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Abstract. A simple scheme has been developed to discrimi-
nate surface, sun glint and cloud properties in satellite based
spectrometer data utilizing visible and near infrared informa-
tion. It has been designed for the use with data measured by
SCIAMACHY’s (SCanning Imaging Absorption SpectroM-
eter for Atmospheric CHartographY) Polarization Measure-
ment Devices (PMD) but the applicability is not strictly lim-
ited to this instrument. The scheme is governed by a set of
constraints and thresholds developed by using satellite im-
agery and meteorological data. Classification targets are ice,
water and generic clouds, sun glint and surface parameters,
such as water, land, snow/ice, desert and vegetation. The
validation has been done using MERIS (MEdium Resolu-
tion Imaging Spectrometer) and meteorological data from
METAR (MÉTéorologique Aviation Ŕegulìere – a network
for the provision of meteorological data for aviation). Quali-
tative validation using MERIS satellite imagery shows good
agreement. However, the quantitative agreement is hampered
by the heterogeneity of MERIS classifications within each
SCIAMACHY PMD ground pixel. The comparison with
METAR data shows good agreement. The comparison for
sun glint classifications and MERIS results exhibits excel-
lent agreement.

1 Introduction

Cloud, sun glint and surface classifications utilizing space-
borne measured data have a long history. The motivation for
cloud and surface classifications are manifold, for example
the creation of global thematic maps for civil and military
use, the generation of time-series for climate studies or the
derivation of correction factors and climatologies for geo-
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physical parameter retrieval. This study is focusing on the
latter issue, i.e. the use of global classified values in order
to provide adequate input values especially for retrievals of
atmospheric parameters.

The retrieval of atmospheric parameters can significantly
be hindered by wrong input assumptions. For this reason
precise cloud and surface classifications have to be derived.
Some examples for affected retrievals are:

– Cloud top height retrievals of partially cloud covered
ground scenes from the O2-A-band need a precise input
ground albedo (Kokhanovsky et al., 2005), especially in
regions, where changes from water to snow/ice surface
lead to a significant increase of the surface albedo.

– Aerosol retrievals are known to be error-prone over sun
glint occurrences. Therefore sun glint areas need to
be flagged out of the aerosol retrievals (de Graaf and
Stammes, 2005).

– Trace-gas (Buchwitz et al., 2005) and aerosol (von
Hoyningen-Huene et al., 2006) retrievals are known to
be very sensitive to the existence of even small frac-
tions of clouds in the field of view need a reliable cloud-
flagging algorithm.

Here and in the following we consider sun glint, the specular
reflection of light into the detector, also as a surface effect.

Necessary classifications for a broad set of parameters can
be retrieved using satellite imagery at moderate spectral and
comparatively high spatial resolution. Examples for such in-
struments are MERIS (MEdium Resolution Imaging Spec-
trometer) aboard the European Space Agency’s (ESA) EN-
VISAT (ENVIronmental SATellite) and MODIS (MODerate
resolution Imaging Spectroradiometer) which is a key instru-
ment aboard NASA’s Terra (EOS AM) and Aqua (EOS PM)
satellites.

Retrievals of atmospheric trace gases often take advan-
tage of the spectral fine structure of the absorption process in
question. Among lot of very successful atmosphere satellite
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Table 1. SCIAMACHY PMD channels.

Channel Range (nm)

1 310 365
2 455 515
3 610 690
4 800 900
5 NIR 1500 1635
6 2280 2400
7 45◦ 800 900

missions within the last decade the SCanning Imaging Ab-
sorption SpectroMeter for Atmospheric CHartographY (SCI-
AMACHY, as MERIS installed aboard ENVISAT) is one of
the outstanding instruments whose primary objective is the
global measurement of trace gases in the troposphere and
stratosphere. However, the spatial resolution is low com-
pared to an imager such as MERIS or MODIS.

This study aims to analyze the feasibility to classify clouds
and surfaces utilizing solely measurements from the atmo-
spheric sensor, such as SCIAMACHY. In principle a multi-
sensor approach using for example MERIS classifications
with SCIAMACHY retrievals is possible. However, failures
or missing imagery data are propagating into the analysis of
the atmospheric sensor. Yet another problem is the enormous
amount of imagery data to be gridded to match the low spa-
tial resolution of the atmospheric sensor which is a very time
consuming computational step. The approach presented here
is therefore intentionally set up as an “autonomous” one:
only SCIAMACHY data are involved to classify the geo-
physical parameters in question. We therefore have devel-
oped a set of algorithms and constraints to have an indepen-
dent, fast and simple approach. Yet another advantage is that
the spectral as well as spatial sensitivity of the classification
is compatible to the sensitivity of the retrieval of the atmo-
spheric parameters.

