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Abstract. We describe a nearly explicit chemical mecha-
nism for isoprene photooxidation guided by chamber stud-
ies that include time-resolved observation of an extensive
suite of volatile compounds. We provide new constraints on
the chemistry of the poorly-understood isopreneδ-hydroxy
channels, which account for more than one third of the to-
tal isoprene carbon flux and a larger fraction of the nitrate
yields. We show that thecis branch dominates the chem-
istry of theδ-hydroxy channel with less than 5% of the car-
bon following thetrans branch. The modelled yield of iso-
prene nitrates is 12±3% with a large difference between the
δ andβ branches. The oxidation of these nitrates releases
about 50% of the NOx. Methacrolein nitrates (modelled
yield '15±3% from methacrolein) and methylvinylketone
nitrates (modelled yield'11±3% yield from methylvinylke-
tone) are also observed. Propanone nitrate, produced with a
yield of 1% from isoprene, appears to be the longest-lived ni-
trate formed in the total oxidation of isoprene. We find a large
molar yield of formic acid and suggest a novel mechanism
leading to its formation from the organic nitrates. Finally,
the most important features of this mechanism are summa-
rized in a condensed scheme appropriate for use in global
chemical transport models.

Correspondence to:F. Paulot
(paulot@caltech.edu)

1 Introduction

Isoprene (2-methyl-1,3-butadiene, C5H8) is a short-lived
compound (τ1/2=1−2 hours) emitted by many deciduous
trees during daylight hours. Between 0.5% and 2% of the
carbon fixed by isoprene emitting plants is released to the
atmosphere as isoprene (Harley et al., 1999), a flux account-
ing for about one third of the total anthropogenic and natu-
ral volatile organic compounds (VOC) emissions (Guenther
et al., 2006). Isoprene plays a crucial role in determining
the oxidative chemistry of the troposphere. Ozone levels in
urban as well as in rural sites are impacted by the seques-
tration and transport of NOx via formation of isoprene ni-
trates (Horowitz et al., 1998) and various isoprene-derived
peroxyacylnitrates. Moreover, field (Claeys et al., 2004) and
chamber studies (Kroll et al., 2006; Surratt et al., 2006) have
recently shown that compounds formed in isoprene photoox-
idation, such as methylglyceric acid or methylerythritol are
ubiquitous in aerosol particles and may contribute signif-
icantly to the aerosol global burden (Henze and Seinfeld,
2006; van Donkelaar et al., 2007).

In the light of the potential for significant change in iso-
prene emissions due to climate and land use changes (Shall-
cross and Monks, 2000), studies have been made to pre-
dict the impact of altered isoprene emissions on tropospheric
ozone (Sanderson et al., 2003; Wiedinmyer et al., 2006). von
Kuhlmann et al.(2004) and Fiore et al.(2005) note, how-
ever, that quantifying this impact is difficult due to uncer-
tainties regarding: 1) the dependence of isoprene emissions
on temperature (Harley et al., 2004) and CO2 concentration
(Rosenstiel et al., 2003); and 2) the isoprene photooxidation
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scheme, especially the yields and fates of isoprene nitrates.
In this study, we use anion chemical ionization mass spec-

trometry (CIMS) to monitor the photooxidation of isoprene.
This technique greatly expands the range of compounds that
can be observed during the photooxidation of isoprene and
other hydrocarbons (Ng et al., 2008). Quantitative interpreta-
tion is challenging, however, because 1) calibration standards
are not available for many of the compounds identified and 2)
mass analogs (compounds having the same mass) are not dif-
ferentiated. Therefore the iterative development of a detailed
mechanism is used to analyze the different signals and derive
branching ratios and yields for the compounds identified.

First, we briefly describe the experiment emphasizing the
calibration of CIMS measurements. Next, we report and
identify the largest signals monitored by CIMS. We then dis-
cuss how these signals help constrain the development of the
model emphasizing theδ-hydroxy channels, the organic ni-
trate yield and fate, as well as some routes to organic acids.
Finally we discuss the potential implications of our findings
for tropospheric chemistry and present a reduced mechanism
suitable for inclusion in chemical transport model.

2 Experiment

2.1 Experimental setting

The data of the present study were collected in the 28 m3 Cal-
tech atmospheric chamber, in an experiment similar to those
described byKroll et al. (2006). Initial concentrations of iso-
prene, NO and H2O2 were 94 ppbv, 500 ppbv and 2.1 ppmv.
The photolysis of H2O2 constitutes the primary OH source
in the experiment. NO was added prior to isoprene so that
the chamber was initially ozone free. The initial relative hu-
midity was less than 6% and is assumed to be constant in this
study. The temperature increased by about 5 degrees in the
first one hundred minutes and remained constant thereafter
at 296.5 K . To simplify modelling, we consider this temper-
ature to hold during the whole experiment.

Isoprene decay was monitored using GC-FID. Ozone was
measured by UV absorption (Horiba) and NO and NO2 (af-
ter conversion to NO) by chemiluminescence. The size dis-
tribution and the volume concentration of secondary organic
aerosol (SOA) were measured using a differential mobility
analyzer (DMA, TSI 3760). Further details are available in
Kroll et al. (2006).

2.2 CIMS

Gas-phase products were monitored using a novel CIMS
technique (Crounse et al., 2006) with CF3O− as the reagent
anion. Non reactive with ozone, carbon dioxide and dioxy-
gen (Huey et al., 1996), CF3O− is a versatile reagent ion
suitable for the study of many oxygenated compounds. In
general, two primary ionization pathways are observed:

VOC + CF3O−
→ VOC−

−H·HF + CF2O (R1)

VOC + CF3O− � VOC·CF3O− (R2)

A minor ionization pathway is observed for certain com-
pounds:

CF3O−
+ HOOX(O)R → HF + CF2O·OOX(O)R− (R3)

In Reaction (R3), CF2O is incorporated into the original neu-
tral molecule. Reaction (R3) has been observed for perox-
ynitric acid (PNA) and for peroxy acetic acid (PAA). While
Reaction (R3) is not the major ionization pathway, in several
cases it is useful for distinguishing certain mass analogs.

The dominant ionization pathway for an analyte depends
mostly on the acidity (or fluoride affinity) of the neutral
species (Amelynck et al., 2000; Crounse et al., 2006). Highly
acidic compounds, such as nitric acid, only form the transfer
product ion through Reaction (R1) while hydrogen peroxide
and methylhydrogen peroxide (MHP) form only the cluster
product ions through Reaction (R2). Species with intermedi-
ate acidity (e.g. formic and acetic acids) form both the trans-
fer and cluster products. Most of the VOC measured in this
study follow Reaction (R2).

In this study, air was drawn from the chamber through
a perfluoroalkoxy Teflon line of 1.2 m length and 0.635 cm
outer diameter (OD), at a rate of 10 standard liters per minute
(slm), and then sub-sampled into the CIMS flow tube us-
ing a critical orifice made of glass. The orifice constrained
the flow from the chamber into the CIMS to be 145 stan-
dard cubic centimeters per minute (sccm). Upon introduc-
tion to the CIMS flow tube, the chamber gas was diluted
with 1760 sccm of UHP N2 (99.999%) to a total pressure
of 35 hPa, primarily to reduce the concentration of H2O2
to manageable levels. The gas is expanded in a flow tube
( 17.8 cm, 2.54 cm OD Pyrex glass coated with a thin layer
of Teflon (Fluoropel 801A, from Cytonix Corp.)) before
reacted with a transverse ion beam of the reagent anion
(Crounse et al., 2006, Fig. 1).

Mass scans were conducted using a quadrupole mass spec-
trometer fromm/z=18 tom/z=275 dwelling on each mass

for 1 s (giving a scan cycle of about 4
1
2 min). The mass scans

were repeated throughout the duration of the experiment
(17 h). Zero scans were conducted periodically throughout
the experiment by overfilling the critical orifice on the high
pressure (chamber) side with UHP N2. In addition to provid-
ing instrumental backgrounds, the temporal response of the
zero scans give insight into the strength of the interaction of
the measured compounds with the equipment walls.

The instrumental background signals for most of the large
molecular weight products produced in isoprene oxidation
are very small (after the instrument has been sampling clean
zero air for an extended period of time), which suggests
that variations in instrumental background over the course
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Fig. 1. Summary of the most prevalent first steps of isoprene photooxidation under high NOx conditions. Abbreviations: i:δ5
1

isomerization−Reaction (R16), h: OH+VOC (abstraction or addition)∗ denotes the location of the reaction, o: R+ O2→RO2, O: Re-
action (R15), D: Dibble mechanism (cf. Section4.1.1), n: RO2 + NO− Reaction (R7), d: decomposition - Reaction (R14), k: keto-enol
tautomerism (possibly due to heterogeneous enol/ketone conversion). Blue circles: detected and correctly captured by the model. Red
square: Insufficient data/model discrepancy.

of the experiment are not important for these signals. Com-
pounds with a smaller molecular weight (e.g. formic and
acetic acids) do have instrumental backgrounds, but the level
of the instrumental background is small relative to the signal
generated in the isoprene oxidation experiment (more than 10
times smaller), so ignoring instrumental background changes
over the course of the experiment for these species does not
introduce a substantial error.

2.3 Calibration

The concentration of a compound X, whose product ion is
detected atm/z=p, is calculated through:

[X]ppbv =

̂Signal(m/z=p)

cX

(1)

where ̂Signal(m/z=p) is the normalized signal associated
with X (cf. AppendixB1) andcX is the calibration constant
for the compoundX in ppbv−1.

In many cases, no standard is readily available and no
experimental determination ofcX can be made. In such
cases, we assume thatcX is related to the thermal capture
rate (kX) and the binding energy of the cluster.kX is esti-
mated from the Langevin-Gioumousis-Stevenson-based col-
lision rate. We use the empirical approach developed bySu

and Chesnavich(1982) to calculatekX from the dipole mo-
ment (µX) and the polarizability (αX) of X.

In the absence of experimental determinations ofµX and
αX, we use quantum chemical calculations to estimate them.
The lowest energy conformers of the molecules are found
with the conformer searches method within the Spartan06
quantum package (Wavefunction Inc., 2006) at the B3LYP/6-
31G(d) level of theory. The dipole moments and static polar-
izabilities are then calculated for the optimized geometries at
the same level of theory. When a molecule has several low
energy conformers, a thermally-weighted average of their re-
action rate coefficients is used forkX (cf. AppendixB2 for
details).

