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Abstract. We present a new technique for model selection
problem in atmospheric remote sensing. The technique is
based on Monte Carlo sampling and it allows model selec-
tion, calculation of model posterior probabilities and model
averaging in Bayesian way.

The algorithm developed here is called Adaptive Auto-
matic Reversible Jump Markov chain Monte Carlo method
(AARJ). It uses Markov chain Monte Carlo (MCMC) tech-
nique and its extension called Reversible Jump MCMC. Both
of these techniques have been used extensively in statistical
parameter estimation problems in wide area of applications
since late 1990’s. The novel feature in our algorithm is the
fact that it is fully automatic and easy to use.

We show how the AARJ algorithm can be implemented
and used for model selection and averaging, and to directly
incorporate the model uncertainty. We demonstrate the tech-
nique by applying it to the statistical inversion problem of
gas profile retrieval of GOMOS instrument on board the EN-
VISAT satellite. Four simple models are used simultaneously
to describe the dependence of the aerosol cross-sections on
wavelength. During the AARJ estimation all the models are
used and we obtain a probability distribution characterizing
how probable each model is. By using model averaging,
the uncertainty related to selecting the aerosol model can be
taken into account in assessing the uncertainty of the esti-
mates.

1 Introduction

Advances in computer resources and algorithms have made
the use of increasingly complicated models possible. In geo-
physical sciences the estimation of unknowns in large mod-
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els is commonly handled using linearizations and approxi-
mations that can effect the uncertainty estimates of the re-
trievals. Bayesian inference provides a unified and natural
framework to consider uncertainty in the estimated values as
well as the model uncertainty. In many cases, classical ap-
proximative estimation methods can be seen as special cases
of some more general Bayesian analyses, see for example
Kaipio and Somersalo(2004).

In Bayesian inference, the uncertainty of the estimated
value is a primary target of the investigation. Whenever com-
putationally possible, the result of the analysis is the full
multi-dimensional posterior probability density of the un-
knowns. The approach allows the study of many kinds of un-
certainties, including uncertainty in the model itself. Prior in-
formation from different sources can be directly incorporated
and the correlation structure of the unknowns can be fully
explored. Practical tools for applying Bayesian inference to
modelling problems are provided by Markov chain Monte
Carlo (MCMC) methods. MCMC is a common title for al-
gorithms that simulate values from a probability distribution
known only up to a normalizing constant. A typical case of
such a task is to find the posterior distribution of the unknown
parameters of a geophysical model. For application exam-
ples and more details on applying Bayesian MCMC meth-
ods in geophysical research see, for example,Tamminen and
Kyrölä (2001); Tamminen(2004); Haario et al.(2004).

In this article the Bayesian model selection and averag-
ing is applied to the GOMOS (ESA 2007) aerosol model
selection problem. GOMOS (Global Ozone Monitoring by
Occultation of Stars) is an instrument on board the En-
visat satellite that uses stellar occultation to measure the
atmosphere (http://envisat.esa.int/instruments/gomos/). The
aerosol cross-section model in the GOMOS retrieval algo-
rithm is an approximation of the underlying aerosol extinc-
tion process. Indeed, several alternate formulations are pos-
sible, depending on the types of aerosol at a given location.
Consequently, it is advisable to allow for different types of
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models and to use the data to decide which model to use. By
adaptive MCMC methods this can be done as a part of gen-
eral estimation procedure in a statistically correct manner.

This article introduces an adaptive MCMC method, called
AARJ, for model selection problems. AARJ is an easy to
use and efficient version of the Reversible Jump MCMC al-
gorithm. We demonstrate the technique in the aerosol model
selection of the GOMOS remote sensing instrument, but we
emphasize that the method is general and applicable to gen-
eral model selection problems. The structure of this article
is the following. In Sect.2 the basics of Bayesian model se-
lection are reviewed. In Sect.3 the MCMC method for sim-
ulating from a posterior distribution of model parameters is
explained and an adaptive automatic reversible jump MCMC
algorithm (AARJ) is introduced. The algorithm can be used
for model determination problems where a number of differ-
ent models are fitted and compared. The application example
of GOMOS aerosol model selection is explained and the re-
sults of computer experiments are given in Sect.4 and5.

2 Bayesian model selection

Choosing the right model is a complicated matter that can
not be solved by purely statistical considerations. Statis-
tical methods can, however, tell if the chosen models and
modelling assumptions are highly improbable for the situa-
tion and calculate relative merits of different modelling ap-
proaches. Here we present a method that is able to tell which
of the possible solutions offer the best fit given the set of
models to consider, the data observed, and the prior informa-
tion that is available.

