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Received: 18 January 2008 – Published in Atmos. Chem. Phys. Discuss.: 16 April 2008
Revised: 6 November 2008 – Accepted: 14 December 2008 – Published: 18 February 2009

Abstract. The evolution of two-dimensional drop distribu-
tions is simulated in this study using a Monte Carlo method.
The stochastic algorithm of Gillespie (1976) for chemical re-
actions in the formulation proposed by Laurenzi et al. (2002)
was used to simulate the kinetic behavior of the drop popula-
tion. Within this framework, species are defined as droplets
of specific size and aerosol composition. The performance of
the algorithm was checked by a comparison with the analyti-
cal solutions found by Lushnikov (1975) and Golovin (1963)
and with finite difference solutions of the two-component ki-
netic collection equation obtained for the Golovin (sum) and
hydrodynamic kernels. Very good agreement was observed
between the Monte Carlo simulations and the analytical and
numerical solutions. A simulation for realistic initial condi-
tions is presented for the hydrodynamic kernel. As expected,
the aerosol mass is shifted from small to large particles due
to collection process. This algorithm could be extended to
incorporate various properties of clouds such several crystals
habits, different types of soluble CCN, particle charging and
drop breakup.

1 Introduction

The understanding of aerosol-cloud interactions contains
large uncertainties that must be reduced to accurately esti-
mate the impact of aerosols on weather and climate. One
of the most problematic aspects of aerosol-cloud interactions
is the collision-coalescence process that is a mechanism that
modifies the aerosol distribution, i.e. the aerosol particles that
are the nuclei for individual droplets are combined during the
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coalescence process in the same way as the mass of the in-
dividual water droplets are merged. After the evaporation of
the drop formed by coalescence, the residual aerosol particle
has the mass of the original two nuclei.

The aerosol distribution becomes important as the cloud
drops evaporate and the solutes are recycled into aerosols
that can serve as CCN: the larger the mass of a hygroscopic
aerosol, the lower the supersaturation needed to form a cloud
droplet. In the marine environment, the aerosol recycling
process is believed to be the major mechanism responsi-
ble for the bimodal shape of the aerosol size distributions
(Flossmann, 1994; Feingold et al., 1996). The heteroge-
neous chemical reactions, which add nonvolatile solute to
each cloud droplet, strongly depend on the salt content and
pH of the droplet (Alfonso and Raga, 2004). Since aerosols
also have a significant influence on cloud microphysics and
cloud radiative properties, it is necessary to simulate aerosol
processes realistically and with adequate accuracy.

In general cloud models with detailed microphysics de-
scribe the aerosol and cloud droplets with two separate one-
dimensional size distributions. With this approach only the
average aerosol mass contained in cloud droplets of a par-
ticular size is predicted by the model and it is not possible
to keep track of the spectral aerosol mass distribution within
the cloud droplets. For the deterministic case, the aerosol
processing due to collision-coalescence was addressed by
Liu (1998) and Bott (2000) by extending the flux method to
two-dimensional distributions. Within this framework each
particle is characterized both by the mass of its dry aerosol
nucleus and by its water mass. Nevertheless, an exten-
sion of the exact stochastic framework developed by Gille-
spie (1976) for a two parameter droplet spectrum has never
been reported in the cloud physics literature.
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The main advantage of the stochastic approach, described
in this paper, over deterministic methods is that it can be eas-
ily extended to include not only the solute mass, but other
particle properties such as crystal habit, different populations
of CCN, chemical composition and the breakup of droplets
(Alfonso et al., 2006).

Here we apply the general multi-component algorithm de-
scribed by Laurenzi et al. (2002) to the solution of the kinetic
collection equation (KCE) in cloud models dealing with two-
dimensional microphysics.

