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Abstract. The degradation mechanism of 1,3,5-trimethyl-
benzene (TMB) as implemented in the Master Chemical
Mechanism version 3.1 (MCM) was evaluated using data
from the environmental chamber at the Paul Scherrer Insti-
tute. The results show that the MCM provides a consistent
description of the photo-oxidation of TMB/NOx mixtures for
a range of conditions. In all cases the agreement between
the measurement and the simulation decreases with decreas-
ing VOC-NOx ratio and in addition with increasing precur-
sor concentration. A significant underestimation of the de-
cay rate of TMB and thus underestimation of reactivity in
the system, consistent with results from previous appraisals
of the MCM, was observed.

Much higher nitrous acid (HONO) concentrations com-
pared to simulations and expected from chamber characteri-
zation experiments were measured during these smog cham-
ber experiments. A light induced NO2 to HONO conver-
sion at the chamber walls is suggested to occur. This photo-
enhanced NO2 to HONO conversion with subsequent HONO
photolysis enhances the reactivity of the system. After the
implementation of this reaction in the model it describes the
decay of TMB properly. Nevertheless, the model still over-
predicts ozone at a later stage of the experiment. This can
be attributed to a too slow removal of NO2. It is also shown
that this photo-enhanced HONO formation is not restricted
to TMB photo-oxidation but also occurs in other chemical
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systems (e.g.α-pinene). However, the influence of HONO
as a source of OH radicals is less important in these more
reactive systems and therefore the importance of the HONO
chemistry is less obvious.

1 Introduction

Volatile organic compounds (VOC) are emitted into the at-
mosphere from anthropogenic and biogenic sources. Aro-
matics are mostly emitted by fuel combustion and evapora-
tion and will therefore influence mainly urban areas where
they contribute 16–44% to the total hydrocarbon mass emit-
ted into the atmosphere (Calvert et al., 2002; Derwent et al.,
2000; Molina et al., 2007). Thus they contribute significantly
to the production of ozone and other secondary pollutants in
these areas. Special attention has been paid to the ability of
aromatics to form secondary organic aerosol (SOA) and its
effect on human health and the environment/climate. Even
in urban areas more than 60% of the total organic aerosol
mass can be attributed to SOA (Lanz et al., 2007).

The most abundant aromatic hydrocarbons are alkyl ben-
zenes such as toluene, xylenes, trimethylbenzenes and their
analogues (Calvert et al., 2002). In recent years research
has been quite active to better understand and describe the
degradation of aromatic hydrocarbons. The Master Chemi-
cal Mechanism (MCM) is an almost explicit chemical mech-
anism describing the degradation of a large number of VOCs.
The mechanism construction protocol is described in a se-
ries of publications (Jenkin et al., 1997, 2003; Saunders et
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al., 2003a). The aromatic mechanism as represented in the
MCM was recently updated (Bloss et al., 2005b) and evalu-
ated against environmental chamber data during the EXACT
project (Bloss et al., 2005a). Although the updated mecha-
nism shows improved ability to model these European Pho-
toreactor (EUPHORE) experiments, significant deficiencies
in the aromatic mechanism remained. It was shown that
in general the mechanism tends to over-predict the ozone
formation and to underestimate the reactivity in the system
(Bloss et al., 2005a). This is conflicting as one could re-
duce the ozone formation by reducing the RO2 concentration
which limits the conversion of NO to NO2 but this will also
lead to a reduction in OH formation and thus of reactivity.
Therefore, the challenge is to find a chemical process that
enhances the reactivity of the system without increasing the
NO to NO2 conversion rate.

Due to the well defined conditions under which smog
chamber experiments can be performed, they are highly valu-
able for the development and evaluation of chemical mech-
anisms and to get a better understanding of processes lead-
ing to SOA formation. There have been a number of studies
evaluating the Master Chemical Mechanism against data of
different compounds from various environmental chambers
e.g. aromatics, including TMB (Bloss et al., 2005a; Wagner
et al., 2003), ethene (Zador et al., 2005), isoprene and its oxi-
dation products (Pinho et al., 2005) as well as various alkenes
(Hynes et al., 2005; Pinho et al., 2006) and monoterpenes
(Pinho et al., 2007; Saunders et al., 2003b). Usually chamber
experiments are performed using higher concentrations than
found in the atmosphere. Therefore it was shown that O(3P)
reactions become important under chamber conditions which
are negligible in the atmosphere (Hynes et al., 2005; Pinho
et al., 2005, 2006 2007). Sensitivity studies showed that wall
reactions as well as uncertainties in the photolysis rates can
significantly influence the system under observation (Bloss
et al., 2005a, b; Carter et al., 2005; Hynes et al., 2005; Pinho
et al., 2005).

