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Abstract. The Satellite Application Facility on Climate
Monitoring (CM-SAF) aims at the provision of satellite-
derived geophysical parameter data sets suitable for climate
monitoring. CM-SAF provides climatologies for Essential
Climate Variables (ECV), as required by the Global Cli-
mate Observing System implementation plan in support of
the UNFCCC. Several cloud parameters, surface albedo, ra-
diation fluxes at the top of the atmosphere and at the sur-
face as well as atmospheric temperature and humidity prod-
ucts form a sound basis for climate monitoring of the at-
mosphere. The products are categorized in monitoring data
sets obtained in near real time and data sets based on care-
fully intercalibrated radiances. The CM-SAF products are
derived from several instruments on-board operational satel-
lites in geostationary and polar orbit as the Meteosat and
NOAA satellites, respectively. The existing data sets will
be continued using data from the instruments on-board the
new joint NOAA/EUMETSAT Meteorological Operational
Polar satellite. The products have mostly been validated
against several ground-based data sets both in situ and re-
motely sensed. The accomplished accuracy for products de-
rived in near real time is sufficient to monitor variability on
diurnal and seasonal scales. The demands on accuracy in-
crease the longer the considered time scale is. Thus, interan-
nual variability or trends can only be assessed if the sensor
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data are corrected for jumps created by instrument changes
on successive satellites and more subtle effects like instru-
ment and orbit drift and also changes to the spectral response
function of an instrument. Thus, a central goal of the recently
started Continuous Development and Operations Phase of
the CM-SAF (2007–2012) is to further improve all CM-SAF
data products to a quality level that allows for studies of in-
terannual variability.

1 Introduction

Concerns about the Earth’s climate implicate an increasing
necessity for climate monitoring on a global scale. Cli-
mate change and variation occur on different time scales and
data sets useful for climate monitoring must therefore cover
longer time series to understand these changes. The demands
on the accuracy increase accordingly to the time scales con-
sidered. At the seasonal to interannual time scale the ac-
curacy requirements increase dramatically because climate
phenomena at this scale are initiated by very small changes
in the observed parameters. At decennial to centennial time
scales which are exclusively suitable for trend detection the
accuracy of data sets must be one order of magnitude higher
than compared to the needs of detecting interannual fluctua-
tions.

Only space-based observations can deliver the needed
global coverage with sufficient quality and timeliness. Par-
ticularly over the ocean and sparsely populated areas satellite
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data are largely the only data source. Existing satellites now
provide sufficiently long data series that have been used for
climate analysis (e.g.,Santer et al., 2007, Mieruch et al.,
2008andTrenberth et al., 2005). Satellite data provide infor-
mation on the climate system that are not available or difficult
to measure from the Earths surface like top of atmosphere ra-
diation, cloud properties or humidity in the upper atmosphere
the two latter having a large impact on the greenhouse effect.

Understanding the processes which control the natural sta-
bility and variability of the climate system is one of the most
difficult and challenging scientific problems faced by the cli-
mate science community today. An improved understanding
of the interaction processes between water vapor and clouds
as well as their radiative impact is urgently required.

The Earth’s Radiation Budget (ERB) is the balance be-
tween the incoming radiation from the sun and the outgoing
reflected and scattered solar radiation plus the thermal in-
frared emission to space. Earth surface conditions greatly
influence the radiation budget, e.g. through surface tempera-
ture variations in the thermal infrared and through a critical
contribution to the planetary albedo (especially for desert re-
gions and snow- and ice-covered polar regions).

Water vapor is a major greenhouse gas and is usually con-
sidered to play an amplifying role in global warming through
a strongly positive climate feedback loop (Held and Soden,
2000), although with some remaining question marks con-
cerning the link to cloud feedback processes. Due to the non
linearity of interactions of the radiation field and the water
vapor, outgoing longwave radiation (OLR) is more sensitive
to a small humidity perturbation in a dry environment than
in a moist region. For instance, increasing the upper tro-
pospheric humidity from 5% to 10% at constant tempera-
ture, increases the outgoing longwave radiation by 10 Wm−2

while increasing the upper tropospheric humidity from 25%
to 30% only modifies OLR by less than 5 Wm−2. This con-
fers a central role to the dry upper troposphere regions in
the radiation budget and its sensitivity. Documenting the
recent decades history of the water vapor field should give
some understanding of the mechanisms at play in the climate
and how it responds to the increasing greenhouse gas con-
centration. For instance, a potential drying of the upper tro-
posphere as a consequence of a CO2 increase as postulated
in recent climate change theory can be investigated with an
extensive documentation of the tropospheric humidity from
satellite (Rind, 1998; Soden, 2000).

Because the water vapor distribution results from the large
scale dynamics and associated transports that take place at
synoptic scales, its documentation can also yield some in-
sights into the dynamics of the atmosphere and its evolution.
It is then important to monitor its evolution with high tem-
poral resolution over a long time period. This effort could
in principle be useful to detect, if any, trends not only in the
mean climate but also in the transient activity, which is cen-
tral to the energy cycle.

Clouds exert a blanketing effect similar to that of water
vapor. In the infrared spectral region clouds behave like
black-bodies, and emit radiation back to the Earth and to
outer space depending on their temperature. As water va-
por, clouds absorb and emit infrared radiation and thus con-
tribute to the warming of the Earth’s surface. However, this
effect is counterbalanced by the reflectance of clouds, which
reduces the amount of incoming solar radiation at the Earth’s
surface. Because most clouds are bright reflectors they block
much of the incoming solar radiation and reflect it back to
space before it can be absorbed by the Earth surface or the
atmosphere, which has a cooling effect on the climate sys-
tem. The net average effect of the Earth’s cloud cover in the
present climate is a slight cooling because the reflection of
radiation more than compensates for the greenhouse effect
of clouds.

One of the most problematic issues in studying clouds
is their transient nature- they are continuously changing in
space and time, which make them very difficult to both ob-
serve and simulate in models. This also explains why dif-
ferences in cloud descriptions and cloud parameterizations
between various climate models are responsible for a major
part of the variation seen in climate model scenarios through
cloud feedback processes (Stephens, 2005). Hence, progress
is needed here both concerning cloud observation and cloud
modeling aspects.

From the above paragraphs it is obvious that a high quality
combined water vapor – cloud – radiation time series derived
from satellite data is of enormous value for climate research.
This is reflected in the choice of products of the Satellite Ap-
plication Facility (SAF) on Climate Monitoring (CM-SAF).
The CM-SAF is part of EUMETSAT’s SAF Network, that
comprises eight SAFs (see www.eumetsat.int for further de-
tails). The SAF network is a network of networks, dedicated
to tackle the tasks and challenges in the field of meteorology
and climatology supported by satellite data as the main in-
put. The CM-SAF as part of this network plays a major role
in EUMETSAT’s activities towards climate monitoring.

Beside the issues of monitoring and understanding the cli-
mate system, adaptation to and active protection against cli-
mate change is highly relevant to societies. Both are strongly
coupled to the production of electricity, where solar energy
systems provide a sustainable and environmentally sound al-
ternative to traditional power plants. Accurate solar irradi-
ance data is needed for the efficient planning and design of
solar energy systems. CM-SAF radiation data may help to in-
crease the efficiency of such systems which leads to a poten-
tial reduction of CO2 emissions by the replacement of fossil
power plants.

This paper introduces the CM-SAF concept, its current
products including their quality and its near future plan.
Within the next section the historic background and the ob-
jectives of CM-SAF are described in more detail. This is
followed by a description of the individual climate moni-
toring products including the techniques to derive them and
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estimations of achieved accuracy. The last section is dedi-
cated to the tasks of the so called Continuous Development
and Operations Phase (CDOP) with a duration of five years
(2007–2012).

2 Background and objectives

First attempts to generate long-term data series of atmo-
spheric quantities derived from satellite measurements go
back to the early eighties when the International Satellite
Cloud Climatology Project (ISCCP) started its work (Rossow
and Garder, 1993). The cloud information from the ISCCP
data set was successfully used to derive a climatology of
the shortwave radiation budget (Gupta et al., 1999). Pre-
cursory cloud data sets are e.g., the PATMOS data set (Ja-
cobowitz et al., 2003), the SCANDIA cloud climatology
(Karlsson, 2003) over Scandinavia, and the European Cloud
Climatology (Meerk̈otter et al., 2004) which were all derived
from Advanced Very High Resolution Radiometer (AVHRR)
observations. SCANDIA has recently been used to elu-
cidate possible weaknesses of regional climate simulations
with respect to the simulation of cloud amount, cloud opti-
cal thickness and the vertical distribution of clouds (Karls-
son et al., 2008). The NASA Water Vapor Project (NVAP)
provides global total column water vapor data sets derived
from Television and Infrared Operational Satellite (TIROS)
Operational Vertical Sounders (TOVS), and Special Sen-
sor Microwave/Imager (SSM/I) data spanning a period over
14 years (1998–2001) (Vonder Haar, 2003).

