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Abstract. Inverse modeling methods are now commonly more invalid, because a priori flux estimates are likely to
used for estimating surface fluxes of carbon dioxide, usinghave consistent errors within regions. Second, the compu-
atmospheric mass fraction measurements combined with gational cost of the inversion increases, with a batch setup
numerical atmospheric transport model. The geostatisticatequiring the inversion of a matrix with dimensions of either
approach to flux estimation takes advantage of the spatiathe number of observations or the number of fluxes to be es-
and/or temporal correlation in fluxes and does not requiretimated. This computational cost becomes prohibitive as in-
prior flux estimates. In this work, a previously-developed, versions are performed using more data, at finer scales, and
computationally-efficient, fixed-lag Kalman smoother is over longer periods. One solution to the first of these prob-
adapted for application with a geostatistical approach to atlems was recently proposed by Michalak et al. (2004) in the
mospheric inversions. This method makes it feasible to perform of a geostatistical formulation of the inverse problem.
form multi-year geostatistical inversions, at fine resolutions,Such a setup does not require the use of prior flux estimates
and with large amounts of data. The new method is appliecand takes advantage of the spatial correlation between fluxes,
to the recovery of global gridscale carbon dioxide fluxes for making it particularly well suited for inversion at small spa-
1997 to 2001 using pseudodata representative of a subset titl scales. One solution to the second of these problems
the NOAA-ESRL Cooperative Air Sampling Network. was recently proposed by Bruhwiler et al. (2005) in the form
of a fixed-lag Kalman smoother (FLKS) that steps through
an inversion in multiple steps while conserving information
about the covariance between sequential sets of fluxes. This
method builds upon the time-stepping approach presented in

Inverse modeling methods are now commonly used for esti-LaW (2004), and dramatically increases the computational ef-

mating surface fluxes of carbon dioxide, using atmosphericﬁdency of inversions, while providing uncertainty estimates

mass fraction measurements combined with a numerical atglmost identical to those obtained using batch inversions.

mospheric transport model. The majority of recent studiesHowever’ the method presented in Bruhwiler et al. (2005)

have implemented a Bayesian synthesis inversion approaciﬁ’ not applicable in a geostatistical setup, due to the lack of a

(e.g. Enting, 2002) applied to continental or sub—continentalpriori estimates of fluxes. Other recently proposed numerical

regions. In the majority of these applications, the errors as_tools based on variational approaches (e.g. Chevallier et al.,

sociated with prior flux estimates were considered uncorre-zoos: Baker et al., 2006) and ensemble methads (e.g. Peters

lated, as were the errors between the modeled and observé& al., 2005; Zupanski et a_l., 2007) can_solve Igrge Inverse
measurements. Researchers and policy makers are incre oblems, but are not deS|glned to 'prowde full information
ingly interested in estimating sources and sinks of green" flux unf:ert.alntles ahd thewc;ovanance_s. )
house gases at finer spatial and temporal discretizations. This The objective of this technical note is first to develop
exacerbates two issues associated with the classical Bayesidle geostatistical counterpart to the method of Bruhwiler et

setup. First, the assumption of uncorrelated errors becomedl- (2005), yielding a method that combines the desirable
characteristics of a geostatistical setup, and offers the com-

_ putational efficiencies of the Kalman smoother. Second, the
Correspondence toA. M. Michalak new method is tested by estimating global monthly-averaged
m (amichala@umich.edu) fluxes at the 5.0 longitude by 3.75 latitude grid scale,
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using pseudodata generated at 44 observation sites from thdiscussion), the best estimatand posterior uncertainty co-
NOAA-ESRL Cooperative Air Sampling Network (Tans and varianceVz of s are defined as:
Conway, 2005), in order to verify that the proposed approach

yields estimates consistent with those from a batch geostatis-5 = Az (3)
tical inversion. V= —-XM+Q — QHTAT 4)
The reader is referred to Michalak et al. (2004) for a detailed
2 Methodology discussion of the geostatistical approach to the inverse prob-
lem as applied to the estimation of sources and sinks of at-
2.1 Geostatistical inverse modeling mospheric trace gases. For the discussion presented in this

o ] o _ paper, we will be estimating a total Gf months of fluxes,
The geostatistical approach to inverse modeling is a Bayesiagiscretized ton regions globally, using” sets of monthly-

approach in which the prior probability density function is averaged observations, sampled kcations (i.e M=T sm;
based on an assumed form for the spatial and/or temporay; _ 7).

correlation of the surface fluxes to be estimated. This dif-

fers from the traditional Bayesian approach, where the prior2 2 Fixed-lag Kalman smoother

information is in the form of initial surface flux estimates.

