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Abstract. Nitrate compounds have received much atten-geneous reactions with two or more acidic gases (e.tp, SO
tion because of their ability to alter the hygroscopic prop- NO», HCI, and HNQ@). Mineral particles that acquire hygro-
erties and cloud condensation nuclei (CCN) activity of min- scopic nitrate coatings tend to be more spherical and larger,
eral dust particles in the atmosphere. However, very litleenhancing their light scattering and CCN activity, both of
is known about specific characteristics of ambient nitrate-which have cooling effects on the climate.

coated mineral particles on an individual particle scale. In
this study, sample collection was conducted during brown
haze and dust episodes between 24 May and 21 June 2007 !'Ln
Beijing, northern China. Sizes, morphologies, and composi-
tions of 332 mineral dust particles together with their coat-A significant amount of mineral dust particles (1000—

ings were analyzed using transmission electron microscop)éooo.l_ o :
. . . . g) are injected into the troposphere annually (An-
(TEM) coupled with energy-dispersive X-ray (EDX) micro- (ainreae, 1995). Mineral dust particles are lifted into the at-

analyses. Structures of some mineral particles were verifie :

) . . osphere by strong surface winds and can be transported
u3|ngt.sele'ctdgd—?reathelfctron d_lffratctllog éoS/AEf[ir)] TE'IYI Otb'dlong distances (Husar et al., 2001, Fairlie et al., 2007), influ-
servation Indicates that approximately o ot the collecte encing climate, and enhancing heterogeneous chemistry of

mineral particles are covered by visible coatings in haze samgz‘e atmosphere on regional and global scales (Ravishankara,
I

Introduction

|torlles whleree:js o.nly 5(IVo artg Toated . %usttﬁ%mpl?\)l 92% 997; Buseck and Posfai, 1999; Tegen et al., 2000; Xu et
€analyzed mineral particies are coveredwith a-, Vid-, ant, “5504. Bayer et al., 2007). Mineral dust particles scat-

Na-rich coatings, and 8% are associated with K- and S'”d}er and absorb incoming solar radiation (Sokolik and Toon,

coatings. The majority of coatings contain Ca, Mg, O, and N1 gq6. 14 vv00d and Boucher, 2000; Seinfeld et al., 2004)
with minor amounts of S and Cl, suggesting that they are POS3nd can act as cloud condensation nuclei (CCN) (Levinetal.,

s_ﬁ)ly m_';rﬁtes m_|txetd with t;mall amo;mts (I)f sulfatle? &:jnd _(t;alt(:]'m%; Yin et al., 2002). Heterogeneous chemical reactions of
riaes. These nitrate coalings are strongly correfated wi ineral dust with HN@ and NG can influence photochem-

presence of alkaline mineral components (e.g., calcite an(?cal cveles in the tronosphere (Dentener et al.. 1996° Jacob
dolomite). CaSQ particles with diameters from 10 to 500 20003’ posp ( B ' '

nm were also detected in the coatings including Ca{NO Fresh mineral dust particles in the troposphere are far

and Mg(NQ)2, Qur results |n_d|cate th‘fﬂ mineral par.tlcles " more inert than chlorides, sulfates, and nitrates. When aged
brown haze episodes were involved in atmospheric hetero; . . .
by soluble aerosol components, these mineral particles will
have enhanced hygroscopicity and altered sizes and shapes
(Krueger et al., 2003, 2004; Laskin et al., 2005b). As a re-

Correspondence td:. Y. Shao sult, the coated dust particles become more efficient CCN
BY (shaol@cumtb.edu.cn) (Kelly et al., 2007). Therefore, knowledge about the soluble
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over northern China in spring and winter include high con-
centrations of mineral dust particles, g@nd NG (Wang et

al., 2006). Mineral particles collected in the polluted hazes
from northern China provide a good opportunity to study the
heterogeneous reactions that occur in such ambient environ-
:. : -. ments.