In this study satellite imagery is used primarily to vali-
date SCIAMACHY classifications and secondarily for the
adjustment of the algorithms. As clouds or sun glint1 are
highly variable spatio-temporal objects a close temporal co-
incidence between SCIAMACHY-based classifications and
those of the imagers must be ensured. Since MERIS is lo-
cated on the same platform and has basically the same mea-
surement geometry as SCIAMACHY (in nadir mode) syn-
chronism between both data sets is ensured. On the other
hand, SCIAMACHY and MERIS sensitivities for surfaces
and clouds are likely to be different due to significant devia-
tion in spatial and spectral resolutions.

The paper is organized as follows, first we will briefly ex-
plain some technical background information about the sen-
sors SCIAMACHY and MERIS used within this study. In the

1and to less extend some surfaces as snow and ice

next section we will explain the algorithms used and finally
show comparisons with independent data.

2 Instruments

2.1 SCIAMACHY

The SCanning Imaging Absorption spectroMeter for Atmo-
spheric CHartographY, SCIAMACHY, is a passive hyper
spectral UV/VIS/NIR grating spectrometer (Bovensmann
et al., 1999). It was launched on-board the ENVISAT satel-
lite in March 2002 into a polar sun-synchronous orbit, cross-
ing the Equator on its descending node (i.e. southwards) at
10:00 a.m. local time. The instrument covers the solar ra-
diation transmitted, backscattered and reflected from the at-
mosphere at relatively high spectral resolution (0.2 nm to 1.5
nm). It records data in eight separate main channels (non-
continuously), over the spectral range 240 nm to 2380 nm,
and in selected regions between 2.0µm and 2.4µm. The
nominal spatial resolution in nadir viewing geometry, how-
ever, is comparatively poor being 60 km×30 km. The swath
width of SCIAMACHY is 960 km.

From its orbit, SCIAMACHY can observe the Earth from
three distinct viewing geometries nadir, limb and lunar/solar
occultation. In this study only nadir measurements are used.

Beside the main channels, also called science channels,
there are seven additionally broadband detectors which mea-
sure the polarization of the incoming light. These Polariza-
tion Measurement Devices (PMD) (see Table 1) cover the
spectral range of the science channels (2 to 6 and 8) and are
provided to apply corrections to the polarization sensitivity
of the science channels. The PMDs are mainly sensitive to
parallel polarized light (parallel to the instrument slit), while
the science channels measure sensitive to both polarization
components. Information on the polarization of the incom-
ing light is therefore obtained by combining the two mea-
surements.

The PMDs are read out at 40 Hz, but are down-sampled
to 32 Hz for processing. This still gives a spatial resolution
of ∼7 km×30 km which is better compared to the science
channels, where the fastest read-out occurs at 8 Hz, but more
commonly at 1 Hz. Therefore, the advantage of working with
PMD data is that information is given at higher spatial res-
olution and it is used as sub-pixel information for the much
larger SCIAMACHY measurements based on science spec-
tra (see for example Loyola, 1998).

2.2 MERIS

The MEdium Resolution Imaging Spectrometer (MERIS)
aboard of ENVISAT provides 15 spectral bands, which are
programmable in position, width and gain. In practice, these
technical characteristics are kept constant most of the time.

Measurements are performed in the 390 nm to 1040 nm
spectral range (see Table 2) with an average channel width
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of about 10 nm. MERIS is a “push-broom” spectrometer and
has a 68.5◦ field of view around nadir. The swath width of
1150 km is slightly larger than SCIAMACHY’s. The instru-
ment acquires data in Reduced Resolution mode (RR) and
Full Resolution mode (FR). The spatial resolution is about
1.1 km in RR mode and 300 m in FR mode. We focus in this
study on data in RR mode due to a broad availability of the
data.

3 Algorithms

We developed a suite of algorithms and constraints which we
called SPICS (SCIAMACHY–PMD based Identification and
classification of Clouds and Surfaces). Most of SPICS’ algo-
rithms utilize ratios of two PMD radiance values, the PMD
reflectance value for a wavelengthλ and derived values. The
PMD reflectanceR(λ) for a wavelengthλ is defined as:

R(λ) =
I (λ)

I0(λ) � µ0
(1)

whereI is the PMD radiance value,I0 is the PMD solar irra-
diance andµ0 is the cosine of the solar zenith angle.

