
Atmos. Chem. Phys., 8, 6789–6799, 2008
www.atmos-chem-phys.net/8/6789/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Technical Note: Adapting a fixed-lag Kalman smoother to a
geostatistical atmospheric inversion framework

A. M. Michalak

Department of Civil and Environmental Engineering, and Department of Atmospheric, Oceanic, and Space Sciences,
The University of Michigan, Ann Arbor, MI 48109-2125, USA

Received: 17 March 2008 – Published in Atmos. Chem. Phys. Discuss.: 21 April 2008
Revised: 30 July 2008 – Accepted: 26 September 2008 – Published: 26 November 2008

Abstract. Inverse modeling methods are now commonly
used for estimating surface fluxes of carbon dioxide, using
atmospheric mass fraction measurements combined with a
numerical atmospheric transport model. The geostatistical
approach to flux estimation takes advantage of the spatial
and/or temporal correlation in fluxes and does not require
prior flux estimates. In this work, a previously-developed,
computationally-efficient, fixed-lag Kalman smoother is
adapted for application with a geostatistical approach to at-
mospheric inversions. This method makes it feasible to per-
form multi-year geostatistical inversions, at fine resolutions,
and with large amounts of data. The new method is applied
to the recovery of global gridscale carbon dioxide fluxes for
1997 to 2001 using pseudodata representative of a subset of
the NOAA-ESRL Cooperative Air Sampling Network.

1 Introduction

Inverse modeling methods are now commonly used for esti-
mating surface fluxes of carbon dioxide, using atmospheric
mass fraction measurements combined with a numerical at-
mospheric transport model. The majority of recent studies
have implemented a Bayesian synthesis inversion approach
(e.g. Enting, 2002) applied to continental or sub-continental
regions. In the majority of these applications, the errors as-
sociated with prior flux estimates were considered uncorre-
lated, as were the errors between the modeled and observed
measurements. Researchers and policy makers are increas-
ingly interested in estimating sources and sinks of green-
house gases at finer spatial and temporal discretizations. This
exacerbates two issues associated with the classical Bayesian
setup. First, the assumption of uncorrelated errors becomes
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more invalid, because a priori flux estimates are likely to
have consistent errors within regions. Second, the compu-
tational cost of the inversion increases, with a batch setup
requiring the inversion of a matrix with dimensions of either
the number of observations or the number of fluxes to be es-
timated. This computational cost becomes prohibitive as in-
versions are performed using more data, at finer scales, and
over longer periods. One solution to the first of these prob-
lems was recently proposed by Michalak et al. (2004) in the
form of a geostatistical formulation of the inverse problem.
Such a setup does not require the use of prior flux estimates
and takes advantage of the spatial correlation between fluxes,
making it particularly well suited for inversion at small spa-
tial scales. One solution to the second of these problems
was recently proposed by Bruhwiler et al. (2005) in the form
of a fixed-lag Kalman smoother (FLKS) that steps through
an inversion in multiple steps while conserving information
about the covariance between sequential sets of fluxes. This
method builds upon the time-stepping approach presented in
Law (2004), and dramatically increases the computational ef-
ficiency of inversions, while providing uncertainty estimates
almost identical to those obtained using batch inversions.
However, the method presented in Bruhwiler et al. (2005)
is not applicable in a geostatistical setup, due to the lack of a
priori estimates of fluxes. Other recently proposed numerical
tools based on variational approaches (e.g. Chevallier et al.,
2005; Baker et al., 2006) and ensemble methods (e.g. Peters
et al., 2005; Zupanski et al., 2007) can solve large inverse
problems, but are not designed to provide full information
on flux uncertainties and their covariances.

The objective of this technical note is first to develop
the geostatistical counterpart to the method of Bruhwiler et
al. (2005), yielding a method that combines the desirable
characteristics of a geostatistical setup, and offers the com-
putational efficiencies of the Kalman smoother. Second, the
new method is tested by estimating global monthly-averaged
fluxes at the 5.0◦ longitude by 3.75◦ latitude grid scale,
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using pseudodata generated at 44 observation sites from the
NOAA-ESRL Cooperative Air Sampling Network (Tans and
Conway, 2005), in order to verify that the proposed approach
yields estimates consistent with those from a batch geostatis-
tical inversion.