SR - -3V S Sy e The goal of this study is to understand the properties of
: | ’ nitrate-coated mineral particles collected in regional polluted
haze episodes over northern China. We used transmission
o i i : electron microscopy (TEM) to observe mineral particles with
2000 visible coatings. Resolution down to fractions of a nanome-

+— Dust deli.y
—— Haze days

E 1500 ter can provide detailed information on sizes, compositions,
Ly morphologies, structures, and mixing states of individual

= s0] ‘% aerosol particles (Posfai et al., 1995; Buseck et al., 2000;

Middlebrook et al., 2003; Johnson et al., 2005; Niemi et al.,

ﬁ““': 2006). Ca(N@)2 and Mg(NQ)» coatings on mineral parti-
S cles are studied in detail.
L 40+
“zugéa —————
J ’ mTime{I{our)ls 2 ( 2 Sampling and experiments

Fig. 1. Ten 24-h backward trajectories of air masses arriving at2'1 Haze and dust episodes over northern China

Beijing at 500 m and their relative humidities between 24 May and __, . .
Thirty-seven aerosol samples were collected in ten se-

21 June 2007. Humidities from 20 to 50% along with heights from A i
500 to 2200m were shown in one dust air mass (red lines) from€"€ pollution brown haze episodes between 31 May and

northwest of Beijing; Humidities from 20 to 92% along with heights 21 June _2007 in_ Beijing, northern China. Temperature
from 20 to 1000 m were shown in nine haze air masses (blue linesfind relative humidity (RH) ranged from 21 to “%6 and
from southeast of Beijing. 30 to 80%, respectively. Visibility varied between 1 and

6km. Low wind speeds (1-3m$) from a southwest-
erly or southerly direction dominated during the haze peri-

components coated on mineral particles is important for evalods. High concentrations of P (200-37Qug m—3), SO
uating their impact on both global and regional climates.  (21-51ugm~3), and NG (51-88..g m~3) were monitored

Laboratory experiments and modeling work suggest thatin the brown haze days in Beijindnitp://www.bjee.org.cn/
climate forcing and heterogeneous atmospheric chemistry oépi/index.php. In addition, four samples were collected
individual mineral dust particles strongly depend on theirin one dust episode on 24 May after precipitation from
alkaline mineral components (e.g., calcite, dolomite, and21 to 23 May 2007. The dust episode was severe with a
halite) (Borensen et al., 2000; Krueger et al., 2004; Kelly andhigh PMyg concentration (288gm~2) and low concentra-
Wexler, 2005). Several field studies have indicated that mintions of anthropogenic pollutants (8 g m—2 and NG,
eral dust particles, through heterogeneous uptake of acidi¢6.4,.g m~3). During the dust period, temperature and RH
gases, acquire coatings of sulfates (Kojima et al., 2006; Sulwere 32C and 21%, respectively, and visibility was about
livan et al., 2007), and/or nitrates (Zhang et al., 2000; Laskinl km. Wind was from a westerly direction with speeds vary-
etal., 2005a; Matsuki et al., 2005; Hwang and Ro, 2006). Al-ing from 1 to 7ms?.
though laboratory studies provided detailed information re- Backward trajectory analysis can determine transport
garding nitrate coatings formed through heterogeneous reagaths of air masses arriving at a sampling site. The
tions (Krueger et al., 2003, 2004; Laskin et al., 2005b), few NOAA/ARL Hybrid Single-Particle Lagrangian Integrated
studies present data on nitrate coatings detected in ambiefirajectory model (HYSPLIT) (Draxler and Rolph, 2003) was
particles. employed to calculate ten 24-h backward trajectories of air

With the rapid urbanization in China, huge amounts of masses arriving at Beijing between 24 May to 21 June 2007
emissions from cities frequently extend to regional pollution at 500 m elevation (Fig. 1). One air mass from the northwest
episodes (Li et al., 2007; Chan and Yao, 2008)., ®@is-  of Beijing with low humidity passed over the desert and loess
sions declined from 1996 to present, but Nénissions in-  plateau of northern China, carrying a high concentration of
creased by 70% (Streets et al., 2003; Zhang et al., 2007)dust particles. From southeast of Beijing, air masses with
The increase in N@significantly affects atmospheric inter- high humidity passed over the industrial Hebei, Shanxi, and
actions and chemistry in Beijing (Guinot et al., 2007). In Shandong provinces, bringing haze particles. The backward
particular, the regional haze episodes that commonly occutrajectories shown in Fig. 1 are consistent with observations
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of the meteorological parameters and mass concentrations of coated mineral particle o