Although accuracy and precision of satellite-based time
series may locally be lower than existing and correspond-
ing data sets derived from ground-based measurements, they
provide a much more homogeneous data quality compared to
the heterogeneous observation system at the ground. How-
ever, dedicated effort is needed to generate homogeneous,
stable and accurate data sets with high spatial resolution from
recent, current and future satellite sensors. Then, such time
series of satellite-derived quantities can be used e.g., for the
detection of climate change. Following the terminology of
the NOAA White Paper on creating Climate Data Records
(CDRs) from satellite measurements (Colton et al., 2003),
CM-SAF has the mandate to generate thematic climate data
records in an operational off-line environment. Environmen-
tal Data Records (EDR) are obtained if satellite sensor data
are converted to geophysical variables in real time using the
nominal calibration over time. EDRs may be aggregated to
monthly means and used for some monitoring purposes. For
a CDR usable for analysis of interannual variability or trends
it is required to improve the calibration, to homogenise the
series of data coming from different satellites, and to use only
one retrieval scheme for the whole temporal record. The con-
cept of different data records as used within NOAA and CM-
SAF is explained in more detail inRobinson et al.(2004).

A very accurate absolute calibration as well as a very
high sensor stability over time is required to accomplish the
needed product accuracy (Ohring et al., 2005). Additionally,
radiance data coming from different satellite platforms must
be intercalibrated. It is required that this data sets and related
methods are provided by several satellite operators.

Within the range of essential climate variables (ECV)
as defined in the GCOS Second Adequacy Report (GCOS,
2003) the CM-SAF currently focuses on the provision of
geophysical parameters describing elements of the energy
and water cycle. CM-SAF provides regional products with
comparably high spatial resolution as well as global prod-
ucts that complement ongoing international activities. CM-
SAF exploits the polar orbiting NOAA and MetOp satel-
lites utilizing data from the Advanced Very High Resolu-
tion Radiometer (AVHRR), High resolution Infrared Radi-
ation Sounder (HIRS), Infrared Atmospheric Sounding In-
terferometer (IASI), Advanced Microwave Sounding Unit
(AMSU) and Microwave Humidity Sounder (MHS) instru-
ments. Additionally, the Global Earth Radiation Budget
(GERB) (Harries et al., 2005) and the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) radiometers (Schmetz
et al., 2002) on-board the METEOSAT Second Generation
(MSG) satellites are used. Data from the Clouds and Earth’s
Radiant Energy System (CERES) on-board TERRA and
AQUA support the retrieval of radiation fluxes at top of the
atmosphere. Furthermore, data of the Special Sensor Mi-
crowave/Imager (SSM/I) series are used to provide a consis-
tent time series of total column water vapor over the ocean
spanning the period 1987–2005.

CM-SAF data sets can be categorized into three differ-
ent groups fulfilling different requirements. During the Ini-
tial Operations Phase (IOP, 2004-2007) operational proce-
dures to quickly process large amounts of data were estab-
lished. Products are available in almost real time but retrieval
schemes changed over time. Additionally, radiances used as
input were only nominally calibrated, i.e., no intercalibration
accounts for sensor changes and other sensor related errors.
During the so called Continuous Development and Opera-
tions phase (CDOP, 2007–2012) the focus is on the genera-
tion of long homogeneous time series of the CM-SAF prod-
ucts. The three data set categories and their properties are:

– CDRs for operational climate monitoring are con-
structed from so called Environmental Data Records
(EDR). EDRs are instantaneous estimates of geophys-
ical variables retrieved in near real-time only utilizing
information from the past and aiming at a small ran-
dom error. Input to this processing are nominal cal-
ibrated radiances or automatically intercalibrated sen-
sor data if provided by the space agencies. The instan-
taneous EDRs are then integrated over time to obtain
daily and monthly averaged products. Within this pro-
cess also information from the future is used, e.g., a
whole month of data is used to compute daily averages

www.atmos-chem-phys.net/9/1687/2009/ Atmos. Chem. Phys., 9, 1687–1709, 2009



1690 J. Schulz et al.: Operational climate monitoring from space: CM-SAF

for a particular month employing also temporal correla-
tions to fill gaps. The application area of these data sets
is on diurnal and sub-seasonal to seasonal time scales,
e.g., the monitoring of extreme events and the support
of NMSs climate departments in early dissemination
of climate information to the public. Additionally, the
products are accurate enough to be used for solar energy
applications. The use on longer time scales depends on
the quality of automated intersensor calibration. De-
rived geophysical averages may have to be corrected us-
ing ground based information for further use. The data
sets currently created at CM-SAF mostly belong to this
category.

– Reprocessed CDRs form a second class and will be cre-
ated if substantial knowledge on the correction of instru-
ment and retrieval errors can be applied. This should at
least include inter satellite homogenisation and no algo-
rithm changes over time for the production of the data
set. Depending on the number of satellite instruments
involved in a product and the success of automated ra-
diance homogenisation as well as corrections of system-
atic errors caused by instrument failures or orbit varia-
tions, the products are expected to be useful for time
scales ranging from diurnal, seasonal to inter-annual.
For the latter scale the variability is much smaller com-
pared to diurnal and sub-seasonal fluctuations. Most of
the CM-SAF products will reach this status during the
CDOP.

– A third class of CDRs will be provided for the analy-
ses of long term climate variability (decadal). Here it is
necessary that expert teams have improved absolute cal-
ibration of the involved instruments to the highest pos-
sible level and that other instrument and orbit related
systematic errors are diminished to a level that the very
small decadal variability in a variable can be monitored.
Some of the parameters, e.g., total column water vapor
over oceans from passive microwave imager data may
reach this status shortly after the CDOP when the time
series of such data approaches 30 years. Additionally,
the records started from new instruments as IASI and
others on EUMETSAT MetOp satellite are expected to
deliver such high quality data to create a data set suit-
able for the analysis of decadal variability.

3 Products, retrieval schemes and validation

As mentioned above CM-SAF focuses on retrieving geo-
physical parameters from satellite data employing inversion
schemes based on radiation transfer theory. This comple-
ments other international activities on the use of satellite data
in climate research as the use of radiance data for climate
trend detection and the assimilation of satellite data into dy-

namical models to retrieve geophysical products as e.g. in the
ERA-40 reanalysis. The products currently are:

– Cloud parameters: cloud fractional cover (CFC), cloud
type (CTY), cloud top pressure (CTP), cloud top height
(CTH), cloud top temperature (CTT), cloud phase
(CPH), cloud optical thickness (COT), cloud water path
(CWP);

– Radiation budget parameters at the surface and the top
of the atmosphere (TOA). Surface: Incoming short-
wave radiation (SIS), surface albedo (SAL), net short-
wave radiation (SNS), netlongwave radiation (SNL),
downward (SDL) and outgoing longwave radiation
(SOL), surface radiation budget (SRB); TOA: Incom-
ing solar radiative flux (TIS), reflected solar radiative
flux (TRS), emitted thermal radiative flux (TET);

– Humidity products: Total (HTW - surface to 100 hPa)
and layered (HLW) precipitable water, mean tem-
perature, and relative humidity for 5 layers (1000–
850 hPa, 850–700 hPa, 700–500 hPa, 500–300 hPa,
300–200 hPa) as well as specific humidity and tempera-
ture at the six layer boundaries (HSH).

These products were mainly discussed and defined during
the development phase of the CM-SAF (Woick et al., 2002).
The list of products reflects atmospheric parameters that can
be derived from sensors on-board operational satellites with
state-of-the-art retrieval schemes. The list was confirmed by
a user survey held by CM-SAF in 2001 which allowed also
to prioritize the development of products. The majority of
products is classified as essential climate variable (ECV),
as can be seen in the GCOS implementation plan (GCOS,
2004). Although well known parameters as sea and land
surface temperature as well as ice and snow cover are not
explicitly provided their impact is implicitly covered by sur-
face albedo and surface radiation fluxes. All products are
available via electronic ordering atwww.cmsaf.eu.

Currently, all CM-SAF products derived from instruments
on the Meteosat platform cover the full METEOSAT visible
disc. Products derived from AVHRR measurements cover an
area between 30◦ N to 80◦ N and 60◦ W to 60◦ E, i.e. basi-
cally Europe and the Northeast Atlantic. Water vapor prod-
ucts derived from ATOVS data are provided with global cov-
erage. Near real time monitoring products are available from
May 2007 onwards.

Additionally, a total column water vapor product derived
from SSM/I data that covers global ice-free ocean areas is
provided. The SSM/I record is based on homogenised SSM/I
brightness temperatures (Andersson et al., 2009) and is avail-
able for the period July 1987 – August 2006. Cloud products
and surface albedo will be further extended to cover the In-
ner Arctic. AVHRR, ATOVS and IASI data from the MetOp
satellite will be used to further improve coverage and accu-
racy of the products in the near future.
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Table 1. Overview on CM-SAF product properties. CDR classes belong to those introduced in Sect.2. Spatial resolution is given in km2

for products on equal area grids, others are on latitude/longitude grids. Codes for temporal resolution are: M=monthly mean, D=daily mean,
MDC=monthly diurnal cycle (hourly values averaged over the month).