The radiance values of PMD2, PMD3 and PMD4 are used
to define a brightness componentB as the (scaled) average
of the three selected PMD reflectances (R2, R3, R4):

B = av(R2, R3, R4) ∗ S (2)

For convenience the factorS scales the values ofB from
0 up to 100. Infrequent occurrences of brightness val-
ues larger 100 have been clipped. A similar concept for
cloud/snow/ice–discrimination has been applied successfully
by Krijger et al. (2005). The wavelength ranges associated
with PMD2,3,4 can be considered as pseudo colors: blue,
green and red, respectively (similar to the approach of Loy-
ola (1998)). PMD1 is not taken into account because of the
high signal values compared with PMD2,3,4.

In order to determine the range between the individual re-
flectance values the quantityR is used. We definedR as the
range of the three PMD reflectances normalized to the aver-
age value:

R =
max(R2, R3, R4) − min(R2, R3, R4)

av(R2, R3, R4)
(3)

R is a measure of the goodness of a gray value.
A representative set of SCIAMACHY orbits have been uti-

lized to derive the thresholds and constraints defined in Ta-
bles 3 and 4. All orbits in January 2006, April 2008 and
July 2008 have been used for this purpose. The underlying
data set consists of reprocessed, consolidated SCIAMACHY
level-1 data (V6.03). Only data with solar zenith angle (SZA)
<85◦ is taken into account.

SPICS is organized with respect to two classification
groups: clouds and surfaces. It is capable to differentiate

Table 2. MERIS channels.

Channel Spectral Pos. (nm) Width (nm)

1 412.5 10
2 442.5 10
3 490.0 10
4 510.0 10
5 560.0 10
6 620.0 10
7 665.0 10
8 681.3 7.5
9 705.0 10
10 753.8 7.5
11 760.6 3.8
12 775.0 15
13 865.0 20
14 885.0 10
15 900.0 10

between six surface types: vegetation, snow/ice, desert, wa-
ter, sun glint and land/soil as well as three cloud types: ice,
water and generic clouds.

The methods, thresholds and constraints are described be-
low. All results obtained were iteratively improved with re-
spect to independent data sources such as co-located MERIS
and meteorological data sources as METAR.

3.1 Cloud phase

Cloud phase retrieval with SCIAMACHY has been per-
formed before using the science detectors (Accareta et al.,
2004; Kokhanovsky et al., 2005). As explained, PMD classi-
fication results in a better spatial resolution.

Ice clouds, for example, appear brighter and normally
whiter than water clouds when looking from space. Liquid
water clouds usually let light penetrate deeper and absorption
is leading to an increased level of grayness.

For one pass of the cloud classification we have to quantify
the cloud grayness using Eqs. 2 and 3. In order to reliably
classify a cloud phase, the value ofR needs to be close to
zero.

A well-adapted set of thresholds forB,R andR5 enables
the classification of ice, water and generic clouds (see Ta-
ble 3).

Multiple cloud classifications for one SCIAMACHY PMD
ground pixel were rejected. However, cloud classification
together with different surface types can be retrieved with
reasonable accuracy (see next section).

3.2 Surface classification

Each surface classification approach is briefly explained in
the following. Table 4 summarizes all applied thresholds.
Simultaneous classification of surface and cloud parameters
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Table 3. Constraints for cloud type assignment.

Parameter Descript. Range
Clouds

Ice cloud Bright white 70 ≤ B < 100
0.0 ≤ R < 5.0
0.050 ≤ R5 < 0.100

White 50 ≤ B < 80
0 ≤ R < 10.0
0.050 ≤ R5 < 0.10

Milk white 30 ≤ B < 60
0.0 ≤ R < 20.0
0.050 ≤ R5 < 0.090

Gray 20 ≤ B < 45
0.0 ≤ R < 40.0
0.050 ≤ R5 < 0.090

Water cloud Bright white 70 ≤ B < 100
0.0 ≤ R < 5.0
0.100 ≤ R5

White 50 ≤ B < 80
0 ≤ R < 10.0
0.100 ≤ R5

Milk white 30 ≤ B < 60
0.0 ≤ R < 20.0
0.090 ≤ R5

Gray 20 ≤ B < 45
0.0 ≤ R < 40.0
0.090 ≤ R5

Generic cloud Bright white 30 ≤ B < 80
0.0 ≤ R < 5.0
0.09 ≤ R5 ≤ 0.17

White 30 ≤ B < 48
3.0 ≤ R < 8.0
1.30 ≤ R5 ≤ 1.60

Gray 30 ≤ B < 60
6.0 ≤ R < 14.0
0.65 ≤ R5 ≤ 1.30

Legend:
B brightness,R rel. range,Ri reflectance PMDi

are possible. However, simultaneous surface classifications
are not allowed.