The sensitivity of the instrument toX also depends on the
binding energy betweenX and the reagent anion as well as
the nature of the reagent anion. In the presence of abundant
ligands (L) such as water or hydrogen peroxide, the sensi-
tivity of the CIMS to some VOC is modified through two
different processes: 1) CF3O−·L may react faster withX
than the bare CF3O− anion because ligand exchange reac-
tions can stabilize the product ion to a greater extent; 2) the
cluster CF3O−·L may be sufficiently stable leading to a lower
sensitivity at higherL mixing ratio due to ligand exchange:

www.atmos-chem-phys.net/9/1479/2009/ Atmos. Chem. Phys., 9, 1479–1501, 2009
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Table 1. Signals monitored by Chemical Ionization Mass Spec-
trometry.C denotes a cluster (Reaction (R2)) andT a transfer (Re-
action (R1)). Uncertain identifications (cf. text) are highlighted by
a?.

m/z Nature Attribution Formula CAS

Organic

65 T Formic Acid CH2O2 64-18-6
79 T Acetic Acid C2H4O2 64-19-7
107 T Pyruvic Acid? C3H4O3 127-17-3
131 C Formic Acid CH2O2 64-18-6
133 C MHP CH4O2 3031-73-0
133 T MOBA Z(1,4) C5H6O3 63170-47-8
133 T MOBA Z(4,1) C5H6O3 70143-04-3
145 C Acetic Acid C2H4O2 64-19-7
145 C GLYC C2H6O2 141-46-8
159 C HACET C3H6O2 116-09-6
161 C PAA C2H4O3 116-09-6
169 C HMHP CH4O3 15932-89-5
173 C HOPL? C3H4O3 997-10-4
173 C Pyruvic Acid? C3H4O3 127-17-3
175 C DHPN C3H6O3 96-26-4
185 C HC5 E(4,1) C5H8O2
185 C HC5 Z(1,4) C5H8O2 519148-47-1
185 C HC5 Z(4,1) C5H8O2 519148-44-8
189 C DHB C4H8O3 57011-15-1
190 C ETHLN C2H3NO4 72673-15-5
199 C MOBA Z(1,4) C5H6O3 63170-47-8
199 C MOBA Z(4,1) C5H6O3 70143-04-3
201 C MHBL? C5H8O3
204 C PROPNN C3H5NO4 6745-71-7
217 C DHMOB (1,4) C5H8O4
217 C DHMOB (4,1) C5H8O4
232 C ISOPN (1,2) C5H9NO4 227607-01-4
232 C ISOPN (1,4) Z C5H9NO4 227606-97-5
232 C ISOPN (1,4) E C5H9NO4 227606-98-6
232 C ISOPN (2,1) C5H9NO4 227607-02-5
232 C ISOPN (3,4) C5H9NO4 601487-80-3
232 C ISOPN (4,1) Z C5H9NO4 227606-99-7
232 C ISOPN (4,1) E C5H9NO4 227607-00-3
232 C ISOPN (4,3) C5H9NO4 227606-96-4
234 C MACRN C4H7NO5
234 C MACRN (m) C4H7NO5
234 C MVKN C4H7NO5
234 C MVKN (m) C4H7NO5

Inorganic

62 NO−

3 (proxy for N2O5) 14797-55-8
66 T HONO 7782-77-6
82 T HNO3 7697-37-2
98 T HO2NO2 26404-66-0
119 C H2O2 7722-84-1
132 C HONO 7782-77-6
148 C HNO3 7697-37-2
164 C HO2NO2 26404-66-0

VOC.CF3O−
+ L � VOC + L·CF3O− (R4)

L = H2O, H2O2

For example,Crounse et al.(2006) reported that the sensitiv-
ity to methylhydroperoxide (MHP) decreases with the water
vapor mixing ratio due to Reaction (R4).

In general large molecules featuring several functional
groups (peroxide, nitrooxy, alcohol, carbonyl) exhibit only
a weak dependence on the amount of water. Therefore, we
neglect the binding energy effect in this study and take:

cX =
kX

kHNO3

cHNO3 (2)

wherekHNO3=1.93×10−9 cm3 molecule−1 s−1 is calculated
using the experimental dipole and polarizability of nitric acid
andcHNO3 is the sensitivity to nitric acid for typical condi-
tions where the flow tube was operated (water vapor mixing
ratio=150 ppmv). HNO3 is used as the calibration reference
because of the weak dependence of the sensitivity with water
and its thorough laboratory study (Huey et al., 1996; Ame-
lynck et al., 2000; Crounse et al., 2006).

When several compounds are observed at the samem/z,
we report the signal calibrated with a reference calibration
cref and the modeled concentrations of each compoundXi

multiplied by sXi
=cXi

/cref, so that one can compare mea-
sured signal with the prediction of the mechanism. The
predicted concentration of a specific compound is therefore
[Xi]calibrated model/sXi

.
Finally, molecules such as isoprene, methacrolein

(MACR), methylvinylketone (MVK) or peroxyacylnitrate
(PAN) are not observed with our measurement technique de-
spite their relatively large dipole moment. More generally,
the method is not sensitive to simple aldehydes, alcohols, and
ketones, presumably due to the low binding energy of these
compounds with CF3O−.

3 Results

After the photolysis lights are turned on, isoprene decays
with a half life of ∼20 min (Fig. A3). Several inorganic
markers of the chemical evolution of the system can be mon-
itored by CIMS (Table1 and Fig.A4). Nitrous acid (transfer
atm/z=66, cluster atm/z=132, Fig.A4), peaks after 50 min
and has mostly disappeared after 150 min. HONO is associ-
ated with a very large concentration of NO which defines our
first chemical regime (0≤t≤150 min). Given the high con-
centration of NO, little ozone is formed and isoprene pho-
tooxidation proceeds almost entirely through OH addition.
Pernitric acid (PNA, transfer atm/z=98, cluster atm/z=164,
Fig.A4) grows steadily peaking at∼600 min. Given the sen-
sitivity of PNA to the ratio HO2:NO2, the time when PNA
reaches its maximum indicates the transition from a NOx
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(Regime 2: 150≤t≤600 min) to a HOx-dominated chemistry
(Regime 3:t≥600 min). In this study, we focus on the NOx-
dominated chemistry, limiting our discussion to the first and
second regimes. Studies of low NOx chemistry will follow
in a separate manuscript. Nitric acid (transfer atm/z=82)
grows steadily during the experiment to reach∼430 ppb at
the end of the experiment. We estimate dinitrogen pentoxide
profile by removing the nitric acid contribution to the NO−

3
(m/z=62) temporal signal (Huey et al., 1996). The corrected
signal exhibits a shape similar to PNA, peaking after∼500
min at∼ 3ppb.

In Table 1 and Figs.1 to 15, we report the main sig-
nals measured by CIMS, the chemical formula of the as-
sociated compounds as well as their most likely identifi-
cation using mechanistic considerations. To our knowl-
edge, this is the first time that the temporal evolu-
tions of isoprene nitrates (cluster atm/z=232, Fig. 9)
and methacrolein/methylvinylketone nitrates (cluster at
m/z=234, Fig. 13) have been monitored. We also ob-
serve the formation of small carboxilic acids such as formic
and acetic acid, which can be clearly identified given that
they undergo both Reactions (R1) and (R2). This speci-
ficity helps identify larger acidic compounds such as (Z)-2/3-
methyl-4-oxobut-2-enoic acid (MOBA): the signal recorded
at m/z=199 (cluster) correlates with the associated transfer
atm/z=133 (ρ=0.93 for the first 400 min). This also allows
differentiation of certain mass analogs, e.g. the contribution
of acetic acid cluster tom/z=145 can be removed using its
experimental ratio between transfer and cluster. The residual
is the cluster of glycolaldehyde (m/z=145).

Unfortunately most mass analogs, such as isoprene ni-
trates (m/z=232) are positional isomers, and thus cannot be
specifically identified using this approach, thus precluding
the derivation of their concentrations. To overcome this dif-
ficulty, a detailed mechanism has been developed iteratively
using the constraints of organic and inorganic signals in asso-
ciation with previously identified mechanisms (AppendixA).

4 Discussion

4.1 δ-hydroxy channels

Under chamber experimental conditions, isoprene photooxi-
dation proceeds primarily through the addition of OH to the
two double bonds (position 1, 2, 3 and 4, in Fig.1). In the
following we will denote the different channels by the cou-
ple (i, j), where i and j refer, respectively, to the carbon on
which the HO and O2 addition occurs. Besidesβ-hydroxy
peroxy radicals (1, 2) and (4, 3), additions to positions 1
and 4 can lead, after addition of O2, to four δ-hydroxy per-
oxy radicals (Sprengnether et al., 2002), referred to asZ1, 4,
E1, 4, Z4, 1, E4, 1. The branching ratio between these differ-
ent channels remain uncertain (cf. Sect.C1). Here we use
a combination of theoretical (Lei et al., 2000) and experi-

mental results (Sprengnether et al.(2002) and this study) as
constraints:Y1, 2'41%, Y1, 4'15%, Y2, 1'2%, Y4, 3'23%,
Y4, 1'14%,Y3, 4'5%.

As most studies of isoprene photooxidation have focused
on the main decomposition channels (1, 2 and 4, 3) yielding
MACR and MVK (Paulson et al., 1992; Sprengnether et al.,
2002; Karl et al., 2006), theδ-hydroxy channels, which ac-
count for about 30% of the carbon and a large fraction of the
organic nitrates, remain poorly constrained. A large number
of products originating from theδ-hydroxy channels can be
monitored by CIMS which motivates our emphasis on their
chemistry.

4.1.1 Chemistry of theδ-hydroxy channels

Z1,4. The reaction of the peroxy radical with NO yields an alkoxy
radical which undergoes aδ5

1 isomerization (Atkinson, 1997; Park
et al., 2004). The resultingβ-hydroxy allyl radical can then re-
act with O2 and form a 1,4-hydroxycarbonyl, (2Z)-4-hydroxy-2-
methylbut-2-enal (HC5 Z(1,4)) detected as a cluster atm/z=185
(Fig. 2). The detection of its13C isotope atm/z=186 supports
the attribution of the signal to HC5. Formation of glycolaldehyde
(GLYC cluster atm/z=145, Fig.3) and methylglyoxal (MGLYX) at
this stage of the photooxidation have also been described byDibble
(2004a,b). This reaction is based on the stabilization of the alkoxy
radical, reproduced below, through a double hydrogen bond which
prevents its decomposition while enhancing a double hydrogen shift
involving the hydrogen of the alcohol groups.