In this paper we describe the evaluation of the Mas-
ter Chemical Mechanism of 1,3,5-trimethlybenzene photo-
oxidation using the data from the Paul Scherrer Institute
(PSI) chamber. In addition, experiments conducted in the
Statewide Air Pollution Research Center (SAPRC) chambers
are also evaluated to confirm our measurements. We sub-
stantially extend the number of experiments and variations of
experimental conditions for aromatics compared to previous
studies in the EUPHORE (Bloss et al., 2005a). We also con-
sider the sensitivity of the reaction system to chamber wall
reactions and evaluate mechanistic variations reported in lit-
erature. We propose a photo-enhanced conversion of NO2 to
HONO on the chamber walls in the presence of VOCs to be
responsible for part of the discrepancies between model and
measurements.

2 Experimental

2.1 Reaction chamber

Details of the indoor PSI chamber, the experimental setup
and the instrumentation are extensively described elsewhere
(Paulsen et al., 2005). Briefly, photo-oxidation experiments
were carried out in the 27 m3 FEP chamber at∼20◦C and
∼50% relative humidity (RH). The chamber was first hu-
midified before introducing NO and NO2. A known amount
of the compound of interest (1,3,5-trimethylbenzene, Fluka,
99.5%) was evaporated in a heated glass sampling bulb and
flushed with pure air into the chamber where it was allowed
to equilibrate for 30 min. Four xenon arc lamps were used
to simulate the solar light spectrum and start the photochem-
istry.

2.2 Instrumentation

TMB and its oxidation products were monitored using
proton-transfer-reaction mass spectrometry (PTR-MS, Ion-
icon Analytik GmbH, Austria). The sensitivity of the instru-
ment was determined using several gas standards (Apel &
Riemer Environmental Inc., USA) containing TMB and a to-
tal of 27 alcohols, ketones, and aldehydes. For compounds
for which a standard was available an uncertainty of 5% was
attributed to the data. For all compounds for which no au-
thentic standards were available an average sensitivity, de-
rived from the available calibrations was applied to the data.
The associated uncertainty of 30% was attributed to these
measurements.

Ozone was measured by UV absorption with a com-
mercial Environics S300. NO and NO2 were quantified
with a Thermo Environmental Instruments 42C trace level,
which was equipped with a photolytic converter (Blue light
Converter of Droplet Measurements Technologies, Boul-
der, CO) to selectively reduce NO2 to NO. The latter was
then detected by NO+O3 chemiluminescence. Formalde-
hyde (HCHO) was measured with the Hantzsch method as
described by Kelly and Fortune (1994) and discussed in Hak
et al. (2005) or Steinbacher et al. (2004) (Supplementary
Information http://www.atmos-chem-phys.net/8/6453/2008/
acp-8-6453-2008-supplement.pdf).

2.2.1 Nitrous acid (HONO) measurements

The measurement of HONO is quite complex and needs ei-
ther additional instrumentation or a special setup of the in-
struments running at the PSI chamber. Therefore only a lim-
ited number of experiments with HONO data are available,
among them six TMB experiments. Several methods to mea-
sure nitrous acid were applied.

For a set of experiments, a Long Path Absorption Pho-
tometer (LOPAP), which is described in detail elsewhere
(Heland et al., 2001; Kleffmann et al., 2002) was used.
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Briefly, HONO is sampled in a stripping coil by a fast chem-
ical reaction and converted into an azo-dye which is photo-
metrically detected by long-path absorption inside a special
Teflon tube. The technique was successfully validated with
the DOAS technique under field and smog chamber condi-
tions (Kleffmann et al., 2006).

As the LOPAP instrument was only available for a short
period the PTR-MS technique was expanded to the measure-
ment of gaseous nitrous acid. HONO was measured in its
dehydrated form [MH+-H2O] (m/z 30). The standard set-
tings of the instrument were changed to reduce the high sig-
nal background ofm/z 30 which is a result of the reaction
of N2 and O2 in the ion source producing NO+. The signal
shows interference towards HONO formation from NO2 on
the surface of the inlet and the drift tube of the PTR-MS in-
strument. Therefore, a Na2CO3 scrubber was intermittently
placed in front of the inlet to selectively scrub out HONO
and derive the NO2 interference. HONO was calculated from
the difference between signals with and without the scrubber
(Wisthaler et al., 2005).

In parallel to the PTR-MS technique a wet effluent diffu-
sion denuder (WEDD) coupled to an ion chromatography –
mass spectrometry (IC-MS) system was also used. Briefly,
air was aspired through a membrane-based parallel plate de-
nuder (Takeuchi et al., 2004). The air flow rate was set
to 1 L/min and samples were taken for 0.5 h. The water
(Millipore, Milli-Q, 18 M �×cm) was continuously pumped
through the denuder at a flow rate of 0.5 ml/min at counter
flow to the air. The water flows through the two denud-
ers were each collected and concentrated on a trace con-
centrator column (TAC-LP1, Dionex) and were then ana-
lyzed using (IC-MS) in a quasi-continuous fashion. The
mass spectrometer (MSQ, Dionex) has a single quadrupole
mass detector and uses the atmospheric pressure ioniza-
tion (API) technique which is operated using electrospray
ionization (ESI). To test possible interferences two denud-
ers were connected in series. As the measurements suf-
fer from interferences (Gutzwiller et al., 2002) the method
was only applied for experiments with low initial precur-
sor concentrations and for cross calibrations of the PTR-MS
technique using a pure HONO source (see Supplementary
Information http://www.atmos-chem-phys.net/8/6453/2008/
acp-8-6453-2008-supplement.pdf).