Geostatistical flux estimates are not subject to some of therhe size of the matrix that must be inverted in the solu-
limitations of traditional Bayesian inversions, such as poten-jon of a synthesis Bayesian inversion is eitliafxN) or

tial biases created by the choice of prior fluxes and aggrega¢as x pmr), depending on the selected setup (see, for exam-
tion error resulting from the use of large regions with pre- ple, Enting, 2002). The cost of the geostatistical inversion
scribed flux patterns (Michalak et al., 2004). The geostatisti-is almost identical, with the typical inversion being set up
cal approach is also ideally suited to inversions at fine spatialn (N+p) x (N+p) format (see Eq2), and an equivalent
scales. The objective function used in the solution of a linear a7 4 p) x (M p) system being the alternative (not shown).
geostatistical inverse problem is the negative logarithm of thegiven that the geostatistical approach to the inverse problem

a posteriori probability density functiop’: is particularly interesting when fluxes are to be estimated at
In(p" fine spatial resolutions, the system is typically underdeter-
Ls.p = I n(p" (s, Bl2)) mined (M >N), and the form presented in E®)(is more
= >z —Hs)T RL(z — Hs) computatlona!ly economical. . .
As the spatial and or temporal resolution of the fluxes in-
+ 2 =XBT Qs —XB) (1) creases gnd as the total time period for which the fluxes are
2 to be estimated becomes long&f,becomes very large and

solutions in thg M x M) or (M+p) x (M+ p) form become
computationally prohibitive. Similarly, as the amount of data
increases as a result of observation network expansions, an
increase in the sampling frequency, and/or an increase in
the total time period for which the fluxes are to be esti-
mated,N becomes very large and solutions in tdéx N) or
(N+p) x (N+p) form become computationally prohibitive.

are unknown drift coefficients (e.g. the fluxes can have a Conj'hese two situations are currently happening simultaneously,
stant but unknown mean), and théf x M) flux covariance as researchers strive to estimate more fluxes using more data.

matrix Q is based on a spatial and/or temporal correlation Recently, Bruhwiler et al. (2005) proposed a fixed-lag
structure of flux deviations from the mean trend. The inverse/@man smoother (FLKS) to remedy this situation for syn-
problem involves solving for bot§ ands, and the form of thesis inversions. This method allows for the sequential esti-

the solution is therefore different from the classical Bayesianmation of a subset of, sets of fluxes (e.g. monthly-average
setup (Michalak et al., 2004). fluxes) using a subset ¢f sets of data (e.g. monthly-average

The best estimates ofare obtained by finding the mini- observations), while providing a rigorous method for track-
mum of L, g with respect to botls andg. After some alge- ing the inferred temporal and spatial covariance between sub-
S, .

bra the system of linear equations can be expressed as: sets of fluxes. The method is illustrated in Fig. 1. In the ex-
" ample in the figure, each set of monthly fluxes is estimated
[HQHT+R HX} [AT]

HQ a total of three times,{=3), each time using one month of

(HX)T 0 M [ xT } () atmospheric observationg, £1). For each iteration, the lat-
est estimate available for each month of fluxes and its co-
and, after solving for the observation weigiAsand the La-  variance are used as prior information. A covariance propa-
grange multiplierd (see Michalak et al., 2004 for a detailed gation scheme allows for correlations between fluxes being

whereH is an(N x M) matrix of sensitivities of the observa-
tions z (with dimensionsN x 1) to the discretized unknown
surface flux distributiors (with dimensionsM x 1), R is the
(N x N) model-data mismatch covariance matg is the
model of the mean of the flux distribution, whexe (with
dimensionsM x p) contains known information on the form
of the mean trend of the fluxes agdwith dimensiong x 1)
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estimated and fluxes no longer being estimated to be congiven month’s fluxes, but needs to use the latest (a posteriori)
served. Mathematically, each step of the FLKS proceeds asstimates for subsequent estimates of a given month'’s fluxes.