In many cases the ground truth is unknown. We could have
several speculative alternative models describing the physi-
cal behavior of the system, e.g. depending on some unknown
state of nature at the location under consideration. In such
cases we can use several models and see if the fits they pro-
vide differ significantly. If no single model stands out, then
this uncertainty can be taken into account in the results by
averaging the predictions over the models according to their
posterior weights.

We briefly introduce the main concepts of model determi-
nation in the Bayesian framework and discuss various prob-
ability distributions of the unknowns concerned. Letx stand
for a vector of unknown variables of primary interest and
η(k) for extra unknown model parameters in thek:th model.
We assume thatx is common to all the models. We want
to use the observed data,y, to estimate the unknownsx and
η(k) and also make an inference about the unknown model
k. In our case, the model indexk is a label for a finite set of
pre-selected models. In the GOMOS example presented in
Sect.4, the symbolx will stand for the constituent line den-
sities andη(k) contains the aerosol cross-section parameters
for four cross-section modelsk=1, . . . , 4.

To apply Bayesian inference we need to assign prior prob-
abilities jointly for all the unknowns,p(x, η(k), k). It can be
written as a product of conditional probabilities

p(x, η(k), k) = p(x|η(k), k)p(η(k)
|k)p(k). (1)

This formulation reveals the hierarchical structure of the
unknowns. Priors can be given sequentially by first as-
signing prior probabilities for different models,p(k), then
prior distributions for the model parametersp(η(k)

|k) in
each model and lastly the priors for the unknown variables
p(x|η(k)). In addition, we must formulate the likelihood
function, p(y|x, η(k), k), describing the distribution of the
observations using the forward model and the statistical dis-
tribution of the observational error.

The joint posterior distribution of the unknownsx, η(k)

andk conditional to the observed datay is given by the Bayes
formula and can be written as a product of the likelihood and
the priors:

p(x, η(k), k|y) =
p(y|x, η(k), k)p(x|η(k), k)p(η(k)

|k)p(k)

p(y)
. (2)

For the actual calculation of the posterior density we must
solve the well known problem of computing the uncondi-
tional probability of the observationsp(y) in the denom-
inator of the Bayes formula. As the observed datay are
fixed, the termp(y) can be seen as a normalizing constant
that makes the product of likelihood and prior to become a
probability density function. This means that we can write

p(y) =

∫
p(y|x, η(k), k)p(x|η(k), k)p(η(k)

|k)p(k) d(x, η(k), k) (3)

and the calculation involves averaging over all the unknown
variables of the model, making it into an integration prob-
lem with dimension equal to the number of unknowns in the
model. This integration is, in general, impossible without ad-
vanced Monte Carlo simulation techniques, like the MCMC.

Let us next consider the problem of selecting the best
model k from a set of competing models. Different mod-
els can be judged according to the evidence they give to the
observations, i.e. we consider the probabilities:

p(y|k) =

∫
p(y|θ (k), k)p(θ (k)

|k)p(k) dθ (k), (4)

whereθ (k)
=(x, η(k)) is used as a shorthand for the vector of

all unknowns of the modelk. The posterior model probabili-
ties can be written using the Bayes formula as

p(k|y) =
p(y|k)p(k)

p(y)
. (5)

If the values above are available, then model comparisons
can be done using posterior odds:

p(k1|y)

p(k2|y)
=

p(y|k1)

p(y|k2)

p(k1)

p(k2)
, (6)
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where the first term on the right,p(y|k1)/p(y|k2), is called
the Bayes factor, the relative evidence of modelk1 wrt. model
k2 given by the datay andp(k1)/p(k2) is the ratio of prior
model probabilities.

The calculation of model probabilityp(k|y), and that of
the evidencep(y|k), poses challenges, especially if the class
of models considered is large and if there is no natural hi-
erarchy between the models that could be exploited. Sev-
eral methods for the calculations have been proposed, either
by using approximations that avoid the problems of high di-
mensional integration, or by using results of the MCMC runs
on the individual models. The adaptive RJMCMC method,
AARJ, presented below allows for a simple method of cal-
culating the model posterior probabilities from an MCMC
simulation done simultaneously over all the selected models.