OH can add to the HC5 Z(1, 4) double bond (channels2© and
3© in Fig. 1), abstract the aldehydic hydrogen (channel4©) or the
hydrogenα to the alcohol (channel1©). Addition on position 2©
is expected to yield GLYC and MGLYX. The signal detected at
m/z=217 (Fig.4) suggests the existence of channel3©. In this path-
way the alkoxy radical formed after addition of OH on position 3
is stabilized enough by a double hydrogen bond, so that reaction
of O2 becomes competitive with unimolecular decomposition. This
mechanism yields 2,4-dihydroxy-2-methyl-3-oxobutanal (DHMOB
(1, 4)).

The signal recorded atm/z=199 correlates well (ρ=0.93 for the
first 400 min) with the one atm/z=133. This correlation between
a cluster and a transfer is usually associated with an acid functional
group (cf. Sect.2.2), which supports the formation of (Z)-2-methyl-
4-oxobut-2-enoic acid (MOBA Z(1, 4)), a five carbon acid, from
HC5 through channel4© (Fig. 5).

E1,4. The isomerization of the initial alkoxy radical can yield 2-
(hydroxymethyl)prop-2-enal (HMPL) after reaction with O2. A
second isomerization would yield 4-hydroxy-3-oxobutanal (HOBL)
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or 4-hydroxy-3-(hydroxymethyl)but-2-enal (MHBL). The further
photooxidation of HMPL and MHBL is expected to yield mainly
dihydroxypropanone (DHPN), whose CF3O− cluster is observed
at m/z=175 (Fig.6), and hydroxyoxopropanal (HOPL, cluster at
m/z=173 with pyruvic acid).

The reaction of OH with HOPL is expected to yield an acylperoxy
radical which can further react with NO2 yielding a PAN-like com-
pound, 3-hydroxy-oxo-peroxyacylnitrate (PAN 250). This com-
pound may be associated with the signal monitored atm/z=250,
although the identification is not certain.
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Signals originating from the E branch are much smaller than those
originating from its Z counterpart. This suggests a large asymmetry
between the E and Zδ-hydroxy channels.

Due to the similarity between the (4, 1) and (1, 4) branch,
we only address the major differences.

Z4,1. Hydroxyacetone (HACET, cluster atm/z=159, Fig.7) and
glyoxal (GLYX) can be formed from the decomposition of HC5
Z(4, 1) and HC5 E(4, 1). Similar to the formation mechanism of
DHMOB(1, 4), the addition of OH to the less preferred position
of HC5 Z(4, 1) (and E(4, 1)) is expected to yield 3,4-dihydroxy-3-
methyl-2-oxobutanal referred to as DHMOB(4, 1) (Fig. 4).
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E4,1. The alkoxy radical configuration preventsδ5
1 isomerization

(ReactionR16) and slows down its decomposition (ReactionR14).
Therefore it is expected to react entirely with O2 (ReactionR15) to
yield a HC5 isomer (HC5 E(4, 1)).

4.1.2 Consequences

The observations of numerous compounds formed at differ-
ent stages ofδ-hydroxy pathways lead to several inferences
about the general mechanism:

Channel asymmetry.If an equal partitioning of the carbon is as-
sumed betweenE1,4 andZ1,4 as suggested by the theoretical work
of Dibble (2002), the concentrations of both HOPL and DHPN are
greatly overestimated while the concentrations of HC5=HC5 Z(1,
4)+HC5 E(4, 1)+HC5 Z(4, 1) and its products (DHMOB, MOBA)
are underestimated. Good agreement with the observations is ob-
tained when,

YE1,4

YZ1,4

=
15

85
(3)

An additional piece of evidence suggesting that little flux
of carbon occurs throughE1,4 is the low signal recorded at
m/z=201, which should include 3-methylhydroxy-4-hydroxy-
butenal (MHBL) based on its structural similarity with
HC5. We use kOH=6.13×10−12cm3 molecule−1 s−1 for
DHPN (25% more than the SAR estimate) and
kOH=2.23×10−11cm3 molecule−1 s−1 for HOPL in order to
properly capture their measured temporal profiles (Fig.6).

The asymmetry between Z/E isomers contradicts the conclusions
drawn from quantum mechanical calculations (Dibble, 2002) as
well as the assumption made by most kinetic models of isoprene
photooxidation (Paulson and Seinfeld, 1992; Fan and Zhang, 2004).
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The discrepancy with quantum mechanical calculations may be re-
lated to a difference in the reaction of thecis/transradical with O2.
The radicals are formed with approximately 40 kcal/mol excess en-
ergy. The minimum isomerization barrier is estimated to be about
15 kcal/mol (Dibble, 2002). Therefore, assuming a collision sta-
bilization of 100 cm−1collision−1, the radicals undergo nearly 100
collisions (20 with O2) before they are cooled below the isomer-
ization barrier. If, based on reported rate coefficients forR•

+O2
(Atkinson et al., 2006), one reaction among ten is assumed to be re-
active, peroxyradicals are likely to be formed before the isomers are
cooled below the isomerization barrier. Therefore, the equilibrium
may be shifted if the reaction of thetrans radical with O2 is faster
than the reaction of thecis radical. Measurements made with re-
duced partial pressure of O2 could test this hypothesis. Thecis and
trans forms can also be interconverted latter in the photooxidation
by theδ5

1 isomerization. Therefore the observed discrepancy may
also be attributed to the additional stability of thecisβ-hydroxy al-
lyl radical provided by the interaction between the alcohol groups.

Evidence for Dibble’s mechanism.Both HACET (Fig. 7) and
GLYC (Fig. 3) exhibit a very prompt source. To our knowl-
edge, the mechanism proposed byDibble (2004a,b) and re-
produced in Sect.4.1.1 is the only mechanism able to yield
both compounds after a single OH reaction. For GLYC, we
set the branching ratio quenching:thermalization to 7:3 in good
agreement with the theoretical estimate (Dibble, 2004b). The
same branching ratio was applied to capture the prompt for-
mation of HACET from theZ4,1 branch. Theoretical con-
siderations do not support such a large hydroxyacetone forma-
tion (Dibble, 2004b). The hydroxyacetone rate constant with
OH is set tokOH=5.98×10−12cm3 molecule−1 s−1 (Dillon et al.,
2006) and the rate constant of glycolaldehyde with OH is set to
kOH=8×10−12cm3 molecule−1 s−1 (Karunanandan et al., 2007).
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Fig. 8. Decomposition pathway of the different isoprene nitrates after their reaction with OH. Reaction of ISOPN with OH, O2, and NO,
also yields dihydroxy-dinitrates through Reaction (R7). Color code is identical to Fig.1.

HC5 chemistry.HC5 (Fig. 2) exhibits a very fast decay con-
sistent with a reaction rate coefficient with OH similar
to isoprene (1.0−1.2×10−10cm3 molecule−1 s−1 ). This
estimate is consistent with the fastest rate recently de-
rived by Baker et al. (2005) and ∼80% greater than the
SAR estimate (kSAR

OH =6.82×10−11cm3 molecule−1 s−1 or

7.9×10−11cm3 molecule−1 s−1 with the correction fromBethel
et al., 2001; Papagni et al., 2001) . This discrepancy can be partly
explained by the effect of the alcohol groupα of the double bond
which enhances the addition of OH (Papagni et al., 2001). The
large measured yield of MOBA=MOBA Z(1, 4)+MOBA Z(4,1)
(Fig. 5) also suggests that the abstraction of the aldehydic hydrogen
(channel 4©) is faster than predicted, possibly related to a long
distance interaction between the alcohol group and the carbonyl
group (Neeb, 2000).

Experimental evidence for the formation of 3-methylfuran (3-MF)
from theZ1,4 andZ4,1 branches have been reported (Tuazon and
Atkinson, 1990). However the mechanism remains unclear with ev-
idence for both heterogeneous formation (Baker et al., 2005; Dib-
ble, 2007; Atkinson et al., 2008) from HC5 and homogeneous for-
mation from its parent alkoxy (Francisco-Marquez et al., 2005).

In our model, 3-MF yield is set to 4.5% based on experimental re-
sults (Atkinson et al., 1989; Paulson et al., 1992) and formed from
the parent alkoxy of HC5. As a result, 37% of the alkoxyradical
formed in theZ1, 4 andZ4, 1 branches must decompose to 3-MF in
order to match the experimental yield. We can not rule out 3-MF
heterogeneous formation. We note, however, that if heterogeneous
processes yield 3-MF, the calculated HC5 yield would be∼20%
higher. Moreover, the decay rate required to match HC5 profile
would likely be faster than observed. 3-MF formation mechanism
has little impact on the conclusions of this paper but has significant
consequences for atmospheric chemistry. Indeed if formed through
heterogeneous processes, 3-MF yield is likely to be smaller than

determined in atmospheric chambers. Further work is clearly re-
quired to quantify this issue and determine the products of 3-MF
photooxidation.

We note, finally, that the observation of large yields for HC5 and
3-MF are consistent with an asymmetry between the E and Z
branches. If the branching ratio E:Z were close to 1:1, the fraction
of peroxy radicalZ1, 4 andZ4, 1 required to decompose to 3-MF
would be 62% and the yield of HC5 only 6.1% This is inconsistent
with the yields previously reported (Baker et al., 2005).

4.2 Organic nitrates

The observation of the organic nitrates of isoprene and
MVK/MACR as well as some of the products of their pho-
tooxidation (Figs.8 to 13), provides constraints on the iso-
prene nitrate yields, their lifetimes and the amount of NOx re-
cycled through the first stage of their photooxidation as well
as their lifetimes.

4.2.1 δ-hydroxy isoprene nitrates

The fate of theδ-hydroxy isoprene nitrates (1, 4) and (4, 1),
respectively ISOPN (1, 4) and ISOPN (4, 1), can be followed
through their degradation products (Fig.8): ethanal nitrate
(ETHLN) monitored atm/z=190 (Fig. 10) and propanone
nitrate (PROPNN) atm/z=204 (Fig.11).

PROPNN features a very prompt source, which requires
a fast reaction rate coefficient of ISOPN(4, 1) with OH:
k

ISOPN(4,1)
OH =9.5×10−11 cm3 molecule−1 s−1. This is∼45%

faster than SAR and suggests an inadequate parameterization
of the effects of nitroxy groups on the reactivity of the dou-
ble bond (Neeb, 2000). No significant signal is observed at
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Fig. 10. Signal recorded atm/z=190 (black circles) compared to
modeled ETHLN (measured as a cluster).

m/z=230, confirming that the abstraction of the hydrogen in
α of the alcohol of ISOPN is negligible compared to addition
on the double bond.