follows: This requires a substantial modification to the form of the
1 Kalman smoother because each step through the smoother
§=s5,+QH" (R+HQH T) (z —Hs,) (5)  involves both flux periods being estimated for the first time
-1 (with no prior flux estimate), and months being estimated for
V=Q-QH" <R+HQH T) HQ (6)  atleast the second time (with the latest flux estimates used as
priors).

wheres and s, now have dimensionss,,xm), z has di-

mensions(z,+n), and the other matrix dimensions are de- 4 japles associated with the newest set of fluxes which have
fined accordingly. In a typ_lcal setup, a single month_ o not yet been estimated, will refer to variables associated
monthly-averaged observations would be used at a timey i fixes that have been estimated at least one] refer

yielding a setup that requires the inversion of/afn ma- 4, ariables associated with fluxes that are no longer being
trix. An equivalent form requiring an inversion of dimension estimated, ang will refer to flux estimates from a previous

(tm*m) X (tm*m) is: iteration.

We start with two populations of fluxes currently being es-
timated: s; are the fluxes that have already been estimated
at least once, ansl; are the fluxes that have not yet been
estimated. In Sect. 2.3.3, we will also refersto which rep-
resent one or more months of fluxes which are no longer be-
ing estimated, but whose inferred covariance witlcan be
incorporated into the estimation. In the case where each iter-
ation adds one month and removes one month of fluxes from
of model-data mismatch for these observations, Ence- the active state (i.e. the set of fluxes being estimated in that

lates the single month of observations to the several monthéFep)’ the dimensions ef arem (1, —1) x1, and the dimen-

of fluxes being estimated. In each iteration of the smootherSIONS Ofsi aremx1. The latest estimate af; obtained in

some fluxes are estimated for the first time, using a priori fluxth® Previous iteration is designategl whereas the model for
estimates in the corresponding portionssgf Other fluxes the mean behavior of fluxes not yet estimated is designated

are estimated for at least the second time, using the latesfkB«- The latest estimate of the covariancesgfis desig-

estimates of these fluxes from previous iterations in the corlnatedQ;;, the prior covariance oy is designate®y, and

responding portion of ,. The reader is referred to Bruhwiler the cross-covariance betweep ands is designated .
et al. (2005) for additional details, including the equivalent JOIntlY; these covariances are defined as
equations for the case where the covariance is to be con- [ij ij}

served between fluxes being estimated and fluxes no long®= Qi Qu

being estimated. Note that this approach does still require !

the calculation of the sensitivity of each observation to theNote that given that the fluxag have not yet been estimated
estimated fluxes, but these sensitivities only need to be cali the inversion,Q;; andQy; represent any prior informa-
culated for the number of months included in the lag of thetion on the temporal covariance between fluxgandsy. In

Kalman smoother. These sensitivities can be calculated usingubsequent steps of the Kalman smoother, the covariance be-
an adjoint formulation of the atmospheric transport model intween consecutive months of fluxes will be determined based

the case whera/> N, yielding one model run per observa- both on this prior information as well as temporal covariance

In the discussion that follows, the subscripuill refer to

T=spt (HTR‘1H+Q_1)71 H'R™(z—Hs,)  (7)
Vs = (HTR’lH—IrQ’l)_l (8)

In this approachs, are the most recent estimates of the
subset of fluxes being estimated in a given s@s the most
recent estimate of their covariangds the month of data be-
ing used to update these flux estimateds the covariance

©)

tion. information derived from the atmospheric data. If no tem-
poral covariance is assumed a pri@iisz,fj =0. The ob-
2.3 Derivation of the Geostatistical Kalman smoother jective function defining an inverse problem involving fluxes

. . . that have a prior estimate and others that do not can be writ-
The form of the solution developed in Bruhwiler et al. (2005) ten as:

is compatible with the classical Bayesian approach. For the
case of monthly flux estimates, independently obtained fluxLs; s;., = (Zk—Hij—Hksk)T R~ (zk—H s ;—Hgsy) (10)
estimates (typically from flux inventories and/or biospheric T -1