The discrete, two-component KCE, which is an extension
of the discrete one-component kinetic collection equation, is
given as:

∂N(m, n; t)

∂t
=

1

2

m∑
m′=0

n∑
n′=0

K(m−m′, n−n′
; m′, n′

; t) (1)

N(m − m′, n − n′
; t)N(m′, n′

; t) − N(m, n; t)

∞∑
m′=0

∞∑
n′=0

K(m, n; m′, n′)N(m′, n′
; t)

WhereN(m, n; t) is the average number of particles con-
sisting of m andn monomers of the first and second kind
respectively (with water mass from size binm and aerosol
mass from size binn). The water mass in size binm equals
the volume of a droplet in the smallest (monomer droplet) bin
multiplied bym, the aerosol mass in size binn equals the vol-
ume of an aerosol in the smallest bin (monomer aerosol) mul-
tiplied byn. Species are the type of particles with a givenm,
n composition. For exampleN(2, 1; 0)=1000 means that as
an initial condition we have 1000 particles, all of them with
a water mass that is twice the mass of the monomer droplet
(in our simulations the monomer droplet is 4.189×10−9 g)
and with aerosol mass that equals the mass of the monomer
aerosol (7.414×10−15 g). The continuous version of this
equation is more familiar:

∂N(n, m, t)

∂t
=

1

2

m∫
0

dm′

n∫
0

dn′K(m − m′, n − n′
; m′, n′)

N(m − m′, n − n′
; t)N(m′, n′

; t) − N(m, n; t)
∞∫

0

dm′

∞∫
0

dn′K(m, n; m′, n′)N(m′, n′
; t) (2)

In Eqs. (1) and (2)K(m, n; m′, n′) is the collection kernel,
now dependent on the composition of coagulating particles.
The discrete KCE (1) gives the time rate of change of the
average number of species with water mass from binm and
aerosols from binn as the difference of two terms, the first
term gives the gain in the number of particles whose water
mass is in size binm, and aerosol mass is in size binn. It is
calculated as a sum of binary collections between drops: one
with water mass from size binm′, and aerosol mass from
size binn′, and another with drop mass from binm-m′ and

aerosol mass from binn-n′ and the second term describes the
average rate of depletion of (m, n) particles due to their coa-
lescence with particles from other species. To solve Eqs. (1)
and (2) initial conditions are needed:

N(m, n; 0) = N0(m, n) (3)

For the discrete case, we also putN(0, 0; t)=0 for everyt .
The numerical solution of the KCE (1) and (2) is difficult due
to the double integral and nonlinear behavior of the equation
and several numerical techniques can be found in the liter-
ature. In cloud physics modeling, Eq. (2) was numerically
integrated by the flux method developed by Bott (2000) and
independently by Liu (1998), both assuming that the proba-
bility for the collision of two cloud droplets depends only on
the water mass of each one and not on the mass of the aerosol
nuclei.

Other methods are computationally more expensive, such
as the previously mentioned Monte Carlo (MC) algorithm
developed by Laurenzi et al. (2002). This method has the
advantage that it can be employed to determine both the ex-
pectations and fluctuations for multi-component aggregation.
On the other hand, the KCE may not be valid at longer time
periods, when a single drop acquires a mass much larger than
the rest of the population and becomes separated from the
continuous mass spectrum. In such a situation, the statisti-
cal fluctuations at the high-mass end of the spectrum must
be taken into account. The Monte Carlo method is also very
useful while investigating the role of coalescence in redis-
tributing the aerosol mass in early warm rain stages when the
artificial, numerical broadening of the drop distribution must
be avoided.

2 The stochastic algorithm

A detailed description of the stochastic algorithm for multi-
component aggregation of particles can be found in Gille-
spie (1976) and Laurenzi et al. (2002), and we briefly sum-
marize it here. Consider a well-mixed and spatially homoge-
neous volumeV in which particles belonging toNs distinct
species are present. Each species is characterized both by
its water mass and by the mass of its dry aerosol nucleus,
ūµ= (um, un), such that, a droplet with composition̄uµ is a
member of theµth species. After timet=0 the species will
randomly coalesce according to:

Am,n + Bm′,n′ = Cm+m′,n+n′ (4)

where Am,n and Bm′,n′ are droplets with compositions
ūµ= (um, un) and ūν= (um′ , un′), respectively. The transi-
tion probabilities for coalescence events follow Laurenzi et
al. (2002) and are given by:
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a(i, j)=V −1K(i, j)ninjdt≡ (5)

Pr{Probability that two particles of speciesi andj

(for i 6= j) with populations(number of particles) ni

andnj will collide within the imminent time interval
}

a(i, i)=V −1K(i, i)
ni (ni − 1)

2
dt≡ (6)

Pr{Probability that two particles of the same speciesi

(with population number of particles) ni

collide within the imminent time interval}

In Eqs. (5) and (6),K(i, j) is the collection kernel, andV is
the cloud volume. Within this framework, there is a unique
indexµ for each pair of dropletsi, j that may collide. For a
system withN species(S1, S2, ..., SN )ν ∈

N(N+1)
2 . The set

{ν} defines the total collision space, and is equal to the total
number of possible interactions. The transition probabilities
Eqs. (5) and (6) are then represented by one index (aν).

This stochastic model is solved using the algorithm intro-
duced by Gillespie (1976) for chemical kinetics and modified
by Laurenzi et al. (2002). The expected behavior of the sys-
tem can be evaluated by averaging over many realizations of
the stochastic process, described by the following steps:

1. At t=0, the event counter is set to zero and the initial
number of speciesn1, n2, . . ., nN is defined

2. The quantityα is calculated as:

α =

N(N+1)
2∑

ν=1

aν (7)

A random numberr1 is generated from a uniform
distribution in the interval [0,1] and considering that
1−r1=r∗

1 is also a uniformly distributed random num-
ber is calculated

τ =
1

α
ln

(
1

r∗

1

)
(8)

3. A random numberr2 is generated from a uniform distri-
bution in the interval [0,1]. and a collision (“chemical
reaction”) chosen with indexµ from the inequality

µ−1∑
ν=1

aν<r2α ≤

µ∑
ν=1

aν (9)

4. Let t=t+τ

5. The number of species is changed to reflect the execu-
tion of collision.

3 Model results

3.1 Comparison of the Monte Carlo algorithm with
analytical solutions of the two-component KCE

In order to check the performance of the Monte Carlo al-
gorithm, a simulation with a constant kernel was performed
and compared with the analytical solution found by Lush-
nikov (1975). Although the same analysis was performed by
Laurenzi et al. (2002), there are some differences with the re-
sults outlined here since in Laurenzi et al. (2002) the simula-
tions were performed for different values of the constant ker-
nel and with a large number of particles (10 000 and 20 000
particles in the initial species), and only a single stochastic
experiment was run (infinite system approximation). In the
simulations presented in this section, the initial number of
particles was much smaller (60) and the average was calcu-
lated over 1000 realizations.

Solutions to Eqs. (1) and (2) can be obtained for an im-
portant class of collection kernels, such as when the kernel
depends only on the total number of monomers (droplets and
aerosols) in each colliding particle. In this case:

K(m, n; m1, n1)=K(m + n, m1 + n1) (10)

Lushnikov constructed an explicit form for the composition
distribution for this type of kernel, which corresponds to
coagulation of initially monomeric particles. In this case
N(1, 0; 0)=c1 andN(0, 1; 0)=c2, corresponding to the situ-
ation with initially c1 droplets andc2 aerosols. The compo-
sition distribution may be expressed as (Lushnikov, 1975):

N(m, n; t)=

(
m + n

n

) (
c1

c0

)m (
c2

c0

)n

N(m + n, t) (11)

c0 = c1 + c2

Where

(
m + n

n

)
are the binomial coefficients, andN(m +

n, t) is the number of particles composed of(m + n)

monomers (m monomer droplets andn monomer aerosols).
Lushnikov (1975) showed thatN(m + n, t), for the type of
kernels (10) is a solution of the one-component kinetic col-
lection equation:

∂N(i, t)