SAR suggests that ISOPN(1, 4) and ISOPN(4, 1) are
similarly short-lived with respect to OH. This is consis-
tent with the prompt source of ETHLN (Fig.10), a prod-
uct of the oxidation of ISOPN (1, 4) (Fig.8). The use
of the primary nitrate photolysis rate (cf.A3) and SAR
rate estimate for the reaction ETHLN+ OH underpredicts
its decay. To match the measured profile (Fig.10), we
takekOH=1×10−11 cm3 molecule−1 s−1 , three times faster
than the SAR estimate. If the ETHNL photolysis rate is
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modeled PROPNN (measured as a cluster). Colored bars indicate
the instantaneous modeled contributions of the different sources of
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Fig. 12. Signal recorded atm/z=189 (black circles) compared to
modeled DHB (measured as a cluster). Colored bars indicate the in-
stantaneous modeled contributions of the different sources of DHB.

larger than estimated (J∼4×10−7 s−1 using 1−C4H9ONO2),
ETHLN reaction rate coefficient with OH would be commen-
surately slower.

NOx recycling from the (4, 1) branch is∼70%
based on the measured ratio PROPNN: dihydroxybu-
tanone (DHB, cluster atm/z=189). The reaction
rate coefficient of DHB with OH is estimated to be
1.3×10−11 cm3 molecule−1 s−1 or 60% of SAR (Fig.12).

The yield of ETHLN is substantially overestimated if the
yield of the reaction RC·OH + O2 → RCO+ HO2 is 100%.
As will be discussed further in Sect.4.3, we suggest that
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unimolecular decomposition of theα-hydroxyperoxy radical
from ISOPN(1, 4) yields formic acid, resolving this discrep-
ancy.

4.2.2 β-hydroxy isoprene nitrates

To capture the decay of them/z=232 signal requires thatβ-
hydroxy isoprene nitrates (ISOPN (1, 2), (2, 1), (4, 3) and
(3, 4)) be much longer-lived thanδ-hydroxy isoprene ni-
trates (ISOPN (1, 4) and (4, 1)). Unfortunately, the prod-
ucts of their photooxidation have multiple other sources, pre-
cluding a direct derivation of their lifetime. For instance
methylvinylketone nitrate (MVKN) and methacrolein nitrate
(MACRN) are also formed from MVK and MACR with sim-
ilar rates. The evolution of them/z=232 signal can be cap-
tured when the SAR chemical rates for these nitrates are re-
duced by 20%.

The reaction of the isoprene nitrate with ozone is included
for ISOPN (1, 2) and ISOPN (4, 3), because their long life-
times allow them to encounter high concentrations of ozone
in the chamber (Fig.A2). We do not observe the formation
of 3 hydroxy-2-nitrooxy-2-methyl propanoic acid (no corre-
lation betweenm/z=184 andm/z=250). Therefore, we use
a simplified version of the ozonolysis products proposed by
Giacopelli et al.(2005) assuming that this reaction yields
only MACRN and MVKN. These reactions contribute sig-
nificantly to the total yield of MVKN and MACRN in this
experiment.

4.2.3 Methacrolein and methylvinylketone hydroxynitrates

MVKN and MACRN are monitored through their clusters
with CF3O− atm/z=234 (Fig.13).

MACRN features an aldehyde group which suggests
a much faster decomposition than MVKN. This is con-
firmed by the profile of hydroxyacetone which does not
exhibit any significant late source. As a result, the third
regime of the experiment is dominated by MVKN and
its reaction rate coefficient with OH can be estimated:
kMVKN

OH =2.8×10−12 cm3 molecule−1 s−1 . The yield of
MVKN can be constrained using GLYC profile since MVK
is its major source:αMVK =(11±3)%. Applying the same
approach to MACR/MACRN/HACET is more complicated
since hydroxyacetone has many more sources than glyco-
laldehyde (Fig. 7). We find that a yield of MACRN of
(15±3)% and a reaction rate coefficient with OH of 5×10−11

cm3 molecule−1 s−1 best match the peak time ofm/z=234.
These values are consistent with the study ofChuong and
Stevens(2004).

The abstraction of the hydrogenα to the alcohol in
MACRN, MVKN and MVKN (m) is expected to yield di-
carbonyl nitrates. We expect CIMS to be sensitive to this
class of compounds since we are able to measure com-
pounds featuring a carbonyl inβ of the nitrate group, such
as PROPNN or ETHLN. Sincem/z=232 only features early
stages compounds, isoprene nitrates, there is no evidence
for the formation of dicarbonyl nitrates. Recent theoretical
studies (Peeters et al., 2001; Hermans et al., 2005) show
that primaryα-hydroxy-alkylperoxy radicals can be suffi-
ciently stabilized to undergo reactions with NO and yield
formic acid. Nevertheless the photooxidation of MVKN oc-
curs in a mostly low-NOx environment which suggests that
α-hydroxy-alkylperoxy radicals may undergo an intramolec-
ular decomposition to yield a carboxilic acid and the nitrate
radical. Such a reaction may involve a four or six-e− mecha-
nism.

Finally, m/z=234 signal features a prompt source which
can not be accounted for by MVK or MACR nor by theβ-
hydroxy isoprene nitrates, which have a similar lifetime with
respect to OH. Conversely ISOPN (1, 4) is very short-lived
and a MVKN (m) yield of 10–15% enables to capture this
feature (Fig.13).

4.3 Acids

4.3.1 Formic acid

Formic acid is detected as a cluster (m/z=131) and a transfer
(m/z=65) with about equal sensitivity. At the NOx titration
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Fig. 14. Signal recorded atm/z=65 (black circles) compared to
modeled formic acid. Colored bars indicate the instantaneous mod-
eled contributions of the different sources of formic acid.

(∼600 min), a molar yield of about (10±3)% is obtained
(Fig. 14).

The measured profile of formic acid (Fig.14) features the
three characteristic chemical regimes of this experiment as
described (cf. Sect.3).

First regime. A very early source of formic acid is noticeable (Fig.
14). Several observations suggest that formic acid may be formed
from an intramolecular decomposition of ISOPN (1, 4) similar to
the one described for MVKN earlier: 1) This source is absent
from the experiments performed in the absence of NOx 2) the early
formic acid profile correlates very well with the propanone nitrate
which originates from ISOPN (4, 1) decomposition 3) ETHNL
would be largely overevaluated in the absence of other decompo-
sition channel for ISOPN (1, 4). Matching the ETHLN profile (Fig.
10) results in a branching ratio for formic acid to ETHLN of 3:1.
ISOPN(2, 1) may yield acetic acid, but is not included since its con-
tribution would be negligible.

Bierbach et al.(1995) report 4-oxo-pentenal as the major product of
the photooxidation of 2-methylfuran in the absence of NOx, while
formic acid accounts for about 6%. We are unaware of any study
of the photooxidation of 3-MF in the presence of NOx. Since the
reaction rate coefficient of methylfuran with OH is similar to that
derived for ISOPN (1, 4) and (4, 1), its photooxidation may con-
tribute to the early sources of formic acid:

Second regime.Butkovskaya et al.(2006a,b) report a formic acid
yield from the photooxidation of GLYC (HAC) of 18% (respec-
tively 7%). The formation of formic acid from the decomposition
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Fig. 15. Signal recorded atm/z=79 (black circles) compared to
modeled acetic acid (observed as a transfer at this mass). Colored
bars indicate the instantaneous modeled contributions of the differ-
ent sources of acetic acid.

of MVKN described in Sect.4.2.3also plays a minor role in this
regime.

Third regime (not shown).As NOx becomes limiting, hydrox-
ymethyl hydroperoxide (HMHP) formation from the reaction of
CH2OO with water is enhanced. HMHP can account for most of
the late formation of formic acid through its reaction with OH and
its photolysis. A large additional source is missing, however, in the
mechanism. Heterogeneous decomposition of HMHP (Neeb et al.,
1997) and aerosol processes (Walser et al., 2007) are likely to ac-
count for this missing source. An upper limit for the strength of
the aerosol source can be estimated from the decrease of the aerosol
volume−2.5 µm3/cm3 which would represent a release of 2.6 ppbv
C=O in the chamber assuming a density of 1.25 g/cm3 (Kroll et al.,
2006). Since the same phenomenon is observed for acetic acid (Fig.
15), most likely both HOx-dominated VOC oxidation as well as or-
ganic aerosol oxidation are needed to explain the observed increase
in formic and acetic acid in the third regime.

4.3.2 Acetic acid

The production of acetic acid (Fig.15) occurs primarily
through the oxidation of hydroxyacetone as described by
Butkovskaya et al.(2006b). Additional routes include di-
rect formation from CH3CHO+ OH (Cameron et al., 2002)
as well as CH3C(O)OO+ HO2 following Reaction (R11).

Two additional minor routes are hypothesized: 1) de-
composition of MACRN(m), 2) decomposition of DHMOB
(1, 4) (m/z=217), inspired by the mechanism proposed by
Butkovskaya et al.(2006a). Following their analysis, we as-
sume a 37% acetic molar yield, the remaining falling apart
as CO2 and hydroxybutane-2,3-dione (m/z=187).
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Table 2. Isoprene nitrate kinetic data. The uncertainty is smaller
than 30%.

Molar yield α kOH kO3 Recycling
% % ×10−11

×10−17 (cf. text)

ISOPN 1,2 2.7 6.7 1 1 45
ISOPN 1,4 Z 3.1 24 9.5 52
ISOPN 1,4 E 0.54 24 9.5 52
ISOPN 2,1 0.13 6.7 3.4 -10
ISOPN 3,4 0.33 6.7 6.6 52
ISOPN 4,3 1.5 6.7 1.9 1 56

ISOPN 4,1 Z 2.9 24 9.5 68
ISOPN 4,1 E 0.51 24 9.5 68

Weighted Average 11.7 55

4.3.3 MOBA

MOBA, the class of five-carbon acids identified atm/z=133
and 199 in Sect4.1 can react with OH and ozone under the
chamber conditions. The slow decay of the signal suggests
that its reactivity is dominated by ozone in the chamber and
that the acid group significantly hinders the addition of OH
onto the double bond. A good match is obtained by setting
kOH equal to 3×10−12 cm3 molecule−1 s−1 (FCOOH=0.1 in
terms of SAR) andkO3=2×10−17 cm3 molecule−1 s−1.

Little signal is observed atm/z=93 which suggests no or
minor formation of oxoacetic acid. This suggests that the
reaction with OH does not conserve the acid group, which
is likely lost as CO2. Pyruvic acid can be expected to be a
major product of MOBA ozonolysis.

4.3.4 Pyruvic acid

Pyruvic acid is a precursor for glyoxylic and oxalic acids,
two carboxylic acids detected in the aerosol phase (Carlton
et al., 2006). It is observed as a cluster atm/z=173 in asso-
ciation with HOPL, a product of DHPL photooxidation. Due
to its stickiness to the walls of the flow tube, the theoretical
calibration is expected to largely overestimate our sensitivity
to this compound. The yield of pyruvic acid after 600 min is
2±1%.