3 Markov chain Monte Carlo – MCMC

In the most general setting we are interested in the whole
posterior distribution of all the unknowns. Sometimes we
are satisfied with some statistics of the distribution, such as
the mean and standard deviation. The calculation of most
statistics will lead, in general, to a high dimensional inte-
gration problem that has no closed form solutions. Markov
chain Monte Carlo (MCMC) methods overcome the prob-
lems posed by high dimensional integrals by using high di-
mensional random walks.

The most important MCMC algorithm is the Metropolis-
Hasting (MH) algorithm. It has several useful generaliza-
tions and important special cases for different purposes. The
MH algorithm for sampling from a posterior distribution
p(θ |y) can be described as follows. Again, we letθ stand for
all the unknowns of our model, including unknown state vari-
ables, model parameters and the model index,θ=(x, η(k), k).
Starting from an initial guessθ0 we generate a chain of pos-
sible parameter realizationsθ0, θ1, . . . . In each stepi with a
current valueθi we propose a new valueθ∗ using a proposal
distributionq(θi, ·). As the notation suggests, this proposal
can depend on the current valueθi . The proposal could be,
for example, a multi dimensional Gaussian distribution cen-
tered at the current valueθi . The new value is accepted using
an acceptance probabilityα(θi, θ

∗) that depends on the ratio
of the posteriors and on the chosen proposal distribution:

α(θi, θ
∗) = min

(
1,

p(θ∗
|y)q(θ∗, θi)

p(θi |y)q(θi, θ∗)

)

= min

(
1,

p(y|θ∗)p(θ∗)q(θ∗, θi)

p(y|θi)p(θi)q(θi, θ∗)

)
. (7)

If θ∗ is accepted, we setθi+1=θ∗, otherwise the chain stays
at the current value, that isθi+1=θi . If the proposal is sym-
metric,q(θi, θ

∗)=q(θ∗, θi), as it is the case with the Gaus-
sian density, theq functions cancel out in Eq. (7). A new
valueθ∗ is then accepted unconditionally if it is better than

the previous value, i.e., ifp(θ∗
|y)/p(θi |y)>1. If it is not bet-

ter in the above sense, thenθ∗ is accepted with a probability
that is equal to the posterior ratiop(θ∗

|y)/p(θi |y). The MH
algorithm can be thought as a random walker travelling uphill
towards the peak of the posterior distribution, but frequently
taking steps downhill, too.

The basic idea behind the MH algorithm is that instead
of computing the values of the posteriorp(θ |y) directly, we
only need to compute ratios of the posteriors at two distinct
parameter values,p(θ2|y)/p(θ1|y). This cancels out the nor-
malizing constantp(y) and the parts of the likelihood func-
tion p(y|θ) that do not depend onθ . Using standard Markov
chain theory (for exampleGamerman, 1997), it can be shown
that this algorithm produces a chain of values whose distribu-
tion approaches the target posterior distributionp(θ |y). We
might need to allow some burn-in time to let the chain reach
the limiting distribution.

After the MCMC run we have a chain of values of the
parameter vector at our disposal. The inference about the un-
knowns are made with statistics calculated from the chain of
values. The mean of the chain is a Bayesian point estimate
for the unknown, a histogram or a kernel density gives an
estimate for the marginal posterior density. If we think of
the generated chain as a matrix where the number of rows
corresponds to the size of the MCMC sample and the num-
ber of columns corresponds to the number of unknowns in
the model, then each row is a possible realization of the
model and these appear in correct proportions correspond-
ing to the posterior distribution. Plotting one-dimensional or
two-dimensional scatter plots of the sampled parameter val-
ues from the chain produces representations of the respective
marginal posterior densities.

3.1 Reversible jump MCMC

To include model selection into the MCMC framework a
modification to the basic MH algorithm outlined above is
needed. If we want the MCMC chain to explore different
models and parametrizations, we must somehow allow the
dimension of the unknown to change. This is the motivation
behind the Reversible Jump MCMC (RJMCMC) algorithm
by Green(1995). In the RJMCMC algorithm the proposal
distribution and the acceptance probability are formulated
in such a way that the chain can perform reversible jumps
between spaces of different dimensions. This means, espe-
cially, that the random walk of the MH algorithm can simul-
taneously explore different models for the same data.