∂t
=

1

2

i−1∑
j=1

K(i − j, j)N(i − j)N(j) (12)

−N(i)

∞∑
j=1

K(i, j)N(j)

In this case,N(i, t)=
∑

m+n=i

N(m, n; t). The initial condi-

tion for Eq. (12) isN(i, t)=N0δi,1. Analytical solutions of
the continuous KCE have been obtained by Golovin (1963),
Scott (1968), Drake (1972) and Drake and Wright (1972)
for approximations of the hydrodynamic kernel given by the
polynomialsK(i, j)=A, B(xi+xj ) and C(xixj ) wherexi
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Figure 1. Simulated time evolution of species a) N(1,0), b) N(0,1) and c) N(1,1) for a 

system modeled by the constant kernel. The solid lines are the analytical solutions of the 

two-component KCE.  

 

Fig. 1. Simulated time evolution of species(a) N(1, 0), (b) N(0, 1) and(c) N(1, 1) for a system modeled by the constant kernel. The solid
lines are the analytical solutions of the two-component KCE.

andxj are the masses of the droplets from binsi andj . For
the constant kernelK(xi, xj )=A and a monodisperse initial
distribution with concentrationc0, the analytical size distri-
bution of the discrete KCE has the form:

N(i, t) = 4c0
(T )i−1

(T + 2)i+1
with T = Ac0t (13)

The analytical solution of Eq. (1), calculated according to the
expression Eq. (11) for the constant kernelK(xi, xj )=A, is
compared with true stochastic averages overNr realizations
of the stochastic process (in our simulationsNr=1000) :

〈N(m, n; t)〉 =
1

Nr

Nr∑
r=1

N r(m, n; t) (14)

whereN r(m, n; t) is the number of particles for species with
droplet mass from bin numberm and dry aerosol mass from
bin n in the r-realization of the stochastic algorithm at time
t .

The Monte Carlo simulation was conducted for initially
monomeric particles (droplets and aerosols) with concen-
trationsc1=30 cm−3 andc2=30 cm−3 (N(1, 0; 0)=30 cm−3

andN(0, 1; 0)=30 cm−3). Long (1974) calculated the co-
efficients for the polynomialsK(x, y)=A, B(x+y) and
C(xy) approximating the one dimensional collection ker-
nel when the largest of the colliding drops is smaller than
50µm. For the constant kernel, he found a value of
A=1.20×10−4 cm3 s−1. We used the same value for the con-
stant discrete two-component collection kernel:

K(m, n; m′, n′)=1.2×10−4 cm3 s
−1

(15)
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Figure 2. Discrete two dimensional droplet distribution ( , )N m n  resulting from the 

analytical solution of the two-dimensional KCE for the constant kernel at t=100 s, with 

initial conditions (1,0;0) 30N =  cm-3 and (0,1;0) 30N = cm-3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Discrete two dimensional droplet distributionN(m, n)

resulting from the analytical solution of the two-dimensional
KCE for the constant kernel att=100 s, with initial conditions
N(1, 0; 0)=30 cm−3 andN(0, 1; 0)=30 cm−3.

In our simulations, the monomer droplet is 10µm in radius
(droplet mass 4.189×10−9 g) and the monomer aerosol is an
ammonium sulfate aerosol, 0.1µm in radius (aerosol mass
7.414×10−15 g). The aerosol-water mass grid was chosen
according to Dropletmass(i)=i×m0 (i=1, .., Ndroplets) and
Aerosolmass(j) = j×n0 (j=1, .., Naerosols). Herem0 and
n0 are the masses of the monomer droplet (4.189×10−9 g)
and the monomer aerosol (7.414×10−15 g), respectively. In
all the simulations, the cloud volume was set equal to 1 cm3.