. . . . . . S _ Sp ij ij S - Sp
models) are used as prior information the first time a given+ ([ ] [X 8 D [Q ) ] <[s ] [X 8 ])
month of fluxes is estimated, and the latest (a posteriori) es- Pk k Sk ¢ Pk
timate is updated in the subsequent steps using additionatvhereH; is the sensitivity of the new observations to
months of atmospheric data. In the geostatistical approacHjuxess;, andH; is the sensitivity of these same observa-
the system needs to account for the unknown components dfons to fluxess;. Note that throughout this derivation, the
the model of the mearg] in obtaining the first estimate of a observationg have the background state (i.e. the effect of
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Y H,; - 0 0 0 0 0 1} e 0 S|
Y H; -- Hy, Hy, Hy 0 0 0 0 S/
Vi1 Hi o+ Hpgo Hpgo Hpyg B 0 0 0 Si1
Y2 B Hpop -+ Hpopo Hpopr Hpoy Hipopn Hpogo 0 0 S
Vi3 Hisp -+ Huzgo Hpsgo Husy Hispr Hpspo Hipsps - 0 Sit1
Via Hpay -+ Hpyago Hpapr Hpay Hpap Hpapo Hpgps - 0 S1i2
Yis Hysg -+ Huyspo Hpspo Hysg Hiospo Hospo Hpsps -+ 0 Si13
Yy Hyy -+ Hyi2 Hye Hyy Hygw Hypge Hyps o+ Hyw Sy

Fig. 1. Representation of time stepping through fixed-lag Kalman smoother. The subscripts indicate month nhumbers. In the presented
example, four consecutive steps through the GFLKS are presented in orange, blue, pink, and green, respectively. Notice that observation:
are only sensitive to fluxes occurring in the same or previous months, afithth@nth of observations is therefore used to constrain fluxes

for monthsl—#,,+1 through/.

the months that we are no longer estimating) pre-subtractedderived, which instead only requires the inversion of an
In the next iteration, part of; drops out of the active state ((t,*n) 4+p) x ((tn*n) +p) matrix:
and its estimate is treated as the final best estimate, whereas

T
s, becomes part of ;. For the example presented in blue in HQH +RT Hkxk] [AT} = [ HQT } (13)
Fig. 1,5 ;= {s;_1, 51}, andsy= {s;1}. For the nextiteration, L (HXx) 0 M [0 X{]
presented in red,; = {s;, s;+1}, ands,= {s;42}. where the best estimate of the fluxes becomes:
2.3.1 Best estimate (5 s
§ii|:|:6’}+A(z—Hjsp) (14)

First, let us define the inverse @ as: _ )
In subsequent iterations through the smooftfeand the por-

o-l= Qjj Qjk _1= (Q_l)jj (Q_l)jk (11) tions of s; that will be estimated again become the new pri-
Qkj Qi (Q_l)kj (Q_l)kk orssp.

where (Q71) . # Q. To obtain the best estimate of the
fluxes, we take the first derivative of the objective function in The inverse of the Hessian is typically used in inver-
Eq. (10) with respect 1o, s¢, and B, and set it to zero in  gjong as an estimate of the posterior covariances and cross-
order to minimize the objective function. Manipulating these ¢y ariances of fluxes. In this case, taking the second deriva-
three equations and putting them into a system of equationg, e of the objective function with respect 19, s;, andg,,

2.3.2 Posterior covariance

we obtain: individually and in combination, we obtain:
1 R
HTR71H+Q_1 _ (Ql)]k:| X i] va\_,;'s\j V?j_§k V’s‘jﬁ
(Q )kk ’S\k Vg‘\k,g‘\j V’s\k.fv\k Vfg\kﬁ (15)
XT[@71)y @ ] X (@Y% | LA Ves Via VB
HTRLy+ (Q7Y) . s -1 -
J Jji~P Tp-1 -1 (Q )'k
= | H{R '+ (Q7Y);sp (12) - HIRTHTQ - [(Ql)zk X
—XI'(Q7Y),.s [ (0-1 -1 T (-1
k kj®P =X [(Q )i (@ )kk] X (Q7H) e X