2 Methodology

2.1 Geostatistical inverse modeling

The geostatistical approach to inverse modeling is a Bayesian
approach in which the prior probability density function is
based on an assumed form for the spatial and/or temporal
correlation of the surface fluxes to be estimated. This dif-
fers from the traditional Bayesian approach, where the prior
information is in the form of initial surface flux estimates.
Geostatistical flux estimates are not subject to some of the
limitations of traditional Bayesian inversions, such as poten-
tial biases created by the choice of prior fluxes and aggrega-
tion error resulting from the use of large regions with pre-
scribed flux patterns (Michalak et al., 2004). The geostatisti-
cal approach is also ideally suited to inversions at fine spatial
scales. The objective function used in the solution of a linear
geostatistical inverse problem is the negative logarithm of the
a posteriori probability density functionp”:

Ls,β = − ln (p” (s, β|z))

=
1

2
(z − Hs)T R−1 (z − Hs)

+
1

2
(s − Xβ)T Q−1 (s − Xβ) (1)

whereH is an(N×M) matrix of sensitivities of the observa-
tions z (with dimensionsN×1) to the discretized unknown
surface flux distributions (with dimensionsM×1), R is the
(N×N) model-data mismatch covariance matrix,Xβ is the
model of the mean of the flux distribution, whereX (with
dimensionsM×p) contains known information on the form
of the mean trend of the fluxes andβ (with dimensionsp×1)
are unknown drift coefficients (e.g. the fluxes can have a con-
stant but unknown mean), and the(M×M) flux covariance
matrix Q is based on a spatial and/or temporal correlation
structure of flux deviations from the mean trend. The inverse
problem involves solving for bothβ ands, and the form of
the solution is therefore different from the classical Bayesian
setup (Michalak et al., 2004).

The best estimates ofs are obtained by finding the mini-
mum ofLs,β with respect to boths andβ. After some alge-
bra the system of linear equations can be expressed as:[

HQHT
+R HX

(HX)T 0

] [
3T

M

]
=

[
HQ
XT

]
(2)

and, after solving for the observation weights3 and the La-
grange multipliersM (see Michalak et al., 2004 for a detailed

discussion), the best estimateŝ and posterior uncertainty co-
varianceV ŝ of s are defined as:

ŝ = 3z (3)

V ŝ = −XM +Q − QHT 3T (4)

The reader is referred to Michalak et al. (2004) for a detailed
discussion of the geostatistical approach to the inverse prob-
lem as applied to the estimation of sources and sinks of at-
mospheric trace gases. For the discussion presented in this
paper, we will be estimating a total ofT months of fluxes,
discretized tom regions globally, usingT sets of monthly-
averaged observations, sampled atn locations (i.e.M=T ∗m;

N=T ∗n).

2.2 Fixed-lag Kalman smoother

The size of the matrix that must be inverted in the solu-
tion of a synthesis Bayesian inversion is either(N×N) or
(M×M), depending on the selected setup (see, for exam-
ple, Enting, 2002). The cost of the geostatistical inversion
is almost identical, with the typical inversion being set up
in (N+p) × (N+p) format (see Eq.2), and an equivalent
(M+p) × (M+p) system being the alternative (not shown).
Given that the geostatistical approach to the inverse problem
is particularly interesting when fluxes are to be estimated at
fine spatial resolutions, the system is typically underdeter-
mined (M>N), and the form presented in Eq. (2) is more
computationally economical.

As the spatial and or temporal resolution of the fluxes in-
creases and as the total time period for which the fluxes are
to be estimated becomes longer,M becomes very large and
solutions in the(M×M) or (M+p) × (M+p) form become
computationally prohibitive. Similarly, as the amount of data
increases as a result of observation network expansions, an
increase in the sampling frequency, and/or an increase in
the total time period for which the fluxes are to be esti-
mated,N becomes very large and solutions in the(N×N) or
(N+p) × (N+p) form become computationally prohibitive.
These two situations are currently happening simultaneously,
as researchers strive to estimate more fluxes using more data.

Recently, Bruhwiler et al. (2005) proposed a fixed-lag
Kalman smoother (FLKS) to remedy this situation for syn-
thesis inversions. This method allows for the sequential esti-
mation of a subset oftm sets of fluxes (e.g. monthly-average
fluxes) using a subset oftn sets of data (e.g. monthly-average
observations), while providing a rigorous method for track-
ing the inferred temporal and spatial covariance between sub-
sets of fluxes. The method is illustrated in Fig. 1. In the ex-
ample in the figure, each set of monthly fluxes is estimated
a total of three times (tm=3), each time using one month of
atmospheric observations (tn=1). For each iteration, the lat-
est estimate available for each month of fluxes and its co-
variance are used as prior information. A covariance propa-
gation scheme allows for correlations between fluxes being
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estimated and fluxes no longer being estimated to be con-
served. Mathematically, each step of the FLKS proceeds as
follows:

ŝ = sp+QHT
(
R+HQHT

)−1 (
z − Hsp

)
(5)

V ŝ = Q − QHT
(
R+HQHT

)−1
HQ (6)

where ŝ and sp now have dimensions(tm∗m), z has di-
mensions(tn∗n), and the other matrix dimensions are de-
fined accordingly. In a typical setup, a single month of
monthly-averaged observations would be used at a time,
yielding a setup that requires the inversion of ann×n ma-
trix. An equivalent form requiring an inversion of dimension
(tm∗m) × (tm∗m) is:

ŝ = sp+

(
HT R−1H+Q−1

)−1
HT R−1 (

z − Hsp

)
(7)

V ŝ =

(
HT R−1H+Q−1

)−1
(8)

In this approach,sp are the most recent estimates of the
subset of fluxes being estimated in a given step,Q is the most
recent estimate of their covariance,z is the month of data be-
ing used to update these flux estimates,R is the covariance
of model-data mismatch for these observations, andH re-
lates the single month of observations to the several months
of fluxes being estimated. In each iteration of the smoother,
some fluxes are estimated for the first time, using a priori flux
estimates in the corresponding portions ofsp. Other fluxes
are estimated for at least the second time, using the latest
estimates of these fluxes from previous iterations in the cor-
responding portion ofsp. The reader is referred to Bruhwiler
et al. (2005) for additional details, including the equivalent
equations for the case where the covariance is to be con-
served between fluxes being estimated and fluxes no longer
being estimated. Note that this approach does still require
the calculation of the sensitivity of each observation to the
estimated fluxes, but these sensitivities only need to be cal-
culated for the number of months included in the lag of the
Kalman smoother. These sensitivities can be calculated using
an adjoint formulation of the atmospheric transport model in
the case whereM>N , yielding one model run per observa-
tion.

2.3 Derivation of the Geostatistical Kalman smoother

The form of the solution developed in Bruhwiler et al. (2005)
is compatible with the classical Bayesian approach. For the
case of monthly flux estimates, independently obtained flux
estimates (typically from flux inventories and/or biospheric
models) are used as prior information the first time a given
month of fluxes is estimated, and the latest (a posteriori) es-
timate is updated in the subsequent steps using additional
months of atmospheric data. In the geostatistical approach,
the system needs to account for the unknown components of
the model of the mean (β) in obtaining the first estimate of a

given month’s fluxes, but needs to use the latest (a posteriori)
estimates for subsequent estimates of a given month’s fluxes.
This requires a substantial modification to the form of the
Kalman smoother because each step through the smoother
involves both flux periods being estimated for the first time
(with no prior flux estimate), and months being estimated for
at least the second time (with the latest flux estimates used as
priors).

In the discussion that follows, the subscriptk will refer to
variables associated with the newest set of fluxes which have
not yet been estimated,j will refer to variables associated
with fluxes that have been estimated at least once,i will refer
to variables associated with fluxes that are no longer being
estimated, andp will refer to flux estimates from a previous
iteration.

We start with two populations of fluxes currently being es-
timated: sj are the fluxes that have already been estimated
at least once, andsk are the fluxes that have not yet been
estimated. In Sect. 2.3.3, we will also refer tosi , which rep-
resent one or more months of fluxes which are no longer be-
ing estimated, but whose inferred covariance withsj can be
incorporated into the estimation. In the case where each iter-
ation adds one month and removes one month of fluxes from
the active state (i.e. the set of fluxes being estimated in that
step), the dimensions ofsj arem (tm−1) ×1, and the dimen-
sions ofsk arem×1. The latest estimate ofsj obtained in
the previous iteration is designatedsp, whereas the model for
the mean behavior of fluxes not yet estimated is designated
Xkβk. The latest estimate of the covariance ofsj is desig-
natedQjj , the prior covariance ofsk is designatedQkk, and
the cross-covariance betweensj and sk is designatedQjk.
Jointly, these covariances are defined as

Q=

[
Qjj Qjk

Qkj Qkk

]
(9)

Note that given that the fluxessk have not yet been estimated
in the inversion,Qjk andQkj represent any prior informa-
tion on the temporal covariance between fluxessj andsk. In
subsequent steps of the Kalman smoother, the covariance be-
tween consecutive months of fluxes will be determined based
both on this prior information as well as temporal covariance
information derived from the atmospheric data. If no tem-
poral covariance is assumed a priori,Qjk=QT

kj=0. The ob-
jective function defining an inverse problem involving fluxes
that have a prior estimate and others that do not can be writ-
ten as:

Lsj ,sk,βk
=

(
zk−Hj sj−Hksk

)T R−1 (
zk−Hj sj−Hksk

)
(10)

+

([
sj

sk

]
−

[
sp

Xkβk

])T [
Qjj Qjk

Qkj Qkk

]−1 ([
sj

sk

]
−

[
sp

Xkβk

])
whereHj is the sensitivity of the new observationszk to
fluxes sj , andHk is the sensitivity of these same observa-
tions to fluxessk. Note that throughout this derivation, the
observationsz have the background state (i.e. the effect of
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sl2
sl1
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sl3


sM

Fig. 1. Representation of time stepping through fixed-lag Kalman smoother. The subscripts indicate month numbers. In the presented
example, four consecutive steps through the GFLKS are presented in orange, blue, pink, and green, respectively. Notice that observations
are only sensitive to fluxes occurring in the same or previous months, and thel’th month of observations is therefore used to constrain fluxes
for monthsl−tm+1 throughl.

the months that we are no longer estimating) pre-subtracted.
In the next iteration, part ofsj drops out of the active state
and its estimate is treated as the final best estimate, whereas
sk becomes part ofsj . For the example presented in blue in
Fig. 1,sj= {sl−1, sl} , andsk= {sl+1}. For the next iteration,
presented in red,sj= {sl, sl+1}, andsk= {sl+2}.

2.3.1 Best estimate

First, let us define the inverse ofQ as:

Q−1
=

[
Qjj Qjk

Qkj Qkk

]−1

=

[(
Q−1

)
jj

(
Q−1

)
jk(

Q−1
)
kj

(
Q−1

)
kk

]
(11)

where
(
Q−1

)
jj

6= Q−1
jj . To obtain the best estimate of the

fluxes, we take the first derivative of the objective function in
Eq. (10) with respect tosj , sk, andβk and set it to zero in
order to minimize the objective function. Manipulating these
three equations and putting them into a system of equations
we obtain: HT R−1H+Q−1

−

[(
Q−1

)
jk(

Q−1
)
kk

]
Xk

−XT
k

[ (
Q−1

)
kj

(
Q−1

)
kk

]
XT

k

(
Q−1

)
kk

Xk


 ŝj

ŝk

β̂k



=

HT
j R−1y+

(
Q−1

)
jj

sp

HT
k R−1y+

(
Q−1

)
kj

sp

−XT
k

(
Q−1

)
kj

sp

 (12)

whereH=
[
Hj Hk

]
is the full sensitivity matrix of the ob-

servations to all the fluxes being estimated. This linear sys-
tem of equations is then inverted to obtain the best esti-
mates. The above system of equations requires the inver-
sion of a matrix of dimensions((tm∗m) +p) × ((tm∗m) +p).
Following some linear algebra manipulations, a form anal-
ogous to the batch geostatistical inverse problem can be

derived, which instead only requires the inversion of an
((tn∗n) +p) × ((tn∗n) +p) matrix:[

HQHT
+R HkXk

(HkXk)
T 0

] [
3T

M

]
=

[
HQ[

0 XT
k

] ]
(13)

where the best estimate of the fluxes becomes:[
ŝj

ŝk

]
=

[
sp

0

]
+3

(
z − Hj sp

)
(14)

In subsequent iterations through the smoother,ŝk and the por-
tions of ŝj that will be estimated again become the new pri-
orssp.

2.3.2 Posterior covariance

The inverse of the Hessian is typically used in inver-
sions as an estimate of the posterior covariances and cross-
covariances of fluxes. In this case, taking the second deriva-
tive of the objective function with respect tosj , sk, andβk,
individually and in combination, we obtain:V ŝj,̂sj

V ŝj,̂sk
V ŝj,β̂

V ŝk,̂sj
V ŝk,̂sk

V ŝk,β̂

Vβ̂ ,̂sj
Vβ̂ ,̂sk

Vβ̂,β̂

 (15)

=

 HT R−1H+Q−1
−

[(
Q−1

)
jk(

Q−1
)
kk

]
Xk

−XT
k

[ (
Q−1

)
kj

(
Q−1

)
kk

]
XT

k

(
Q−1

)
kk

Xk


−1

whereV·,· represents the a posteriori covariance components
of sj , sk, andβk. Following algebraic manipulations, the
posterior covariance of the fluxes can be expressed in terms
of the solution to Eq. (13):

V ŝ=

[
V ŝj,̂sj

V ŝj,̂sk

V ŝk,̂sj
V ŝk,̂sk

]
= −

[
0

Xk

]
M+Q − QHT 3T (16)
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In subsequent iterations through the smoother, the portion
of V ŝ corresponding to fluxes that will be estimated again
becomes the newQjj .