Qualitatively, the major sources of pyruvic acid are ex-
pected to include (heterogeneous) hydrolysis of the Criegee
intermediate produced in the ozonolysis of MVK and MOBA
as well as the decomposition of MVKN(m) following the
scheme presented in Sect.4.2.3.

4.4 Atmospheric relevance

4.4.1 Fate of organic nitrogen

The formation of organic nitrates, and more specifically iso-
prene nitrates, play an important role in determining the
amount of NOx and thus ozone production in many environ-
ments.

The observation of isoprene nitrate clusters with CF3O−

as well as some of the products of their photooxidation, pro-
vides constraints on the isoprene nitrate yields, the amount
of NOx recycled through the first stage of their photooxida-
tion, and their lifetimes (Table2). These three parameters
are necessary to accurately assess the influence of isoprene
photooxidation on atmospheric chemistry.

Yield. Previous estimates for the isoprene nitrate yield,α, span a
very large range.Chen et al.(1998) reported an overall yield of
4.4%,Chuong and Stevens(2002), 15% using an indirect method,
Sprengnether et al.(2002), 12%, Patchen et al.(2007), 7% at
130 hPa. Using experimental yields collected for compounds simi-
lar to isoprene,Giacopelli et al.(2005) estimated the nitrate yield of
theβ andδ-hydroxy isoprene nitrates to be respectively 5.5% for the
former and 15% for the latter, for an overall yield of 8.6%. Since or-
ganic nitrates sequester NOx, such a large variation in the estimated
yields has profound implications to the assessments of ozone pro-
duction caused by isoprene photooxidation (von Kuhlmann et al.,
2004; Fiore et al., 2005; Horowitz et al., 2007).

We report a yield of(11.7±3)% with a large discrepancy between
the yields of the nitrates originating fromδ ('24%) andβ-hydroxy
channels ('6.7%). We emphasize, however, that we derived a total
yield rather than specific branching ratios so that the specific organic
nitrate yields are affected by the choice of the initialβ:δ-hydroxy
channel ratio (cf. Sect.C1). Nevertheless, the discrepancy between
δ-hydroxy channels andβ-hydroxy channels is a reliable feature,
with the δ-hydroxy isoprene nitrates accounting for about 60% of
the total isoprene nitrate yield.Giacopelli et al.(2005) suggested
this behaviour previously using measurement collected for similar
compounds.

Lifetime. The efficiency of both NOx transport and removal
through organic nitrates is related to their lifetimes. The trans-
port of isoprene-nitrates and their alkylnitrate degradation prod-
ucts is of special importance since it is thought to be a major
source of NOx in rural areas (Horowitz et al., 1998). In this NOx-
limited environment, the release of NOx through their decompo-
sition would greatly influence O3 production. In the absence of
experimental data,Giacopelli et al.(2005) estimated using Kwok’s
SAR that theδ-hydroxy isoprene nitrates should be significantly
shorter-lived than theβ-hydroxy isoprene nitrates. With the help
of the propanone nitrate profile, we can experimentally confirm
this discrepancy (Table2). With [OH] =106 molecule−1 cm−3,
the photochemical lifetime with OH of theδ-hydroxy isoprene
nitrates (respectively theβ-hydroxy isoprene nitrate) isτ δ

OH=3h

(τβ
OH=18h). Horowitz et al.(2007) show that the deposition of iso-

prene nitrates is likely to be dominated by dry processes and that

τ
HNO3
d

'7h≤τ ISOPN
d

≤τPAN
d

'100h. As a result, the fate of the
δ-hydroxy isoprene nitrates is likely to be dominated by their re-
activity with OH and possibly O3 similar to isoprene while other
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processes such as dry deposition and reaction with NO3 must be
taken into account for proper modeling of theβ-hydroxy isoprene
nitrates. Therefore, the latter are likely to have greater influence on
tropospheric chemistry.

The large difference in the lifetime of the organic nitrates formed
in theδ-hydroxy andβ-hydroxy channels may explain some of the
spread in the reported yields and NOx recyclings. Studies focusing
on the very first step of isoprene photooxidation (e.g.Sprengnether
et al., 2002) tend to report the highest nitrate yield, suggesting that
the short-livedδ-hydroxy isoprene nitrates may have been under-
estimated in some previous experiments (see inset of Fig.9). The
same argument may also explain the observations of a greater vari-
ety of isoprene nitrates in laboratory experiments than in the field
(Giacopelli et al., 2005).

Recycling.The efficiency of the NOx sequestration depends on the
fate of the isoprene nitrates and more specifically on how much NOx
is released in their subsequent photooxidation. NOx-recycling is
defined as the difference between the NOx released by the reaction
and the NO consumed. As a result, since ISOPN(2, 1) oxidation
does not yield any NO2, its recycling is negative due to the for-
mation of dinitrates (Fig.8 and Table2), which we have observed
at m/z=311 in another experiment.Horowitz et al.(2007) obtain
the best agreement with the boundary layer data when 40% of the
NOx is recycled with a low nitrate yield (4%). We find a NOx re-
cycling of (55%±10)% by the isoprene peroxy radicals consistent
with Horowitz et al.(2007) conclusion despite our very different
yields. As highlighted in the inset of (Fig.9), this may be related
to the wrong estimation of isoprene nitrate yield due to the short
lifetime of theδ-hydroxy channels.

The photooxidation of isoprene leads to the forma-
tion of other significant organic nitrates MVKN, MACRN,
PROPNN ('1%) and ETHLN ('1%). All these com-
pounds are substantially longer-lived than isoprene nitrates
and therefore are more likely to influence the NOx-balance
on a larger scale (assuming a similar deposition veloc-
ity). The formation of PROPNN and MVKN appear espe-
cially important as their photochemical sinks are very slow:
τMVKN

OH '100h and τPROPNN
OH >200h. Therefore, they may

constitute important pathways for NOx transport as well as
significant NOx-sinks through deposition. They also can
contribute to the growing source of atmospheric nitrogen to
the open ocean (Duce et al., 2008).

In contrast to ISOPN, MACRN and MVKN release most
of their NOx in the course of their decomposition, possibly
through the formation of formic and pyruvic acids. These
organic nitrate channels may contribute significantly to the
missing source of small carboxylic acid in the free tropo-
sphere.

4.4.2 Acids

Small carboxilic acids are ubiquitous in the atmosphere both
in the gas-phase and in the aqueous phase, playing an im-
portant role in rain acidity and cloud reactions (Chebbi and
Carlier, 1996).

The photooxidation of isoprene under high NOx pro-
duces substantial amounts of formic (yield'(10±3)% after
600 min) and acetic acids (yield'(3±1)% after 600 min).
Acetic and formic acids are highly correlated after the first
150 minutes (ρ=0.988), since their main source, hydroxy-
acetone for acetic acid and glycolaldehyde for formic acid,
share a similar origin and lifetimes (Figs.14and15). We find
[Acetic Acid]=0.46±0.02× [Formic Acid]−0.02± 0.01×

[Isoprene]0.
A strong correlation between formic and acetic acids has

been observed previously over Amazonia (Andreae et al.,
1988) and Virginia (Talbot et al., 1995). In most large scale
chemical models, these compounds originate primarily from
biomass burning and to a lesser extent from ozonolysis of
alkenes. Since the main source of both acids in the cham-
ber is unlikely to result from the ozonolysis of the alkenes,
our study shows that additional channels for their formation
should be included. The main identified sources (hydroxy-
acetone, glycolaldehyde, organic nitrates) are much longer-
lived than the ones currently included in global model which
may help resolve part of the discrepancy between models
(Jacob and Wofsy, 1988) and atmospheric observations (An-
dreae et al., 1988; Talbot et al., 1990).

Finally the identification of MOBA, a five carbon acid,
could be important for aerosols as its vapor pressure and the
vapor pressures of the products of its photooxidation are ex-
pected to be low.

4.4.3 Development of a reduced mechanism

The new constraints derived in this study primarly originate
from our observation of the chemistry of theδ-hydroxy chan-
nels. In particular, we have shown that these channels ac-
count for a large fraction of the isoprene nitrates and small
carboxylic acids, whose role is important on a global scale.
Most of the reduced isoprene photooxidation mechanism
implemented in chemical transport models, e.g. MOZART
(Pfister et al., 2008), do not adequatly account for the chem-
istry of theδ-hydroxy channels, thus impeding proper mod-
eling of the consequences of isoprene photooxidation on tro-
posheric chemistry.

The detailed chemical mechanism described in this study
is too complex to be included in large scale atmospheric
chemistry simulations. To aid in such investigations, we pro-
pose that a few modifications of these simplified mechanisms
be implemented (Table3). While adding little complexity
and maintaining carbon balance, these few changes describe
more accurately the formation and fate of nitrates as well as
the yield of carboxylic acid. In particular, the long life time
of PROPNN and MVKN enables transport of organic nitrates
over long distances.

In our reduced mechanism, we neglect theE δ-hydroxy
channel branch ('5% of the carbon) as well as the non-
Dibble branch yielding MPDL and OBL (Fig.1). We
have only included the formation of organic nitrates which
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Table 3. Suggested modifications of isoprene condensed photooxidation mechanism under high NOx conditions. (2, 1), (3, 4), E(1, 4) and
E(4, 1) branches are not treated. Formation of organic nitrates is limited to isoprene, MVK and MACR peroxy radicals. The reaction of the
isoprene nitrates with respect to O3 as well as the fate of 3-MF are not tackled by this mechanism (cf. text). MGLYX denotes methylglyoxal
and HC4, a generic four-carbon VOC.