pollutants on the ground. ._ core
coatingﬂ .( ’w

2.2 Aerosol sampling

The collection site (3%9 N, 11620 E) was located in the P .
northwest of Beijing around 1 km from the fourth ring road of
Beijing city. The height of the collection site was 60 m above
sea level. Samplers were mounted on the top of a building
located at the China University of Mining and Technology,
18 m above ground. The campus is surrounded by residen-
tial houses and a shopping center. The aerosol particles were
deposited onto copper TEM grids coated by carbon film us-
ing a single-stage cascade impactor with a 0.5-mm diameter
jet nozzle, and an air flow rate is 1.0lmih The collec-

tion efficiency of the impactor is 50% for particles with an
aerodynamic diameter of 03n and almost 100% at 0.&m

if the density of particles is 2gcmi. The sampler is de-
scribed in more detail by Okada and Hitzenberger (2001).
Sampling time ranged from 30 to 120s, depending on the
visibility. After sampling, the TEM grids were sealed in dry
plastic capsules to prevent contamination.

Fig. 2. TEM image of the coated mineral particles. Coated min-
eral particles include two parts: core and coating. Arrows indicate

2.3 Analytical methods X )
coated mineral particles.

Aerosol samples were analyzed using a 200kV Philips
CM200 TEM. TEM images were used to determine particle ) i ) i
sizes, morphologies, and mixing states. Elemental COmpo_purs_,tudy. Therefort—_z, inorganic components |_nternaIIy mixed
sitions were determined using energy-dispersive X-ray speci! mineral dust particles were considered. Size of each par-
trometry (EDX). A beryllium tip holder was used to obtain tlcle_ was calculate_d using the best flttlr_lg ellipse to a particle
elemental compositions of individual particles to decrease x-0Utline, and the diameter of each particle was calculated as
rays sourced from the holder. Combining EDX and selected-thefi”thmet'c mean of the short and long axes of the ellipse
area electron diffraction (SAED), we were able to verify the (<0jima etal., 2005).
identity of some mineral particles.

All samples were primarily observed a600 to 800 mag-
nification using TEM. The distributions of particles on the 3 Results
TEM grids were not uniform. Coarser particles were de-
posited near the center of each grid, and finer particles de3.1 Coated mineral particles
posited on the periphery. Therefore, to ensure that the ana-
lyzed particles were representative of the collected size disMineral dust particles from the haze samples make up 1/3
tribution, three to four areas were chosen from the centefby number) of all collected aerosol particles with diameters
and periphery. Many mineral particles from haze samplesgreater than 0.4m. Other studies using bulk composition
show visible coatings whereas few mineral particles fromanalysis indicated that mineral dust, which originated from
dust samples show visible coatings. The primary observahatural soil, construction dust, and re-suspended road dust,
tions allowed us to choose 20 TEM grids collected in tenmade up about 39-67% (by mass) in f\ollected during
brown haze episodes and one sample collected in a singlBeijing haze episodes (Sun et al., 2006). Almost all the par-
dust episode in our study. Mineral particles with various ticles collected in the dust episode are mineral dust. These
sizes in the chosen samples were observed at different maglust particles were transported mainly from desert and loess
nifications (<2550 to 40000) using TEM. There were be- soil in northwestern China (Zhang et al., 2003; Shao et al.,
tween 10 and 40 mineral particles measured in each haz&008).
sample. We used TEM/EDX to obtain elemental compo- TEM observations indicate that approximately 90% of
sitions of different parts of individual particles. The EDX mineral dust particles are covered by visible coatings in haze
results are semi-quantitative, especially for light elementssamples, whereas only 5% are in the dust sample. We will
such as C, N, and O. Because EDX spectra were affected bgefer to mineral dust particles associated with visible coat-
carbon film and copper grids, C and Cu were not calculated irings as coated mineral particles (Fig. 2). Size distributions of
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Table 1. Relationships of cores and coatings of 332 mineral dust particles.

Si-rich Si-Al Ca-Mg Ca-rich Fe-rich Na-rich number of
core (%) core (%) core (%) core (%) core (%) core (%) particles
Ca-richcoating 6 13 10 63 7 0 236
Mg-rich coating 6 13 66 15 0 0 40
Na-rich coating 0 13 20 27 0 40 30
K-rich coating 30 40 10 10 10 0 13
S-rich coating 18 36 0 18 18 9 13

Si-rich (Si, [Ca]): quartz; Si-Al (Si, Al, [Ca]): clay, feldspar, and hornblende; Ca-Mg (Ca, Mg, [Si, Al]): dolomite; Ca-rich (Ca, [Si, Mg,
Al]): calcite; Fe-rich (Fe, [Ca, Si, Al]): hematite; Na-rich (Na, [Si, Al]): halite.