Product group (CDR class) Product Sensor, area and length of record Spatial and Temporal Resolution

Cloud parameter (I) CFC AVHRR: Baseline / 01.11.2004− AVHRR: (15 km)2, M, D
CTY AVHRR: Arctic / 01.01.2009−
CTP SEVIRI: Meteosat disc / 01.09.2005− SEVIRI: (15 km)2, M, D, MDC
CTH
CTT
CPH
COT
CWP

Humidity products (I) HTW ATOVS: global / 01.01.2004− (90 km)2, M, D
HLW
HSH

Humidity products (II) HTW SSM/I: global (ice free ocean) / (0.5◦)2, M, D
01.08.1987− 31.08.2006

Surface radiation (I) SIS AVHRR: Baseline / 01.11.2004− AVHRR: (15 km)2, M, D
SAL AVHRR: Arctic (only SAL) / 01.01.2009−
SNS SEVIRI: Meteosat disc / 01.09.2005− SEVIRI: (15 km)2, M, D, MDC
SDL AVHRR-SEVIRI merged product: AVHRR-SEVIRI: (15 km)2, M
SOL Baseline and Meteosat disc / 01.05.2007−

SNL
SRB

Top of atm. radiation (I) TIS DIARAD/VIRGO / 01.02.2004− (45 km)2, M, D, MDC
TRS GERB and CERES (merged dataset)
TET Meteosat disc, 01.02.2004−

Most of the CM-SAF products are provided at a (15 km)2

spatial resolution, with the exception of the top of the at-
mosphere radiation and water vapor products from infrared
and microwave sounders, which are available at (45 km)2 and
(90 km)2 resolution, respectively. The mean diurnal cycle is
also provided for some of the products based on SEVIRI and
GERB data. Accuracy requirements for near real time mon-
itoring products are relaxed relative to the accuracy require-
ments formulated byOhring et al.(2005). Instead they are
more oriented towards the limits that can be reached by cur-
rent satellite observations.

Although cloud products and surface radiation fluxes are
derived independently from AVHRR and SEVIRI radiances,
merged products are optionally provided for selected radia-
tion fluxes. The merging is performed at the level of monthly
mean products on the product grid (15 km)2. Due to lower
temporal sampling of AVHRR south of 55◦ N the accuracy of
monthly means is less compared to SEVIRI estimates. North
of 55◦ N the accuracy of SEVIRI estimates is decreasing be-

cause of the larger viewing angles. Thus, a simple linear
average for radiation fluxes in a latitude band between 55◦ N
and 65◦ N (SEVIRI results gradually replaced by AVHRR re-
sults) is computed to merge both products together. Merged
cloud products are not defined due to problems of efficiently
taking into account the large spatial and temporal sampling
differences and the different instrument characteristics.

Table 1 gives an overview on the CM-SAF products in-
cluding the corresponding CDR class, product name, sen-
sor and record length, spatial and temporal resolutions. Cur-
rently, all CM-SAF products belong to the CDR class I with
the exception of SSM/I-derived total column water vapor
which is a CDR-II product.

Within this section the used retrieval schemes, validation
activities and example products are introduced. Many of
the CM-SAF products require information on cloud cover,
e.g., if a pixel is cloudy or cloud free. Thus, we start with
the description of methods used for cloud property retrieval.
This is followed by a description of the water vapor products.
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Finally, retrieval schemes for the resulting radiation fluxes at
the top of the atmosphere and the surface are explained and
their quality is assessed.

3.1 Cloud properties

All cloud parameters mentioned above are derived from
both NOAA/AVHRR and MSG/SEVIRI visible and infrared
channels, with corresponding spatial and temporal sampling.

3.1.1 Retrieval

Fractional cloud cover, cloud type and cloud-top parame-
ters are derived followingDybbroe et al.(2005a), Dybbroe
et al.(2005b) for NOAA/AVHRR andDerrien and LeGĺeau
(2005) for MSG/SEVIRI. Fundamental principles of the al-
gorithms applied to SEVIRI raw data can already be found
in an earlier paper byDerrien et al.(1993). The algorithms
are provided by the SAF in Support to Nowcasting and Very
Short-Range Forecasting (NWC-SAF). Both retrievals are
based on a multi-spectral threshold technique applied to each
pixel of a satellite scene. Typically, these methods allow to
retrieve cloud parameters during daylight and during night-
time in the visible and near-infrared part of the spectrum be-
tween 0.5µm and 3.7µm and in the infrared region between
10 and 12µm. The SEVIRI algorithm also makes use of the
8.7µm channel.

The first retrieved parameter is the fractional cloud cover
based on cloud masking of several satellite pixels. The ma-
jority of threshold tests uses the infra-red channels of the
radiometers, e.g. the well-known difference of brightness
temperatures inside and outside the so-called infrared win-
dow channels to detect high-level cirrus clouds (split-window
technique, see e.g.Inoue, 1987). The series of tests to be
passed allows to finally separate clear-sky, cloudy and par-
tially cloudy pixels. Also snow/ice-covered pixels and un-
classified pixels (where all tests failed) are identified. A
cloud-mask is then generated for the entire SEVIRI slot or
AVHRR orbit which is used in subsequent algorithm steps,
e.g. for the cloud-top parameter retrieval.

The first step for cloud type retrieval is to use measured
cloud temperatures in the infrared channels to separate thick
clouds. For further separation of water clouds and semi-
transparent ice clouds, differences in reflection character-
istics at short-wave infrared channels (e.g. at 1.6, 3.7 and
3.9µm) and differences in transmission characteristics in in-
frared channels (3.7 or 3.9µm, 8.7, 11 and 12µm) are uti-
lized.

Cloud-top pressure assignment for MSG/SEVIRI cloudy
pixels followsSchmetz et al.(1993) andMenzel et al.(1983),
respectively. These methods rely on the linear relationship
between radiances in one window channel and in one sound-
ing channel and are used to estimate the cloud top. The cloud
top products are to some extent influenced by potential errors
in the used background temperature profiles from meteoro-

logical analysis as provided by the GME model. The model
is described inMajewski et al.(2002). However, for climate
monitoring purposes we believe that the current methodol-
ogy is better than to rely on standard climatological pro-
files which would preclude or at least complicate future trend
analysis. This concerns especially the planned historic pro-
cessing efforts in the CM-SAF where the GME model anal-
ysis will be replaced by well established model re-analysis
in order to constrain and limit the impact from errors in the
used background fields.

Besides the macrophysical cloud properties, the CM-SAF
provides cloud physical properties which are cloud phase,
cloud optical thickness, and the cloud liquid water path.
These properties are discussed in the following:

The AVHRR cloud phase product is based on a pure tem-
perature interpretation using 11µm channel brightness tem-
peratures, as suggested byRossow and Schiffer(1991). For
the SEVIRI-based cloud phase product we compare simu-
lated (precalculated and stored in look-up table) and mea-
sured reflectances of the 1.6µm SEVIRI channel which is
suited to distinguish water clouds from ice clouds (Jolivet
and Feijt, 2003). Radiative transfer simulations are per-
formed using the Doubling Adding KNMI (DAK) model
(Haan et al., 1987). Once the initial cloud phase is retrieved,
an additional 10.8µm cloud top temperature threshold test
determines the final cloud phase, which maintains the initial
retrieval as ice phase if the cloud-top temperature is below
265K (Wolters et al., 2008).

The cloud-optical thickness is calculated following the
method described inNakajima and King(1990). This
method relies on the fact that the top of atmosphere re-
flectance at a non-absorbing visible spectral channel is
mainly a function of the optical thickness, whereas the re-
flectance in a water or ice absorbing near-infrared spectral
channel is mainly a function of the cloud particle size. An
iteration algorithm is used to simultaneously retrieve cloud
optical thickness and particle size from the measurements
of both channels. Nakajima and Nakajima(1995) intro-
duced such an algorithm for the 0.6µm, 3.7µm, and 10µm
AVHRR channels. Roebeling et al.(2006) successfully
adapted their approach to SEVIRI measurements, but using
the 1.6µm instead of the 3.7µm channel. The cloud liquid
water path is calculated afterStephens et al.(1978). Note
that reliance on visible and near-infrared channel data limits
the availability of products to daytime conditions. Moreover,
NOAA currently only operates the 1.6µm channel on the
NOAA-17 satellite.

Daily mean cloud products are derived for pixels with
at least six NOAA overpasses per day. Monthly products
are subsequently calculated from daily averages, requiring at
least twenty valid days per month. For SEVIRI-based prod-
ucts from Meteosat data those restrictions are only relevant
in cases with substantial data loss.
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3.1.2 Validation

Validation of cloud coverage results derived from both
AVHRR (locally over the baseline area) and the entire ME-
TEOSAT disk against ground-based synoptical observation
showed that results typically agree within one octa cloudi-
ness. The satellite observations tend to overestimate the
cloud coverage over sea where contrasts between clouds and
the ground are generally higher, both for the solar and the
thermal spectral range. Furthermore, the SEVIRI-based re-
trieval overestimates the cloudiness at large observation an-
gles while the opposite effect is observed over the tropi-
cal belt where observations are made in near-nadir viewing
mode. Differences exceed in both cases 10%.