2.3 Overview of the available experiments

A list of TMB photo-oxidation experiments, along with the
range of initial conditions is given in Table 1. In addition
to the experiments from our laboratory, experimental results
from the SAPRC indoor chambers (Carter et al., 1995b) were
also used in the evaluation. Measurements from the Di-
vidable Teflon Chamber (DTC) and the Xenon Arc Teflon
Chamber (XTC) are included. Similar to our chamber these
are built in Teflon, but are somewhat smaller with a vol-
ume of around 5 m3 and a surface-to-volume ratio (S/V) of

Table 1. List of 1,3,5-trimethylbenzene experiments with the ranges
of initial concentrations, VOC/NOx ratio and relative humidity.

PSI CTCb DTCb

No. of available runs 53 4 7
TMB (ppb) 76–1243 170–330 80–340
NOx (ppb) 43–912 260–520 130–560
VOC/NOx 0.33–16a 0.71–0.7 0.3–1.3
RH % 46–68 <5 <5

a For the high VOC/NOx experiments HONO was used as replace-
ment NOx where HONO was continuously flushed into the cham-
ber, so that a steady state NOx concentration of around 8 ppb was
reached.
b SAPRC indoor chambers. CeCERT Xenon Arc Teflon Chamber
(CTC, 6 m3) and Dividable Teflon Chamber (DTC, 5 m3, black-
lights).

roughly 3.5 (e.g. Carter, 2000) (PSI: 27 m3, S/V=2). The
DTC chambers are illuminated by blacklights. The avail-
able datasets from these chambers were used previously in
the development and evaluation of the SAPRC-99 mecha-
nism (Carter, 2000), and in the previous appraisals of the iso-
prene, butane and alkene as well asα- andβ-pinene degra-
dation (Pinho et al., 2005, 2006, 2007). For the simulations
in this study we used the auxiliary mechanism of each of the
chambers as described in Carter et al. (1995a) and updated
by Pinho et al. (2005).

2.4 Chemistry of the TMB photo-oxidation as represented
in the MCM

The complete degradation scheme of TMB through to CO2
and H2O in the MCM-v3.1 contains 389 reactions and 145
products. The methodology of the construction of the aro-
matic mechanism is described in Jenkin et al. (2003). This
version was recently updated and tested against environmen-
tal chamber experiments as part of the EXACT project (Bloss
et al., 2005a, b).

The oxidation pathways of TMB to first generation
products in the presence of NOx, as implemented in the
MCMv3.1, are shown in Fig. 1. H-abstraction from a methyl-
group leads to the formation of 3,5-dimethylbenzaldehyde
as a first generation product while the other channels in-
volve addition of OH and O2 to the aromatic ring. 2,4,6-
trimethylphenol is formed by abstraction of an H-atom by
O2 from the ring or by isomerisation of the adduct formed
by reaction of O2 with the OH adduct, and elimination
of HO2. The major route involves addition of O2 to the
OH-adduct followed by a ring opening leading to the for-
mation of methylglyoxal and the proposed co-products fu-
ranones (e.g. 3,5-dimethylfuran-2(5H)-one) and 2-methyl-
4-oxopent-2-enal from the decomposition of a peroxide-
bicyclic radical. Epoxy type compounds have been proposed
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Fig. 1. Partial schematic representation of the OH-initiated oxidation of TMB as implemented in the MCMv3.1. The chemistry shown
includes for RO2 radicals only the reactions with NO. The first generation products are shown in boxes, and the branching ratio of the
respective forming pathway is given in percent.

as oxidation products, and support for their formation was
provided by product studies of Yu and Jeffries (1997). The
epoxy route proceeds by formation and subsequent decom-
position of a cyclic epoxy-oxy-radical, and is included to
represent the balance of the chemistry not accounted for by
other routes.

The further degradation of the first and subsequent gener-
ation products is also represented in MCM v3.1, as are com-
petitive reactions of the intermediate peroxy radicals formed
at each stage, which gain importance as NOx is consumed
(see Bloss et al., 2005b; Jenkin et al., 2003).

3 Characterization of the PSI chamber

In chamber studies, attention has to be paid to external fac-
tors that influence the chemical system under observation,

mainly the light source and reactions that occur at the wall of
the chamber. These are described in the following.

3.1 Photolysis processes

The rates of photolysis processes depend on the intensity and
spectral distribution of the light source. Spectral distributions
are based on spectrometer measurements (Bentham Spectro-
graph DMc 150 FC), whereas absolute light intensities were
determined by NO2 actinometry experiments (Paulsen et al.,
2005). The time trend of the light intensity was tracked us-
ing J (NO2) filter radiometer (FR) data and regular NO2 acti-
nometry experiments. The light intensity measured by NO2
actinometry andJ (NO2)-FR stayed constant (±4%) over the
time period considered. An uncertainty of±12% was at-
tributed to theJ (NO2) value measured with chemical acti-
nometry.