For “vegetation” and sun glint the gray-value concept is
not used. In the latter case it turned out that vegetation classi-
fication is clearly superior using a modified NDVI (Normal-
ized Differenced Vegetation Index) approach. For vegetation
we therefore define the NDVIN analogous:

N =
R4 − R3

R4 + R3
(4)

Applying a cutoff value of≤1.18 removes non-vegetation
ground pixels reliably. However, light reflected from vegeta-
tion is able to induce a considerable polarization component

Table 4. Constraints for surface type assignment.

Parameter Descript. Range
Surfaces

Sun glint t < 40
ρ74 < 2.168
R4 < 0.0600
R5 < 0.0725

Water B < 40
N < 1.00

0.000 ≤ R5 < 0.020

Snow&ice All except 0.00 ≤ ρ54 < 0.20
Antarctica 0.0015 ≤ R5 < 0.0360
Only latc < −60
Antarctica 0.00 ≤ ρ54 < 0.40

Vegetation 1.18 ≤ N

Desert – 60 ≤ latc < 60
1.670 ≤ ρ54
0.000 ≤ N < 1.110
0.110 ≤ R5 < 0.260

Land 20 ≤ B
25 ≤ R
1.200 ≤ ρ54
0.084 ≤ R5 < 0.185

Legend:
B brightness,R rel. range,N NDVI, t max.φ differ.,
φ relative azimuth,Ri reflectance PMDi , ρ54 radiance ratioI5/I4,
ρ74 radiance ratioI7/I4, latc center latitude

depending on the health state of the plant. Therefore, this
modified NDVI can only be a first estimation.

“Sun glint” is specular reflection of sun light by adequately
tilted facets of water into the detector. Careful analysis of
glint could for example help to improve aerosol retrievals,
which could otherwise be strongly affected (see de Graaf and
Stammes (2005)).

Sun glint is able to exhibit a considerable degree of po-
larization. This can be observed when investigating SCIA-
MACHY’s PMD signals. To uncover sun glint’s polarization
features we define the ratioρ74=PMD7/PMD4. PMD7 and
PMD4 (ATBD, 1999) are the radiance values for PMD seven
and four and are primarily sensitive to Stokes vector elements
U andQ (Coulson, 1988), respectively. Following standard
text books the ratioU/Q can be related toχ=0.5arctanU/Q,
which is the tilt angle of the polarization ellipsoid. Thus the
ratio ρ74 is related toχ . It should be noted that for unpolar-
ized lightU andQ are zero, thereforeχ is undefined.

Examining the ratioρ74 globally over three months of
data a clear contrast of sun glint regions to others can be
found. If the angleχ over water is larger (or equals) zero
and smaller 32.6◦ (0<ρ74<2.168) sun glint can be classified
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Fig. 1. Classification for the central Mediterranean Sea.

reliably. Without limitation to water this approach would also
detect sun glint over various desert regions due to increased
amounts of polarization of the reflected light – and therefore
a well-defined valueχ . The water-land discrimination proce-
dure is using the radiance ratio from PMD5 and PMD4 pro-
viding the necessary contrast between land and water. The
threshold intervals to eliminate land pixels can be found in
Table 4. Please note, that the water-land discrimination is
not strongly affected by changing the threshold limits. This
enables also occasional detections over land which can be
identified as lakes, wetlands or flood plains.

The last test is to ensure proper geometrical conditions:
an absolute value of an azimuth difference of 40◦ between
line-of-sight and sun position may not be exceeded (same
condition seen in Qin et al. (2006)). As mineral dust aerosols
contribute to the depolarization of the detected light and the
ratio U/Q lies within a limit where significant polarization
is expected, no substantial impact of (desert) aerosols is ob-
served. In Fig. 1 sun glint detections are shown for the central
Mediterranean.

