance cagreases in the residuals. At large negative values of
be explained (150 factors would be needed to explain 95%-PEAK, the OOA-2 factor strongly resembles the HOA fac-
of the variance in the matrix of scaled residuals that was notor (UCYSA_» 1o at FrEake—1.6=0-98). The ratio ofn/z43
downweighted for weakn/Zs or those proportionally related to m/z44 in OOA-2 decreases from 2.1 to 1.1 and 0.55 as
to m/z44). The residual at specifim/Zs during periods of FPEAK increases from-1.6 to 0 and +1.0, respectively. A
high OOA-2 and highQ/Qexp changes for many significant sharp decrease in the fraction of signal attributednta55
OOA-2 m/Zs in modest amounts, fairly continuously, over relative to a small decreaserim’z57 (ratios of 0.88, 0.50, and
periods of 10—-20 min. This is likely caused by variations in 0 at FPEAKs—1.6, 0, and +1.0, respectively) givegz57
the true OOA-2 spectrum (which could occur, e.g., duringan unusually high fraction of the signal in OOA-2 at large
condensation or evaporation of SVOCs) that cannot bepositive FPEAKs. Positive FPEAK values also reduce the
represented by the constant-MS factor, nor are constarfraction ofm/z44 (mainly Cq ) attributed to the HOA MS.
enough to become their own factor. These behaviors imply Diagnostic graphs of the correlations between each of
that three factors have explained as much of the data as ithe three factors from the real case, and how these cor-
possible with a bilinear model with constant spectra. relations change with FPEAK, are shown in Fig. 1lla

—e— Pittsburgh Real case
3-factor soln
—m— Synthetic 2-factor case
1.4 2-factor soln
Synthetic 3-factor case
3-factor soln

Q/Qeyp

1.2 H

0=
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Fig. 10. 3-factor solutions of the real Pittsburgh case for selected FPEAK values.
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a) real Pittsburgh case b) 3-factor synthetic base case
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Fig. 11. Correlations for PMF factors to each other as they change with FPEAKajahe real Pittsburgh case afd) the three-factor
synthetic base case. Traces are colored by FPEAK and numbers denote the FPEAK of each solution. Black dots in (b) indicate the correlation
of the factors in the inpuf(c) Correlation of the PMF factors to the input factors for the three-factor synthetic @dexpansion of (c).

(Fig. Slla, seenttp://www.atmos-chem-phys.net/9/2891/ noise is the only additional content in the data matrix. This
2009/acp-9-2891-2009-supplement)pdfThe OOA-2 fac-  type of analysis will help in the interpretation of the solutions
tor is highly correlated in MS with both the HOA from real cases.

and OOA-1 factors at FPEAK=0 (LM@A_Z’HOA:O.SL

UCE\DASA—Z,OOA—lzo‘S‘L respectively), but has a more 3.2.1 Solutions of synthetic data base cases

correlated time series with HOA than with OOA-1 _ i

(UCI)%Afz 10a=0.84, UQT)%Afz 0on_1=0.55). As expected, Solutions as a function of number of factors

the behavior of positive values of FPEAK is to mix the time
series, making them more correlated and the mass spect
less correlated, moving these solutions toward the upper le

és AMS organic datasets have a specific structure with
trong interrelation acrossn/Zzs and auto- and cross-

of the graph. Negative values of FPEAK do the opposite.correlat'on time scales of the_ o_rder gf hours to days for most
components and datasets, it is of interest to examine what

Note that this type of graph is very sensitive to small change
in the solution TS and MS. We find no evidence that solutionsSPMF2 reports when too few or too many factors are requested
by the user when the correct number of factors is known.

with FPEAKs away from zero are preferable. .
0/ Qexp-values and maximum value of RotMat for the