Atmos. Chem. Phys., 8, 6453–6468, 2008 www.atmos-chem-phys.net/8/6453/2008/
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Table 2. Reactions that were included in the auxiliary mechanism to represent chamber dependent processes andJ (NO2) along with their
respective parameters and uncertainties. As noted, parameters are either derived from experiments or adopted from literature.

Process Parameter Upper/lower limits Notes

1 hν+wall→HONO (g) 9.1×106 molecule cm−3 s−1 5×106–13×106 molecule cm−3 s−1 PSI chamber characterization/measured

2 [HONO]0 (g) [HONO]0 =0.0074×RH+0.006×
[
NO2

]
0 0–3 ppb PSI chamber characterization/measured

3 NO2 (g)→0.5 HONO (g)+0.5wHNO3 (ads) 0.53×10−6 s−1 2.1×10−7 to 4.2×10−6 s−1 PSI chamber characterization/measured
Expressed as HONO formation rate!

4 hν+wall→HCHO (g) 5×106 molecule cm−3 s−1 2.5×106–1×107 cm−3 s−1 PSI chamber characterization/measured

5 N2O5 (g)→2wHNO3 (ads) 1×10−5 s−1 5×10−6–4.7×10−5 s−1 Adopted from (Carter and Lurmann, 1991)
and (Bloss et al., 2005a)

6 N2O5 (g)+H2O (g)→2wHNO3 (ads) 1×10−20cm3 s−1 1.1×10−23–1.3×10−19cm3 s−1

7 OH (g)+X (g)→HO2 (g)+X (g) k(OH+CO) –
PSI chamber characterization/measured

7a [X]0 (g) 300 ppb 100–600 ppb

8 O3 (g)→wO3 (ads) 4×10−6 s−1 2×10−6–8×10−6 s−1 PSI chamber characterization/measured

9 HNO3 (g)→wHNO3 (ads) 1×10−4 s−1 5×10−5–2×10−4 s−1
Adopted from (Bloss et al., 2005a)

10 wHNO3 (ads)+hν→NO2 (g)+OH (g) JHNO3 (0–2)JHNO3

11 all species (g)
dilution
−→ kdilution=flow/volume ±10% PSI chamber characterization /measured

12 J (NO2) ±12% PSI chamber characterization/measured

The photolysis rates were determined from the measured
light spectrum and using the absorption cross sections and
quantum yield data summarized by Jenkin et al. (1997) for
the MCM. The rates of a number of photolysis reactions were
updated according to Pinho et al. (2005).

3.2 Chamber auxiliary mechanism

An extensive characterization of chamber dependent chem-
ical surface reactions was performed, which is a prerequi-
site to simulate the photochemical reactions of any chemi-
cal species in a smog chamber. The relevant parameters for
an auxiliary mechanism of our chamber were determined us-
ing clean air (number of experiments N=12), NOx-air (N=2),
CO-air (N=4) and CO-NOx-air (N=3) irradiations. In recent
studies chamber related reactions occurring at the Teflon wall
of a chamber have been discussed in detail and form the ba-
sis for the reactions used in this study (Bloss et al., 2005a;
Carter et al., 2005; Finlayson-Pitts et al., 2003; Hynes et al.,
2005; Rohrer et al., 2005; Zador et al., 2006). The relevant
reactions are listed in Table 2.

One of the most important and controversially discussed
chamber artifacts is the enhanced background reactivity in
simulation chambers under illuminated conditions (Killus
and Whitten, 1990). In the study of Rohrer et al. (2005)
HONO was clearly identified for the first time to explain the
photo-enhanced background reactivity. HONO is released
from the walls and its photolysis enhances the OH radical
production (Rohrer et al., 2005; Zador et al., 2006). In or-
der to quantify the light induced HONO production in our
chamber, model calculations were performed using a simple
NOx/HONO/CO/HCHO reaction scheme downloaded from

the MCM website to describe CO-air and pure air exper-
iments. Reactions to account for wall processes were in-
cluded (Table 2). For experiments, where HONO measure-
ments were available, the model was constrained with the
measured HONO concentrations and therefore the light in-
duced HONO wall production rateW (HONO) could be de-
rived, according to Eq. 1 (Zador et al., 2006).

W(HONO) =
d[HONO]

dt
− kOH+NO [OH] [NO] − kNO2+wall

[NO2] + [HONO]obsserved(kOH+HONO[OH] + J (HONO)) (1)

Thus W (HONO) is given by the gradient of the observed
HONO concentration and the sources (negative terms) and
sinks (positive terms) of HONO. Sources are the production
via NO+OH reaction and the heterogeneous hydrolysis of
NO2 at the chamber walls, while the loss is given by the pho-
tolysis and the reaction with OH.