Reaction k (T =298 K )
10−11cm3 molecule−1 s−1

ISOP+ OH → ISOPO2 10
ISOPO2 + NO → 0.40 MVK + 0.26 MACR+ 0.883 NO2 + 0.07 ISOPNδ + 0.047 ISOPNβ + 0.66 HCHO 0.81

0.10 HC5+ 0.043(3−MF) + 0.08 DIBOO+ 0.803 HO2
HC5+ OH → HC5OO 11

HC5OO+ NO → NO2 + 0.234(GLYC + MGLYX ) + 0.216(GLYX + HACET) + 0.29 DHMOB 0.81
0.17 MOBA + 0.09 HC4+ 0.09 CO+ HO2

ISOPNδ + OH → ISOPNOOδ 9.5
ISOPNOOδ + NO → 0.34 DHBN+ 0.15 PROPNN+ 0.44 HACET+ 0.07 MVKN + 0.13 ETHLN+ 0.31 HCOOH+ 0.31 NO3 0.81

+0.72 HCHO+ 0.15 GLYC+ 1.34 NO2 + 0.35 HO2
ISOPNβ + OH → ISOPNOOβ 1.3

ISOPNOOβ + NO → 0.6(GLYC + HACET) + 0.4(HCHO+ HO2) + 0.26 MACRN+ 0.14 MVKN + 1.6NO2 0.81
DIBOO + NO → NO2 + HO2 + 0.52(GLYC + MGLYX ) + 0.48(GLYX + HACET) 0.81

MVK + OH → MVKOO 1.75
MVKOO + NO → 0.625(GLYC + CH3C(O)OO) + 0.265(MGLYX + CH2O + HO2) + 0.11 MVKN 0.81

0.89 NO2 0.81
MVKN + OH → 0.65(HCOOH+ MGLYX ) + 0.35(CH2O + CH3C(O)C(O)OH) + NO3 0.56
MACR + OH → 0.47 MACROO+ 0.53 MCO3 2.95

MACROO+ NO → 0.85(NO2 + HO2) + 0.425(HACET + CO) + 0.425(CH2O + MGLYX ) + 0.15 MACRN 0.81
MACRN + OH → 0.08(CH3C(O)OH + CH2O + NO3) + 0.07(HCOOH+ NO3 + MGLYX ) 5

0.85(HACET + NO2) + 0.93 CO2
MC(O)OO+ NO → NO2 + CO+ CO2 + CH2O + CH3OO 2.1

GLYC + OH → 0.75 HO2 + 0.25 OH+ 0.13 GLYX + 0.52 CO+ 0.35 CO2 + 0.16 HCOOH+ 0.71CH2O 0.8
HACET + OH → 0.75 MGLYX + 0.825 HO2 + 0.125 HCOOH+ 0.1 OH+ 0.125 CH3OO+ 0.20 CO2 0.6

0.05 CO+ 0.125 CH3C(O)OH
ETHLN + OH → CH2O + CO2 + NO2 1

DHMOB + OH → 1.5 CO+ 0.5 HO2 + 0.5 HACET+ 0.5 HC4 1
MOBA + HO → MOBAOO 0.3

MOBAOO + NO → HC4+ CO2 + HO2 + NO2 0.8

were directly constrained in this study (ISOPN, PROPNN,
ETHNL). The yield of minor organic nitrates can be derived
using the number of carbons of the parent peroxy radical, a
common approach in most chemical transport models. We
introduce a generic four carbon hydrocarbon, HC4, to ac-
count for the decomposition of MOBA. This study does not
constrain the fate of 3-methylfuran and the reaction of iso-
prene nitrates with ozone; more theoretical and experimental
work is required.

5 Conclusions

A substantial fraction of the terrestrial Northern Hemisphere
is characterized by conditions in which the fate of isoprene
peroxy radicals is dominated by reactions with NO.Chamei-
des et al.(1988) demonstrated that they play a major role
in the formation of ozone in urban areas. This study com-
plements previous investigations of isoprene photooxidation
mechanism by focusing on theδ-hydroxy channels, whose
chemistry is not adequately represented in chemical trans-
port models. We focus on the large yields of small carboxylic
acids and propose new constraints for the yield and the fate
of organic nitrates. Both constitute outstanding uncertainties
in the photooxidation of isoprene, impeding proper model-

ing of tropospheric chemistry on a global scale. To aid in the
development of improved simulations of this chemistry, we
propose simple modifications of current condensed mecha-
nism which maintains carbon balance and accounts for the
new constraints and mechanisms identified in this study (Ta-
ble3).

Appendix A

Photooxidation mechanism

A1 VOC chemistry

Except as noted below, we use the known rate coefficients
of bimolecular and termolecular reactions as tabulated in IU-
PAC (Atkinson et al., 2004, 2006) and JPL (Sander, 2006)
reports.

A1.1 HO

Reactions of HO with VOC are limited to its addition on a
double bond and the abstraction of the aldehydic hydrogen
and the hydrogen inα to an alcohol, i.e. the abstraction of
hydrogens from alcohols is neglected. For the addition of
HO onto double bonds, in the absence of data or previous

Atmos. Chem. Phys., 9, 1479–1501, 2009 www.atmos-chem-phys.net/9/1479/2009/



F. Paulot et al.: Isoprene photooxidation: new insights into the production of acids and organic nitrates 1493

information enabling differentiation between the two car-
bons, we assume that the reaction occurs only on the most fa-
vorable location based on steric considerations. A structure-
activity relationship (SAR) method is used to determine un-
known reaction rate coefficients (Kwok and Atkinson, 1995).

Following the studies ofOrlando and Tyndall(2001) and
Méreau et al.(2001), acylradicals are assumed to decompose
promptly when the alkyl group features a carbonyl or an al-
cohol (with R secondary or tertiary) inβ to the carbonyl:

R1R2R3CCHO+ HO → R1R2R3CCO+ H2O (R5)

R1R2R3CCO→ R1R2R3C + CO (R6)

We also assume that acylradicals featuring a nitrooxy group
in β to the carbonyl undergo unimolecular decomposition. In
all other cases, the acyl radical is assumed to add O2 to yield
the associated peroxy radical.

In case of resonance, the branching between the addition
of O2 on the carbon inα of alcohol (denoteda© in Fig. 1)
or in γ ( b©) is unknown. Addition ona© features a more
stable double bond as well as a kinetically favored radical.
In the mechanism, we set the branchinga©: b© to 65%:35%.
Furthermore we note that HOPL does not exhibit any early
source, suggesting that the yield of HMPL is negligible. In-
deed, its formation appears unfavorable on both a thermo-
dynamic (the double bond is less substituted) and a kinetic
(formation of a secondary radical) basis. Thus, the branch-

ing ratio is set toY
E(1,4)
a =95% andY

E(1,4)

b =5%.

A1.2 Ozone

Ozone reacts with alkenes via the formation of a molo-
zonide, quickly followed by its decomposition into a car-
bonyl and a Criegee intermediate. Assuming a generic
rate constant for the reaction of alkenes with ozone, 10−17

cm3 molecule−1 s−1 , the reaction of an alkene with ozone is
included ifτHO>

τO3
10 , whereτHO andτO3 are the lifetimes of

the alkenes with respect to HO and O3 respectively.
Ozone reactions are included for isoprene, MACR and

MVK, following IUPAC recommendations.

A1.3 NO3

Reactions of NO3 with alkenes and aldehydes have been ne-

glected, since
k

NO3
{alkenes/aldehydes}[NO3]

kHO
{alkenes/aldehydes}[HO]

� 1 throughout the experi-

ment.

A2 Peroxyradical chemistry

A2.1 NO

NO reacts with peroxy radicals with a rate coefficient
of 2.43×10−12 exp(360/T ) cm3 molecule−1 s−1 (Atkinson
et al., 2006) through

RO2 + NO → (1 − α)(RO+ NO2) + αRONO2 (R7)

The reaction rate coefficient of acyl
peroxy radical with NO is set to
6.7×10−12exp(340/T ) cm3 molecule−1 s−1 based on
CH3CH2C(O)OO.

Carter’s parameterization is used to compute the alkyl ni-
trate yield (Carter and Atkinson, 1989; Arey et al., 2001):

α

1 − α
=

Y 298
0 [M](T /298)−m0

1 + 2
FZ

× m (A1)

with z=(1+[log(
Y 298

o [M](T /298)−m0

Y 298
∞ [M](T /298)−m∞

)]2)−1, F=0.41, m0=0,

m∞=8.0, β=1, 2=
Y 298

0 [M](T /298)−m0

Y 298
∞ (T /298)−m∞

, γ=2×10−22

cm3molecule−1, Y 298
∞ =0.43, Y 298

0 =γ eβn, where n is the
number of carbons in the molecule. The parameterm is
set to 0.4, 1.0 and 0.3 for primary, secondary and tertiary
nitrates, respectively (Arey et al., 2001).

Forβ-hydroxy peroxy radicals,α is divided by two to ac-
count for the effect of the hydroxy group as highlighted by
O’Brien et al.(1998).

For acylnitrates, the yield is set to the alkyl tertiary nitrate
yield, providing it does not exceed 4%.

A2.2 NO2

NO2 reacts with peroxy acyl radicals to yield
peroxyacylnitrate-like compounds, which decompose
thermally or photolytically:

RC(O)OO+ NO2 � RC(O)OONO2 (R8)

The rates of formation and decomposition of methyl per-
oxyacylnitrates (MPAN) are used for all PAN-like com-
pounds except PAN itself. Most PAN-like compounds except
PAN itself have other reactive groups (aldehyde, primary or
a secondary alcohol, double bond) causing their major sink
to be reaction with HO.

A2.3 NO3

NO3 reacts with peroxy radicals through

NO3 + RO2 → NO2 + RO+ O2 (R9)

The rate coefficient is set to 2.3×10−12

cm3 molecule−1 s−1 independent of both the tempera-
ture and the peroxyradical.

A2.4 HO2 and peroxy radicals

HO2 reacts with peroxy radicals through four different chan-
nels:

HO2 + RO2 → ROOH+ O2 (R10)

→ ROH+ O3 (R11)

→ RO+ HO + O2 (R12)

→ R−HO + H2O + O2 (R13)
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Fig. A1. Evolution of the speciation during isoprene photooxida-
tion. The abundance of a functional group5 is defined as the sum
of the carbons bearing5 normalized by the total amount of carbon
in the chamber, i.e. five times the initial amount of isoprene.

Reaction (R13) has only been observed for compounds
such as RCH2OCH2OO and is not considered in this study.
Acyl peroxides are assumed to react through Reaction (R10),
Reaction (R11) and Reaction (R12) with a branching ra-
tio 0.4:0.2:0.4 (Hasson et al., 2004; Jenkin et al., 2007).
Acetonylperoxy radicals have also been shown to react
through channels Reaction (R10) and Reaction (R12) with a
branching ratio 1:2 (Hasson et al., 2004). The other alkylper-
oxy are assumed to react through Reaction (R10) only.

The reaction rate coefficient for the reaction of alkylper-
oxy with HO2 is set to 2.91×10−13 exp(1300/T ) ×

(1− exp(−0.245nc)) cm3 molecule−1 s−1 where nc is the
number of carbon atoms (Saunders et al., 2003). For the
acyl peroxy radicals, the reaction rate coefficient is set
to 5.2×10−13 exp(983/T ) cm3 molecule−1 s−1 based on the
reaction of the methylacylperoxy radical.