The RJMCMC algorithm can be presented in theoretical
framework that extends the standard MH algorithm to a more
general state space of the unknowns. We will not present
the general theory, but refer toGreen(1995). Instead, we
show how the method can be succesfully implemented in a
situation where we consider several different models for the
same data. This approach is also based on the work ofGreen
(2003) and is called automatic RJMCMC.
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In automatic RJMCMC a special MCMC sampler is con-
structed that can jump between different models. For the
MCMC chain to move from one model to another, we need
a way to transform the model parameters. A simple but gen-
eral way to do this this is the following. Suppose that for
each modelk, the target posterior distributions can be ap-
proximated by a mean vectorµk and a covariance matrix
Ck=RT

k Rk, whereRk denotes the Cholesky decomposition
factor. These approximations are used to transform the un-
knowns in each model into approximately independent Gaus-
sian variables and they thus provide a common scale to per-
form the transformations of the parameters between the mod-
els. Additionally, as seen below, the covariance matrixCk

can be used to form the proposal distribution of the MH step
of the algorithm.

Let againθ (k) be the vector of all the unknowns in the
modelk and let the dimension ofθ (k) benk. Assume that the
chain is currently in the modeli. Using the vectorµi and the
matrix Ri , we can compute a scaled and normalized version
of the current chain value as

zi = (θ (i)
− µi)R

−1
i . (8)

The components ofzi are now approximately independent
Gaussian with unit variances. If the modelj has the same
dimension as the modeli, we have a simple transformation
from the model spacei to the model spacej as

θ (j)
= µj + ziRj . (9)

If the dimensions of the two models do not match, we ei-
ther drop some columns ofzi or add new dimensions to it
using independent Gaussian random numbers,u∼N(0, I ).
The transformations can be written as

θ (j)
=


µj + [zi ]

nj

1 Rj if ni > nj

µj + ziRj if n i = nj

µj +
zi

u
Rj if n i < nj .

(10)

Here[z]i1 means the firsti components of the vectorz.
The MH acceptance probability for a move from the model

i to the modelj and from a parameter valueθ (i) to that ofθ (j)

is calculated according to the RJMCMC theory. Letp(i, j)

be the probability to propose a jump to the modelj when the
chain is currently at the modeli, i.e., if the current model is
i then the next model is chosen with a draw from a proposal
distributionp(i, ·). If the modelj is selected, then the current
parameter vector is transformed to the new model according
to Eq. (10).

The acceptance probability for the RJMCMC sampler can be
written as

α(θ (i), θ (j)) = max

(
1,

p(y|θ (j), j)p(θ (j), j)p(j, i)

p(y|θ (i), i)p(θ (i), i)p(i, j)

∣∣Rj

∣∣
|Ri |

g

)
, (11)

where|R| is the determinant of the matrixR and the last term
g depends on the extra variableu and is given as

g =


φ(u) if ni > nj ,

1 if ni = nj ,

φ(u)−1 if ni < nj ,

(12)

whereφ is the probability density function of independent
multi dimensional Gaussian values,N(0, I ). Figure1 illus-
trates the model moves. Note that when moving from one
model to another with equal dimension, the transformation is
totally deterministic, no random variables are used to make
the move. To introduce more randomness,Green(2003) sug-
gests a random permutation of the components of the normal-
izedz variables at each step. This permutation, if used, does
not change the acceptance probability.

For a move inside the same model we use a Gaussian pro-
posal distribution and the standard MH acceptance probabil-
ity Eq. (7). The approximation of the posterior provided by
the matrixCi=RT

i Ri is used to make the proposal to have a
correlation structure similar to that of the target distribution.
If ξ is a random vector of independent Gaussian random vari-
ablesξ∼N(0, Ini

), then the proposed value can be written as

θ (i)∗
= θ (i)

+ ξRi

√
s, (13)

wheres=2.42/ni is a scaling factor. The acceptance proba-
bility Eq. (11) simplifies to that of the standard MH algorithm
for symmetric proposal. The scaling constant 2.4 is chosen
according toGelman et al.(1996).

This sampler is easy to implement. Its success depends on
how well the Gaussian approximations are able to provide
decent proposals for moves from model to model. It is, how-
ever, typical in many geophysical applications to have pa-
rameter posteriors close to Gaussian. This also is the reason
why the classical estimation methods often work quite well.
But the use of RJMCMC allows us to incorporate model
selection methods together with prior information, such as
positivity or smoothness constraints, in a statistically sound
manner. Also, we are able to properly deal with nonlinear
correlation structures that usually are not found by the clas-
sical methods.