whereH= [H; I'I"kh] I?I the fL:)” sensitivity mgtrlxhqf :he ob- whereV. . represents the a posteriori covariance components
servations to all the fluxes being estimated. This linear sySy¢ ¢ °¢, " andg,. Following algebraic manipulations, the
tem of equations is then inverted to obtain the best esti-

he ab ¢ X ) he i Iposterior covariance of the fluxes can be expressed in terms
mates. The above system of equations requires the inverg; e solution to Eq.13):

sion of a matrix of dimension&z,, xm) +p) x ((t,*m) +p).

Following some linear algebra manipulations, a form anal- |:V§/,”s~j ng_;k}

0
ogous to the batch geostatistical inverse problem can bé/ 5=

=— [x ]M+Q—QHTAT (16)
k

V5.5 Va5
J B
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In subsequent iterations through the smoother, the portiowith respect tos;, s;, s, and g,. We then take into ac-
of V4 corresponding to fluxes that will be estimated again count the fact that, given that we are no longer updating
becomes the ne®;;. E [si — sp,i] =0, and manipulate the resulting three equa-
tions as outlined in Sect. 2.3.1. to obtain:
2.3.3 Covariance correction
[HQHT+R Hkka }_[ HQ } (20)
As discussed in Bruhwiler et al. (2005), we want to include (HeX)” 0 M | L[0X]]
the covariance between fluxes no longer being estimated andh ore
those still being estimated to avoid underestimating the un-
certainty associated with fluxes being estimated at each ste% [ij ij} B ([Q,l } (0] [Q Q ]>
In order to do so, we perform the derivation described above Qxj Qkx i ij ik
a second time, this time including the influence of fluxes no
longer being estimated;. First, let us define the inverse of 2nd the estimated fluxes are:

Qas: ) 9 [;Z } = [ 5’} +A (z—Hjs)) (22)
Qii Qij Qix
Q'=|Q;i Q;; Qu An analytical expression for the a posteriori uncertainty that
| Qui Qkj Qkk takes into account the cross-correlation between fluxes no
(17) longer being estimated and those still being estimated can
- _1 _1 _1 be derived in a manner analogous to the method presented
[(Q )ii] [(Q )ij (Q )ik] in Bruhwiler et al. (2005). Given the influence of the uncer-
= (Qfl) ’ (Q_l)jj (Q—l)jk tainty.of B on th_e uncertainty of the fluxes, however, the
(Q—l)j‘ (Q—l) ' (Q—l) resulting expression becomes exceedingly cumbersome. A
ki ki kk computationally equivalent but simpler solution is to present
whereQ;; represents the final covariance of fluxes that arethe resulting covariance as a subset of a larger covariance by
no longer being estimated, but that are temporally correlategolving the system in Eq1@), but whereH= [Hi H; Hk]
to the current set of estimated fluxeg;;, Qix, Q;i, andQy; andQ is as defined in Eq.1@). The solution of the system
represent the inferred or assumed covariance between theskefines the posterior covariance:
older fluxes and the currently-estimated set. The portion of
the inverse corresponding to the fluxes currently being esti- Vas] [Vas Vas]

mated is: [ng@ :| [nggj ng,gk:|
51— | @9, Q) Vas | LVas, Vo
@), (@ . o
=—[xk}“"+Q—QH A (23)

_ [[ Qi Qx Uilro 1110 0.1\ 1
B {[Qg sz} a ([ . } [Qil ™[ Qs Q’k])}(lg) where we only keep the lower right-hand block for future

The corresponding objective function in the case of a geosta'te:j""ttIons because we are no longer updating estimates of
tistical Kalman smoother becomes: and its covariance.