The error due to the uncertainty in the calculation of
J (HONO) and the measurement of HONO was estimated
to be 15%. When no HONO data was available, the aux-
iliary mechanism was tuned to describe the observed NO,
NO2 and O3 formation in pure air, CO/air and CO/NOx/air
experiments. A mean value of the HONO formation rate
of 22 ppt/min±40% (1σ) was determined from 17 chamber
characterization runs during the period considered. The vari-
ation was determined by the history of the chamber. In the
work of Rohrer et al. (2005) and Zador et al. (2006) it was
shown that the light induced HONO off-gassing depends on
temperature, RH and the photolysis rate of NO2. Due to
the lack of experimental variability no dependence on the
temperature and RH could be derived here. Application of
the SAPHIR parameterization using the higher (lower) of
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Fig. 2. Concentration time profiles of HONO, NOx, O3 and CO for a pure air chamber experiment. Dark grey lines show measured values
while the blue lines show the result of a model calculation. The middle top panel shows the HONO production rateW (HONO) in ppt/min
as derived from measurement/model calculations (see text). After 190 min the light intensity was reduced to 50% (grey shaded area). Right
panel: PTR-MS mass traces vs. time.

their two parameter sets would yield a HONO off-gassing
rate of 7.4×106 s−1 (4×106 s−1) for typical experimental
conditions in the PSI chamber (293 K,J (NO2)=0.0016 s−1,
RH=50%, surface-volume-ratio=2). This is similar to our
experimental value of 9×106 s−1 while for the EUPHORE
chamber this rate is reported to be around one order of mag-
nitude higher (Zador et al., 2006).

An initial HONO concentration needs to be included to
simulate the small increase of HONO during the humidifica-
tion process (see Fig. 2) in the dark chamber and the increase
of HONO after the NOx input. This depends on the initial
NOx level and the history of the chamber. Typically HONO
increases during humidification up to around 0.4 ppb. Im-
mediately with the NOx input the HONO concentration rises
depending on the amount of NOx added. Therefore an em-
pirical formula was used to describe the initial HONO con-
centration:

[HONO]0 = 0.0074× RH + 0.006× [NO2]0 . (2)

The initial HONO concentration mainly influences the re-
activity in the beginning of the experiment. Typical values
range between 0.8 and 3 ppb for the experiments considered.

The heterogeneous dark reaction NO2 →0.5 HONO+0.5
HNO3 was studied and discussed in detail in a review article
of (Finlayson-Pitts et al., 2003). Rate constants reported in
this study range from 2.1×10−7 to 4.2×10−6 s−1 (normal-
ized to a surface- volume ratio of 2). An even higher value of
2.3×10−5 s−1 was used for studies at the EUPHORE cham-
ber (Bloss et al., 2005a). The rate of this reaction for our
chamber was determined from NO2 dark loss measurements
(N=4) at different initial NO2 concentrations. An optimal

rate was found to be (1.05±0.35)×10−6 s−1. To test the
influence of this reaction on the TMB system the reaction
rate was varied between the lower and upper limit given in
Finlayson-Pitts et al. (2003) (see Sect. 5.1).

A light induced HCHO formation was introduced which
is necessary to follow the observed HCHO production when
the chamber is illuminated. HCHO serves as a radical source
and influences the system mainly under low VOC conditions
(Carter et al., 2005; Zador et al., 2006). Literature values
range from 0.3 ppb/h (Carter et al., 2005) to 0–0.2 ppb/h
(Rohrer et al., 2005) and are reported to be highest for
the EUPHORE chamber with around 2 ppb/h (Zador et al.,
2006). Values for our chamber are at the higher end of the
reported range with 0.3–1.4 ppb/h. During pure air irradi-
ation experiments the HOx formation rates by HCHO are
typically 1–2 orders of magnitude smaller than those from
HONO photolysis.

As described in Hynes et al. (2005) N2O5 hydrolysis to
form adsorbed HNO3 was given with two heterogeneous re-
actions. According to Carter et al. (2005) this reaction is
not of great importance under most conditions but is im-
plemented for completeness. Values similar to the lower
limit of Bloss et al. (2005a) were used. An O3 wall loss
of 4×10−6 s−1was determined from experiments. Within an
uncertainty of a factor of two the observed ozone produc-
tion during characterization experiments is not influenced.
The photolysis of adsorbed HNO3 was included with a rate
similar to the gas phase photolysis rateJ (HNO3). A HNO3
wall loss of 1×10−4 s−1 was assumed with values taken
from (Hynes et al., 2005). The off-gassing of organics from
the wall that convert OH to RO2/HO2 leads to immediate
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Fig. 3. Model-measurement comparison for 1,3,5-trimethylbenzene, O3, NO and NO2 for low concentration TMB experiments conducted
at low (∼0.5, left) and medium (∼2, right) VOC/NOx ratios. Measurement=blue, base case simulation=red, tuned mechanism=green,
tuned model+constrained with measured NO2 concentration=orange. Where different experiments with similar input concentrations were
available, the average gas mixing ratios (±1 standard deviation, N=number of experiments) are indicated by the blue shaded area.

ozone formation during pure air irradiations via the conver-
sion of NO to NO2. A dummy reaction: OH+X→HO2+X
(with kOH+CO) was included to account for this phenomenon
(Rohrer et al., 2005). In order to simulate the ozone produc-
tion during pure air irradiations the initial concentration of
X was varied between 200 and 600 ppb. A concentration of
300 ppb was assumed for all TMB simulations.