On the basis of case studies, CM-SAF results for SEVIRI
also were compared with results derived from Moderate Res-
olution Imaging Spectrometer (MODIS) and from Cloud-
Aerosol LIDAR with Orthogonal Polarization (CALIOP) ob-
servations. These comparisons confirmed the results de-
scribed above. Further comparisons to MODIS are now done
operationally. Results are published every year in the CM-
SAF Annual Validation Report.

The validation of the cloud type is based on tempo-
rally sampled radar profiles and radiosonde measurements
at European measurement sites (Cabauw, The Netherlands;
Chilbolton, UK) which were also involved in the CloudNET
campaign (Illingworth et al., 2007). From these ground-
based measurements we retrieve corresponding cloud-top
pressure and cloud-top temperature which are subsequently
compared to spatially sampled satellite-based results of 3×3
satellite pixels. The validation for mid-level clouds is very
difficult as only very few match-ups have been found. Cloud
type assignments are finally made for three cloud layers,
i.e. low-level clouds, mid-level clouds, and high-level clouds.
Best performance is found for low-level clouds which are
consistently classified for 85% of pixels, followed by the
comparably good classification of high-level clouds (80%)
and fair results for mid-level clouds (50%).

Again radar and also lidar measurements are used to de-
termine cloud-top parameters from ground-based measure-
ments. There is however a lack of ground-based measure-
ments to compare with and validation is an ongoing task.
Generally, the methods (comparison of hourly results against
temporally sampled lidar measurements and radar data) ap-
plied to opaque clouds have shown that satellite estimates are
reasonable, although typically overestimating the cloud-top
height, while results for semi-transparent clouds and multi-
layered scenes are usually of lower quality. We found an av-
erage bias of about 300 m for available measurements from
the above-mentioned CloudNET sites.

Similarly, CloudNET data are used for the validation of
the cloud phase product. For cloud scenes collocated and
synchronized with ground-based observations accuracies are
found better than 5% for cloud layers with optical thickness
larger than∼5. In addition, both the ground-based observed

monthly water and ice cloud occurrence is reproduced well
by the cloud phase product, with bias errors mostly within
±10% (Wolters et al., 2008).

The cloud-optical thickness is validated using ground-
based pyranometer measurements of global irradiance. A
direct relation between irradiance and COT is limited to
fully overcast sky and homogeneous cloudiness (Boers et al.,
2000). Also, the accuracy of the cloud-optical thickness
product decreases at higher COT values (King, 1987) where
the visible measurements show less sensitivity to COT val-
ues. Thus, a more recent approach from (Deneke et al., 2005)
is applied which basically links satellite-derived COT to the
atmospheric transmission for different atmospheric condi-
tions. Then, deviations of ground-based and satellite-inferred
transmission can be attributed to uncertainties in the retrieved
COT. Since the cloud liquid water path (CWP) is calculated
from atmospheric transmission and droplet effective radius
information, errors of these quantities also affect the CWP
retrieval.

The CWP retrievals are consequently less reliable for op-
tically thick clouds (COT>70). In addition, due to the
neglected three-dimensional structure of cloud fields the
droplet effective radius and CWP of a single satellite pixel
may be largely overestimated. Recent validation activities
of CWP based on ground based microwave radiometer mea-
surements indicated an absolute accuracy better than 5 gm−2,
which corresponds to relative accuracy better than 10% (Roe-
beling et al., 2008).

Monthly mean values (September, 2007) of the cloud-top
temperature obtained from AVHRR and SEVIRI observa-
tions (Fig. 1) and the cloud liquid water path (Fig.2) de-
rived from METEOSAT-9/SEVIRI radiances are exemplar-
ily shown for the CM-SAF baseline area and the full disc,
respectively. We used High Resolution Picture Transmission
(HRPT) AVHRR observations that were locally received at
Offenbach/Germany (50.1◦ N, 8.7◦ E). Thus, the area cov-
ered by AVHRR data is smaller in the east-west dimension
but extends towards higher latitudes.

3.2 Water vapor products

The CM-SAF water vapor products are generated employing
measurements from polar orbiting (NOAA and DMSP) plat-
forms. The ATOVS suite of instruments (High Resolution
Infrared Radiation Sounder – HIRS, Advanced Microwave
Sounding Unit – AMSU) on NOAA and MetOp satellites,
the SSM/I on the DMSP satellites represent different mea-
surement principles over a large range of the electromag-
netic spectrum. Each sensor has its individual strengths but
also weaknesses, e.g., the SSM/I is providing highly accu-
rate total column water vapor estimates but only over ice free
oceans. The ATOVS suite of instruments is the only one that
provides information on the vertical profile of temperature
and water vapor over long time periods. The capability to re-
trieve profile information is very much enhanced from 2007
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Fig. 1. Monthly mean cloud-top temperature for September 2007 derived from AVHRR observations (top panel) and from Meteosat9/SEVIRI
(lower panel).

on since the IASI instrument is available. However, before a
climate monitoring product can be designed using IASI mea-
surements, the radiance records have to be consolidated and
their errors be understood.

3.2.1 Methodology

Currently, CM-SAF is providing two products:

ATOVS product

Total column water vapor and integrated water vapor in five
thick layers is provided (Table1). Additionally, mean val-
ues for temperature and relative humidity w.r.t. water are

provided for these layers. As an extra data set also the orig-
inal retrieval of temperature and mixing ratio is available at
the layer boundaries to eventually support water vapor trans-
port calculations. This data set is produced in a near-real
time mode to provide climate departments in National Me-
teorological Services with early data for their routine analy-
sis. However, as inter satellite biases are not corrected auto-
matically a reprocessing of the data back to the start of the
ATOVS sensor suite in 1998 is envisaged.

The standard International ATOVS Processing Package
(IAPP) is applied to ATOVS level 1c data and provides pro-
files of temperature and mixing ratio. Following the descrip-
tion of the retrieval algorithm inLi et al. (2000) a cloud de-
tection and removal process is first applied to HIRS data to

Atmos. Chem. Phys., 9, 1687–1709, 2009 www.atmos-chem-phys.net/9/1687/2009/



J. Schulz et al.: Operational climate monitoring from space: CM-SAF 1695

 

cloud water path / kg/m2

0.00 0.04 0.08 0.12 0.16 0.20

Fig. 2. Monthly mean cloud liquid water path for September 2007 derived from Meteosat-9/SEVIRI observations.

assure that only cloud-free HIRS pixels are used. A non-
linear iterative physical retrieval is used to derive the atmo-
spheric profiles.

The needed first guess for such a retrieval can be provided
by a statistical regression retrieval or a Numerical Weather
Prediction (NWP) model first guess field. To keep consis-
tency with the CM-SAF cloud and radiation flux products,
NWP data from the German global model (GME) as de-
scribed inMajewski et al.(2002) are used as first guess. This
is favorable compared to the results of the regression retrieval
as those contain a lot of artifacts over arid and semi-arid ter-
rain and in mountainous regions. In order to assess the sen-
sitivity of temperature and mixing ratio profiles to the first
guess we compared the initial guess from GME with the cor-
responding instantaneously retrieved profiles from ATOVS
observations. For this comparison we considered the mean
absolute and the mean absolute relative difference for tem-
perature and mixing ratio profiles, respectively. The normal-
isation is carried out with respect to the arithmetic mean of
initial guess and instantaneous profile. The retrieval scheme
changes the temperature profile from the initial guess on av-
erage by 0.6 K near the surface and by 1.1 K at 200 hPa.
Standard deviations are 1.5 K near the surface and 2 K near
200 hPa. The maximum mixing ratio change occurs also at
200 hPa (35%) and exhibits a near surface value of 12%. The
standard deviation for mixing ratio is relatively large and ap-
proximately of the same order as the mean absolute relative
difference. The maximum change in the tropopause region is
noteworthy due to its large relevance for climate in view of
the radiative effect of water vapor at such levels.

The initialization with the GME model results has largest
impact in the lower- to mid-troposphere (900–700 hPa) as the

profiles are not changed very much from the model fields.
The consequences for a CDR class I data set are small as the
resulting satellite product will only have major changes when
the NWP model changes apruptly its description of the water
vapor field which is not very likely. For further development
into a CDR class II data set a NWP re-analysis has to be used
to avoid spurious effects on longer term variability caused by
model changes.

The main satellite data source for the retrieval process de-
pends on the cloudiness of a scene and the underlying sur-
face. Retrievals over oceans rely on all sensors whereas re-
trievals over land surfaces are mainly based on cloud-free
HIRS measurements.

An example of ATOVS derived global monthly mean in-
tegrated water vapor content and corresponding extra daily
standard deviation is shown in Fig.3. Global fields are
provided in Behrmann cylindrical equal area projection at
a horizontal resolution of (90 km)2. The daily and monthly
mean products are merged products derived from all avail-
able ATOVS sensors from NOAA 15, NOAA 16 and NOAA
18 platforms. The ATOVS system on MetOp will be added
during 2008.