We have defined 30 bins for the water mass grid and
30 bins for the aerosol grid. The pure monomeric species
are also considered (those containing pure droplets and pure
aerosols). Then, the total number of species in our numerical
experimental can be calculated as:

NTotal = Ndroplets× Naerosols+ Ndroplets+ Naerosols (16)

WhereNdropletsandNaerosolsare the number of bins for the
water mass grid and the aerosol grid respectively. The last
two terms in Eq. (16) account for the monomeric species
(droplets and aerosols). In our case the maximum number of
species that can be generated during the simulations is 960.
The solutions obtained from the Monte Carlo calculations
(averaged over 1000 realizations) for the speciesN(1, 1; t),
N(1, 0; t) andN(0, 1; t) are shown in Fig. 1. The analyti-
cal solution is also shown in Fig. 1 (represented by the solid
curve), and indicates the good agreement between these so-
lutions of the KCE (1).

The two dimensional discrete size distributions for a) the
analytical solution given by Eq. (11) and b) the average over
1000 realizations after 100 s are displayed in Figs. 2 and 3.
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Figure 3.  Discrete two dimensional droplet distribution ( , )N m n  obtained by averaging 

over 1000 realizations of the Monte Carlo algorithm for the constant kernel at     t=100 

s. Simulations were conducted with initial conditions (1,0;0) 30N = cm-3 and 

(0,1;0) 30N = cm-3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Discrete two dimensional droplet distributionN(m, n)

obtained by averaging over 1000 realizations of the Monte
Carlo algorithm for the constant kernel att=100 s. Simulations
were conducted with initial conditionsN(1, 0; 0)=30 cm−3 and
N(0, 1; 0)=30 cm−3.
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Figure 4.  Same as Fig. 2, but for t=200.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Same as Fig. 2, but fort=200.

The same comparison is shown after 200 s (Figs. 4 and 5) and
400 s (Figs. 6 and 7), respectively. Note that the differences
between the Monte Carlo averages and the analytical solution
of the KCE are again negligible.

The one-dimensional distribution, which is a solution of
the one-dimensional kinetic collection Eq. (12), can be ob-
tained from the two-dimensional spectrum by integrating
over the aerosol grid for any point in time, as:
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Figure 5. Same as Fig. 3, but for t=200.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Same as Fig. 3, but fort=200.

N(m, t) =

Naerosols∑
n=1

N(m, n; t), m = 1, ..., Ndroplets (17)

In Eq. (17)Naerosols, and Ndroplets are the number of bins
(grid points) in the aerosol and water grid, respectively. Two
other simulations were performed with different initial con-
ditions: N(1, 1; 0)=100 cm−3 and N(1, 2; 0)=150 cm−3,
corresponding initially to 100 and 150 particles per cu-
bic centimeter from species(1, 1) and (1, 2), respectively.
From Eq. (17), a monodisperse initial condition for the one-
component KCE can be obtained from the two-component
initial condition as:

N(1; 0) = N(1, 1; 0) + N(1, 2; 0) = 250 cm−3 (18)

For this particular case (constant kernel and monodisperse
initial conditions) we can use the analytical solution Eq. (13)
of the KCE in order to compare with the two-component
Monte Carlo.

The drop size distributions calculated from the Monte
Carlo (aftert=50 and 200 s), which are obtained by integrat-
ing the particle distribution over the aerosol grid according to
Eq. (17), and the analytical solutions of the KCE with con-
stant kernel (A=1.20×10−4 (cm3 s−1)) from a monodisperse
initial conditionN(1; 0)=250 cm−3 are displayed in Figs. 8
and 9. Again, a good agreement between the two approaches
is found.

As was remarked in detail by Laurenzi et al. (2002), the
species accounting formalism outlined in Sect. 2 reduces
both computer storage and simulation time. For example,
for a simulation experiment with 300 particles per cubic cen-
timeter at initial time (which is considerably larger than the
60 particles used in our comparison study) only 82 species
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Figure 6. Same as Fig. 2, but for t=400.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Same as Fig. 2, but fort=400.
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Figure 7. Same as Fig. 3, but for t=400.  