An example of such a pure air irradiation experiment
which was used to derive the light induced HONO produc-
tion is shown in Fig. 2. HONO was measured with the
LOPAP instrument. The determined source strength of the
light induced HONO formation,W (HONO), was calculated
according to Eq. 1 and is shown in the top middle panel
of Fig. 2. As already discussed, during the humidifica-
tion process a slight increase of HONO was observed (up
to ∼370 ppt) while NOx and O3 stayed below the detection
limit of their instruments. A slight increase in the mass traces
of m/z 43, 45, 46, 57, 59, 61 as measured by PTR-MS was
also observed. The increase ofm/z 55 is due to an increase
of the H3O+(H2O)2 water cluster with increasing humidity.
After switching on the lights, NO, NO2, HONO and O3 im-
mediately start to increase. After 190 min the light intensity
was reduced to 50 %. This resulted in a new NO-NO2 equi-
librium, a reduced O3 and CO production rate and a reduced
HONO formation rate.

The derived parameters of the auxiliary mechanism could
be successfully used to describe all characterization runs, al-
though some variation in the parameters had to be taken into

account, which mainly depend on the history of the chamber.
The effect of these parameter uncertainties on a TMB model
system is discussed in Sect. 5.3.

4 1,3,5-trimethyl benzene photo-oxidation experiments

4.1 Mechanism evaluation

A series of simulations was carried out to test the perfor-
mance of the MCM against the set of different chamber ex-
periments. Figures 3–5 show the temporal evolution of the
major gas phase components for a selection of experiments
conducted at molar VOC/NOx ratios of∼0.5 (low) and∼2
(medium) and concentrations ranging from 60 to 1200 ppb
TMB. Where different experiments with similar input con-
centrations were available, the average gas mixing ratios (±1
standard deviation, N=number of experiments) are indicated
by the shaded area. Model runs were performed with the
base case auxiliary mechanism (base). In addition a simu-
lation is shown, where a tuning reaction (NO2+light/surface
→HONO) was implemented in the model (tuned) which de-
scribes a light-induced NO2 conversion to HONO as dis-
cussed in a number of studies (George et al., 2005; Stemmler
et al., 2006; Stemmler et al., 2007). The rate of this reaction
was optimized in the way that the model is able to predict
measured HONO concentrations (see below). This resulted
in a single reaction rate of 8.4×10−6 s−1 which was used
for all simulations. This is a simplification of the surface
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Fig. 4. Model-measurement comparison for 1,3,5-trimethylbenzene, O3, NO and NO2 for low-medium concentration TMB experiments con-
ducted at low (∼0.5, left) and medium (∼2, right) VOC/NOx ratios. Measurement=blue, base case simulation=red, tuned mechanism=green,
tuned model+constrained with measured NO2 concentration=orange.

Fig. 5. Model-measurement comparison for 1,3,5-trimethylbenzene, O3, NO and NO2 for two sets of high concentration TMB experiments
(∼600 (left) and∼1200 ppb (right)) conducted at medium VOC/NOx only. Measurement=blue, base case simulation=red, tuned mecha-
nism=green. For experimental gas mixing ratios the average (±1 standard deviation) is shown for N=12 (left) and N=13 (right) experiments.
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Fig. 6. Comparison of measured and modeled HONO concentrations.(a) shows results of 1200 ppb TMB experiments (VOC/NOx ∼2).
Combined data from 2 experiments are shown, where HONO was measured with the PTR-MS.(b) HONO concentrations for the experiments
shown in the left panel of Fig. 3 (low concentration TMB experiments/high NOx). Combined data from three experiments are shown, where
HONO was measured either with IC-MS (dark blue circles) or PTR-MS (blue triangles).

reaction, for which non-linear light- and NO2 dependen-
cies were observed in lab experiments. Variations of sur-
face concentrations of adsorbed organic reactants depending
on the experimental conditions applied are not considered
here either. Additionally we show a tuned run where the
model was constrained with the measured NO2 concentra-
tion (tuned+NO2 constrained).

Figures 3 and 4 show experiments with initial TMB con-
centrations of around 75 and 150 ppb at low (∼0.5, left panel)
and medium (∼2, right panel) VOC/NOx ratios. For the
high NOx experiments the base model under-predicts the
TMB decay by about 100% compared to the experiment (af-
ter 400 min), pointing to a severe model under-prediction of
the OH concentration. Due to the lower oxidation capacity
also the NO and NO2 conversion rate and ozone production
rate are underestimated. On the other hand, under medium
VOC/NOx conditions the decay of TMB is fairly well simu-
lated. The NO to NO2 conversion and the ozone production
are well represented by the model in the first 1.5 h, however
the model starts to over-predict the NO2 concentration fol-
lowed by an over-prediction of ozone thereafter.

Figure 5 presents the base model performance for experi-
ments conducted at medium VOC-NOx ratios (∼2) with ini-
tial TMB concentrations of 600 and 1200 ppb. While at low
to medium TMB concentrations and a medium VOC/NOx
ratio (Figs. 3 and 4, right panel) the model represents com-
paratively well the TMB decay it starts to under-predict the
reactivity of the system at higher concentrations.