An objective analysis method (Kriging) is applied that pro-
vides a spatial distribution of mean values and their errors.
Figure4 shows the daily mean, its corresponding error and
the number of independent measurements per day for the
8 September 2006. The number of independent measure-
ments from satellites is rather given by the number of satel-
lite overpasses because individual pixels cannot be treated as
independent measurements (Lindau and Schulz, 2004). The
field shows the typical sampling with polar orbiters during
one day with data gaps in the subtropical regions. Those
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Fig. 3. Monthly mean vertically integrated water vapor (upper panel), corresponding extra daily standard deviation (middle panel) and
number of independent observations (lower panel) derived from ATOVS data for September 2006.
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Fig. 4. Daily mean of vertically integrated water vapor (upper panel), daily error (middle panel) and number of independent observations
(lower panel) derived from ATOVS data for 8 September 2006.
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Fig. 5. Global comparison of daily averages of vertically integrated water vapor for October 2004: all data (top left), data north and south of
60◦ latitude (top right), data over ocean (bottom left) and data over land (bottom right).

gaps are effectively interpolated in the daily mean field. The
corresponding error field for this day represents larger errors
where no measurements are available and where the intra-
daily variability is not well represented with 4–6 satellite
overpasses per day as over the Gulf Stream region east of
the USA. Large errors appear also in places where it is ex-
pected that the retrieval is hindered by difficult surfaces as
over the Sahara where knowledge of emissivity and the diur-
nal cycle of the surface temperature limit the quality of the
retrieval. As the method is also capable of handling retrieval
errors and error covariances an improved error budget cal-
culation is under development and will further enhance the
quality of the error map.

SSM/I product

A total column water vapor estimate over ice free oceans
is derived from measurements of the SSM/I employing the
retrieval bySchl̈ussel and Emery(1990). The above men-
tioned Kriging method is also used to combine the SSM/I
measurements in an optimal way. The record covers the
period 1987–2005 and is updated in yearly intervals. This

data set can be regarded as a climate data set suitable for
long term variability studies as all SSM/I radiometers have
been intercalibrated using a statistical method described in
Andersson et al.(2009).

3.2.2 Validation

ATOVS product

An initial validation of ATOVS results was performed for
the period January 2004 to December 2005 employing ra-
diosonde data recorded at 173 Global Climate Observ-
ing System Upper-Air Network (GUAN) stations. The ra-
diosonde data are used to validate the ATOVS daily averages
on the (90 km)2 grid. For this purpose the radiosonde data are
allocated to the grid boxes and averaged over the day if more
than one radiosonde ascent is available in a grid box. Note
that a comparison to radiosonde data is more or less equiva-
lent to a comparison of the products performance over land
surfaces. Over ocean better results are expected because also
the microwave instruments contribute to the product whereas
over land it is mainly a HIRS product supported by the first
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guess of the retrieval. Additionally, the comparison is also
slightly biased to the Northern Hemisphere as 56% of the
GUAN stations are located there. On the Southern Hemi-
sphere about 10% of the stations are located near the coast
of Antarctica which is a very difficult environment for the
satellite product.

As a quality measure for the comparison points we pre-
scribed to have at least two radiosonde observations per day
in an ATOVS product grid box because we compare daily
mean values. This requirement reduces the total number of
comparisons approximately by a factor of two compared to
the existing radiosonde data.

The quality of radiosonde observations considerably
varies among the different stations. Different calibration pro-
cedures and various ages of radiosondes can influence the
quality of the measurements. The latter issue can have a large
effect on the bias ranging from−4 to −10% of relative hu-
midity observations as shown byMiloshevich et al.(2004).
In presence of ice saturation the bias largely increases. It
is unclear which stations apply the proposed correction al-
gorithm of (Miloshevich et al., 2004) in their routine obser-
vations as this is not part of the available radiosonde meta
data. Smaller errors in radiosondes may be expected from
the newly established GCOS Reference Upper-Air Network
(GRUAN). GRUAN is required to measure temperature and
humidity profiles with an accuracy of 0.1–0.2 K and 2%, re-
spectivelyGCOS(2007). It is expected that radiosonde ob-
servations distributed over the GTS does not have this qual-
ity.

As an example Fig.5 shows four scatter plots for October
2004 indicating a very high Pearson product-moment corre-
lation (0.94) between radiosondes and retrievals. The prod-
ucts exhibit a small bias and RMS of 0.5 mm and 3.6 mm,
respectively. In addition, scatter plots are shown separately
for land and ocean stations as well as for stations in polar re-
gions, i.e.,lat>| ± 60◦

|. Ocean stations are stations within
50 km off the coast. No significant decrease or increase in
quality between all, land and ocean stations becomes evident.
Even in the problematic polar regions the ATOVS products
exhibit high quality.

The time series of bias between ATOVS products and ra-
diosonde observations is shown in Fig.6. TPW shows an
average bias of 0.4 mm. The largest bias of the individual
layers is found for layer 4 (LPW4), with a value of 0.8 mm
in July 2005. All other layers have biases below|±0.3 mm|,
so that the TPW bias is dominated by the LPW4 bias.

A tendency for an annual cycle of TPW and LPW4 biases
can be observed in Fig.6, with a maximum during North-
ern Hemisphere summer months. More frequent radiosonde
stations influenced by continental climate and a difference in
temporal sampling of the diurnal cycle of precipitable water
between ATOVS and radiosondes might cause the annual cy-
cle of the bias. The time series separated in land an ocean
actually shows that the annual cycle appears only over land.
To really proof this seems beyond the scope of this paper.
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Fig. 6. Global mean bias for the total column and layered water
vapor contents.

SSM/I product

Schl̈ussel and Emery(1990) did initial comparisons of in-
stantaneous SSM/I total column water vapor retrievals to
globally distributed radiosondes for data during July 1987.
As collocation criteria they used matches within±3 h and
0.5◦ latitude and longitude. The sample size was around
300 matches and the bias and rms errors are 0.3 mm and
5.6 mm, respectively. This result was confirmed by (Schulz
et al., 1993) who found 0.4 mm for the bias and 5.8 mm for
the rms using also data from August 1987.

The most recent and comprehensive analysis of total col-
umn water vapor content retrievals from passive microwave
imagers has been done by (Sohn and Smith, 2003). They
compared five statistical (including theSchl̈ussel and Emery
(1990) algorithm) and two physical algorithms in the frame-
work of monthly and zonally averaged values. The global
database of radiosondes used covered the period July 1987
to December 1990 (42 months). Statistics were derived from
point pairings matched within±6 h and 60 km. Most of the
differences in bias and rms errors between the algorithms
can be explained by different training data sets and differ-
ent methods to exclude pixels with high liquid water paths or
rain.

Considering regional differences between algorithms by
comparing global monthly mean mapsSohn and Smith
(2003) found that theSchl̈ussel and Emery(1990) is clos-
est to theWentz(1995) optimum statistical algorithm which
had the best all around rms statistics. Maximum differences
between these algorithms are±1.5 mm with well balanced
positive-negative bias distribution.

Looking at zonally averaged water vapor contents (Fig. 12
in Sohn and Smith, 2003) it is striking that minimum and
maximum excursions of the algorithms occur at equatorial,
subtropical, and mid-latitude latitudes, not unlike the zonally
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averaged profiles of cloudiness and precipitation.Sohn
and Smith(2003) used the original brightness temperature
thresholds of the published algorithms to exclude precipitat-
ing pixels from the record. In the current software version
used with CM-SAF this is not used. Instead precipitation and
cloud liquid water path retrieved from SSM/I data are used
to sort out pixels. From this one may expect that minimum
and maximum excursion are smaller with the new version.

The evaluation of the SSM/I retrieval schemes inSohn and
Smith(2003) has shown that the current CM-SAF scheme is
fully competitive compared to other existing retrievals. The
presented comparison results from Sohn and Smith (2003)
are based on SSM/I data from the DMSP F8 and F10 plat-
forms that need substantial corrections because of a non-
functioning 85 GHz channel on F8 and large height and
therefore zenith angle variations of the F10 satellite. It is
not described if those features are corrected in the data used
in the Sohn and Smith study. Thus, the there found bias er-
rors can be caused by a missing correction for those effects.
However, the comparison statistics also show that the SSM/I
is clearly the best suitable instrument for climate monitoring
of vertically integrated water vapor over oceans.

3.3 Top of atmosphere radiation fluxes

Top of the atmosphere radiation fluxes can principally be
used for the evaluation of the radiative budget of climate
models and reanalysis. The temporal resolution of the geo-
stationary satellite data (15 min) matches reasonably well
with the time step of current global models and processes like
convection and surface heating may be studied on a model
time step basis. The radiative fluxes at the top of the atmo-
sphere depend mainly on the presence of clouds, while cloud
information is not directly assimilated into atmospheric mod-
els. The comparison of the radiative fluxes as calculated by
the model and as measured from satellites provides a qual-
ity control of the model cloud parameterizations and/or the
model cloud radiative properties, see e.g.,Allan et al.(2007).

Throughout this chapter reflected solar radiation with
wavelengths roughly below 4µm, will be referred to as
shortwave broadband radiation. Emitted thermal radiation
with wavelengths roughly above 4µm, will be referred to as
longwave broadband radiation. The term narrowband radia-
tion will be used to refer to the measurement by individual
channels of a multi-spectral imager.

Products as clear sky flux or cloud radiative forcing that
are derived products based on the existing basic products of
the radiative fluxes at the top of the atmosphere and of the
cloud properties are planned for inclusion in the CM-SAF
product suite until 2012.