3.2 Synthetic AMS data two- (and 3-) factor synthetic base case for solutions up to

7 factors are shown in Fig. 3b (3c) for FPEAK=Q/Qexp
It is clear from the analysis of this ambient dataset that therdas >>1 for the one-factor solution and 481 for all solutions
is significant ambiguity in the “correct” choice of the number of 2 (3) or more factors. This is the expected behavior; one
of factors and rotations of the solutions. In this section wefactor should not fully explain the data and a high residual
seek to evaluate the behavior of PMF2 and the appearance @ reasonable. With the addition of a second (third) fac-
its solutions for AMS synthetic datasets for which the true tor, most of the dataset is explained and the residual is on
solution is known and for which well-specified and realistic the order of the noise. As the simulated noise has a large
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number of degrees of freedom, solutions with more than twoand electronic noise, the third factor is a true linear combi-
(three) factors are not able to explain more of the data andhation of the HOA and OOA spectra and lies in the plane
0/ Qexp is approximately constant. Max(RotMat) does not of the HOA and OOA factors. Thus it is the presence of the
show a clear trend with number of factors. The maximum noise that allows the third factor to be slightly outside the 2-
is at three (two) factors and a local minimum occurs at sixcomponent plane. This factor represents a “mix” of the true
(four) factors. No criterion for choosing the correct number HOA and OOA spectra, especially because of the increased
of factors from max(RotMat) can be determined from thesefraction of m/z44 compared to the input HOA<(1% in the
cases. HOA input, 7% in the mixed factor). We therefore choose
Mass spectra and time series for the 2- to 5-factor soluto call it a “mixed” HOA/OOA factor. This “mixed” factor,
tions of the 2- and 3-factor synthetic base cases are showRowever, has a time series that is similar to the HOA time se-
in Figs. S12 and S13, sekettp://www.atmos-chem-phys. €S (UG3a nout 3-factor Mixed=0-97) and it takes 11% of the
net/9/2891/2009/acp-9-2891-2009-supplement.pdiass  total mass, taﬁing more from HOA than OOA mass. Because
fractions of the 2- to 7-factor solutions of the 2- and we created a 2-factor input, we know that this is not a true
3-factor synthetic base cases for FPEAK=0 are shown ifactor. Nevertheless, the profile of this “mixed” factor is very
Figs. 4b and c. The correct number of factors (2 or 3)similar (UG eq raciorDatabase special-9) to multiple mass
reproduces the input factors (ly—eactor Input2_factor Output spectra from the AMS SpectraFDatabase as shown in Fig. 6¢

ucrs ucvs (Fig. S4c, Table S2, selsttp://www.atmos-chem-phys.net/
2—factor Input2—factor Output 3—factor Input3—factor Output 9/2891/2009/acp—9—2891-2009-supplemeno.,pdhcluding
ucls 5 >0.99) very well. When : )
3—factor Input3—factor Outpu SOA from chamber reactions (e.g3-caryophyllene+@,

more factors are calculated, factors highly similar to thea-terpinene+@), and particles from combustion of biomass

input factors are retained and the additional factors havebr biomass components (e.g., ceanothus, juniper). In fact,

strong resemblance to one of these factors. For examplgnis «mixed” spectrum has higher correlation with many

the 4-factor solution of the 3-factor base case has HOAy iha SOA and BBOA spectra than the OOA-2 spectrum

and OOA-2 éactors highly S|m|Ia'5|Sto the input for these 4 the real Pittsburgh case (Fig. 6a). No mixed factors

factors (UCAAOA input HOA output Y COOA2input00A-2 output are observed in the 3-factor base case, indicating that the

UCL%A input HOA output UC—CI—)%A—Z input O0A—2 output>0'99) tendency of PMF to “mix” or “split” factors in its solutions

but two OOA-1 factors appear (ngAil inputO0A—1 output (when too many f_actors are requested) is not ea_lsily pre_\dicted

ucMs >0.99; and can shift with relatively small changes in the input
OOA1 Input0OA—1a Outpu ’ matrix (such as the addition of an OOA-2 input factor with

UCo0a-1 input OOA—1 output™ 0.99, 10% of the mass here).

UCE0A-1 input0oA- 1a outpu0-97) With 42 and 20% of

the fit mass, respectively. The OOA-1 factor has been “split”Uncertainty of the solutions of synthetic data

into two. This behavior continues with more factors in both

base cases. Split factors have very similar MS and TS tdn order to explore the possibility of multiple local minima

each other and to the same factor in thel factor solution in the solutions and the repeatability of the splitting behav-

with approximately equal splitting of the mass between theior of the synthetic datasets, as well as to qualitatively assess
like factors. variability in the factors, trials with 64 multiple starts were

The 3-factor solution of the 2-factor base case calculated for the 2-factor and 3-factor synthetic cases with
shows another interesting behavior (Fig. Sle,solutions up to 6 factors. Similar to the real case, the range
see http://www.atmos-chem-phys.net/9/2891/2009/ Of @/Qexp values across the seeds was quite small, with
acp-9-2891-2009-supplement.pdf One factor is very tNe greatest difference in the 2- (3)-factor case efl@*
similar to the HOA input factor (UFS, Input3_factor HOA (1x107°) Q/Qexp units above the minimum. No local min-