Note, that the quality of the ratioU/Q from SCIA-
MACHY PMD measurements was under discussion (Krijger
and Tilstra, 2003; Schuttgens et al., 2004). The background
of the discussion is that the PMDs provide essential input
for the Polarization Correction Algorithm (PCA) of SCIA-
MACHY. For the PCA the requirements regarding the ac-

curacy of the PMD measurements are comparatively high.
However, the approach presented here is not affected – as the
ratioρ74 or the angleχ is not needed as an absolute value.

“Liquid water” classification can be an important issue for
several other retrievals where the derivation of a geophysical
parameter is either hampered, like for instance in case of the
retrieval of CO, CH4 (Buchwitz et al., 2005) or only possi-
ble like in case of chlorophyll concentration (Vountas et al.,
2007). The thresholds used for the classifications where
derived on the base of comparison with a large amount of
MERIS-pixels. We found thatB (as defined in Eq. 3) must
be smaller 40, indicating a low level of brightness (obviously,
as water appears blue in the visible). Since water reflects (for
both polarizations) very poorly in the near infraredR5 will
be low. A reliable threshold for water pixels isR5<0.020.

The “Snow/ice” classification is based on the radiance ra-
tio for PMD five to four,ρ54, as already proposed by Kri-
jger et al. (2005). However, we adjusted the thresholds to the
daily updated AMSR-E sea ice maps (see SeaIce (2008)) and
derived slightly different thresholds and an additional con-
straint. We propose that the radiance ratio should be within
the following interval: 0≤ ρ54<0.2 where the reflectanceR5
should be 0.0015≤R5<0.036.

“Desert” classification is also based on the radiance ra-
tio for PMD five to four, ρ54. Comparisons with data
from the “global land cover 2000 project” (Global Land
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Cover, JRC, 2000) showed thatρ54 should be larger or equal
1.67 indicating that both channels exhibit a sufficient con-
trast over desert. In order to distinguish clouds over desert
the reflectance for PMD five must be: 0.110≤R5<0.245.
Desert classification, however, has been limited to a corri-
dor between±60◦ in order to avoid having mismatches with
snow/ice classifications over Antarctica.

“Land/soil” classification is based onR which must be
smaller or equal 25, the ground scene will have to be more
grayish than in case of water classifications. An additional
constraint usingR5 ensures reliable classification of land pix-
els: 0.084≤R5<0.185.

4 Validation

The analysis of classifications of vegetation, water and land
(soil or desert) is comparatively trivial when comparing with
true or pseudo-true color imagery. Sun glint is a rapidly
changing parameter over the orbit but can also be identified
very easily through visual analysis. This holds for the cloud
detection using SPICS. As MERIS measures the same scene
at the same time as SCIAMACHY it is straightforward to
use it for the comparisons. As a first qualitative test we have
prepared pseudo- RGB (red/green/blue) images using eight
channels of MERIS in reduced resolution (1.1 km×1.1 km).
SPICS classifications were overlayed the MERIS pseudo-
RGB for several scenes and showed good agreement. Ex-
emplarily Fig. 1 shows two orbits of two consecutive days
(21 and 22 August 2007) over central Mediterranean Sea.
The classifications are in good agreement with the under-
lying MERIS image. Broken clouds near Italy as well as
large cloud formations in the west are well represented. Wa-
ter and land classifications for the eastern orbit over cloud-
free Greece and the Aegean Sea are reproducing the actual
MERIS scene reliably. The transition from vegetation to soil
and desert over Tunisia is also well classified. Furthermore
the clear Land/Vegetation and Sun glint contrast classified by
SPICS at the east coast of Tunisia is obviously reproducing
the actual conditions during the measurement represented by
MERIS’ RGB imagery. Gaps with missing classifications
are due to inadequate threshold intervals. They are more fre-
quent in regions of partial or complete cloud coverage, as can
be seen in some regions of the western orbit.

A first attempt was made to further validate the discrim-
ination of general cloud and ice cloud classification in the
next section.

4.1 Cloud phase classification

As explained above SPICS allows the discrimination of cloud
types. The types can roughly be classified as ice clouds,
water clouds and generic clouds. The latter includes those
which were classified as clouds but the phase discrimination
could not be performed.

In order to a make a first step towards a validation we
compared SPICS’ cloud type classification with results of
MERIS level 2 data. MERIS cloud type products (Meris
Products specifications, 2007) are available at reduced spatial
resolution of about 1.1 km×1.1 km. To use this data within
SCIAMACHY’s field of view their results must be gridded.
MERIS provides basically nine cloud types which we have
re-classified to family A, B and C clouds.