3.2 Adaptive automatic RJMCMC – AARJ

From a practical point of view the problem with the standard
MCMC algorithms is that, in spite of the apparent simplicity
of the basic algorithm, it still needs some problem specific
tuning. The most important aspect is the choice of the pro-
posal distributionsq. In the MH algorithm the proposal can,
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Model 1 Model 2

 

 
95% contour of the target
Gaussian approximation

Model 3

 

 
target density
Gaussian approximation

Fig. 1. Illustration of the model to model transformations in the automatic RJMCMC algorithm. The contours in 2-dimensional Models 1
and 2 represent 95% probability limits of the distributions. Model 3 is 1-dimensional and is illustrated by its density function. Solid lines give
the (unknown in applications) true non-Gaussian density and broken lines the corresponding Gaussian approximations. The dots are values
that have the same canonical coordinates given by the covariance matrix of the Gaussian approximation. The arrows shown one possible
path from Model 1 to Model 2 and from Model 2 to Model 3. In the AARJ method these approximations are updated as more information
on the true target becomes available from the generated MCMC chain.

at least in theory, be quite arbitrary. Choosing a distribution
that closely resembles the true posterior distribution can dra-
matically speed up the convergence of the generated values
to the right distribution. The closer the proposal distribution
is to the actual posterior distributionp(θ |y), the better the
chain “mixes” and the better a short sequence represents a
draw from the posterior. This is especially true in multidi-
mensional cases and when the components of the parameter
vector are correlated. A general and computationally effi-
cient choice for the proposal distribution is the multidimen-
sional Gaussian density. As the shape of the Gaussian den-
sity is determined by its covariance matrix, the tuning of the
algorithm in this case means the selection of the covariance.

In the basic MH algorithm the proposal distribution must
not depend on the values generated so far, except for the cur-
rent value. This is the requirement behind the Markov prop-
erty of the stochastic process that the MCMC sampler de-
fines. If we allow for adaptation depending on the history, the
convergence theorems based on Markov chain theory must
be checked. Numerous adaptive strategies for the choice of
the proposal distribution have been suggested. In our ex-
periences, the Adaptive Metropolis (AM) and the Delayed
Rejection Adaptive Metropolis (DRAM) have proved to per-

form well in several geophysical and environmental mod-
elling applications (Haario et al., 2001, 2006, 2004). These
two methods are the building blocks for the new adaptive
RJMCMC method presented below, for which we use the
acronym AARJ.

In the AM adaptation the Gaussian proposal distribution is
tuned using an increasing part of the chain values generated
so far. InHaario et al.(2001) this method is shown to be er-
godic, so it can be used to accurately sample from the target
distribution. A recursive formula for the covariance matrix
can be used to ease the computations. The DRAM adapta-
tion (Haario et al., 2006) adds a new component to the AM
method that is called Delayed Rejection (DR,Mira, 2001). In
the DR method, instead of one proposal distribution we can
have several proposals. These can be used in turn, until a new
value is accepted. The DR acceptance probability formula-
tion ensures that the generated chain is Markovian and that
the so-called reversibility condition holds. This means that
all the standard MH distributional convergence statements
hold. In the DRAM method the DR algorithm is used to-
gether with several different adaptive Gaussian proposals.

www.atmos-chem-phys.net/8/7697/2008/ Atmos. Chem. Phys., 8, 7697–7707, 2008
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Fig. 2. Aerosol model parametrization. Each model is parametrised
in such way that the parameters correspond to aerosol extinction at
one selected wavelength, 300, 500 and 600 nm for three parameter
models and 500 nm for one parameter model. This way we can
also require positivity for these values and assure that the resulting
estimates provide physically meaningful values.

This helps the algorithm in two ways. First, it enhances the
adaptation by providing accepted values that make the adap-
tation start earlier. Second, it allows the sampler to work
better for non Gaussian targets and with non linear correla-
tions between the components. The ergodicity of the DRAM
method is proven byHaario et al.(2006).

A new feature presented in this article is the combina-
tion of the DRAM and AM adaptations with the automatic
RJMCMC. The practical application presented is the aerosol
model selection in the GOMOS inversion.Hastie (2005)
has also suggested a combination of adaptation and auto-
matic RJMCMC of Green. The adaptation method (so called
Adaptive Acceptance Probability, AAP) used in his work is,
however, different from the adaptation used here. We regard
our AARJ method to be more general and easily applicable
to high dimensional nonlinear models typical in geophysical
problems.

3.3 The AARJ algorithm

Here we present a schema for the algorithm for AARJ, an
Adaptive Automatic Reversible Jump MCMC for model se-
lection and model averaging problems with a fixed number
of modelsM1, . . . ,Mk.