0 " .
. . Ga Ca-rich
400 coated mineral particle—-
Cu
Fe Fe
300
=) .
o mineral core Mg-rich
=)
% 2004 c
100 - Na-rich
Fe _5\“
0 A T T T
0.1 1 10 K-rich
Diameter ([tm)
Fig. 3. Size distributions of 332 coated mineral particles and their A
cores. S-rich

332 coated mineral particles range from 0.4 tqub6 with a

median diameter of 3,Am (Fig. 3). 7 r 3
Based on morphological features, we can distinguish two Energy(keV)

parts of each coated mineral particle: core and coating

(Fig. 2). In our samples, the cores are composed of Si-richsig 4. Typical EDX spectra of Ca-, Mg-, Na-, K-, and S-rich coat-

(e.g., quartz), Si-Al (e.g., clay, feldspar, and hornblende),ings. C and Cu in spectra were not considered because of copper

Mg-Ca (e.g., dolomite), Ca-rich (e.g., calcite), and Fe-rich TEM grids and carbon film.

(e.g., hematite) (Table 1). One or more mineral components

may act as cores that are enclosed within a single coating.

Cores have diameters from 0.2 to A8 with median size

2.1um (Fig. 3). Most coatings are transparent in TEM im-

ages and sensitive to the strong electron beam.

tified using EDX spectra. Based on the major compositions,
the coatings were classified into five categories (Fig. 4). They
include Ca-rich (71%), Mg-rich (12%), and Na-rich (9%) as
well as small amounts of K-rich (4%) and S-rich coatings
(4%).

A total of 330 coated mineral particles in ten haze samples Ca-rich coating:Most of mineral particles associated with
and two coated mineral particles in one dust sample were inCa-rich coatings are mixtures of silicates and calcite (or
vestigated using TEM/EDX. EDX analysis shows that coat-dolomite) (Table 1 and Fig. 5). EDX analysis shows that
ings mainly include N, O, Na, Mg, S, CI, K, and Ca. Al- Ca-rich coatings also contain O and N with minor amounts
though some mineral particles were covered with two orof S, Cl, and Mg. CaS@particles with the diameter from
more components, one dominant component could be ident0 to 500 nm were detected in these amorphous coatings

3.2 Coatings on mineral particles

Atmos. Chem. Phys., 9, 1868871, 2009 www.atmos-chem-phys.net/9/1863/2009/
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(a)
a-rich[Cl]
(Ca(NO-))

y 7 ; - 7 >-0.00
00.00 0.25 0.50 0.75 1.00 N

Fig. 6. Ternary diagrams showing EDX data of elemental com-

) . . . . positions of Ca-rich coatings of 236 mineral particles. Reference
Fig. 5. TEM images of mineral dust particles covered by Ca-rich 5 0,4 represent the elemental compositions of laboratory generated
coatings. Major compositions are shown in parentheses, and manéaCO‘3 (red ellipse) and Ca(N§), (blue ellipse) particles. All the

elements are r_nentlone(_j in square brackéas A mlner_a_l particle particles were analyzed in the same TEM system with very close
that includes different mineral components (aluminosilicate and cal-

. . . . . i conditions.
cite (CaCQ)) is covered by Ca-rich coatinggb) High-resolution
TEM image of the partial mineral particle in image (a). Amor-
phous Ca-rich coatings including the crystal particles with the di- ;hited in field studies. We believe that Mg-rich coatings are
ameter at 20-50nm. SAED diffraction indicates that these parti- ; ; _ ;
cles are CaS@ (c) Calcite particle is covered by Ca-rich coatings possibly mlxtures (?f Mg_(N@)z and Mg-bearing sulfa_tt.es as

) | ) - : well as minor chlorides (i.e., Mgghnd CaC}). In addition,
with CaSQ particles.(d) Mineral aggregates with different mineral h h Ma-rich . ;
components are covered partially by Ca-rich coatings. measurlement's show that mpst g—r'lc X coat]ngs were Inter-

nally mixed with Ca(NQ)2(Fig. 7f). Similar mixtures were

described in a laboratory study of China loess reacted with
HNOj3 (Laskin et al., 2005b).
Na-rich coating: Some Na-rich coatings yield SAED pat-
rns of NaSQ, but the majority of coatings are amor-