– Family A: high clouds with large amount of ice crystal
(Cirrus, Cirrostratus and deep convection).

– Family B: middle clouds. Mainly water clouds fre-
quently containing super cooled droplets, as well as
small amounts of ice crystals (Altocummulus, Altostra-
tus, Nimbostratus).

– Family C: low water clouds (Cummulus, Stratocummu-
lus, Stratus)

The comparison was performed over one set of SCIA-
MACHY measurements in South-East Europe. Figure 2a
shows the results for SPICS, Fig. 2b MERIS cloud family
classifications which have been gridded to SCIAMACHY
PMD ground pixel sizes and Fig. 2c a full resolution true
color image of MERIS for improved visualization which was
provided by ESA via web front-end (unfortunately no full
resolution level 2 data were available). In some cases the
gridding of MERIS classifications to create Fig. 2b led to
multiple cloud family detections within one SCIAMACHY
PMD ground pixel. In such cases we selected the predomi-
nant family by taking the classification providing at least 2/3
of the whole amount of pixels gridded.

For clarity both figures (Fig. 2a and b) show only cloud
(phase) classifications, simultaneous surface classifications
are not shown. Good qualitative agreement between SPICS
ice and water cloud classifications with MERIS family A, B
and C cloud classifications can be found. Both figures also
reveal strengths and weaknesses: SPICS is capable to detect
even optically thin clouds (especially near river Dniester at
about 26◦ longitude/48◦ latitude) where MERIS did not de-
tect clouds. However, MERIS is able to detect comparatively
small clouds due to its high spatial resolution (for example,
at Danube Delta, over Black Sea and near Crimea). When
comparing with the (pseudo-) true color image of MERIS
(Fig. 2c) in full resolution the frazzled and whitish-thin ap-
pearance of a lot of clouds within this scene give reason to
suspect that cirrus clouds are involved. However, neither
MERIS nor SPICS classifications could proof this for the
ground pixels in question.

To elaborate the classifications quantitatively the valida-
tion will be extended to the comparison involving thermal in-
frared measurements in a future study. Here, data of AATSR
(Advanced Along-Track Scanning Radiometer) aboard EN-
VISAT will be utilized in order to be able to discriminate
cloud phase information more reliable (Kokhanovsky et al.,
2006).
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Fig. 2. Cloud classification for Southeast Europe and Black Sea.(a) Cloud classifications from SPICS with underlying MERIS true color
image with low spatial resolution;(b) MERIS results after classifications into three altitude families and gridding (see text);(c) MERIS full
resolution true color image of the (highlighted) regions of interest.

4.2 Quantitative Validation using MERIS

To validate SPICS classifications on a global scale, MERIS
level 2 data were used again for obvious reasons. MERIS
classifications for water, land and clouds are available from
level 2 data at reduced spatial resolution. The simultaneous
MERIS classifications for 22 August 2007 were matched to
SCIAMACHY ground pixel size and location. Here, MERIS
classifications were gridded to SCIAMACHY PMD size and
location. Typically more than 150 MERIS classifications
could be gridded to one SCIAMACHY PMD ground pixel.
Among the individual MERIS classifications the number of
occurrences were stored. More than 460 million MERIS pix-
els were gridded to over 2.3 million SCIAMACHY PMD
ground pixels. Multiple classifications for one ground pixel
are possible for both data sets, however, for different reasons:
while SPICS classifies different surface or cloud properties
through the exploitation of a set of thresholds related to dif-

ferent spectral or polarization sensitivities of SCIAMACHY,
MERIS is capable to deliver multiple classifications at SCIA-
MACHY’s sub-pixel level.

Related to the total amount (2 295 124) of SCIAMACHY
PMD ground pixels 35.04% of all water classifications us-
ing SPICS could be matched to MERIS (absolute number of
matches and mismatches can be found in Table 5). 41.59%
of all land classifications and 16.42% of all cloud classifica-
tions from SPICS could be matched to MERIS. As a result
93.05% of all values could be matched to MERIS and 6.95%
of all values could not be matched to MERIS in any of the
three classes. 3% of all values contain no SPICS classifica-
tion and are included in the amount of mismatches.
This analysis was based on the requirement that at least 130
(2/3 of possible) MERIS values of one classification needed
to be gridded into one SCIAMACHY PMD ground pixel.

If we reduce the above requirement to 100 MERIS values
with identical classification gridded into one SCIAMACHY
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Table 5. SPICS and MERIS matches and mismatches.