3.3.1 Retrieval

The individual single satellite products from GERB and
CERES on-board the AQUA and TERRA satellites are de-

rived from the basic radiance measurements of the instru-
ments. The CM-SAF top of atmosphere radiative flux prod-
ucts are merged from the individual satellite products of
GERB and CERES (seeHarries et al., 2005for details). In
that sense these products are level 3 products. The incoming
solar radiative flux is determined from the Differential Ab-
solute Radiometer DIARAD on-board the SOlar and Helio-
spheric Observatory (SOHO) satellite (Dewitte et al., 2004).

CM-SAF top of atmosphere radiative fluxes are available
with high temporal and spatial resolution covering the full
Meteosat disc and polar latitudes. On the Meteosat disc
GERB measurements are used to benefit from its high tem-
poral resolution. CERES measurements are exclusively used
over polar regions with improved temporal sampling where
GERB measurements are not available. GERB results are
compared with CERES data in the solar spectral range to
verify if measurements suffer from systematic Angular De-
pendency Model (ADM) errors. While empirical ADMs are
derived from the CERES instrument on the Tropical Rain-
fall Measurement Mission (TRMM) satellite using the Visi-
ble and InfraRed Scanner (VIRS) imager for scene identifi-
cation (Loeb et al., 2003), the longwave model stems from
theoretical considerations based on radiative transfer calcu-
lations (Clerbaux et al., 2003).

Example products are shown in Fig.7 where the monthly
mean top of atmosphere thermal emitted flux and the solar
reflected flux are given for June 2007. The high values of
the reflected solar radiation and the low values of the emit-
ted thermal radiation around the equator are due to the abun-
dance of deep convective clouds in the tropical convergence
zone associated with the rising branch of the Hadley circu-
lation. Since in the tropical convergence zone the reflected
solar radiation is dominated by the presence of clouds, there
is little land-ocean contrast. To the contrary, for the region
around the Sahara and Saudi Arabia, clear sky conditions oc-
cur frequently due to the large scale subsidence associated
with the descending branch of the Hadley circulation. There-
fore in the subsidence region, the reflected solar radiation is
determined by the surface albedo, and there is a high land-
ocean contrast due to the high albedo of the desert, and the
low albedo of the ocean.

3.3.2 Validation

The accuracy of the incoming solar flux product is dominated
by the accuracy of the total solar irradiance which is also re-
ferred to as Solar Constant. Recent studies have shown that
the accuracy of the latter is about 1 W/m2 (Crommelynck
et al., 1995), (Dewitte et al., 2001), thus being also the ac-
curacy of the incoming solar flux product. Validation of the
thermal emitted flux and the reflected solar flux was carried
out over different surface types. It is based on a comparison
of results against Meteosat-7 retrieval results and an inter-
comparison of GERB and CERES radiance data.
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Fig. 7. Top of atmosphere monthly mean data for June 2007 of thermal emitted (left panel) and reflected solar flux (right panel), respectively.

We compared GERB on Meteosat 8 with all active CERES
instruments. There were four active CERES instruments up
to March 2005, three active CERES instruments from March
2005 onwards. For the thermal emitted flux, also referred
to as Outgoing Longwave Radiation (OLR), GERB is 1–2%
lower than CERES. For the reflected solar flux, GERB is 6%
higher than CERES. The latest analysis of the reflected so-
lar radiance GERB CERES differences indicates that they
are independent of scene type, therefore they can be consid-
ered as a basic calibration difference. For the CM-SAF ra-
diative fluxes (both emitted thermal and reflected solar), the
GERB calibration level is used. For the CM-SAF, the GERB
and CERES radiances are within acceptable agreement, i.e.,
within postulated error margins.

3.4 Surface radiation fluxes

Incoming and outgoing solar and thermal radiative fluxes are
also computed at the surface. The surface radiation algo-
rithms apply the pre-calculated cloud mask, cloud top pres-
sure and cloud type as input.

3.4.1 Incoming solar radiation

The calculation of the surface incoming solar radiation (SIS)
is based on the method of (Pinker and Laszlo, 1992) and
(Mueller et al., 2004). Based on the basic principle of con-
servation of energy in an atmospheric column, the broadband
atmospheric transmittance can be retrieved by measuring re-
flectance at the top of the atmosphere. For the reflectance
at the top of the atmosphere GERB data are used. The re-
flectance at the top of atmosphere is affected by the atmo-
spheric (e.g., clouds and aerosol) and surface (e.g., albedo)
state. The inherent symmetry and an analysis of the par-
tial contribution of each independent variable to the inver-
sion problem have been used to reduce the number of entries
in a look-up-table (LUT) scheme. The basis look-up tables
for the retrieval have been calculated for three cloud optical
depths, 10 aerosol optical depths, 3 single scattering albedos,

2 asymmetry parameters, 6 sun zenith angles and 7 surface
albedos. The effect of variations in water vapor and ozone
relative to the fixed values used in the calculation of the ba-
sis LUT is corrected by using parameterization formulas de-
rived from the radiative transfer models. These look-up ta-
bles are finally used to derive the solar irradiance from the
TOA albedo for a given surface albedo and atmospheric state
by interpolation.

3.4.2 Downwelling longwave radiation

For the surface downwelling longwave radiation we adapted
the algorithm developed by (Gupta, 1989) and (Gupta et al.,
1992). The parametrization requires the temperature profile
of the lowest layers of the atmosphere, the water vapor pro-
file and the cloud base height. All atmospheric data used in
the surface flux retrieval as well as for the surface albedo
calculations are taken from Numerical Weather Prediction
(NWP) models. Here, the CM-SAF operational process-
ing employs analysis data of the General Circulation Model
(GME) of the German Meteorological Service (DWD) with
a spatial resolution of about 40 km, a temporal resolution of
three hours and 40 atmospheric layers up to 10 hPa (Majew-
ski et al., 2002). The outgoing longwave flux at surface level
is obtained from the Stefan-Boltzmann equation and a sur-
face emissivity that depends on the surface type. The USGS
land-typ classification is used as background data for surface
types.Wilber et al.(1999) compiled for this a set of 20 dif-
ferent land classes and corresponding emissivity data.

3.4.3 Surface albedo

The broadband surface albedo at cloud free pixels is de-
rived as follows: Firstly, the angular-dependent surface re-
flectance from the top of atmosphere reflectance (per chan-
nel) is computed by removing the atmospheric signal caused
by gaseous absorption, molecular and aerosol scattering. For
this the forward model SMAC (Rahman and Dedieu, 1994)
has been used for the required radiative transfer simulations.
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Fig. 8. Incoming solar radiation at surface level at NCEP (left panel) and CM-SAF (right panel) spatial resolution, respectively. Data from
Meteosat-8/SEVIRI of 31st August 2006, 10:45 UTC.

Viewing and illumination conditions are corrected employ-
ing bidirectional reflectance distribution functions for differ-
ent surface types. There are six different surface types used
in the algorithm, namely barren, forest, cropland, grassland,
snow/ice, and ocean. The source for the data is a combined
USGS/Corine 2000 land use classification dataset. The sur-
face albedo is then calculated from surface reflectance data as
suggested byRoujean et al.(1992). The broadband surface
albedo is estimated from a narrow- to broadband conversion
(Liang, 2000). The instantaneous surface albedo is finally
computed by normalization to a solar zenith angle of 60◦.

3.4.4 Averaging procedure

Climatological studies require daily averages of the radiation
fluxes. For the polar orbiter products the daily averages of the
longwave flux are derived by linearly averaging all available,
but at least three NOAA overpasses during the day. The daily
mean value of SIS is derived following the method presented
in Diekmann et al.(1988) which takes into account the di-
urnal variation of the solar incoming clear-sky flux. Again,
three overpasses per day must be at least available. Monthly
averages require again at least twenty daily mean products.
A daily mean is not feasible for surface albedo as usually the
clear sky area is rather small compared to the cloudy area. In-
stead a weekly and monthly mean albedo is calculated from
the instantaneous estimates.

3.4.5 Product examples

As an example and to demonstrate the need for high-
resolution climatological data we show the incoming solar
radiation based on SEVIRI data at surface level both on the
spatial grids of the CM-SAF product and the National Cen-
ters for Environmental Prediction (NCEP) reanalysis (Fig.8).
Clearly, the much higher spatial resolution of CM-SAF is
beneficial for many applications, not only for climate issues
but also for e.g., the solar energy community which is inter-
ested in radiation maps of European areas. Two other prod-
uct examples, monthly mean results of September 2007 of
the surface albedo and the surface radiation budget based
on METEOSAT-9/SEVIRI observations are shown in Figs.9
and10, respectively.

The surface radiation flux products are used to evaluate
regional climate models. Surface albedo is being used for ice
cover breakup studies in Northern Europe and for monitoring
of draughts. Estimates of the surface radiation budget can be
used in conjunction with estimates of turbulent heat fluxes to
investigate the net energy balance at the surface.