Including the uniform tuning reaction into the model
(NO2+light/surface→HONO) the temporal evolution of the
model simulations is significantly improved for all experi-
mental conditions (referred to as tuned mechanism; green
lines in Figs. 3–5) as the subsequent HONO photolysis acts
as a source of OH radicals. As shown in Fig. 6a such an
additional HONO source is necessary to match the mea-

sured HONO levels of selected experiments. While the base
case simulation would significantly underestimate the mea-
sured HONO mixing ratios it is well predicted with the tuned
mechanism for the 1200 ppb TMB experiment. An exception
is one of the low TMB – high NOx experiments, where the
model tends to slightly overestimate the reactivity and also
the measured HONO concentrations as shown in the right
panel of Fig. 6b. When the model is constrained with the
measured HONO concentrations the agreement improves.

The tuned mechanism also leads to a more rapid NO-NO2
conversion and brings NO, NO2 and O3 in better agreement
with experiments. Nevertheless, the model still underesti-
mates the ozone levels under high NOx conditions by around
30%. Under medium NOx conditions the ozone concentra-
tion at the end of the experiment is basically unaffected, with
an over-prediction of around 40%. If in these cases the model
is constrained with measured NO2 concentration the ozone
mixing ratio is properly predicted by the model.

4.2 Product distribution

The performance of the model in simulating the concentra-
tions of the major primary products (marked in boxes in
Fig. 1) as well as formaldehyde is shown in Fig. 7 for low
(left) and medium (right) VOC/NOx ratios. Data from two
single experiments are shown. The associated error bars
correspond to the accuracy of the PTR-MS measurement.
As described above the major oxidation pathway of TMB
leads to the formation of methylglyoxal and the proposed iso-
baric co-products furanones (e.g. 3,5-dimethylfuran-2(5H)-
one) and 2-methyl-4-oxopent-2-enal from the ring opening
route. Since these cannot be distinguished by PTR-MS their
predicted sum is compared with the measuredm/z trace 113
(M-H+). All primary products are fairly well simulated by
the tuned mechanism especially in the first half of the exper-
iment. Even formaldehyde, which is formed as a second and
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Fig. 7. Product distribution. The performance of the model in simulating the concentrations of the major primary products as well as
formaldehyde for low and medium VOC-NOx ratio is shown. Measurements (blue markers) as well as model simulations (base case=red;
tuned=green). Data from two single experiments are shown. The associated error bars are due to the uncertainty in the PTR-MS calibration.
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Fig. 8. Two-, four- and six-hourD(O3-NO) model errors plotted vs. the initial TMB/NOx ratio for the base case model simulation. Labels
are the Run Number for the PSI experiments and the Run Label of the CTC (xenon arc chamber) and DTC (blacklight chamber) experiments
of Carter (1995b). The initial TMB concentration is indicated with colors.

subsequent generation product in many steps of the aromatic
mechanism, and serves as an important radical source, is well
represented by the model. But especially for them/z 113
species there is a significant discrepancy during the latter
stages of the experiment. This might be an indication that the
subsequent chemistry of the products is not very well known
and is poorly represented in the MCM. However it should
be kept in mind that an additional measurement uncertainty
arises from the fact that the mass signal is not unambigu-
ously attributable to a single compound. It might well be that
the signal atm/z 113 is affected by an unknown compound
or a fragment of a higher molecular weight species. Methyl-
glyoxal and 2-methyl-4-oxopent-2-enal were identified in the
aerosol phase with aerosol phase yields of 2 and 3% respec-
tively (Healy et al., 2008). This is unlikely to affect the gas
phase measurements.

4.3 Compilation of all experiments and comparison with
other chambers

The precursor (TMB) decay as well as the quantityD(O3-
NO), which is the amount of ozone formed and NO oxidized
are used as the main criteria of model performance.D(O3–
NO) is defined as: D(O3–NO)=([O3]t–[NO]t )–([O3]0–
[NO]0), where [O3]t , [NO]t , [O3]0 and [NO]0 are the con-
centrations at timet and the beginning of the run, respec-
tively. It is a measure for all processes that cause ozone for-
mation, and gives a useful measure of the reaction develop-
ment, even when O3 is suppressed by excess NO.

To summarize the behaviour of the model performance for
all experiments, single error values were calculated, where
the model error is defined as (100× (model value – experi-
mental value)/experimental value) and differences in the inte-
grated light intensity were accounted for by normalizing the
time to the ratio of a standard light intensity to the light inten-
sity of the experiment (Pinho et al., 2006). Under-prediction
of the reactivity results in a negativeD(O3–NO) model error.
In Fig. 8 the two-, four- and six-hour precursor decay model
errors as well as theD(O3–NO) model errors are plotted as
a function of the initial TMB/NOx ratios. The initial TMB
concentration is marked in colors. The graphs summarize
the experiments in the PSI chamber and the SAPRC cham-
bers. The model errors of the TMB decay andD(O3–NO)
are of similar magnitude and dependence on the VOC/NOx
ratio for all chamber types. Including the tuning reaction the
model error is reduced to around±20% for all experimental
conditions.