RO2+RO2 reactions are neglected in this study. In the
early stages of isoprene photooxidation the chemistry of per-
oxyradicals is entirely dominated by NO. At the end of the
experiment, peroxy radical chemistry is dominated by HO2,
which concentration is high enough so that RO2 + RO2 reac-
tions can be safely neglected.

A3 Photolysis

The photolysis rate of a compound i is computed via:

Ji =

∫ λ2

λ1

Ie(λ)σi (λ) φi (λ) dλ (A2)

The effective light fluxIe is computed using an experimen-
tal determination ofJHONO and a spectrum of the lamp out-
put made every nanometer (LI-COR LI1800λ1=300 nm,

λ2=600 nm). σHONO is scaled using the oscillator strength
recently reported byWall et al.(2006). This givesJHOOH =

3.1×10−6 s−1.
The photolysis of compounds with unknown absorp-

tion cross sections is estimated from the known photoly-
sis rate constants of similar compounds. The photolysis
of organic nitrates is assumed to yield only RO+ NO2.
For primary organic nitrate, the photolysis rate is taken
from 1−C4H9ONO2, for secondary organic nitrates from
2−C4H9ONO2 and for tertiary nitrates from tertbutylnitrate
(Roberts and Fajer, 1989; Atkinson et al., 2006).

A4 Fate of the alkoxy radicals

Alkoxy radicals can react following three different pathways:

R1R2R3CO·
→ R1R2CO+ R3

· (R14)

+O2 → R1R2CO+ HO2 if R3 = H (R15)

→ R1R2COHCCCC·R′

3 (R16)

with R3 = CCCCR′

3

Since the isomerization reaction, Reaction (R16), requires
at least four carbons (Atkinson, 1997), it occurs only in the
first stages of isoprene photooxidation, when major prod-
ucts retain five carbons. In the case of isoprene, isomer-
ization (Reaction (R16)) is faster than decomposition (Reac-
tion (R14)) and reaction with O2 (Reaction (R15)). Alkoxy
radicals which cannot undergo Reaction (R16) are assumed
to decompose through Reaction (R14), i.e. their reaction with
O2 (Reaction (R15)) is generally neglected except for a few
cases detailed in the discussion section.

Generally the decomposition of an alkoxy radical can oc-
cur through different channels, whose branching ratios (Yi)
are estimated using their respective activation energies,Ebi .

R1R2R3CO·
→ R2R3CO+ R1

· Y1 (R17)

R1R2R3CO·
→ R1R3CO+ R2

· Y2 (R18)

R1R2R3CO·
→ R1R2CO+ R3

· Y3 (R19)

with

∀i ∈ (1, 2, 3) Yi = exp

(
Eb1 + Eb2 + Eb3 − Ebi

RT

)
(A3)

Eb is calculated using the generalized structure-activity rela-
tionship developed byPeeters et al.(2004).

A5 Skill of the model

The evolution of the modelled chemical system can be ex-
amined through its instantaneous speciation (Figs.A1). Fur-
thermore, given that the oxidation of CO by HO is negligible
in the time scale of experiment, we define the chemical speed
of the system,V, as d[CO+CO2]

dt
(Figs.A2). Both proxies in-

dicate that the system undergoes three different regimes:
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Fig. A2. Different stages of the reaction. Regime I: alkenes
chemistry, NOx-dominated. Regime II: aldehydes chemistry, NOx-
dominated. Regime III: ketones and peroxides chemistry, HOx-
dominated.

.

First regime (0<t<150 min). This regime is characterized by a
large supply of NO, as well as very reactive compounds featur-
ing a double bond.V reaches a maximum after a few minutes at
0.7 ppv(C)/min. O3 and PNA are very low in this regime, underly-
ing a chemistry dominated by NO. The organic nitrate concentra-
tion reaches its maximum at the end of this regime. The reduction in
[HO] corresponds to an increase of[NO2] leading to the formation
of nitric acid.

Second regime 150<t<550 min. This regime is characterized by a
very stableV (0.5 ppbv(C)/min) with a chemistry dominated by
aldehydes. HO recycling though HO2 + NO is less efficient than
in the first regime due to the abundance of O3 which favors the for-
mation of PAN. Nevertheless, the reduction in the chemical speed
due to the transition from “double bond dominated” to “aldehyde
dominated” reduces HO sinks which ultimately leads to a slow in-
crease in HO, leveling off when PNA peaks, i.e. when the NOx is
titrated.

Third regime 550<t<1000 min. After the PNA peak, the chem-
istry is dominated by HO2, as evidenced by the formation of per-
acetic acid (PAA cluster atm/z=161) and methylhydroperoxide
(MHP clusterm/z=133). Low-reactivity compounds such as ke-
tones or long-lived nitrates dominate the chamber composition. De-
spite the almost constant HO, the chemical speed drops significantly
to 0.1 ppbv(C)/min.

These three distinct chemical regimes are consistent with
the ones derived using the experimental profiles of HONO
and PNA, i.e. the mechanism accurately represents the av-
erage evolution of the chemical system (Figs.A1 andA2).

The skill of the mechanism can be evaluated in greater de-
tails by comparing the times when various species peak as
well as their maxima between mechanism and experiment

Time (min)

pp
b

 

 

0 10 20 30 40 50 60 70 80 90

10
1

10
2

Model
Data

Fig. A3. Isoprene profile monitored by GC FID compared to mod-
eled isoprene.

Table A1. Skill of the model. 1t=tmodel
max /tdata

max − 1 and
1c=cmodel

max /cdata
max− 1.

HACET GLYC ISOPN MVKN HC5
+ MACRN

1t(%) 4.8 -1.4 < 1 < 1 < 1
1cmax (%) 3.6 −4.4 2.4 −3.1 38

ETHN DHB DHPN HONO PNA

1t(%) < 1 < 1 2.1 16 -11
1cmax (%) -11 3.5 22 2.2 -37

(Table A1). The mechanism generally captures correctly
the peak times indicating that the chemical speed is prop-
erly modeled in the first and second regime. The error re-
garding the maximum intensity falls within the uncertainty
of this study (±20−30%). The sensitivity of the CIMS to
PNA is probably overevaluated due to ligand exchange with
H2O2. Satisfactory representation for the background chem-
istry species is also reached (Figs.A3 andA4). In particular,
HO2NO2, a very sensitive marker for the ratio of NOx and
HOx, is well captured during the first and second regimes.

Appendix B

Calibration

B1 Definitions

We define the normalized signal, ̂Signal(m/z) as the abso-
lute number of counts recorded atm/z divided by the number
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Fig. A4. Comparison of CIMS measurements of inorganic species
with their modeled concentrations using experimental calibrations.
Calibrations for HO2NO2 and N2O5 are uncertain.

of counts associated with the reagent anion, CF3O−:

̂Signal(m/z) =
Signal(m/z)

Signal(CF3O−)
(B1)

For the chamber experimental conditions, the reagent
ion was found in several forms: CF3O−, CF3O·H2O and
CF3O−·H2O2. Due to the high count rates for the primary
isotopes of the reagent ions (sum∼ 14 MHz), the13C iso-
topes were monitored instead:

Signal(CF3O−)=
∑

m/z=86,104,120

Signal(m/z) (B2)

As stated in Sect.2.3, in order to get the concentration
for an analyte,X, detected as a product ion withm/z=p, we
divide the normalized signal form/z by the sensitivity (cX)
for that analyte under chamber conditions Eq. (1).

The above method fails when mass analog ions, i.e. dif-
ferent ions with the same mass-to-charge ratio, exist at the
m/z of interest. The mass analog ions correspond to differ-
ent analytes in the chamber, which have different reaction
rate coefficients with the reagent ion. While the CIMS in-
strument can not separate mass analogs, the explicit model
can. To compare the model results with a measured signal
composed of mass analogs, we use the following:

[
Xmeasuredm/z=a

]
ppbv

=

̂Signal(m/z)

cref

(B3)[
Xmodelm/z=a

]
ppbv

=

∑
i∈A

[Xi ]
cXi

cref

(B4)

wherea is a m/z featuring mass analog ions,A the sub-
set of compounds yielding product ions withm/z=a and

cref=3.85×10−4 pptv−1 is taken as an approximate gen-
eral calibration. Nominally, Signal(CF3O−)=120 kcounts/s,
this gives cref=46 counts.s−1.pptv−1, in the CIMS flow
tube. Including the dilution factor (13.2), the sensitivity is
3.5 counts.s−1.pptv−1 in the chamber air.

B2 Dipoles and polarizabilities computed by quantum me-
chanics

The dipole moment and polarizability of a molecule depend
on its charge distribution. Thus, different conformers of a
molecule can have very different dipole moments. The polar-
izability is essentially determined by the number of electrons
and so is not significantly altered by conformers.

We have calculated the dipole moment and polarizability
using density functional theory. Many of the molecules of
interest have a large number of structural conformers and we
have calculated a conformer distribution for all molecules.
To generate the initial set of conformers, we have allowed 3
fold rotation about all CC, CO, CN single bonds. This leads
to, for example 34 guess structures in the case of ISOPN
Z(1, 4). For each guess conformer, geometry optimization
is conducted at the B3LYP/6-31G(d) level. The optimized
conformers are ranked by energy and relative population for
a temperature of 298 K is determined. We have only cal-
culated the polarizability of the lowest energy structure for
each of the molecules as we found this to be relatively in-
sensitive to structure. All calculations were performed with
Spartan’06, with the default convergence criteria (Wavefunc-
tion Inc., 2006). Test calculations on a few small molecules
for which the dipole moment has been measured show that
the B3LYP/6-31G(d) calculated dipole moments are in good
agreement with experiment (TableB1).

Appendix C

Uncertainty

C1 Initial branching ratio uncertainty

The addition of HO onto isoprene yields eight different per-
oxyradicals (Fig.1). The reported branching ratios vary sig-
nificantly (Lei et al., 2001; Greenwald et al., 2007).

MACR and MVK are only produced through the reaction
of theβ-hydroxy alkoxy radicals with NO and by ozonolysis
of isoprene (Fig.1). Since the latter accounts for less than
0.5% of the total isoprene consumption in the chamber, we
can use the direct determination of the yield of these products
(Sprengnether et al., 2002) as a constraint.