 
 
 
 
 
 
 
 

 
 

                                  
 

Fig. 7. Same as Fig. 3, but fort=400.

were created during a 3000 s. simulation. This process is
handled by dynamic allocation of memory permitting calcu-
lations with thousands of droplets in the initial distribution.

3.2 Simulations results for the hydrodynamic kernel and
comparison with finite difference solutions of the two-
component KCE

It is much more difficult to test the performance of the Monte
Carlo algorithm for the hydrodynamic kernel, since it implies
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Fig. 8. The number of particles averaged over 1000 realizations
and normalized to initial number of particlesN0=250 cm−3 (repre-
sented by the line with crosses) and the analytical solution of the
one dimensional kinetic collection equation (KCE) (represented by
the dark solid line) as a function of size fort=50 s.

a comparison with numerical solutions of the discrete two-
component KCE. The hydrodynamic kernel (Pruppacher and
Klett, 1997) has the form:

K(m, m′) = π
(
r + r ′

)2 ∣∣V (m) − V (m′)
∣∣ E(r, r ′) (19)

In Eq. (19), V (m) and V (m′) are the terminal velocities
of the falling particles with massesm andm′, respectively,
which are calculated following Beard (1976). Values of the
collision efficienciesE(r, r ′) were taken from Hall (1980).

The numerical integration of Eq. (1) was performed using
the fourth order Adams-Moulton predictor-corrector scheme
(Gerald and Wheatley, 2004), following the approach
adopted by Valioulis and List (1984) for the KCE (12). The
use of the predictor-corrector method severely restricts the
number of particle sizes, because of the computational cost,
but this is not a limitation for the purposes of comparison
between the two methods. For both the Monte Carlo and
the finite difference scheme, droplet and aerosol masses are
expressed as multiples of the mass of the initial particles
(monomer droplet and monomer aerosol).

At present, only the extension of the flux method (Bott,
2000) to solve the two-component KCE is actually available,
but in Bott’s approach, the water and the aerosol mass dou-
bles after 4 grid cells. Then it is difficult to compare the re-
sults with the Monte Carlo algorithm which has more refined
droplet and aerosol grid. Therefore, the predictor-corrector
method provides the resolution in droplet and aerosol sizes
to detect small differences between the two algorithms.
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Figure 9. Same as Fig 8, but for t=200 s. 

Fig. 9. Same as Fig. 8, but fort=200 s.

The performance of the predictor-corrector finite differ-
ence method for the two-component KCE (2) was checked
by integrating the two-component spectrum for the Golovin
(sum) kernel on the assumption that the probability for the
collision only depends on the water mass of each droplet and
not on the mass of the aerosol nuclei:

K(m, n; m1, n1) = b(xm + xm1) (20)

Whereb=8.83×102 cm3 g−1 s−1 following Long (1974), and
xm, xm1 are the water masses from bin numbersm andm1, re-
spectively. As an initial condition:N(1, 2; 0)=50 cm−3 and
N(1, 8; 0)=50 cm−3 (which corresponds to 50 droplets with
water mass 4.189×10−9 g and aerosol mass 1.483×10−14 g,
and 50 droplets with water and aerosol masses equal to
4.189×10−9 g and 5.931×10−14 g, respectively). The two-
dimensional distribution was integrated at each time over the
aerosol grid (see Eq. 17) and compared with the analytical
solution for the one-component KCE (see Eq. 12) presented
by Golovin (1963) for the sum kernel

N(i, t) = N0(1 − φ)
(iφ)i−1

0(i + 1)
exp(−iφ) (21a)

with

φ = 1 − exp(−bN0v0t) (21b)

and monodispersed initial conditionN(1; 0)=N(1, 2; 0) +

N(1, 8; 0)=N0=100 cm−3. In Eq. (21a,b),0 is the gamma
function,N0 the initial droplet concentration,b the constant
for the Golovin kernel,v0 is the mass of the monomer droplet
(4.189×10−9 g) and t is the time in seconds. The results
of this comparison are displayed in Fig. 10 where the size
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Figure 10. Normalized size distributions obtained from analytical solution of one-

component KCE for Golovin kernel, versus size distributions from numerical solution 

of two-component KCE for two times (t=600, 900 s).  