UCTS 0.99 q fact X ima were identified in the 3-factor synthetic cases. In the
HOA Input 3—factor Hoa™0-99) @nd one factor very Sim- 5 ¢, ¢ synthetic cases, local minima are identified in solu-

ilar to the OOA input factor (Uf3, Input3—factor OOA  tions with 3 or more factors. The solutions fall into groups
UCSa Input3—factor 0oa>0-99).  The third factor’s spec- in which one factor represents the input OOA, one factor the
trum includes high-signal peaks from both the HOA and input HOA, and the other factors show various degrees of
OOA spectra. It is highly correlated with both the input mixing of the HOA and OOA factors, as was described in
HOA and OOA spectra (U&“!gA Input 3—factor Mixeq=0-78, Egs. (5, 6). The three-factor solution of the 2-factor syn-
— thetic case shown in Fig. S12b is representative of the most
UCY3A inputa-factor Mixe™0-91,  Whereas  the  corre- t ol g oo FIJS ; .
lation between the input HOA and OOA spectra COMmon type of so ution identified. Bootstrapping analysis
(UCMSA InpULOOA Inpu?) is only 0.43). This third factor of Ithe_ s;inthen_c c_ases Wlthfthr? correct nt(;mber of fahctorf] re-
lies 3.F out of the plane of the HOA and OOA spectra. A Sults In 1o variation bars of the same order or smaller than
true linear combination would be in the HOA/OOA plane N the real case.
(0°); in two-factor synthetic cases without added Poisson
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Rotations of the 3-factor synthetic base case solution 3.2.2 Separation of correlated factors

In this section we examine the range of “rotatability” of the Apother important question when analyzing PMF results is:
solutions. The FPEAK values required for thQexp iN- now similar (correlated) can the factors be (in MS, TS, or
crease from its minimum by e.g. 10% in synthetic data canpoth) and still be correctly retrieved by PMF? In one extreme
be quite large; FPEAK=3.0 for the 2-factor case gives an case, two different sources that are completely correlated in
increase |rQ/QeXpof only about 4%, but an.FPEAK range of time (UCTS~1) cannot be separated by PMF or any other
—-1.0t0+1.0in the 3-factor case gives an mcreas@ﬁ@exp_ factorization method, as there is no information for their sep-
of 1% (Fig. 9). MS and TS spanning this range of Solutions aration, Even if their MS are very different, only the sum of
are shown in Fig. S14, sédtp://www.atmos-chem-phys.net’ e two sources can be retrieved. Similarly, two sources with
9/2891/2009/acp-9-2891-2009-supplement.fefianges in - yery highly correlated MS (U¥S~1) cannot be retrieved
the MS and TS are similar to those in the real Pittsburgh casegeparately, irrespective of how different their time series are;
In the TS, mass concentrations during periods in which allagain only their sum can be retrieved. If the correlation be-
factors have non-zero mass concentration show more varigyeen the input factors is plotted in a graph with ¥as the
tion as FPEAK is changed and remain approximately con-,_.qordinate and UES as the y-coordinate (as in Fig. 11a,

stant in periods in which at least one factor has near-zergy) he “rretrievable” regions include the edges of the plot
mass concentration. The MS change with FPEAK is mostq5, U@gctork’lzacwrj or Uq\:ﬂasctori,Factor/:l It would be

dramatic in the OOA-2 MS, while the HOA and OOA-1 MS ' jnterest to evaluate how far two factors have to be from
change very little with FPEAK. The changes of the OOA-2 ipse edges to be retrievable with some accuracy by PMF,
MS with FPEAK are similar to those of the real Pittsburgh 54 how the rotational uncertainty changes as the factors are
case, with a strong resgmblance to the HOA factor at negag|oser or farther from those edges. Likely this “distance”
tive FPEAK values (UgOA,OOAf_Z atFrEAKs -1 >0-95) and  fom the edges will not be an absolute criterion, but will de-
change of its fraction of/z44 with increasing FPEAK val- - heng on the fraction of the mass accounted by each factor,
ues, from 6% at FPEAK 0 to 8% at FPEAK 1.0. i.e. a small factor may be harder to retrieve in this situation
A graphical diagnostic of the correlations of each gjnce jts variance is smaller compared to noise and potential
of the three factors versus each other and how theyaiations in the spectra of the larger components. This is a
change with FPEAK is shown in Fig. 11b (Fig. S11b, complex mathematical problem, complicated by the need to
see http://www.atmos-chem-phys.net/9/2891/2009/ \nderstand and maintain the number and placement of “near-
acp-9-2891-2009-supplement.pdf  The input factors ;g7 yalues in the factor MS and TS while changing the cor-
are reproduced best near 0 FPEAK values (Figs. 11¢, dyejations between the input factors (Paatero, 2008a; Ulbrich
Sllc, d). The effect of FPEAK on the correlation of the g 51 2008). In the present work, only the retrieval of factors