2.3.3 Covariance correction

As discussed in Bruhwiler et al. (2005), we want to include
the covariance between fluxes no longer being estimated and
those still being estimated to avoid underestimating the un-
certainty associated with fluxes being estimated at each step.
In order to do so, we perform the derivation described above
a second time, this time including the influence of fluxes no
longer being estimated,si . First, let us define the inverse of
Q as:

Q−1
=

 Qii Qij Qik

Qji Qjj Qjk

Qki Qkj Qkk

−1

(17)

=


[(

Q−1
)
ii

] [ (
Q−1

)
ij

(
Q−1

)
ik

]
[ (

Q−1
)
ji(

Q−1
)
ki

] [(
Q−1

)
jj

(
Q−1

)
jk(

Q−1
)
kj

(
Q−1

)
kk

]


whereQii represents the final covariance of fluxes that are
no longer being estimated, but that are temporally correlated
to the current set of estimated fluxes.Qij , Qik, Qji , andQki

represent the inferred or assumed covariance between these
older fluxes and the currently-estimated set. The portion of
the inverse corresponding to the fluxes currently being esti-
mated is:

Q̃−1
=

[(
Q−1

)
jj

(
Q−1

)
jk(

Q−1
)
kj

(
Q−1

)
kk

]

=

{[
Qjj Qjk

Qkj Qkk

]
−

([
Qji

Qki

]
[Qii ]

−1 [
Qij Qik

])}−1

(18)

The corresponding objective function in the case of a geosta-
tistical Kalman smoother becomes:

Lsj ,sk,βk
=

(
zk−Hisi−Hj sj−Hksk

)T R−1

·
(
zk−Hisi−Hj sj−Hksk

)
+

 si

sj

sk

 −

 sp,i

sp,j

Xkβk

T  Qii Qij Qik

Qji Qjj Qjk

Qki Qkj Qkk

−1

·

 si

sj

sk

 −

 sp,i

sp,j

Xkβk

 (19)

where si are fluxes that we are no longer estimating but
that are correlated with the current set of fluxes. For the
example presented in blue in Fig. 1, assuming that a sin-
gle month is used for the covariance correction,si= {sl−2} ,

sj= {sl−1, sl} , and sk= {sl+1}. To obtain the best esti-
mate of the fluxes, we minimize this objective function

with respect tosi , sj , sk and βk. We then take into ac-
count the fact that, given that we are no longer updatingsi ,
E

[
si − sp,i

]
=0, and manipulate the resulting three equa-

tions as outlined in Sect. 2.3.1. to obtain:[
HQ̃HT

+R HkXk

(HkXk)
T 0

] [
3T

M

]
=

[
HQ̃[
0 XT

k

] ]
(20)

where

Q̃=

[
Qjj Qjk

Qkj Qkk

]
−

([
Qji

Qki

]
[Qii ]

−1 [
Qij Qik

])
(21)

and the estimated fluxes are:[
ŝj

ŝk

]
=

[
sp

0

]
+3

(
z − Hj sp

)
(22)

An analytical expression for the a posteriori uncertainty that
takes into account the cross-correlation between fluxes no
longer being estimated and those still being estimated can
be derived in a manner analogous to the method presented
in Bruhwiler et al. (2005). Given the influence of the uncer-
tainty of βk on the uncertainty of the fluxes, however, the
resulting expression becomes exceedingly cumbersome. A
computationally equivalent but simpler solution is to present
the resulting covariance as a subset of a larger covariance by
solving the system in Eq. (13), but whereH=

[
Hi Hj Hk

]
andQ is as defined in Eq. (18). The solution of the system
defines the posterior covariance:

[
V ŝi,̂si

] [
V ŝi,̂sj

V ŝi,̂sk

][
V ŝj,̂si

V ŝk,̂si

] [
V ŝj,̂sj

V ŝj,̂sk

V ŝk,̂sj
V ŝj,̂sk

]
= −

[
0

Xk

]
M+Q − QHT 3T (23)

where we only keep the lower right-hand block for future
iterations because we are no longer updating estimates ofsi

and its covariance.