Classification Matched mismatched

water 804 313 63 812
land 954 463 72 463
cloud 376 770 23 303

PMD ground pixel the amount of mismatches increases to
13.22%. Relaxing this constraint to 75 MERIS pixels in-
creases the number of mismatches to 16.1%. This indicates
that the mismatches are due to the significant difference in
the spatial resolution.

Moreover, this behavior reveals a potential weakness of
the comparison: while classifications using SPICS are based
on broadly spatially averaged spectral information, MERIS
classifications were based on spectral information averaged
over a much smaller area. Compared to cloud classifica-
tions water/land mismatches are relatively frequent due to
the inability of SPICS to detect small coverage of water/land
within one SCIAMACHY PMD ground pixel, i.e. in the
vicinity of bright cloud fields, small patches of water and
land are outshone.

“Cloud phases”: the same methodology has been used to
validate the cloud phase classifications. The above described
SCIAMACHY data set has been classified also with respect
to cloud phases and compared with MERIS data which con-
sisted out of the three altitude layers A, B and C (as defined in
Sect. 4.1). The preliminary results are still not satisfactory.
We found more matches for lower than for higher clouds.
Poor agreement, however, was found for clouds of altitude
type B. With respect to the reasonable results of the visual
analysis this was surprising. The reasons for this could be:

– the approach comparing MERIS cloud types for altitude
layers A, B and C could not simply be transferred to
SPICS cloud classifications.

– SPICS could (yet) not be capable to discriminate cloud
types with good accuracy due to limited capabilities of
the threshold method.

– the quality of the MERIS classifications might not be
sufficient.

A further analysis using additional and independent data
sources needs to clarify the situation. As already explained
(see Sect. 4.1) such a comparison could involve data of
AATSR.

“Sun glint”: for the validation of sun glint we use the same
scenario as described at top of this subsection. Used are now
the two sun glint flags as part of the MERIS reduced resolu-
tion cloud dataset. First MERIS flag is calculated accounting
only for geometry aspects. The second MERIS flag takes
additionally wind speed into account and therefore includes
effects of surface roughness.

In all cases (more than 135 000 SCIAMACHY PMD pix-
els) where SPICS classified a ground pixel as Sun glint af-
fected both MERIS sun glint flags were switched on. To
switch on MERIS sun glint flags at least 130 MERIS val-
ues (ca. 2/3 of possible values) needed to be gridded to one
SCIAMACHY ground pixel. This excellent result shows that
the developed approach is valid, simple and feasible using
SCIAMACHY PMD data.

4.3 Comparisons with METAR data

METAR delivers relevant meteorological data for aviation.
However, the data are useful also for the validation of
SPICS – especially for regions of mixed snow/ice and clouds.
Hourly data of 72 METAR (airport based) measurement sta-
tions were collected over ten months which resulted into
a complete data set with more than 440 000 records. Co-
located station data sets were compared with SPICS classifi-
cations.

In order to validate SPICS potential to discriminate
snow/ice and clouds we start the analysis using two METAR
stations and co-located MERIS measurements. Two METAR
stations on Greenland have been selected: Kulusuk Lufthavn
(METAR station code: BGKK) and Constable Pynt (METAR
station code: BGCO). Classifications have been computed
for SCIAMACHY orbit 29423. Two consecutive MERIS
scans have been overlayed the data set to provide additional
pseudo-true color information (see Fig. 3).

Station BGKK reports complete overcast during SCIA-
MACHY and MERIS measurements with a horizontal vis-
ibility larger than 1 km and a surface temperature of 0 degree
Celsius. The reported cloud bottom height was 1.2 km. From
preceding and succeeding orbits, as well as meteorological
METAR data we found that the headland where the station is
located was snow-clad. This has also been the case for station
BGCO. BGCO, however, reports clear sky during over-flight
of ENVISAT with a visibility larger than 10 km and a surface
temperature of−8 degrees Celsius (14:50 UTC).

The observations reported are in agreement with SPICS’
classification: snow classifications are determined for BGCO
station and vicinity whereas cloud classifications agree with
the reports from BGKK. Underlying MERIS pseudo-true
color images support that the snow and cloud classifications
generally worked well but the visual discrimination based on
MERIS imagery remains difficult in the vicinity of the two
stations. However, the underlying MERIS pseudo-true color
images are useful for the western part of the measurement
cycle near BGKK station. Here the imagery shows a large
field of clouds over ice which exhibits a clear (textural) con-
trast to the surrounding ice field. There are also numerous
failed classifications in these regions where the classification
thresholds are not adequate and have still to be improved fur-
ther.