T ~—
sz,sk’ﬂk = (Zk—Hl’Si—Hij—Hksk) R 1
- (zx—Hisi—Hjsj—Hisi)

(21)

3 Sample application

_ o T 1 The following section describes an application of the geo-
Si Spi Qii Qij Qik statistical fixed-lag Kalman smoother (GFLKS) to the esti-
TS| | Spi Qji Qjj Qi mation of global monthly-averaged surface fluxes ofL,@®
s ] L XeBr Qi Quj Quk a 3.7% latitude by 5.0 longitude grid. Because the goal is
(s: ] [ spi | to validate the proposed method, we choose a setup that is
si|—1 sp, (19)  sufficiently small such that a batch geostatistical inversion
Use || XeBe can still be performed. We also use pseudodata (with added

noise) to evaluate the ability of the method to recover the ac-
wheres; are fluxes that we are no longer estimating buty 5 fluxes.

that are correlated with the current set of fluxes. For the

example presented in blue in Fig. 1, assuming that a sin3.1 Data and basis functions

gle month is used for the covariance correctigns {s;_»},

sj={s;—1,s;}, and sy={s;y1}. To obtain the best esti- Assumed flux distributions were used to generate the pseu-
mate of the fluxes, we minimize this objective function dodata for the experiment. The flux data that were used to

www.atmos-chem-phys.net/8/6789/2008/ Atmos. Chem. Phys., 8, 678992008
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Fig. 2. Sample fluxes used in generating pseudodata.These fluxes represent the sum of the fossil fuel, oceanic exchange and net ecosyste
production fluxes. Fluxes vary monthly, but only January, April, July, and October fluxes are presented here. urritslli{m@s).

generate the pseudodata were selected to reflect a realistadjoint implementation of the Tracer Model 3 (TM3) atmo-
set of fluxes for CQ. The estimates used for fossil fuel spheric transport model (Kaminski et al., 199%)denbeck
(FF), oceanic exchange (OE), and net ecosystem productioat al., 2003). Sensitivities relating monthly averaged G
(NEP) were the same as those applied as priors in the Atmoservations at a subset of the NOAA observation network sites
spheric Tracer Transport Model Intercomparison Project 3to monthly averaged grid-scale fluxes were calculated by
(TransCom3) (Gurney et al., 2002, 2003). All fluxes usedRddenbeck et al. (2003) for 1982—-2001, and the 1997-2001
to generate the pseudodata are constant from year to yeasubset of this transport information is used for the work pre-
but OE and NEP fluxes have monthly within-year variations sented here. The model uses interannually varying ECMWF
whereas FF fluxes are assumed constant. Note that althoughind fields.
the fluxes used to generate the pseudodata do not exhibit In an effort to generate a set of pseudodata that is consis-
year-to-year variability, the inversion does allow for such tent with the amount of data typically used in inversion stud-
variability to be inferred. All flux data were defined on a ies, the available basis functions were used to generate pseu-
3.75 latitude by 5.0 longitude grid, which yields a 4872 dodata for months and NOAA-ESRL sites where actuap CO
surface grid with a total of 3456 regions for which the sur- data are available. Therefore, although the observational data
face fluxes are defined and will be estimated. Over the fivehave been numerically generated, their spatial and tempo-
year period, this results in 207 360 unknowns. Samples ofal distribution represents a subset of the NOAA-ESRL Co-
the fluxes used to generate the pseudodata are presenteddperative Global Air Sampling Network’s data collected for
Fig. 2. Note that these fluxes are used only to generate th&997 to 2001. Overall, the dataset consists of 2275 monthly-
pseudodata and are not used in any way in the inversion. averaged datapoints, collected over 60 months at a total
The sensitivity of the atmospheric measurements to surof 44 sites. Random error with a standard deviation of
face fluxes (represented by matkb is calculated using an o=0.25ppm was added to the pseudodata to simulate the

Atmos. Chem. Phys., 8, 6788799 2008 www.atmos-chem-phys.net/8/6789/2008/
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30°N @ 60 ® 60
® 59430

30°s -

60°S ~

59

180 °W 120°W 60 °W 0° 60 °E 120°E 180°W

Fig. 3. Locations of pseudodata measurements. The numbers indicate the number of monthly averaged measurements available at eac
location. Note that the two locations listing a sum are areas where two observation locations are too close to one another to be resolved
on the plot. This occurs for (i) St. Davids Head, Bermuda (BME), and Tudor Hill, Bermuda (BMW), and (ii) Mauna Loa, Hawaii (MLO),

and Cape Kumukahi, Hawaii (KUM). Black squares designate gridcells for which flux estimates are compared to prescribed fluxes in Fig. 6.
Shaded areas represent the Temperate North America and South Atlantic TransCom3 regions, for which flux estimates are compared tc
prescribed fluxes in Fig. 5.