factors is extremely similar to that in the real Pittsburgh yjth a given correlation and varying fractions of the mass is
case, with positive values of FPEAK making them more explored.

correlated and the mass spectra less correlated and negative

values of FPEAK doing the opposite, making the time SerlesSeparation of small factors: three-factor synthetic cases
less correlated and the mass spectra more correlated. The
length of the segment between adjacent FPEAK solutions

indicates the relative amount of change between the l‘actors.The correlations betwee_n the factors in the_ varnations
on the 3-factor synthetic base case (described above

Residuals in the 3-factor synthetic base case in Sect. 2.3) are shown in Fig. 12a (Fig. Sl15a, Ta-
ble S3, seenttp://www.atmos-chem-phys.net/9/2891/2009/
The O/ Qexp contribution as a function of time for the 1-, 2-, acp-9-2891-2009-supplement.pdf Replacing the OOA-
and 3-factor solutions of the 3-factor base case are shown i2 MS with one of three database spectra (BBOA, SOA,
Fig. 7c. The 1- and 2-factor solutions have distinct struc-or fulvic acid (FA) MS) gives a broad range of correla-
ture which indicates that all of the variation in the data tions of the third factor with HOA l(JCHMSA’BBOA:O.SS,
has not been fit. In the three-factor solution, which repro-ycMs =0.81, UCZ‘SA‘SOA:O]G, UCMSA,FA=0'39)

; HOA.OOA—2 ,
duces the three input factors very well (83 5 acior oupee~ @nd a  narrower range of correlations between OOA-

Uc%%utsTfaCmr Outpu?q_gg for all three factors), th@/Qexp 1 and the third factor (from UggAleBOA:O.Sl to
contribution has no visible structure. SVD of the unscaleduCc¥3, , -,=0.89). We now consider how well PMF can

residual matrix (Fig. 3d) shows that even with 15 more fac-retrieve these factors with average mass fractions between
tors, only about 75% of the remaining variance can be ex-0.7% and 11.4%.
plained. These observations indicate that only random noise The apility to retrieve the small factor is assessed by

remains. correlation with the input factor (Figs. 12b, S15b). For
mass fractions of 11.4%, the small factor was retrieved well

— ; S
at FPEAK=0 with Uqlmall Factor InpuSmall Factor Outpu?o'gg'
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Fig. 12. (a)Correlations between 3-factor real output and all synthetic input céseRetrieval correlations between PMF and input TS and

MS versus mass fraction of different third factors in synthetic cases. Markers denote the resemblance of the factors to the input MS or TS.
For the MS, O, S, F, and B refer to OOA-2, SOA, FA, and BBOA, respectively. For the TS, T refers to the input TS. For both cases, H and |
refer to HOA and OOA-1, respectively.

UCSmall Factor InpySmall Factor Outptﬁo 97. As the average 4 Discussion
mass fraction of the small factor is decreased, the small