3 Sample application

The following section describes an application of the geo-
statistical fixed-lag Kalman smoother (GFLKS) to the esti-
mation of global monthly-averaged surface fluxes of CO2 on
a 3.75◦ latitude by 5.0◦ longitude grid. Because the goal is
to validate the proposed method, we choose a setup that is
sufficiently small such that a batch geostatistical inversion
can still be performed. We also use pseudodata (with added
noise) to evaluate the ability of the method to recover the ac-
tual fluxes.

3.1 Data and basis functions

Assumed flux distributions were used to generate the pseu-
dodata for the experiment. The flux data that were used to
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Fig. 2. Sample fluxes used in generating pseudodata.These fluxes represent the sum of the fossil fuel, oceanic exchange and net ecosystem
production fluxes. Fluxes vary monthly, but only January, April, July, and October fluxes are presented here. Units areµmol/(m2s).

generate the pseudodata were selected to reflect a realistic
set of fluxes for CO2. The estimates used for fossil fuel
(FF), oceanic exchange (OE), and net ecosystem production
(NEP) were the same as those applied as priors in the Atmo-
spheric Tracer Transport Model Intercomparison Project 3
(TransCom3) (Gurney et al., 2002, 2003). All fluxes used
to generate the pseudodata are constant from year to year,
but OE and NEP fluxes have monthly within-year variations
whereas FF fluxes are assumed constant. Note that although
the fluxes used to generate the pseudodata do not exhibit
year-to-year variability, the inversion does allow for such
variability to be inferred. All flux data were defined on a
3.75◦ latitude by 5.0◦ longitude grid, which yields a 48×72
surface grid with a total of 3456 regions for which the sur-
face fluxes are defined and will be estimated. Over the five
year period, this results in 207 360 unknowns. Samples of
the fluxes used to generate the pseudodata are presented in
Fig. 2. Note that these fluxes are used only to generate the
pseudodata and are not used in any way in the inversion.

The sensitivity of the atmospheric measurements to sur-
face fluxes (represented by matrixH) is calculated using an

adjoint implementation of the Tracer Model 3 (TM3) atmo-
spheric transport model (Kaminski et al., 1999; Rödenbeck
et al., 2003). Sensitivities relating monthly averaged CO2 ob-
servations at a subset of the NOAA observation network sites
to monthly averaged grid-scale fluxes were calculated by
Rödenbeck et al. (2003) for 1982–2001, and the 1997–2001
subset of this transport information is used for the work pre-
sented here. The model uses interannually varying ECMWF
wind fields.

In an effort to generate a set of pseudodata that is consis-
tent with the amount of data typically used in inversion stud-
ies, the available basis functions were used to generate pseu-
dodata for months and NOAA-ESRL sites where actual CO2
data are available. Therefore, although the observational data
have been numerically generated, their spatial and tempo-
ral distribution represents a subset of the NOAA-ESRL Co-
operative Global Air Sampling Network’s data collected for
1997 to 2001. Overall, the dataset consists of 2275 monthly-
averaged datapoints, collected over 60 months at a total
of 44 sites. Random error with a standard deviation of
σR=0.25 ppm was added to the pseudodata to simulate the
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Fig. 3. Locations of pseudodata measurements. The numbers indicate the number of monthly averaged measurements available at each
location. Note that the two locations listing a sum are areas where two observation locations are too close to one another to be resolved
on the plot. This occurs for (i) St. Davids Head, Bermuda (BME), and Tudor Hill, Bermuda (BMW), and (ii) Mauna Loa, Hawaii (MLO),
and Cape Kumukahi, Hawaii (KUM). Black squares designate gridcells for which flux estimates are compared to prescribed fluxes in Fig. 6.
Shaded areas represent the Temperate North America and South Atlantic TransCom3 regions, for which flux estimates are compared to
prescribed fluxes in Fig. 5.

effect of measurement and transport errors. Although this er-
ror is unrealistically low for real applications, the goal here
was to magnify any differences between a batch approach
and the GFLKS. Because using a low model-data mismatch
increases the adjustments that must be made from the a pri-
ori to the a posteriori covariance matrix, and the degree to
which flux estimates deviate from their overall trendXβ, any
approximations caused by the GFLKS would be more easy
to detect when using a low model-data mismatch. Note that
not every station has data at every month. A map illustrating
the sites at which data was modeled, as well as the number
of months for which these sites were sampled, is presented in
Fig. 3. Given the 2275 observations and the 207 360 fluxes
to be estimated, the inversion is strongly underdetermined.