(Fig. 5b). The ternary diagram of Ca-O-N shows that most
Ca-rich coatings are closely distributed around the standarge

Ca(NQ’).Z gengrated in laboratory (Fig. 6). In our StUdY’ the phous (Fig. 7c). EDX analysis shows that Na-rich coat-
oxygen |nten5|_t|es from EDX sp_ectra are also larger in thei gs also consist of N, O, and S with minor amounts of Mg
coatings than in the corresponding cores. The properties o nd Ca. Their compositions indicate that they possibly in-
coatings are similar to that of Ca(N® described by Laskin ’ .

et al. (2005b). Most Ca-rich coatings examined by EDX KJI;?E&??Q and NaSQy as well as minor Ca(Ng)z and
analysis also include minor chlorine. Murphy et al. (2006) K- and .S-rich coating: K- and S-rich coatings usually
measured chlorides at the surface of most nitrate coatings o0 close or coagulate wi.th the submicron mineral particles
dust particles i_n the troposphere using laser mass spectronzl-:ig_ 7d, ). We also found many K- and S-rich particles
et_ry. Scavengmg_ of HCl and HNgrom the gas phase by without mineral particles in our samples. K-rich coatings
mineral particles is also thermodynamically favorable (Kelly

and Wexler, 2005). Minor Cl in Ca-rich coatings is inferred g?rrl(s-ltita;rfinN’ S?,Iif:tr;) ds 2;;%?332?9 ;rgt tgi)ilcﬁreaerltirgggure
from CaCh and MgCp internally mixed with Ca(N@)». 9 9- ) P

) . ] . ) ‘ are sensitive to the electron beam, and also consist of N and
Mg-rich coating: Mineral particles associated with Mg- (Fig. 7d). The particles are likely (NppSOs.
rich coatings are mixtures of silicates and dolomite (Ta-

ble 1). Mg-rich coatings also contain N and O with mi-

nor amounts of Cl and Ca. Cagclusions are also de- 4 Discussion

tected in some coatings (Fig. 7a, b). Mg-rich coatings are

amorphous. Although characteristics of Mg-rich components4,1  Comparisons of coatings on mineral particles

(e.g., Mg(NQ)2, MgSQ4, and MgCh) were studied in labo-

ratory experiments (Ha and Chan, 1999; Li et al., 2008), theNumerous studies have shown that nitrate coatings form
association of Mg-rich coatings with mineral particles is very on atmospheric mineral particles through heterogeneous
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© nor amounts of sulfates and chlorides, likely as a result of
heterogeneous reactions. The reactions of alkaline mineral
dust with HNG are several orders of magnitude faster than
with HCI, NO», or SGQ (Ullerstam et al., 2003; Ooki and
Uematsu, 2005; Vlasenko et al., 2006). The polluted air
of Beijing contains abundant HNQSO,, and NOQ (Bergin
et al., 2001), alkaline mineral particles may first react with
HNOs3 and form nitrate coatings on mineral particles. The
hydrophilic nitrate coatings significantly enhance the uptake
capacity of water and some gases (e.g.,xNOQO,, HCI,
and ) on mineral particles in the atmosphere (Usher et al.,
2003; Fountoukis and Nenes, 2007).

- »ﬂmﬁgﬁm Our study clearly shows that Cag@articles occurred

in Ca(NGs)2 and Mg(NQ)2 coatings, although CaS(as-

Fig. 7. TEM images of mineral particles with coatings. Major com- Sociated with Ca(Ng), was previously detected by Zhang
positions are shown in parentheses, and minor elements are me@t al. (2000) and Hwang and Ro (2006). Pandis and Se-
tioned in square bracketsa) Dolomite particle (CaMg(C@)>) is infeld (1989) showed that conversion of S (IV) to S (VI)
covered by Mg-rich coatings with Cag@nd MgSQ particles.(b) in the atmosphere occurs during aqueous chemistry through
Mineral particle is covered by Mg-rich coatings including CaSO the oxidation of S(IV) by HO,, Os, and/or Q (catalyzed
particles. (c) Fe-rich mineral particle is coated by NaN@nd by Fet and Mr¢t). The presence of Cag(articles in
NapSOy, NapSOy was confirmed by SAED(d) Fe-rich mineral  coatings is likely to be the result of S@bsorbed on aque-
particle coagulate with soot and S-rich particle with minor(&) ous nitrate coatings and then converted into Cap@ticles

Fe'r.'Ch .m'neral particle Co.ag“|ate ‘.N'th K'.”Ch. pam.de) Calc'te. through aqueous chemical reactions. Ca&ad nitrate coat-
particle is enclosed by a mixed coating which likely includes K-rich, .