factor is not retrieved as accurately in some cases. Bothn the ambient and synthetic data we compared various cri-
the MS and TS of the small factor can be retrievedteria for determining number of factors. The criterion for
with UCKS i Factor inpusmall Factor outpt 0-97 (€XCept for  choosing the number of factors based on the behavior of
the SOA case) and Lg@a,, Factor InpySmall Factor Outptfo 99 0/ Qexp vs. number of factors has the expected behavior for
when the small factor has at least 5% of the average masghe synthetic datasets but does not lead to a strong conclusion
As the average mass fraction of the small factor decreasedor the real data case (Fig. 3). TiiE Qexp Of the real dataset
the third factor may have greater similarity to HOA or OOA- has a steep decrease from 1 to 2 factors, but a steady de-
1 in MS or TS than to the input factor. These behaviorscrease with more factors does not point to a particular choice
have elements similar to the splitting behavior observed infor number of factors. Our choice of a three-factor solution
the synthetic base cases when too many factors were chder the real case is justified by tracer correlations, spectral
sen. Although the mass spectrum of the third factor inputcomparisons and interpretation (e.gi/z44 as a surrogate
does not change as the mass is reduced, the ability of PMFor O:C ratio), and residual analysis, and is a good physical
to retrieve both the mass spectrum and time series decreasegplanation of the data. We conclude that a criterion based
as the fraction of the mass decreases. Based on this casa a significant decrease @/ Qexp as the number of factors
study, we conclude that in Q-AMS datasets with only Pois-is increased is not sufficient to determine the correct number
son ion noise and Gaussian electronic noise, factors with @f factors in AMS datasets.

mass fraction of at least 5% are likely to be retrievable with  The criteria of the smallest maximum value of RotMat for
sufficient accuracy for reliable interpretation. This should the best solution proposed by Lee et al. (1999) is not met
be a lower limit for real cases in which the noise may havepy any of the datasets. There is no theoretical reason to
additional structure. However if the small factor has a Verysupport the use of the max(Rotmat) criterion to determine
different time series from those of the main factors (e.g. if it the number of factors. The use of the max(Rotmat) crite-
is a spiky local source or has a distinctive MS) factors with rion appears to be based in the assumption that true data
smaller mass fractions may still be reliable retrieved (Huff- should not have rotational ambiguity, and use of this criterion
man et al., 2009). may favor the wrong number of factors if the data do have
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significant rotational ambiguity (Paatero, 2008b). In the syn-for 9—26% of the mass. In the real case, the 2-factor solu-
thetic datasets, max(RotMat) gives no indication about thetion slightly underestimates OOA. This behavior is counter
correct number of factors. Since the criterion is not met forto that seen by Lanz et al. (2007), where they observed that a
synthetic datasets, we draw no conclusion from this statisti@-factor solution significantly overestimated OOA in Zurich
for real datasets and do not recommend this as a basis fan the summer. Nemitz et al. (2008) found that the 2-factor
choosing the correct number of factors in AMS data. RotMatsolution significantly underestimated OOA by 17% in their
values are larger in the real case than for the synthetic casease. Thus the tendency for a 2-factor solution to over- or
suggesting additional rotatability in the real case. underestimate the OOA/HOA ratio is most likely dependent

The splitting and mixing behavior seen in the synthetic on the structure of a particular AMS dataset and no general
datasets when too many factors were requested presentstie@nd is apparent.
clear warning that when evaluating a real dataset, the re- In the ambient and synthetic cases we explored the use of
searcher must be careful about overinterpreting solutiond=PEAK to explore rotations of the solutions. AQ/Qexp
with multiple factors, even though it may be tempting over the minimum Q/Qexp Of ~1% (rather than 109%,
to “identify” additional sources and give them physical- P. K. Hopke, personal communication, 2007) seems to give a
sounding names. The characterized splitting behavior irmore appropriate range of FPEAKSs for this Q-AMS dataset.
which each split factor has comparable fractions of the mas®ositive values of FPEAK mix the TS, making them more
of the original factor may be specific to the PMF2 algorithm, correlated and the MS less correlated, while negative values
as other algorithms such as MCA (Zhang et al., 2007a) tendf FPEAK mix the MS, making them more correlated and the
to split a factor into a dominant factor (in terms of mass) TS less correlated (Fig. 11). Choice of a particular FPEAK
and a small factor. In particular, care must be taken becaussolution is complex. Mathematically, values of zero in the
the spurious factors obtained due to “splitting” or “mixing” true factors (in MS or TS) help to constrain the rotation, but
behavior have realistic-looking mass spectra and time seriethey must be known a priori to justify a particular FPEAK
and could easily be interpreted by the unsuspecting user assolution (Paatero et al., 2002, 2005). We have no such a pri-
real factor, though we know that in the synthetic cases theseri information in the Pittsburgh case to constrain any values
factors must be mathematical artifacts. In cases where mixin the TS or MS to zero, and so have no mathematical way
ing behavior occurs, non-existent factors could be retainedto choose a particular value of FPEAK. We have followed
Thus, it is critical to use external tracers to confirm the in- the guidance of Paatero et al. (2002) and present a range of
terpretation. In the absence of these tracers, the lower orsolutions for our dataset to describe the degree of rotational
der solution may be the best choice. In our ambient caseambiguity (Fig. 10).
for example, factors 3—6 are mathematically good solutions. Is it possible, then, to support the choice of any particu-
The fourth factor in the 4-factor solution of the real Pitts- lar rotation? Paatero et al. (2005) suggest use of a graphical
burgh dataset exhibits some of the behavior characterizedhethod for choosing a rotation such that the source contribu-
by the splitting observed in the synthetic cases. The TSion factors (TS) show weak statistical independence near the
of this factor is very similar to the TS of the OOA-1 fac- x- and y-axes when contributions for pairs of factors are plot-
tor (Fig. S3b, sedttp://www.atmos-chem-phys.net/9/2891/ ted in scatter plots. In AMS data, this usually requires less-
2009/acp-9-2891-2009-supplement)pdhd these two fac- correlated TS, i.e., negative FPEAKSs. Based on our interpre-
tors share approximately equal portions of the mass (Fig. 4a)tation of the factors as primary OA, fresher SOA, and aged
The MS correlates well with many types of OA measured by SOA, the concentrations of the factors may not be indepen-
the AMS (Fig. 6b). While this factor may reflect true vari- dent but may be linked by increases and decreases in regional
ability in OOA-1, we do not have an independent tracer todispersion and photochemistry, and such a rotation may not
support this interpretation and prefer the 3-factor solution asbe warranted. FPEAKSs from1.2 to—1.6 give third factors
the safest choice to avoid overinterpretation. (OOA-2 in solutions with FPEAKSs-—1.2) that exhibit some