3.2 Inversion setup

We assume that the background concentration in the atmo-
sphere prior to the start of the inversion period is known,
in order to avoid the “ramp-up” period typically necessary
where the first several months of estimated fluxes are non-
sensical as they simply represent the inversion’s attempts to
reproduce the initial background concentration. As was done
in Michalak et al. (2004), surface fluxes are estimated us-

ing a constant mean model with a different mean for land
and ocean fluxes. These constants, however, are allowed to
vary month to month. The restricted maximum likelihood
approach (e.g. Michalak et al., 2004) can be used to esti-
mate the covariance parameters in a geostatistical inversion,
including the spatial and/or temporal covariance terms inQ
and the model-data mismatch covariance parameters inR.
Given that this has been demonstrated previously and that
we are working with pseudodata, we chose here to focus on
the inversion step and have prescribed the covariance param-
eters based on the variability of the fluxes used in generating
the pseudodata. A priori, temporal covariance is not con-
sidered in this case, land fluxes are assumed independent of
ocean fluxes, and the spatial covariance was modeled as an
exponential decay, leading to:

Qu,v = σ 2
Qexp

(
−

‖xu−xv‖

lQ

)
, if tu=tv and gu=gv (24)

Qu,v = 0, otherwise

where‖xu−xv‖ is the great circle distance between gridcells
at locationsxu andxv, tu and tv are the dates of the esti-
mated fluxes, andg is a binary variable identifying whether
a particular gridcell is land or ocean. This setup leads to a
block-diagonalQ matrix. The covariance parameters were
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Fig. 4. Sample gridscale fluxes recovered using geostatistical fixed-lag Kalman smoother. Fluxes vary monthly, but only January 2000,
April 2000, July 2000, and October 2000 fluxes are presented here. Units areµmol/(m2s). The corresponding fluxes obtained using a batch
inversion were visually very similar to those obtained using the Kalman smoother.(a) Flux best estimates.(b) A posteriori uncertainties
expressed as the standard deviation of the estimation error.
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the batch inversion are shaded. Panels(c) and(d) represent the difference between estimates and uncertainties obtained using the Kalman
smoother, those obtained using a batch inversion, and the true fluxes used in generating the pseudodata. Note that the difference between
estimation uncertainties (dashed line) are amplified by an order to magnitude to make them visible on the same scale as the flux differences.

σ 2
Q=0.40(µmol(m2s))2 andlQ=2700 km for land fluxes, and

σ 2
Q=3.0×10−3(µmol(m2s))2 and lQ=5730 km for ocean

fluxes. The model-data mismatch was modeled as indepen-
dent with a fixed error variance, equal to the variance of the
errors actually added to the generated pseudodata:

R=σ 2
RIn (25)

where In is an identity matrix of dimensionsn. Based on
the work of Bruhwiler et al. (2005), we chose to include
6 months of fluxes in the active state. This means that each
month of fluxes is constrained by the subsequent 6 months of
available atmospheric data.

4 Results and discussion

The main goal of the proposed approach is to decrease the
computational cost associated with solving large-scale geo-
statistical inverse problems aimed at constraining budgets of
atmospheric trace gases, while providing a best estimate and
estimated uncertainty equivalent to those obtained using a
batch inversion, where all fluxes are estimated using all avail-
able measurements. Past work by Bruhwiler et al. (2005)

has established that the vast majority of information about
monthly-averaged fluxes can be derived from the six months
of subsequent observations. Therefore, even for inversions
covering many years, the dimensions of the matrix to be in-
verted is limited to six months of observations, making the
problem computationally manageable.

Estimated gridscale fluxes for selected months of 2000
are presented in Fig. 4. These fluxes were obtained us-
ing the proposed Geostatistical Fixed Lag Kalman Smoother
method. Equivalent fluxes obtained using a batch inversion
are visually very similar to those in Fig. 4, and are therefore
not presented here. This similarity indicates that the pro-
posed method is able to reproduce estimates obtained using
the geostatistical batch inversion in cases where a sufficient
amount of observations (in this case 6 months) are used to
estimate each month of fluxes. The estimated fluxes are
smoother than the true fluxes presented in Fig. 2, which is
indicative of the strongly underconstrained nature of the in-
verse problem.