) ' ings together forming on mineral dust particles are consis-
Ca(N , and Mg(N with CaSQ particles. : ) ) . ;
(N2 IN)2 Qp tent with previous laboratory simulation that calcite can react

with SO, and HNG; to form sulfate crystalline particles and

reactions with gaseous nitric acid (Zhang and lwasaka, 19997itrate deliquescent layer (Al-Hosney and Grassian, 2005).
Laskin et al., 2005a; Matsuki et al., 2005; Sullivan et al.,
2007). Our results show that abundant nitrate coating

forr1med OP mmergl particles d d“f'”gh brccj)wn hqze dep'sﬁ.df]SMineral dust particles with nitrate coatings are hydrophilic,
whereas Tew coa;tglgs %clczlurre n t” € E.Sthep'sl’?oH e'h '9N€hnd those without coating are commonly hydrophobic (Kelly
f:ongentratlons 0 Qa_n Q as well as gher SNOWN ot 51, 2007; Shiet al., 2008). The deliquescence relative hu-
in Fig. 1 occurred during brow_n haze_ eplsodes thar_l durmgmiolities (DRHs) of hydrated Ca(Ng, and Mg(NQ), are
dust ep_nsode. These comparisons indicate tha_t high con-_; 54, and~11%, respectively (Tang and Fung, 1997; Li
centrations of anthropogenic acidic gases and high RH can, o1 2008). The DRHs are lower than the RH measured
enhance heterogeneous reactions on mineral dust and forLH evéry brown haze day. The results indicate that mineral
coatlngs._ Con5|ster_1t_W|th th|_s conclusuor_w, ab_undant MINEray,st particles with the nitrate coatings should be larger and
dust particles containing calcite or dolomite without coatings oo spherical during the polluted days of high RH. The
were detected in the dust sar_nple. Our resglts also show th%toated mineral particles can act as CCN and enhance scat-
C‘T’I(NQ)Z aqd Mg(N.Q")Z coatlings pr_eferenually fo_rmed on tering when they are entrained and transported in the tro-
mineral particles which contain calcite and dolomite compo—Sposphere (Gibson et al., 2006a; Kelly et al., 2007). In the
9

nZe:ts (Tab(ljell). TEiS ilsgiggf.slgl\;leemek_nt Witlh pzrg(\)/j;uE Stlg_die lobal scale, the coating processes can change the distribu-
(I 38%5@ L wasa a,d - éOOZtSl:)I ert] a ”h h ' das In e£l]ions of sulfate, nitrate, and mineral particle in atmosphere,
al, a, hwang and Ro, 204 )- Ont e_ot erhand, a Smad,j therefore change their impact on earth radiation (Bauer
number of K- and S-rich coatings on mineral particles oc- etal., 2007)

curred in brown haze episodes (Table 1). Ammonium sulfate HNOs in the atmosphere is taken up by mineral dust
aqd K-rich partlcles tend to gccumulate; In gubmlcron _Clayparticles as nitrates, reducing photochemically active,NO

mineral particles through their coagulations in air (Sullivan (Hanisch and Crowley, 2001; Underwood et al., 2001; Liao
etal., 2007). et al., 2003; Gibson et al., 2006b). As a result, mineral dust
particles in northern China can affect photochemical oxida-
tion in the regional atmosphere.

Na-rich(S]
e

\Mg-rich}(‘a]
2 (mixture of Mg(NO:):
== . and Ca(NO.)))

s4.3 Atmospheric implications

4.2 Reactions on mineral particles
Mineral particles with hygroscopic coatings are more reac-

tive with acidic gases than those without coatings (Usher et
al., 2003). In our samples, most nitrate coatings include mi-
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