3.4.6 Validation

The radiation products are validated against ground-based
measurements, whereby mainly Baseline Surface Radiation
Network (BSRN) stations are used (Ohmura et al., 1998),
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Fig. 9. Monthly mean surface albedo for September 2007 derived from Meteosat-9/SEVIRI observations.
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Fig. 10. Monthly mean surface radiation budget for September 2007 derived from Meteosat-9/SEVIRI observations.

supplemented by specific well maintained measurements
from European national weather services. Validation of the
instantaneous satellite derived data vs. hourly averaged sur-
face measurements of the longwave components and the so-
lar incoming irradiance (SIS) showed good agreement within
the targeted accuracy of 10 W/m2 for monthly averages.
Larger deviations of the thermal radiation and the solar in-
coming radiation are however found over complex terrain
where ground-based measurements are not necessarily repre-
sentative for larger areas of the size of satellite pixels (Holl-
mann et al., 2006).

It is essential to carefully consider the location of the sta-
tion (height above sea level, horizontal view restrictions,
multiple reflection effects, shadow effects) relative to the
surrounding area. Furthermore, local meteorological con-
ditions of e.g., measurement sites in valleys may consider-
ably hamper the interpretation of validation results. On the
other hand, the spatial resolution of SEVIRI-based products
cannot properly resolve the small-scale spatial variability of
mountainous terrain. It seems further that the separation of
clouds and snow-covered scenes suffers from the low spatial
resolution of the standard solar SEVIRI channels. Thus, it
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Fig. 11. Monthly mean incoming solar radiation of December 2006 at surface level over complex terrain in Switzerland derived from
Meteosat-8/SEVIRI observations. Here, slope and aspect from a high-resolution digital elevation model were used in the retrieval and the
incoming solar radiation is clearly lower in valleys.

Fig. 12. Comparison of daily solar incoming radiation derived from SEVIRI solar channels (left panel) and the SEVIRI HRV channel (right
panel) against ground-based measurements taken at Weissfluhjoch (Switzerland) for the period August 2004 – July 2005.

is considered to introduce an improved SIS product that is
based on the high-resolution visible (HRV) channel of SE-
VIRI and a digital elevation model to take into account to-
pographic effects (Dürr and Zelenka, 2008). As can be seen
in Fig. 11 the calculated incoming solar radiation based on
HRV data differs remarkably from the standard product. Val-
idation of the solar incoming radiation against ground-based
measurements taken from the Alpine Surface Radiation Bud-
get network (ASRB) clearly shows the beneficial impact of
the high-resolution channel (Fig.12). The scatter of SIS re-

sults is reduced and the negative bias of the SIS standard
product disappears if HRV data is used.

The relative accuracy of the surface albedo is approx-
imately 25% with respect to ground-based measurements.
This is the expected accuracy from the used space born
sensors. However, surface albedo retrieved from the geo-
stationary SEVIRI instrument and the AVHRRR instrument
systematically differ in their mean value. The reason for this
bias is not fully understood and currently under investigation.
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4 Summary and future perspectives

CM-SAF as part of EUMETSAT’s SAF network provides
satellite-derived thematic climate data records. The CM-SAF
products comprise macrophysical and cloud physical vari-
ables as among others cloud cover and cloud optical thick-
ness, vertically resolved temperature and water vapor infor-
mation as well as resulting radiation fluxes at the top of the
atmosphere and the surface. Spatial coverage of the prod-
ucts ranges from regional (AVHRR derived cloud parame-
ters) over continental (SEVIRI full disc products) to global
(ATOVS and SSM/I water vapor products). Temporal cov-
erage is rather short for most of the CM-SAF data products
because the operational production started in 2005 and no
processing of historical data was foreseen. The exception of
this is the SSM/I water vapor series that covers a period from
1987–2005.

CM-SAF utilizes most up to date retrieval schemes to de-
rive its products from operational satellite sensors. Vali-
dation results as described above revealed encouraging re-
sults for all products, although particular problems as the
systematic difference between surface albedo derived from
AVHRR and SEVIRI remain to be solved. Currently, avail-
able products can already be used for several applications
including variability analysis at diurnal to subseasonal time
scales, improvements of cloud parameterizations in climate
models, etc. Series based on already intercalibrated data as
the CERES referenced top of the atmosphere radiation fluxes
and the intersensor calibrated SSM/I water vapor data can
also be used for studies of interannual variability. Solar ra-
diation fluxes at the surface are also beneficial for the solar
energy community.

Based on recommendations from GCOS, the WMO Space
Programm, and EUMETSAT, CM-SAF has identified four
key issues for the future development of the CM-SAF data
sets in a time frame of 5–10 years. These are:

1. Calibration
Requirements for more accurate satellite information
products are steadily increasing. To create the sta-
ble long-term data sets needed for monitoring climate
change it becomes vital to inter-calibrate sensors on
similar and different satellites. To integrate observations
and products from different satellite systems, the mea-
surements must be inter-calibrated. For instanceRoe-
beling et al.(2006) investigated the differences between
cloud properties derived from SEVIRI on Meteosat-8
and AVHRR on the NOAA-17 platform. It showed
clearly the need of intercalibration before integration.
Otherwise the data cannot be used for climate applica-
tions because jumps (systematic biases) can occur in a
time series constructed from different sensor observa-
tions.

Relative calibration of satellite data is a pre-requisite
for a reasonable processing of data obtained from dif-

ferent sensors of the same type. Current schedule of
MSG launches shows that data from three spacecrafts
will need to be harmonised until 2012. It is however
expected that the satellite operator (EUMETSAT) will
provide such radiance data sets towards the end of the
CDOP.

First attempts to generate sensor intercalibrated bright-
ness temperature time series from SSM/I records have
already been undertaken in the framework of the
HOAPS-3 data set (Andersson et al., 2009). Those ba-
sic data have already been used to build the SSM/I wa-
ter vapor product. Furthermore, it is envisaged to re-
trieve global cloud products using the satellite intercali-
bration that was developed to generate the PATMOS-X
data set (Jacobowitz et al., 2003), but replacing the re-
trieval methods with CM-SAF cloud algorithms. Such
complementary time series would be quite helpful to
identify algorithm weaknesses and strengths.

International activities like the Global Space-based
Inter-Calibration System (GSICS) initiative strongly
help to fulfil some of the CM-SAF needs with respect
to data sets and methods during the CDOP. However,
some intercalibration activities may have to be pursued
by CM-SAF especially in those cases where non EU-
METSAT sensors like the SSM/I are used or newer in-
struments like SEVIRI shall be homogenised with older
instruments like MVIRI on the Meteosat first generation
in due time. The global network of Regional Special-
ized Satellite Centers on Climate Monitoring (R/SSC-
CM) planned by WMO will help to foster the interna-
tional collaboration in the generation of intercalibrated
radiance records. The R/SSC-CM will also help to orga-
nize the production and quality assessment of geophys-
ical data sets derived from the intercalibrated radiance
records.

2. Temporal extension of the data sets and reprocessing
of current products based on homogenised sensor data
and employing improved retrieval schemes that are not
changed during the processing
As mentioned in the Introduction climate change and
variation occur on different time scales and data sets
useful for climate monitoring must therefore cover
longer time series to understand these changes. The de-
mands on the accuracy increase accordingly to the time
scales considered.

Today the existing CM-SAF data from class CDR-I
are suitable for monitoring diurnal and subseasonal to
seasonal fluctuations of environmental variables which
can be large. Currently, CM-SAF started to process
historical satellite data to ensure that its data sets may
become suitable for analysis of interannual variability
and trend detection, i.e. the data sets are developed
to fulfil requirements for the classes CDR-II and III.
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Furthermore, improvements of retrieval algorithms and
the growing time series of newer instruments such as
SEVIRI that are affected by calibration changes will
cause reprocessing of these data sets within the period
2007 to 2012. Both activities imply close interaction of
responsible space agencies in order to archive and pro-
vide the required data in the given time frame. Such re-
processing events also need to be carefully coordinated
with data suppliers (upstream) and the user community
(downstream).

3. The production of global and regional products
Climate variability at regional level may be related to
global climate changes but regional effects may differ
from region to region. CM-SAF aims to provide support
for climate analysis at regional level but needs global
products to improve the understanding of scale inter-
action and to interpret the nature of regional changes.
Global products enhance the amount of possible appli-
cations, e.g., global products can be used to support
studies on climate sensitivity of global climate mod-
els. However, the extension to global products is not
possible for all products because of the inhomogeneity
of the observing system. This is especially true for in-
struments in geostationary orbit where the SEVIRI in-
strument sets new standards but dedicated algorithms
cannot be applied globally. Additionally, collabora-
tion between at least four satellite operators would be
needed to achieve an almost global product. Regional
products derived from SEVIRI with improved quality
will still serve as regional benchmark data sets. Prod-
ucts from polar orbiters typically suffer from inadequate
spatiotemporal sampling at low latitudes but provide
complementary data with often better spatial resolution.
However, at high latitudes polar orbiter data are essen-
tial to study polar conditions.