To evaluate the quality of SPICS results more generally
we have extended the comparison to all stations but for
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Fig. 3. Classification for Greenland for 16 October 2007 (start time of the SCIAMACHY Orbit 29423 was 14:10 UTC).

simplicity reasons without considering MERIS data. Co-
locations were defined within a circle with 6 km radius
around the center coordinates of the station which had to in-
clude the PMD’s center coordinates and with a maximum
temporal difference of 15 min. As common for aviation data
METAR’s cloud fraction is given in two oktas and refer either
to a measured or human-observed quantity within the visual
horizon.

54 co-locations met the requirements. Analyzing the data
set carefully revealed that 46 SPICS classifications were in
agreement with METAR. The following results were ob-
tained:

– in 33 cases SPICS classified the SCIAMACHY pixel as
cloudy and METAR reports for the corresponding co-
location at least 25% cloud fraction.

– in 13 cases SPICS is able to classify the surface and
METAR reports sufficiently low cloud fraction which is
less or equal 25%. The experience made from MERIS
comparisons (see Sect. 4.2) showed that SPICS has the
ability to detect the surface when a small fraction of
the ground pixel is cloud covered. In four of this cases
SPICS classified the surface being snow/ice covered and
the meteorological databases confirmed it.

– in eight cases SPICS classifies the ground pixel as sur-
face, but METAR reports cloud fractions larger 25%
and smaller or equal to 88%. We conclude that SPICS
has only limited ability to classify surfaces in the pres-
ence of larger and optically thick cloud fields. Further
studies have to be performed in order to improve SPICS
under these conditions.

– in no cases SPICS classified the pixel as cloudy and
METAR reported complete cloud free conditions.

5 Conclusions

A scheme has been developed to identify and classify clouds
and surfaces which we have called SPICS: SCIAMACHY-
PMD based Identification and classification of Clouds and
Surfaces. It is based on SCIAMACHY’s polarization mea-
surement device data utilizing a set of thresholds and con-
straints. The approach was motivated to create an indepen-
dent, fast, simple and spectral as well as spatial compati-
ble way classifying important geo-physical parameters. The
quantities classified are: ice, water and generic clouds, sun
glint and surface parameters, such as water, snow/ice, desert
and vegetation.

The applicability is not limited to SCIAMACHY. Other
instruments designed with similar concepts could benefit
from the classification scheme after adapting corresponding
thresholds.

The validation of SPICS results was performed against
MERIS qualitatively and quantitatively. Qualitatively the
comparison was successful but the quantitative analysis
showed that the capability of SPICS classifying multiple
characteristics (out of two groups: clouds and surfaces) was
not always sufficient to reproduce the rich variability of
the measured imager scene. Due to the comparatively low
spatial resolution of SCIAMACHY’s PMD measurements
(7 km×30 km), SPICS has only limited capability to re-
solve sub-pixel information. If, however, the amount of ho-
mogeneity within one SCIAMACHY PMD ground pixel is
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sufficient (as rule of thumb:≥2/3), SPICS and MERIS clas-
sifications are in reasonable agreement. The mismatches of
classification results observed could, however, not only be
led back to the deficiencies of SCIAMACHY’s spatial res-
olution. For example, MERIS full resolution (FR) imagery
showed optically (and geometrically) thin clouds which were
classified by SPICS but the MERIS classification did not de-
tect clouds at all. However, the next step to quantify the
quality of SPICS cloud discrimination capabilities needs to
involve data from additional sources, such as for example
AATSR.

Very promising validation results have been achieved com-
paring MERIS and SPICS sun glint classifications.

The validation was additionally performed against
METAR (a network for the provision of meteorological avi-
ation) data. The agreement for co-located data points was
encouraging. It is planned to extend the local METAR data
set in order to perform the validation on a broader spatial and
temporal base and use these results to potentially improve
SPICS’ thresholds.

The validation to show SPICS’ capability to separate
clouds and snow/ice covered surfaces has been done us-
ing MERIS imagery and METAR data. First promising re-
sults for Greenland could be shown. However, the study
is planned to be extended: more METAR data have to be
collected to provide a large data base to ensure a sufficient
amount of temporal and spatial coincidences with SPICS.
Furthermore, it is planned to test the utilization of cloud
fractions derived by SPICS data as sub-pixel information for
SCIAMACHY science pixels.
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