(1 − αβ)(Y1,2 + Y2,1) = 0.44±0.06 (C1)

(1 − αβ)(Y4,3 + Y3,4) = 0.28±0.04 (C2)

We consider that allβ-hydroxy peroxy radical have the same
nitrate branching ratio,αβ , as suggested byGiacopelli et al.
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(2005). In this study, we assume that channels (2, 1) (re-
spectively (3, 4)) yield MVK and MACR.Park et al.(2003)
proposed that the radicals formed in these channels undergo
a cyclization, thus reducing the yield of MVK and MACR.
The yield of the nitrates which should originate from the hy-
drocarbons proposed byPark et al.(2003) is too small to pro-
vide conclusive experimental evidence in favor or against this
mechanism. Given the small combined yield of these chan-
nels, this uncertainty remains small compared to the ones af-
fecting the major channels.

Theoretical determinations of the branching ratio have also
been made (Lei et al., 2000; Greenwald et al., 2007):

Y1,2 + Y1,4 = 0.56; 0.67 (C3)

Y4,3 + Y4,1 = 0.29; 0.37 (C4)

Y2,1 = 0.02 (C5)

Y3,4 = 0.02; 0.05 (C6)

The product of the decomposition of the isoprene nitrates
formed in the (4, 1) branch, dihydroxybutanone (DHB) and
propanone nitrate (PROPNN), provide an additional con-
straint (Fig.8):

0.01 < (1 − αdn
2,1)γ αβY2,1 + (1 − αdn

4,1)αδY4,1 < 0.034 (C7)

±0.002 ±0.007

whereαδ is the nitrate yield from theδ-hydroxy peroxy
radicals,γ is the branching ratio of the pathway yielding
propanone nitrate from ISOPN(2, 1), computed using (A3),
αdn

2,1 andαdn
4,1, the respective organic dinitrate branching ra-

tios from ISOPN(2, 1) and ISOPN(4, 1).
The upper and lower bounds reflect the uncertainty on the

identification of them/z=189 signal. The upper bound is de-
rived assuming allm/=189 signal originates from the DHB
yielded by ISOPN(4, 1). The lower limit assumes that no
DHB is formed from ISOPN but rather that the signal mea-
sured atm/z=189 results from the photooxidation of HC5
Z(1, 4) (negligible based on Peeters’ SAR) and ISOPN (1,
4) (formation of dihydroxymethylpropanal (DHMPL) from
addition of HO on the less-sterically favored carbon).

In the mechanism, we use the constraints implied by the
study ofLei et al.(2000), YMACR=0.26 andYMVK =0.40 and
the upper bound of Eq.C7. Since the use of the non lin-
ear system formed by Eqs. (C1) to (C7) in order to solve
for αβ , αδ andYi,j does not yield a single solution, we use
the branching ratios derived byLei et al.(2001) to initialize
the numerical solution of this non-linear system and obtain:
Y1,2'41%, Y1,4'15%, Y2,1'2%, Y4,3'23%, Y4,1'14%,
Y3,4'5%,αδ'24%,αβ'6.7%. This set of parameters yields
a self-consistent mechanism which captures correctly most
of our observations.

The constraints implied by the theoretical study ofGreen-
wald et al.(2007) and the experimental work ofSprengnether

Table B1. Weighted average dipoles (µ) and polarizabilities (α).
Experimental determinations are indicated in parenthesis when
available. kX, is the weighted average of the collision rates
calculated for conformers with an abundance greater than 5%.
kHNO3=1.92×10−9 cm3 molecule−1 s−1 . σ is the weighted stan-
dard deviation of the distribution of thermal collision rate constants,
i.e. it indicates the sensitivity of the calibration to the calculated dis-
tribution of conformers.

Molecule (X) µ(D) α (Å) kX/kHNO3 σ

Acetic Acid 1.6 (1.7�) 3.9 (5.1~) 0.80 (0.84) ∅
DHB 2.3 7.5 1.0 0.027

DHMOB14 1.5 9.3 0.79 0.26
DHMOB41 1.1 9.1 0.66 0.12

DHPN 1.5 6.0 0.74 ∅
ETHLN 2.7 6.2 1.1 0.4

Formic Acid 1.4 (1.4�) 2.4 (3.3�) 0.76 (0.78) ∅
GLYC 2.3 (2.34§) 4.5 1.1 (1.1) ∅

HACET 3.1 (3.1†) 5.5 1.4 (1.4) 0.72×10−3

HC5 E(4, 1) 2.8 8.9 1.2 0.22
HC5 Z(1, 4) 3.5 8.7 1.5 0.14
HC5 Z(4, 1) 3.7 8.9 1.5 ∅

HOPL 1.2 5.7 0.65 1.6×10−3

ISOPN (1, 2) 2.5 11 1.0 0.032
ISOPN (2,1) 2.5 11 1.0 0.17
ISOPN (3, 4) 2.4 11 1.0 0.11
ISOPN (4, 3) 2.5 11 1.0 0.068

ISOPN (1, 4)E 3.2 11 1.3 0.17
ISOPN (4, 1)E 2.9 12 1.2 0.085
ISOPN (1, 4)Z 3.2 11 1.3 0.028
ISOPN (4, 1)Z 3.0 11 1.2 0.041

MACRN(m) 2.4 9.9 1.0 0.38
MACRN 2.0 9.8 0.87 0.045

MNBL Z(1, 4) 3.6 11 1.4 0.089
MNBL Z(4, 1) 3.9 12 1.5 0.12

MNBOL Z(1, 4) 4.3 12 1.6 0.073
MNBOL Z(4, 1) 4.2 12 1.6 0.083

MOBA Z(1, 4) 4.6 9.1 1.8 0.22
MOBA Z(4, 1) 3.2 9.2 1.3 ∅

MVKN(m) 2.2 9.7 0.95 0.39
MVKN 2.3 9.9 0.95 0.078

PROPNN 3.0 7.7 1.3 0.46
Propanoic Acid 1.5 5.4 0.76 0.034

Pyruvic Acid 2.4 5.5 1.0 ∅
�: Johnson III, R. D.(2006), †: Apponi et al.(2006), ?: Cox et al.(1971)
~: Maryott and Buckley(1953), §: Marstokk and Mollendal(1973)

et al. (2002) can not be reconciled with our observations
in a consistent fashion. Consider the extreme case where
YMACR=24%, Y4,3+Y4,1=29% andY2,1=2% and assume
a nitrate yield of 10% for theβ-hydroxy channels gives
Y4,1'4.7%. A direct consequence of the small branching
ratio for (4, 1) branch is to preclude DHBN from being an
important product of ISOPN(4, 1). The signal measured
at m/z=189 would therefore mostly correspond to DHMPL
formed from the photooxidation of ISOPN(1, 4). There are
two major inconsistencies with this hypothesis. First, due
to the small carbon flux through the (4, 1) branch, we are
not able to capture the prompt source of hydroxyacetone at-
tributed to Dibble mechanism. Second, DHMPL features an
aldehydic group so that its lifetime with respect of HO is ex-
pected to be much shorter than DHB inconsistent with the
signal recorded atm/z=189 (Fig.12).
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While the derivation of the specific branching ratio is af-
fected by this major uncertainty, the determination of the
overall yield of the different products identified is, on the
other hand, strongly constrained by observations and thus
relatively insensitive to our choice. The asymmetry of the
nitrate yields between theβ andδ-hydroxy channels is there-
fore a reliable feature. Indeed this conclusion bears a strik-
ing similarity with the estimate derived byGiacopelli et al.
(2005) using a corrected Carter’s parameterization. It is also
consistent with the suggestion ofO’Brien et al.(1998) that
hydrogen bonding inβ-hydroxy substituted ROONO inter-
mediate weakens the RO−ONO bond, enhancing RO+ NO2
production.

C2 Quantum mechanics

In this study, we have assumed that ligand exchange has a
negligible impact on CIMS sensitivity. Therefore to assess
the accuracy of our calibration, we compare the calculated
collision rate with the fastest experimental collision rate:

kr
X =

ce
X

cHNO3

kr
HNO3

(C8)

wherekr
HNO3

=2.2×10−9 cm3 molecule−1 s−1 (Huey et al.,
1996; Amelynck et al., 2000) andce

X is the maximum sensi-
tivity of this technique determined experimentally by chang-
ing the water vapor mixing ratio (often found at zero water
vapor mixing ratio).

The sensitivity of the CIMS to strong acids (nitric acid

(r=
kX .kr

HNO3
kHNO3kr

X
=0.9) or representative VOC (glycolaldehyde,

r=0.85) appears to be correctly captured using the ther-
mal collision rate. Furthermore in a recent study,Ng
et al. (2008) monitored the oxidation of isoprene by NO3
using CIMS. Using the dipoles and the polarizabilities
of MNBOL(1, 4)/(4, 1) ((2Z)-2/3-methyl-4-(nitrooxy)but-
2-ene-1-peroxol) and MNBL(1, 4)/(4, 1) ((2Z)-3/2-methyl-
4-(nitrooxy)but-2-enal) and ISOPN(4, 1) (TableB1), we in-
fer that they account for 100% of the carbon flux, consistent
with previous determination.

Conversely, the sensitivity to smaller molecules such as
formic (r=1.5) or acetic acid (r=2) is largely overpredicted.
If the experimental rates ofAmelynck et al.(2000) are used,
the agreement is much better withr=1.0 for formic acid and
r=1.1 for acetic acid. The discrepancy may be explained by
the smaller collisional energy used in theAmelynck et al.
(2000)’s experiment which would result in fewer A−.HF
complexes being broken during the expansion into the high
vacuum.

C3 Inorganic chemistry uncertainties

In addition to uncertainties associated with the VOC chem-
istry, proper modeling of the background chemistry must be
achieved to derive conclusions regarding the VOC chemistry.

The model is especially sensitive to the following parame-
ters:

Nitric acid. The rate of HO+ NO2 + M→HNO3 is an im-
portant uncertainty regarding the background chemistry. We
use the recently reported rate coefficient of 9.16×10−12

cm3 molecule−1 s−1 (Okumura and Sander, 2005) which tends to
reduce the rate of formation of nitric acid and conversely increases
the formation rate of ozone in comparison with the previous esti-
mates (Atkinson et al., 2006).

Dinitrogen Pentoxide.N2O5 is known to react with water on sur-
faces (aerosol, walls) to yield nitric acid:

N2O5 + H2O
S

−→ 2HNO3 (R20)

The DMA measurements can be used to obtain the aerosol sur-

face areaS and the collision rate,kcoll=
1
4

√
8RT
πM

S=2×10−3

cm3 molecule−1 s−1 . The accommodation coefficient is set to
0.05.

Initial concentration ofH2O2. Due to the technique used in this
experiment to introduce H2O2 into the chamber, its concentration
is not known accurately. No calibration is available at such a high
hydrogen peroxide level, so that its estimate based on CIMS mea-
surement is uncertain: 1.9–2.3 ppm. A new injection method has
been developed to this uncertainty in future studies.
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