Figure 5 presents a time series of the estimated fluxes
aggregated for two of the TransCom regions, Temperate
North America and the South Atlantic. As presented in
panels (c) and (d), the difference in the best estimates and
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Fig. 6. Monthly recovered flux intensity estimates and uncertainties for the year 2000 for two sample gridcells.(a) Latitude= [41.25 N,
45.00 N], Longitude=[85.00 W, 80.00 W], surrounding Ann Arbor, Michigan.(b) Latitude=[33.75 S, 30.00 S], Longitude=[10.00 W, 5.00 W]
in the South Atlantic. Uncertainties on the GFLKS are in dashed line; uncertainties for the batch inversion are shaded. Panels(c) and(d)
represent the difference between estimates and uncertainties obtained using the Kalman smoother and those obtained using a batch inversion.

uncertainty estimates relative to the batch inversion are very
small relative to the magnitude of the estimated fluxes and
their uncertainties. The best estimates obtained using the
proposed approach are very similar to those obtained us-
ing the batch inversion approach. The average a poste-
riori uncertainties, expressed as a standard deviations, are
0.45 GtC/year and 0.46 GtC/year for the batch and GFLKS
inversions, respectively. The uncertainties for the South At-
lantic are 0.32 GtC/year and 0.34 GtC/year, respectively. The
difference between these two sets of results could be further
decreased by using additional months of observations to con-
strain each month of fluxes, if such a computational tradeoff
were deemed appropriate. The differences between estimates
are more pronounced relative to the magnitude of the total
flux for underconstrained regions such as the South Atlantic,
where more time is required for the flux signal to propagate
to observations. This is also consistent with the fact that the
relative a posteriori uncertainty is also larger for the South
Atlantic. Importantly, the uncertainty estimated using the
GFLKS with the covariance correction reflects the informa-
tion content of the observations used to constrain the fluxes.
As such, the uncertainty estimated using the Kalman filter is
always slightly higher, correctly reflecting the slight loss of

information content associated with using only six months of
observations to constrain each month of fluxes. Without the
correction, the uncertainty estimated with the GFLKS would
in some cases be erroneously low, because it would ignore
the inferred temporal covariance between fluxes.

Figure 6 presents the estimated fluxes for two specific
gridcells, to evaluate the impact of the Kalman smoother
approach on estimates at the grid scale. As also seen in
Fig. 5, the estimated fluxes and uncertainties are very sim-
ilar to those obtained using the batch inversion. At the grid
scale, the inferred uncertainty is sometimes marginally lower
for the GFLKS, because the inferred temporal correlation at
the grid scale spans more than a single month, whereas the
implemented covariance correction included only one month.
If more months had been included in the covariance cor-
rection, we could have achieved the intuitive result of the
GFLKS uncertainty always being higher than that from the
batch inversion. The uncertainty at the gridscale is quite high
overall, due to the strongly underconstrained inversion setup
used in this application. Therefore, results at the gridscale
serve primarily as a basis for estimating fluxes at aggregated
scales (Fig. 5), where a single month covariance correction
was sufficient to accurately estimate the uncertainty.
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5 Conclusions

The tools developed in this paper decrease the computa-
tional costs associated with the solution of a geostatistical
inverse problem aimed at estimating fluxes of atmospheric
trace gases. For each set of estimated fluxes, the method
uses only observations that provide significant constraints
on flux distributions. The covariance between consecutive
sets of fluxes is directly incorporated into the estimation, in-
cluding covariances with flux periods for which estimates are
no longer being updated using the most recent observations.
Overall, this method makes the solution of large-scale geo-
statistical inverse problems feasible, paving the way for ad-
ditional studies on gridscale flux estimation. Note that the
proposed approach does still entail the explicit calculation
of the sensitivity of observations to estimated fluxes, in this
case using an adjoint model, but these sensitivities are only
required for the months included in the lag in each iteration.
In short, the approach provides an accurate characterization
of the a posteriori uncertainties, but the computational cost is
higher relative to variational or ensemble based methods that
involve fewer model runs but provide a more approximate
representation of the a posteriori uncertainties.

Whereas past work on the application of geostatistical
inverse modeling to trace gas flux estimation focused on
yearly-averaged fluxes, this example also demonstrates the
applicability of the geostatistical approach to inverse mod-
eling for estimating monthly-averaged fluxes. Results indi-
cate that even the constant mean model yields flux estimates
that agree well with independent flux information for well-
constrained areas of the Earth (e.g. temperate North Amer-
ica). Ongoing work is exploring the use of auxiliary envi-
ronmental data to inform a more sophisticated model of the
trend, which will allow the geostatistical approach to repre-
sent more fine-scale spatial structure in the flux distribution,
while still avoiding the use of prior flux estimates.
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