4. The integration of new products that facilitate a better
understanding of the energy and water cycle
The primary strength of the CM-SAF approach for cli-
mate monitoring is the provision of consistent thematic
climate data records. One of the most concerning ques-
tions about the changing Earth climate system is the
potential change of the hydrological and energy cy-
cle. Energy and water cycle related geophysical pa-
rameters over water surfaces at global scale are pro-
vided by the Hamburg Ocean Atmosphere Parameters
and Fluxes from Satellite Data (HOAPS-3) (Andersson
et al., 2009). Consequently, CM-SAF will take over the
responsibility for the processing of HOAPS during the
CDOP. This will enhance the product suite with precip-
itation and turbulent heat fluxes over the ocean. Poten-
tially, the CM-SAF surface flux products can be used to
investigate the net heat flux at the ocean surface.

A 30 year long climatology of upper tropospheric hu-
midity derived from a homogenized Meteosat record
spanning over Meteosat First and Second Generation in-
struments will be derived in cooperation with the Lab-
oratoire Ḿet́eorologie Dynamique (LMD). It will pro-
vide a very good data set to study the variability of wa-
ter vapor at intraseasonal scale.Brogniez et al.(2006)
found from a series of Meteosat First Generation data
for the period 1983–2005 an asymmetry between the
two hemispheres along the annual cycle. Whereas the
intra-seasonal variability is homogeneous in the South-
ern Hemisphere the variability shows a distinct mini-
mum in the Northern Hemisphere during the summer.
Thus, the planned data set extended with data from the
new SEVIRI instrument will be perfectly usable to anal-
yse the quality of intra-seasonal variability in future
global reanalysis. Other new products include ice water
path, aerosol properties and enhanced surface radiation
flux products as a spectrally resolved irradiance.

Acknowledgements.We acknowledge the Cloudnet project (Eu-
ropean Union contract EVK2-2000-00611) for providing the mi-
crowave radiometer and target classification data, which was pro-
duced by the University of Reading using measurements from the
expirimental sites of Chilbolton in the UK, Paleaseau in France
and Cabauw in the Netherlands. The supportive work of the EU-
METSAT secretary is greatly acknowledged. We thank the NWC-
SAF consortium for providing the NOAA/PPS and MSG/SEVIRI
retrieval packages.

The authors are indebted to the work of the CM-SAF team in par-
ticular L. Schreiber, D. Stein, S. Villbrandt, R. Weber for support-
ing the technical development of the CM-SAF processing scheme,
R. Cremer for supporting the validation activities, B. Thiess and P.
Willing for handling the CM-SAF User Help Desk and finally W.
Mehley for administrative support of the whole activity.

We are grateful to R. Lindau (Univ. Bonn, Germany) and A.
Walther (Freie Univ. Berlin, Germany) for their valuable work
with the Kriging algorithm and the validation of water vapor
products, respectively. We thank the colleagues at Deutscher
Wetterdienst at Offenbach and the meteorological observatory
Lindenberg for providing NWP analysis data and ground-based
measurements that were used to validate several CM-SAF products.

Edited by: J. Brandt

References

Allan, R., Slingo, A., Milton, S., and Brooks, M.: Evaluation of
the Met Office global forecast model using Geostationary Earth
Radiation Budget (GERB) data, Q. J. Roy. Meteor. Soc., 133,
1993–2010, 2007.

Andersson, A., Klepp, C., Fennig, K., Bakan, S., Grassl, H., and
Schulz, J.: The HOAPS climatology: Essential water cycle com-
ponents over global oceans derived from satellite data, B. Am.
Meteorol. Soc., submitted, 2009.

Atmos. Chem. Phys., 9, 1687–1709, 2009 www.atmos-chem-phys.net/9/1687/2009/



J. Schulz et al.: Operational climate monitoring from space: CM-SAF 1707

Boers, R., van Lammeren, A., and Feijt, A.: Accuracy of cloud op-
tical depth retrievals from ground based pyranometers, J. Atmos.
Ocean. Tech., 17, 916–927, 2000.

Brogniez, H., Roca, R., and Picon, L.: A clear-sky radiance archive
from Meteosat water vapor observations, J. Geophys. Res., 111,
D21109, doi:10.1029/2006JD00723, 2006.

Clerbaux, N., Dewitte, S., Gonzalez, L., Bertrand, C., Nicula, B.,
and Ipe, A.: Outgoing longwave flux estimation: improvement
of angular modelling using spectral information, Remote. Sens.
Environ., 85, 389–395, 2003.

Colton, M., Karl, T., Goldberg, M., and Bates, J.: Creating Cli-
mate Data Records from NOAA Operational Satellites, White
paper, National Oceanic And Atmospheric Administration, Na-
tional Environmental Satellite, Data, and Information Service, 53
pp., 2003.

Crommelynck, D., Fichot, A., III, R. L., and Romero, J.: First real-
isation of the Space Absolute Radiometric Reference during the
ATLAS 2 flight period, Adv. Space Res., 16, 17–23, 1995.

Deneke, H., Feijt, A., van Lammeren, A., and Simmer, C.: Val-
idation of a physical retrieval scheme of solar surface irradi-
ances from narrowband satellite radiances, J. Appl. Meteorol.,
44, 1453–1466, 2005.
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Mieruch, S., Nöel, S., Bovensmann, H., and Burrows, J. P.: Anal-
ysis of global water vapor trends from satellite measurements
in the visible spectral range, Atmos. Chem. Phys., 8, 491–504,
2008,http://www.atmos-chem-phys.net/8/491/2008/.

Miloshevich, Paukkunen, L. M., V̈omel, H., and Oltmans, S. J.:
Development and validation of a time-lag correction for Vaisala
radiosondes humidity measurements, J. Atmos. Oceanic Tech.,
21, 1305–1327, 2004.

Mueller, R., Dagestad, K., Ineichen, P., Schroedter-Homscheidt,
M., Cros, S., Dumortier, D., Kuhlemann, R., Olseth, J., Pier-
navieja, G., Resie, C., Wald, L., and Heinemann, D.: Rethinking
satellite based solar irradiance modelling. The SOLIS clear-sky
module, Remote Sense. Environ., 91, 160–174, 2004.

Nakajima, T. and King, M.: Determination of the optical thickness
and effective particle radius of clouds from reflected solar radi-
ation measurements, part 1: Theory, J. Atmos. Sci., 47, 1878–
1893, 1990.

Nakajima, T. and Nakajima, T.: Determination of cloud microphys-
ical properties from NOAA AVHRR measurements for FIRE and
ASTEX regions, J. Atmos. Sci., 52, 4043–4095, 1995.

Ohmura, A., Dutton, E., Forgan, B., Froehlich, C., Gilgen, H., Heg-
ner, H., Heimo, A., Koenig-Langlo, G., McArthur, B., Mueller,
G., Philipona, R., Pinker, R., Whitlock, C., Dehne, K., and
Wild, M.: Baseline Surface Radiation Network (BSRN/WCRP):
new precision radiometry for climate research, B. Am. Meteorol.
Soc., 79, 10, 2115–2136, 1998.

Ohring, G., Wielicki, B., Spencer, R., Emery, B., and Datla, R.:
Satellite Instrument Calibration for Measuring Clobal Climate
Change, B. Am. Meteorol. Soc., doi:10.1175/BAMS-86-9-1303,
1303–1313, 2005.

Pinker, R. and Laszlo, I.: Modelling surface solar irradiance for
satellite applications on a global scale, J. Appl. Meterol., 31,
194–211, 1992.

Rahman, H. and Dedieu, G.: SMAC: A simplified method for the at-
mospheric correction of satellite measurements in the solar spec-
trum, Int. J. Remote. Sens., 15, 123–143, 1994.

Rind, D.: Just Add Water Vapor, Science, 281, 1152–1153, 1998.
Robinson, D., Barry, R., Campbell, J., Defries, R., Emery, W., Hur-

rell, M. H. J., Laing, A., Miller, R., Myneni, R., R. Somerville,
P. T., and Vonder Haar, T.: Climate Data Records from Envi-
ronmental Satellites: Interim Report, Technical report, National
Research Council, Committee on Climate Data Records from
NOAA Operational Satellites, 136 pp., 2004.

Roebeling, R., Feijt, A., and Stammes, P.: Cloud property re-
trievals for climate monitoring: implications of differences be-
tween Spinning Enhanced Visible and Infrared Radiometer (SE-
VIRI) on METEOSAT-8 and Advanced Very High Resolution
Radiometer (AVHRR) on NOAA-17, J. Geophys. Res., 111,
D20210, doi:10.1029/2005JD0069990, 2006.

Roebeling, R., Deneke, H. M., and Feijt, A.: Validation of cloud liq-
uid water path retrievals from SEVIRI using one year of Cloud-
NET observations, J. Appl. Meteorol. Clim., 47, 206–222, 2008.

Rossow, W. and Garder, L.: Cloud Detection Using Satellite Mea-
surements of Infrared and Visible Radiances for ISCCP, J. Cli-
mate, 6, 2341–2369, 1993.

Rossow, W. and Schiffer, R.: ISCCP cloud data products, B. Am.
Meteorol. Soc., 72, 2–20, 1991.

Roujean, J.-L., Leroy, M., and Deschamps, P.: A Bidirectional Re-
flectance Model of the Earths Surface for the Correction of Re-
mote Sensing Data, B. Am. Meteorol. Soc., 97, 20455–20468,
1992.

Santer, B., Mears, C., Wentz, F., Taylor, K., Gleckler, P., Wigley,
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