 

 
 
 
 
 
 
 
 
 

Fig. 10. Normalized size distributions obtained from analytical so-
lution of one-component KCE for Golovin kernel, versus size dis-
tributions from numerical solution of two-component KCE for two
times (t=600, 900 s).

distribution is specified by the fractionN(m, n; t)/N0, where
N0 is the total number of particles in the initial distribution.

An additional test of the finite difference method was
performed by utilizing for the solution of both the two-
component and one-component kinetic collection equations
the hydrodynamic kernel Eq. (19). Again, the integration
was made on the assumption that the probability for the
collision only depends on the water mass of each droplet.
In this case, the two-dimensional initial distribution for the
two-component KCE was bidispersed in the water mass grid
with N(1, 1; 0)=50 cm−3 and N(2, 2; 0)=50 cm−3, which
corresponds to the initial condition for the one-component
caseN(1; 0)=50 cm−3 andN(2; 0)=50 cm−3. Figure 11 de-
picts the distributions after 600 and 900 s, respectively, for
this case.

Finally, the numerical solution of Eq. (1) obtained with the
finite difference method was compared with the true stochas-
tic averages over 1000 realizations of the Monte Carlo algo-
rithm (see Eq. 14) for the hydrodynamic kernel Eq. (19). The
simulations were run with realistic initial particle distribu-
tions. Figure 12 shows the initial two-component spectrum
for the simulations. The spectrum has a droplet concentra-
tion of 158 cm−3. This distribution was obtained (following
Liu, 1998) by assuming a gamma distribution function for
the drop coordinate and an exponential distribution for the
aerosol size coordinate.

The two-dimensional discrete size distributions for a) the
numerical solution given by Eq. (1) and b) the average over
1000 realizations after 300, 900 and 1200 s are displayed in
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Figure 11. Normalized size distributions obtained from numerical solution of one-

component KCE for hydrodynamic kernel, versus size distributions from solution of 

two-component KCE for two times (t=600, 900 s). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Normalized size distributions obtained from numerical so-
lution of one-component KCE for hydrodynamic kernel, versus size
distributions from solution of two-component KCE for two times
(t=600, 900 s).
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Figure 12. Initial two-dimensional spectrum ( , ;0)N m n  with droplet concentration of 

159 cm-3 and LWC 1.87 g/kg. 

 
 
 
 
 
 
 
 
  
 
 

Fig. 12. Initial two-dimensional spectrumN(m, n; 0) with droplet
concentration of 158 cm−3 and LWC 1.87 g/kg.

Figs. 13, 14 and 15, respectively. As the purpose of this sim-
ulation is to detect possible differences between the two nu-
merical approaches, the number of bins displayed in the fig-
ures was restricted. As can be observed, the differences be-
tween the Monte Carlo averages and the numerical solution
of the two-component KCE are negligible.
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                                 (a)                                                                (b)                          
Figure 13. Two-dimensional size distributions N(m,n;t) resulting from a) averaging over 

1000 realizations of the Monte Carlo algorithm for the hydrodynamic  kernel and b) 

numerical solution of two-component KCE at t=300 s. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Two-dimensional size distributionsN(m, n; t) resulting from(a) averaging over 1000 realizations of the Monte Carlo algorithm for
the hydrodynamic kernel and(b) numerical solution of two-component KCE att=300 s.
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Figure 14. Same as Fig 13, but for t=900 s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Same as Fig. 13, but fort=900 s.
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Figure 15. Same as Fig 13, but for t=1200 s. 