A key concern in having ambiguity in number of factors is of the behaviors of splitting (they are similar to HOA, i.e., too
whether the mass fraction of total OOA and HOA (and otherclose to the right edge of Fig. 11a), but this may not be suf-
major components such as BBOA) determined from a giverficient for rejecting them. The solutions from these FPEAKs
PMF analysis depends on the number of factors that is usedreate zeros in the TS that do not correspond to interpretable
The mass fraction of total HOA and OOA varies by approx- events (Fig. 10), and this may be sufficient qualitative justi-
imately +£10% in the real case and in the three-factor syn-fication for rejecting these solutions. No behaviors are ob-
thetic case and could be over- or underestimated dependingerved in the solutions at large positive FPEAKS to support
on the choice of number of factors (Fig. 4). This determina-exclusion of these solutions.
tion is more complex in the two-factor synthetic case and de- A possible way to choose a rotation would be to maxi-
pends strongly on whether the “mixed” factor is attributed to mize the correlation of the factor TS with external tracers.
HOA or OOA, or to a new type of source. For solutions with Though this has no mathematical basis, it could be justi-
more than 2 factors, both total HOA and total OOA could be fied when the researcher is confident of his/her interpreta-
underestimated while the mixed factor spuriously accountgion of the factors. Note, however, that the interdependence
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Studies with 3-factor synthetic cases demonstrate that fac-
e S S tors with a small average mass fraction may not be accurately
‘ et retrieved. Factors with at least 5% of the mass were retrieved
’ , — well in all cases studied. Factors with smaller mass frac-
0.8 - tions were often poorly retrieved, with their mass spectra not
found and instead a 3rd component appeared due to behavior
SO v o Aesd Rl i Fare i similar to “spli.tting’_’_or “mixing” of the 2 d(_)minant factors
0.5 [HOA  vs. —= Diesell Bus Exhaust (.Flg. 12). The |na_b|I|ty'to retrieve factors wlth a smgller frgc—
OOA-2 vs. —— m-xylene a-terpinene tion of the mass is a likely limitation of this technique with
Q-AMS data.
-1 0 1 It is important to note that we do not assign the factors
of the AMS data to specific sources. For example, the cal-
1.0 culated HOA spectrum is likely a linear combination of the
; So+—s a5 ‘ - HOA sources sampled across the study (encompassing both
the range of MS of the sources and their relative mass frac-
tions). For example, separating factors for diesel and gaso-
0.8 line vehicle emissions is very challenging in this analysis be-
cause the MS as measured in the AMS are extremely similar
D74 e [F-HOA vsCO —+ HOA vs.NO, | and a single HOA MS can represent both sources (and others
A S N e e V% Chloride with similar unit-resolution MS, Mohr et al., 2008). There-
S fore reported HOAs may vary between studies depending on
-1.0 0.0 1.0 the specific mix of sources measured during each study. Sim-
FPEAK ilarly, the types of OOAs reported in each study relate to
the distribution of precursors and photochemical ages that
happen to be sampled in that particular study. The MS of
the OOA-1 and OOA-2 factors are likely interpolants of the
key variations in sources and/or age that cause spectral vari-