effect of measurement and transport errors. Although this ering a constant mean model with a different mean for land
ror is unrealistically low for real applications, the goal here and ocean fluxes. These constants, however, are allowed to
was to magnify any differences between a batch approaclary month to month. The restricted maximum likelihood
and the GFLKS. Because using a low model-data mismatctapproach (e.g. Michalak et al., 2004) can be used to esti-
increases the adjustments that must be made from the a prinate the covariance parameters in a geostatistical inversion,
ori to the a posteriori covariance matrix, and the degree tancluding the spatial and/or temporal covariance term@in
which flux estimates deviate from their overall trexd, any  and the model-data mismatch covariance parameteRs in
approximations caused by the GFLKS would be more easyGiven that this has been demonstrated previously and that
to detect when using a low model-data mismatch. Note thatve are working with pseudodata, we chose here to focus on
not every station has data at every month. A map illustratingthe inversion step and have prescribed the covariance param-
the sites at which data was modeled, as well as the numbesters based on the variability of the fluxes used in generating
of months for which these sites were sampled, is presented ithe pseudodata. A priori, temporal covariance is not con-
Fig. 3. Given the 2275 observations and the 207 360 fluxesidered in this case, land fluxes are assumed independent of
to be estimated, the inversion is strongly underdetermined. ocean fluxes, and the spatial covariance was modeled as an
exponential decay, leading to:
3.2 Inversion setu
P Qup = UéeXp<—M> , if t,=t, and g,=g, (24)
We assume that the background concentration in the atmo- Q
. . . S Quv=0, otherwise
sphere prior to the start of the inversion period is known, =™
in order to avoid the “ramp-up” period typically necessary where||x,—x,| is the great circle distance between gridcells
where the first several months of estimated fluxes are nonat locationsx,, andx,, ¢, andz, are the dates of the esti-
sensical as they simply represent the inversion’s attempts tonated fluxes, ang is a binary variable identifying whether
reproduce the initial background concentration. As was done particular gridcell is land or ocean. This setup leads to a
in Michalak et al. (2004), surface fluxes are estimated us-block-diagonalQ matrix. The covariance parameters were
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Fig. 4. Sample gridscale fluxes recovered using geostatistical fixed-lag Kalman smoother. Fluxes vary monthly, but only January 2000,
April 2000, July 2000, and October 2000 fluxes are presented here. Unnsrmié(rr?s). The corresponding fluxes obtained using a batch
inversion were visually very similar to those obtained using the Kalman smodteFlux best estimates(b) A posteriori uncertainties

expressed as the standard deviation of the estimation error.
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Fig. 5. Monthly recovered flux estimates and uncertainties for the year 2000 aggregated to the TransCom3 regions. Results for Temperate
North America and South Atlantic are presented in pa(elsnd (b). Uncertainties on the GFLKS are in dashed line; uncertainties for

the batch inversion are shaded. Parfe)sand(d) represent the difference between estimates and uncertainties obtained using the Kalman
smoother, those obtained using a batch inversion, and the true fluxes used in generating the pseudodata. Note that the difference betwee
estimation uncertainties (dashed line) are amplified by an order to magnitude to make them visible on the same scale as the flux differences

<75:0.40(Mmol(mzs))2 andl/p=2700 km for land fluxes, and has established that the vast majority of information about
02=3.0x10"3(umol(n?s))? and /p=5730km for ocean monthly-averaged fluxes can be derived from the six months
fluxes. The model-data mismatch was modeled as indeperpf Subsequent observations. Therefore, even for inversions
dent with a fixed error variance, equal to the variance of thecovering many years, the dimensions of the matrix to be in-

errors actually added to the generated pseudodata: verted is limited to six months of observations, making the
5 problem computationally manageable.
R=a%lx (25) Estimated gridscale fluxes for selected months of 2000

wherel. is an identity matrix of dimensions. Based on &€ presented in Fig. 4. These fluxes were obtained us-
" y ) ing the proposed Geostatistical Fixed Lag Kalman Smoother

the work of Bruhwiler et al. (2005), we chose 1o include method. Equivalent fluxes obtained using a batch inversion
6 months of fluxes in the active state. This means that each - =d 9

month of fluxes is constrained by the subsequent 6 months oz?re visually very similar t_o th_os_e n F'.g' 4 and are therefore
: . not presented here. This similarity indicates that the pro-
available atmospheric data.