 

 

 

 

 

 

Fig. 15. Same as Fig. 13, but fort=1200 s.
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Figure 16. Liquid water content (LWC, in g/kg) as a function of drop radius for the 

hydrodynamic coalescence kernel for t=150 s (dashed line) and t=1500 s (solid line with 

diamonds) obtained after averaging over 1000 realizations of the Monte Carlo 

algorithm. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Liquid water content (LWC, in g/cm3) as a function of
drop radius for the hydrodynamic coalescence kernel fort=150 s
(dashed line) andt=1500 s (solid line with diamonds) obtained after
averaging over 1000 realizations of the Monte Carlo algorithm.

Figures 16 and 17 display the drop and aerosol distri-
butions obtained with the Monte Carlo for two durations
(t=150 s,t=1500 s) for the same initial condition. The one-
dimensional aerosol spectrum in Fig. 12 is obtained by inte-
grating the particle distribution over the water mass grid

N(n, t) =

Ndroplets∑
m=1

N(m, n; t), n = 1, ..., Naerosols (22)

The physical analog to this integration is to completely evap-
orate all drops until the dry aerosol spectrum is left. As can
be observed, there is a net loss for small particles and net gain
for large particles. Due to the collection process, the aerosol
mass is shifted from small to large particles, with particles
larger than 0.8µm after 1500 s.

4 Discussion and conclusions

The multi-component MC algorithm proposed by Laurenzi
et al. (2002) and based upon Gillespie’s (1976) stochastic
approach to chemical reactions was implemented to sim-
ulate two-component droplet growth by stochastic coales-
cence. Within this framework, all assumptions included in
the stochastic collection equation are avoided. Addition-
ally it permits calculation of statistical fluctuations for two-
component droplet aggregation. On the other hand, the con-
tinuous KCE may not be valid when a single drop acquires
a mass much larger than the rest of the system and becomes
separated from the smooth mass spectrum (Alfonso et al.,

 34 

 
 

0 0.2 0.4 0.6 0.8 1

Aerosol radius (microns)

0

5E-013

1E-012

1.5E-012

2E-012

2.5E-012

A
er

os
ol

 M
as

s 
(g

/c
m

3 )

Hydrodynamic kernel
t=150 s
t=1500 s

 
 
Figure 17. Aerosol mass concentration (in g/cm3) as a function of aerosol radius for the 

hydrodynamic kernel for t=150 s (dashed line) and t=1500 s (solid line with diamonds) 

obtained after averaging over 1000 realizations of the Monte Carlo algorithm.  

 
 
 

Fig. 17. Aerosol mass concentration (in g/cm3) as a function of
aerosol radius for the hydrodynamic kernel fort=150 s (dashed line)
and t=1500 s (solid line with diamonds) obtained after averaging
over 1000 realizations of the Monte Carlo algorithm.

2008). In such a situation, the statistical fluctuations at the
high-mass end of the spectrum must be taken into account.

For the two-dimensional case each species is characterized
both by its water mass and by the mass of its dry aerosol nu-
cleus. Very good agreement was observed between analyt-
ical solutions and numerical solutions of the KCE and MC
simulations.

Moreover, the above described algorithm could be eas-
ily extended to the multi-component case in order to in-
clude various other properties of clouds. In a more gen-
eral implementation of this approach species can be defined
as types of particles with several attributes (droplet radius,
CCN composition, chemical composition, electric charge,
etc.) as well as the breakup of droplets (Alfonso et al.,
2006). For this case, the state of ak component system is
defined by a set of drops with properties or compositions
ūi = (u1,i, u2,i, u3,i, ..., uk,i) whereuk,i denotes the amount
of the component or the propertyk in speciesi. For exam-
ple, for the ice phase, it may represent the crystal habit, or
the ice crystal mass. Then, the transition probability Eq. (5)
may be defined as the probability that a specific pair of parti-
cles (drops, ice crystals, aerosols) with set of propertiesūi =

(u1,i, u2,i, u3,i, ..., uk,i) andūj = (u1,j , u2,j , u3,j , ..., uk,j )

will aggregate in the next time interval.
The stochastic approach should make more feasible the

modeling of highly complicated microphysical processes
and offers a method to evaluate these processes in much
greater detail than has been previously possible.

Edited by: U. Lohmann
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