The algorithm

1. Run separate adaptive MCMC chains using the DRAM
method for all the proposed models. Collect the mean
vectorsµ(i) and the Cholesky factorsR(i) of the covari-
ance matrices of the chains,i=1, . . . , k.

2. Run automatic RJMCMC using the target approxima-
tionsµ(i) andR(i):

(a) Assume that the current model isi. Select a new
modelj from distributionp(i, j).

(b) If j 6= i, transform the model parameters fromi to
j according to Eq. (10) and calculate the acceptance
probability according to equation Eq. (11).

(c) If the current model is kept,i=j , propose a new
value according to the standard random walk MH
with Gaussian proposal distribution as in Eq. (13).
The acceptance probability is again as in Eq. (11),
however, all but the first terms in the nominator and
denominator cancel out.

3. After given (random or fixed) intervals, update the ap-
proximationsµ(i) andR(i) for each model by the AM
method using those parts of the chain that belong to the
particular model.

3.4 Computational considerations

The AARJ method is easy to implement. For example, a
computer program running the basic MH MCMC simulation
can readily be extended to do both DRAM and AARJ. The
GOMOS application example below has been coded in Mat-
lab programming environment, using a MCMC toolbox for
Matlab (Laine, 2008).

The AARJ algorithm in itself does not add much to the
computational burden. The extra calculations involve only
some matrix vector products. The forward model calcula-
tions needed to calculate the model likelihoods are those that
take the most CPU cycles. As several models are tried, some
of which possibly do not fit the data, the overall chain will
have larger rejection rate than the individual chains would
have, and it will, thus, need to be run longer. That is one
reason why the adaptivity is needed to make the sampler as
efficient as possible.

The algorithm can be applied efficiently even when the
competing models are more complex that the ones used in
the following example. More complex model, of course, in-
creases the computational burden. If the computations be-
come too heavy for routine use of the AARJ method, it can be
used to validate more simple model selection criteria, such as
the Deviance Information Criteria (DIC,Spiegelhalter et al.,
2002). For the GOMOS problem, for example, we found that
the AARJ results agree reasonably well with the DIC which
can be calculated directly from separate individual MCMC
runs.

4 Application: GOMOS aerosol model

To demonstrate the use of MCMC in model selection, we ap-
ply the AARJ method to aerosol modelling in the GOMOS
retrieval. The forward model is the standard GOMOS model
for the spectral transmission according to the Beers law. It
is described for example byBertaux et al.(2000). The cross
section that is used for aerosol line density is, however, only
an approximation of the underlying aerosol extinction pro-
cess that actually depends on many unknown factors. The

Atmos. Chem. Phys., 8, 7697–7707, 2008 www.atmos-chem-phys.net/8/7697/2008/
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cross-section is typically modelled by using a function that
behaves like 1/λ, whereλ is the wavelength. SeeVanhelle-
mont et al.(2006) for a comparison of different aerosol ex-
tinction models for the GOMOS inversion studied using sim-
ulated transmission data.

Here we consider four different aerosol cross section mod-
els: the standard (operational) 1/λ model (model 1), a sec-
ond degree polynomial inλ (model 2), 1/λ2 dependence
(model 3), and a second degree polynomial in 1/λ (model 4).
The aerosol models are parametrized using the aerosol ex-
tinction at 500 nm (models 1 and 2) or at 300, 500 and
600 nm (models 3 and 4), see Fig.2. A positivity prior con-
strains these values. We concentrate on inverting the inte-
grated line densities from the transmission spectra. This is
called the spectral inversion step in the GOMOS literature.
The so called vertical inversion of transforming the line den-
sities to the actual constituent densities is a linear operation
that is done after the line densities for all the heights that have
been inverted and is not considered here.

Let N be the vector of integrated line densities of the con-
stituents to be retrieved (O3, NO2, NO3, air, aerosols) and
matrixα the corresponding cross sections. The cross section
of aerosol depends on the model parametersη(k). The model
for the observed transmissionT is written as

T (λ, z) =
I (λ, z)

I0(λ)
= exp

(
−α(η(k))N

)
+ ε(λ),

with ε(λ) ∼ N(0, σ 2
k w2

λ).