posed method is able to reproduce estimates obtained using
the geostatistical batch inversion in cases where a sufficient
amount of observations (in this case 6 months) are used to
estimate each month of fluxes. The estimated fluxes are
The main goal of the proposed approach is to decrease th&mnoother than the true fluxes presented in Fig. 2, which is
computational cost associated with solving large-scale geoindicative of the strongly underconstrained nature of the in-
statistical inverse problems aimed at constraining budgets o¥erse problem.

atmospheric trace gases, while providing a best estimate and Figure 5 presents a time series of the estimated fluxes
estimated uncertainty equivalent to those obtained using aggregated for two of the TransCom regions, Temperate
batch inversion, where all fluxes are estimated using all availNorth America and the South Atlantic. As presented in
able measurements. Past work by Bruhwiler et al. (2005)panels (c) and (d), the difference in the best estimates and

4 Results and discussion
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Fig. 6. Monthly recovered flux intensity estimates and uncertainties for the year 2000 for two sample gri@iellatitude= [41.25N,

45.00 N], Longitude=[85.00 W, 80.00 W], surrounding Ann Arbor, Michigéy).Latitude=[33.75 S, 30.00 S], Longitude=[10.00 W, 5.00 W]

in the South Atlantic. Uncertainties on the GFLKS are in dashed line; uncertainties for the batch inversion are shade(t) Badé&iy

represent the difference between estimates and uncertainties obtained using the Kalman smoother and those obtained using a batch inversic

uncertainty estimates relative to the batch inversion are verynformation content associated with using only six months of
small relative to the magnitude of the estimated fluxes andobservations to constrain each month of fluxes. Without the
their uncertainties. The best estimates obtained using theorrection, the uncertainty estimated with the GFLKS would
proposed approach are very similar to those obtained usin some cases be erroneously low, because it would ignore
ing the batch inversion approach. The average a postethe inferred temporal covariance between fluxes.

riori uncertainties, expressed as a standard deviations, are Figure 6 presents the estimated fluxes for two specific
0.45 GtClyear and 0.46 GtCl/year for the batch and GFLKSgridcells, to evaluate the impact of the Kalman smoother
inversions, respectively. The uncertainties for the South At-approach on estimates at the grid scale. As also seen in
lantic are 0.32 GtCl/year and 0.34 GtClyear, respectively. The-ig. 5, the estimated fluxes and uncertainties are very sim-
difference between these two sets of results could be furtheilar to those obtained using the batch inversion. At the grid
decreased by using additional months of observations to conscale, the inferred uncertainty is sometimes marginally lower
strain each month of fluxes, if such a computational tradeofffor the GFLKS, because the inferred temporal correlation at
were deemed appropriate. The differences between estimatéise grid scale spans more than a single month, whereas the
are more pronounced relative to the magnitude of the totaimplemented covariance correction included only one month.
flux for underconstrained regions such as the South Atlantic)f more months had been included in the covariance cor-
where more time is required for the flux signal to propagaterection, we could have achieved the intuitive result of the
to observations. This is also consistent with the fact that theGFLKS uncertainty always being higher than that from the
relative a posteriori uncertainty is also larger for the Southbatch inversion. The uncertainty at the gridscale is quite high
Atlantic. Importantly, the uncertainty estimated using the overall, due to the strongly underconstrained inversion setup
GFLKS with the covariance correction reflects the informa- used in this application. Therefore, results at the gridscale
tion content of the observations used to constrain the fluxesserve primarily as a basis for estimating fluxes at aggregated
As such, the uncertainty estimated using the Kalman filter isscales (Fig. 5), where a single month covariance correction
always slightly higher, correctly reflecting the slight loss of was sufficient to accurately estimate the uncertainty.
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