of MS and TS during rotations strongly suggests that theation in a particular study. Therefore the OOA-1's and OOA-

change in MS with FPEAK also be considered. Fig- E’S.Lepo.rte? inﬂdiffgrenctj.fsf,tudies ShOUId not bIe expected to
ure 13 (Fig. S16, seettp://www.atmos-chem-phys.net/ e identical, reflecting differences in meteorology, transport

9/2891/2009/acp-9-2891-2009-supplement. pstiows the time, and the mix of sources and precursors. Even for studies
correlation between each factor MS and TS with selected the same location during different periods, these changes

reference spectra and tracer species, respectively, vers&?md Iead. to vquatlons in the factor spectra:
FPEAK. While correlations with TS could support the choice The residual in the real dataset has considerable structure
of a positive FPEAK, correlations with the MS suggest thatthat changes very little with the addition of more factors, in

extreme EPEAKS distort the MS and EPEAKS closer to 0 ap_stark contrast to the residual of the synthetic datasets, where

pear more reasonable. Though this is not a very strong critelN® residual reflects only the noise added to .th? dataset when
enough factors are chosen (Figs. 7, S8). Similar results are

rion for this dataset, we believe that the FPEAK=0 solution is din oth : £ AMS d h
the best representation of the retrievable factors for this casdcportedin other component analyses o ata (Zhang et

Separation of highly-correlated factors is a potential lim- al., 2005a; Lanz et al.,, 2007), so none of these studies is fit-

e

0.9+

0.7 4

MS
uc PMF MS, Database MS

0.5

o
~

0.9

CTS
PMF TS, Other TS

Fig. 13. Correlation versus FPEAK between PMF factaj MS
and selected reference MS, gt TS and tracer TS.

itation of this technique with Q-AMS data. HR-ToF-AMS ting all of the real structure in the dataset. This distinct struc-

datasets contain more chemical information at each nomilur® in @/Qexp in the real dataset may imply that, though

nal m/zwith both oxygenated and non-oxygenated ions (e_g_,three factors have explained as much of the data as is pos-

C,HsO* and Q;H;“ at m/z43) that will reduce the UMS sible with a bilinear model, something is changing during

between true high-resolution components, increasing the ret_hese periods of high residual and rotatability of the factors

trievability of factors in those datasets (Aiken et al., 2009). (F'g'.lo)' we h_y pothe'S|ze that aerogol partitioning or pro-
Use of diagnostic plots such as those in Fig. 11 in Q_AMScessmg results in continuously, non-linearly varying spectra

and HR-ToF-AMS factorization is encouraged. We feel thatthat cannot be fit well with the bilinear model. Evaporation

great care must be taken when interpreting solutions in whicH'de condgnsatmn of the sem|—vo!at|le OOA-2 .componen_t.of
output factors have MS and/or TS with B0.9, especially the organic aerosol may lead to slight changes in composition

if they exhibit some characteristics of splitting or mixing be- that cannpt be fit well with a constant mass spectrum. ?I'h.ese
havior. changes in spectra, especially when fresh SOA/OOA is im-

portant in a dataset, may be a key limitation of the retriev-
ability of the components in Q-AMS spectra. This should be
a topic of further research.
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5 Conclusions

START
An organic mass spectral dataset from Pittsburgh in 2002 was + Inorganic + Air, _ toions Synthetic
analyzed by PMF. The behavior of PMF solutions with AMS @ o9
data was characterized using several 2- and 3-factor synthetic
datasets with realistic noise. Three factors are identified from X | Fragmx | —
the Pittsburgh data. Two factors (HOA and OOA-1) are Standard
similar to the factors identified by Zhang et al. (2005a). A w | AMS Cal
third factor was identified as OOA-2, a semi-volatile, less- i open + closed Synthetic
oxidized OOA whose time series correlates strongly with “\ sample Time Cale
those of ammonium nitrate and ammonium chloride. The l Campaign
solutions are repeatable at different random starts and boot- , 5 A\‘;:zgsd
strapping analysis supports the robustness of the solution.
Researchers are urged to make these analyses, as well as to X |Fragvx | —
make other appropriate comparisons, such as between the re- Y