(14)

HereI0(λ) is the spectral intensity measured at a reference
height above the atmosphere andI (λ, z) is the intensity mea-
sured at the tangent heightz. As the chosen aerosol model
will affect the size of the residuals, the error variance is
assumed to be of formσ 2

k w2
λ, with known weightswλ for

each wavelengthλ and model dependent unknown scalars
σ 2

k , which are also estimated by the MCMC.
The likelihood function assumes the form

p(T |N, η(k), σ 2
k ) ∝ exp

(
−

1

2σ 2
k

SS(N, η(k))

)
, (15)

whereSS(N, η(k)) is the weighted sum of squares,

SS(N, η(k)) =

∑
λ

(
T (λ) − exp

(
α(η(k))N

)
wλ

)2

. (16)

As for priors, only positivity constraint for the line densities
is used. For the unknown error variance factors,σ 2

k , a weakly
informative inverse Gamma prior is used (Gamerman, 1997).
All the four models are taken, a priori, to be equally likely.
A prior for the neutral air would probably help the identi-
fication of the aerosol model as the aerosol and neutral air
cross-sections resemble each other and thus produce corre-
lated estimates. Note that in the operational GOMOS pro-
cessing air density is fixed to values provided by European
Centre for Medium-Range Weather Forecasts (ECMWF).
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Fig. 3. An AARJ run is performed for each height in one GOMOS
occultation. The posterior model probabilities are calculated for the
four models at each height. The colours show how the different
cross sections models are preferred depending on the altitude. The
colouring is the same as in Figs.4 and5, Model 1: red, model 2
green, model 3blue, model 4magenta.

5 Results

For each line of sight (tangent height), and given one fixed
aerosol model, the problem of inverting the line densities
from the transmittance is a nonlinear problem with 5 un-
knowns. This is a fairly easy problem, assuming we have
appropriate initial guesses and the noise level in the trans-
mission spectra is low. The estimation problem can be solved
in a least-squares sense as a nonlinear optimization problem
using, e.g., the Levenberg-Marquardt method. This is basi-
cally the method used in the operational GOMOS algorithm.
In this article we use MCMC to replace the operational inver-
sion and take in account the model uncertainty. The MCMC
method can also be extended to a one step solution, where
all the heights are solved simultaneously, with regularization
(smoothness) priors on the vertical structure of the profiles,
see e.g.Haario et al.(2004).

To use the AARJ method for model selection we use the
following strategy. First, for each occultation height and for
each aerosol model, separate MCMC runs are performed us-
ing the DRAM method (Haario et al., 2006) to find the indi-
vidual posterior distributions. Chains of length 10 000 each
were generated and the last 5000 values were used for sub-
sequent analyses. From the MCMC chains of these runs
the mean vectors and covariance matrices together with their
Cholesky factors are calculated to produce the mean vectors
µi , and Cholesky factor matricesRi , i = 1, . . . , 4 needed in
the RJMCMC stage. Second, an MCMC run is done for a
chain of length 50 000 using the AARJ algorithm for further
adaptation of the approximations. The resulting chains are
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Fig. 4. The MCMC chains for the line densities for one selected GOMOS occultation. The horizontal axis runs with the simulation indexes,
vertical axis being the simulated and accepted values for the line density for each constituent. The color indicates in which model the
algorithm is in each step. Plot on the lower left corner labeled “Aerosol” show the relative aerosol extinction at 500 nm for all models. The
last plot shows relative times spent in each model. Of the total 50 000 MCMC simulations of this particular run the models 1, 2, 3 and 4 are
visited 129, 16 035, 31 679 and 2157 times, which makes the corresponding marginal model posterior probabilitiesp(ki |y), i=1, . . . , 4 to
be 0.003, 0.321, 0.634, and 0.043.

visually investigated using 1-D plots like those in Fig.4, in
order to judge if the chains have converged. Some automatic
convergence criteria could be used as well.

For the model selection, we calculate the relative times the
MCMC chain has spent in each model. In Fig.3 the results
for each altitude of one GOMOS occultation are shown. For
most of the heights one model stands out as the main can-
didate, but no single model can be used for all the heights.
For altitudes from 14 to 22 km the second order polyno-
mial (Model 2, coloured green) is prevailing. Each of the
four models become selected as the most probable one at
some of the altitudes. The second order polynomial over
1/λ2 (Model 4, magenta) seems to be less favoured. The
amount of aerosols above 30 km is typically very low and the
choice of the aerosol model does not significantly affect the
retrievals. Certainly, a more thorough investigation would be
needed to determine the relative merits of different aerosol
models for the GOMOS inversion algorithm.