sults from robust and non-robust modeling. There is no clear :

support for justifying solutions with more than three factors X FragMx?,
for this dataset. Note that this does not mean that there are

only three sources, but rather that sources with very similar

spectra (e.g., gasoline and diesel engine emissions) Cannﬂg. Al. Schematic diagram for calculation of error matrices for

be separated in this analysis with UMR data. Any SourceSega) (black path) and synthetic (blue path) AMS data.
that can be approximated by linear combinations of the PMF

factors are likely partitioning among the retrieved factors and
are not retrievable separately. Solutions with more than Sfac_su ort to a selected solution and interoretation. Best iden-
tors appear to “split” the existing factors, a characteristic ob- .f_pp_ . de f . ) dp ; .b h
served in synthetic datasets when more factors were calcut—I ication is made rom su.pportmg evigence for qt _mass
lated than existed in the input. Additional factors make mi- spectra and correlation with tracer time series. It is imper-

nor changes in the residual of the Pittsburgh case, but appe%rtlve that both mass spectra and time series for each factor

to primarily refit the same variation in the data. We hypothe- e presented because they are interdependent. Use of diag-

size that the structure in the residual reflects continuous, nonr—]OStIC plots showing the correlation between the factors in

linear changes in the OOA-2 spectra as the aerosols partitiOﬁvéilt%hg/dgrloegfo??r?glrjr:?\gsireltrfegzi“r\killi/I S‘Z?IQC-ZT/IpSOQZ?;S
or age, which cannot be fit by the bilinear model. 0 9 :

. . W . o . Solutions with two factors may over- or underestimate the
While the determination of a “best” solution is subjec- : ) .
. L fraction of OOA, and this behavior appears to be dependent
tive and challenging in a real dataset, measures can be taken ;
) L ... _on the structure of the dataset. There is generally not a math-
to make this process more quantitative. Correct specifica- . . . . . |
: : ematical basis for choosing a particular rotation (using the
tion of estimated error values; for the dataset help prevent ; X
. : . parameter FPEAK), though correlation with external tracers
nonsensical factors (e.g., MS with one dominant fragment,

. nd reference m ra m narrow th
TS that oscillate between zero and severgdm?® over short and re erence mass spectra ay be used 'FO arrow the set
of plausible rotations. Presentation of solutions for several

gfmz /lgterv\alllss).nulfnebaelragfdf;ér:rr;enslgzta égﬂﬁiﬁgt?;npgtsrepresentative FPEAKSs will allow readers to understand the
eXp ¥=- 9 9 . rotational behavior and variability of the factors. A0/ Qexp

the minimum number of factors, but are not a sufficient cri- he mini £ 10 : .
terion for choosing the best number of factors. Multiple ran- over the minimump/ Qe0f ~1% seems to give appropriate
) ange of FPEAKSs for Q-AMS datasets.

dom seeds should be tested to explore the possibility of local
minima in the Q space, and bootstrapping should be used
to evaluate the statistical uncertainty of the candidate soluappendix A

tions. Max(RotMat) does not give any useful indication of

the best number of factors. Interpretation of the PMF solu-Calculation of error values for synthetic datasets

tions should start with the factor profiles (here, mass spectra).

We have created a public, web-accessible database of AMShe calculation of error values for real and synthetic data is
spectra which can be compared to spectra from PMF resultdescribed schematically in Fig. Al. In real datasets, the er-
to help identify and name the factors. Spectral similarity is ror, o gif, for the total difference signal (open beam — closed
not sufficient for naming factors, as “mixed” or “split” factors beam) at each point is estimated by

can have high similarity with many spectra in the database.

Thus, correlations of time series with species not included in I+ 1.

the PMF analysis are critical to give additional evidentiary odiff = & ts (A1)
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the Pittsburgh dataset. Thganic matrix is then converted
from Hz back topg/m? using the inverse of the campaign-
averaged conversion factor used above. Comparison of the

& “ magnitude of the errors of the real dataset and the synthetic
dataset is shown in Fig. A2, indicating that this procedure
results in noise estimates very similar to those from the real
dataset.

Error from 3-Factor Synthetic Case (ug/ms)
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