As an illustration of the model averaging we select one al-
titude at about 18 km where all the four models have gained

some posterior probability. Figures4, 5 and 6 show the
MCMC chains, the estimated posterior distributions and the
fitted cross-sections for this selected altitude. Model aver-
aging is useful when the best model can not be determined.
The model used for estimation is then a mixture of differ-
ent models each weighted according to its posterior weight.
The uncertainty in the model is taken into account in the pre-
dictions and in the posterior inference for the constituents.
In Fig. 6 the uncertainty in the cross-section of each model
is illustrated. The cross-section curve is calculated for each
model parameter in the MCMC chain. Then the correspond-
ing posterior distribution for each wavelength is estimated.
Together these provide predictive envelopes of the aerosol
extinctions. These are drawn as different grey regions in the
plots.

Figure5 reveals the effect of the aerosol model on other re-
trievals. The plots show the marginal posterior distributions
of the constituent line densities separately for each model
and the posterior distribution of the averaged model. For the
retrieval of ozone the difference between posterior mean of
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Fig. 5. Marginal posterior density estimates of the constituent line densities calculated from the MCMC chains of Fig.4. The thicker line
is the uncertainty coming from the averaged model that takes into account the model uncertainty. The posterior probabilities of the models
are the relative times the chain has spent on each model. This depend on given prior weights for each model and on how well each different
model fit the data compared to other models. In the present example, all themodels are taken a priori to be equally likely , sop(k)=1/4 for
k=1, . . . , 4. Thex axis value is the integrated number density [1/cm3].

Model 2 and of the other models is about twice the estimated
posterior standard deviation of the estimated value. The most
notable effect is seen on the estimated neutral air density (the
lower right plot in Fig.5). The averaged uncertainty of neu-
tral air over all the models is a distribution with two distinct
modes. This is mainly due to the similarity of the cross-
section of air and that of the aerosols models. An accurate
prior for neutral air, if available, would help this unidentifia-
bility.

The study of aerosols in the GOMOS inversion is further
complicated by the fact that, in addition to aerosols, parts of
the unmodelled variations in the GOMOS spectra are due to
the scintillation effects caused by turbulence. These effects
are actively studied at Finnish Meteorological Institute, and
the methods presented in this article will give useful method-
ological tools for these studies, too.

6 Conclusions

The adaptive automatic RJMCMC method, AARJ, is a novel
combination of previous adaptive MCMC methodologies
that have been found to work reliably in various statistical
inverse problems applications. AARJ provides an easy-to-
use adaptive reversible jump MCMC method for Bayesian
model selection. It can be used as a tool for automatic model
determination and for making simultaneous inference about
the model and the model parameters. If one model clearly
stands out, we can select it as the “true” model. If the data
do not give any definite indication of the right model, and no
accurate prior for the model is available, the uncertainty in
the modelling can be taken into account in the model predic-
tions by using a weighted mixture of the models. The method
itself is a general one and not limited to geophysical appli-
cations. It can be used to solve the model selection problem
for a set of models having different parameters of different
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Fig. 6. Estimated aerosol extinctions for the selected altitude of the example given in the text. Solid line is the fitted median cross section.
Grey areas correspond to 50%, 95% and 95% posterior limits of the extinctions. The model are the following. Model 1: linear for 1/λ,
Model 2: a second degree polynomial onλ, Model 3: linear for 1/λ2, Model 4: a second degree polynomial on 1/λ.

dimensions. The new algorithm will make it possible to use
Bayesian methods in more realistic modelling settings than
before, thus further widening the scope of statistical inver-
sion methodology.

The GOMOS aerosol model selection problem can be suc-
cessfully studied with the AARJ method. For the GOMOS
inversion problem it is natural to consider a set of compet-
ing aerosol cross section models, as the most suitable model
will depend on the unknown type of aerosols present in the
corresponding location. In the present example the number
of aerosol cross-section models is four, but the method could
be used to study a larger number of models. The current
operational GOMOS algorithm uses a fixed aerosol model.
It would be advisable to further study the effect of the cho-
sen aerosol model of the retrieval of various gas constituents.
Different aerosol models could be used depending on the lo-
cation.

This model selection technique can be used in different ap-
plications. The inversion algorithm of the OMI ozone instru-
ment onboard EOS-Aura satellite, for example, has five main
aerosol models, each having several sub models (Veihelmann
et al., 2007). In the OMI inversion the aerosol model is cho-
sen from a few (2–3) pre-selected models according to the
minimumχ2 criteria. Both the GOMOS and OMI inversions

could benefit from the model averaging approach that takes
into account the uncertainty in the model selection.
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