The model error in peak ozone concentration independent
of the timing is shown as a function of the initial TMB/NOx
ratio in the Supplement Fig. D1. It should be noted that un-
der high NOx conditions the peak ozone concentration was
not reached and the ozone concentration at the end of the
experiment was used which could somehow bias the results.
There is a clear tendency of the model to over-predict ozone
concentrations at medium VOC/NOx and low precursor con-
centrations. Data from the SAPRC chambers and the EU-
PHORE chamber show the same order of magnitude error
for the different chambers and conditions.
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Fig. 9. TMB model sensitivity of changes of chamber related pa-
rameters like the absolute light intensity and variations in parame-
ters of the auxiliary mechanism as described in Table 2. The relative
difference (in percent) in the amount of TMB reacted after 400 min
of irradiation is shown.

5 Discussion

The results demonstrate a strong dependence of the base case
model performance on the initial VOC/NOx ratio and the
initial NOx concentration. The simulations tend to increas-
ingly under-predict the reactivity with increasing NOx con-
centrations. The general under-estimation in the simulated
quantities under high NOx conditions is indicative of sys-
tematic errors in the input of radicals to the system (i.e., un-
derestimated sources or overestimated sinks) dependent on
the NOx concentrations. On the other hand when the TMB
decays are simulated better, ozone levels become strongly
over-predicted. These effects are in agreement with almost
all previous chamber simulations of aromatic compounds
(Bloss et al., 2005a, b; Wagner et al., 2003). For TMB Bloss
et al. (2005a) calculated the amount of OH radicals miss-
ing over the course of the experiment to achieve agreement
between observed and modeled TMB decay to be 15% at
VOC/NOx=1 and 0.2% at VOC/NOx=4.6. At the same time
the model over-predicted the peak ozone concentration by 33
and 93% for the two cases, respectively.

SAPRC chamber experiments, all conducted at a low
VOC/NOx ratio agree well with our experiments, although
the experiment to experiment variation of the SAPRC exper-
iments is somewhat larger. The fact that a similar behavior of
the mechanism performance is found for the SAPRC exper-
iments and ours confirms our understanding and evaluation
of the chamber wall reactions.

Based on the observed NOx dependent discrepancy be-
tween model simulations and experiments we implemented
a single tuning reaction (NO2+light/surface→HONO) into
the model which improved the model quality under all con-
ditions significantly. The nature of the reaction will be dis-
cussed below.

5.1 Parameter uncertainties of the auxiliary mechanism,
NO2+OH, O(3P)

The effects of chamber dependent parameters as well as pos-
sibly important kinetic and mechanistic parameters were in-
vestigated for their sensitivity on the TMB decay and thus
reactivity in the system. The base case parameters as well as
their minimum and maximum values are listed in Table 2 and
described above. The impact of individual parameter varia-
tion in the auxiliary mechanism on the amount of TMB re-
acted is shown in Fig. 9. For all parameters the uncertainty is
more pronounced for low VOC/NOx conditions. Variations
of the absolute light intensity, the rate of the light induced
HONO formation and the rate of the heterogeneous dark re-
action of NO2 have the biggest influence on the system with
a variation of around 10%. The effect of changes in the rate
of the heterogeneous dark reaction within our experimental
uncertainty is marked with a black square.

The reaction of OH with NO2 represents an important rad-
ical sink in the system, especially in the beginning of the
simulation, which could therefore have a significant impact
on it. The reaction was identified as a major contributor to
the uncertainty in the ethene photo-oxidation system (Zador
et al., 2005). A reaction rate coefficient for the reaction of
OH with NO2 of 1.19×10−11 cm3 molecule−1 s−1 (based on
IUPAC, 2003) was used. A variation of this rate constant
by ±15% (Fig. 9) changes the amount of TMB reacted af-
ter 400 min by±9% under high NOx conditions, but has a
minor influence at higher VOC/NOx (compared to a model
measurement discrepancy of 100% under high NOx condi-
tions).

In several evaluations of the MCM using environmental
chamber data it was shown that O(3P) reactions with un-
saturated organic compounds are important under chamber
conditions, although they are not important for the ambient
atmosphere (Hynes et al., 2005; Pinho et al., 2005, 2006)
because the NOx concentrations used in chambers are usu-
ally higher than those in the ambient atmosphere (<100 ppb,
Jenkin, 2004). In addition to partially intercepting the for-
mation of ozone, the reactions of O(3P) with alkenes/etc are
believed to lead to partial radical formation and could poten-
tially have an influence on the radical balance in the system.

Therefore, O(3P) reactions for TMB and for the main pri-
mary product methylglyoxal are included in the mechanism
to test the influence on the TMB system. A reaction rate
constant of 2.8×10−12 cm3 molecule−1 s−1 (293K) was used
(Calvert et al., 2002). According to Calvert (2002) the re-
action leads to the formation of a phenolic product. The
methylglyoxal reaction rate constant was estimated based
on the OH rate constant to be 5×10−13 cm3 molecule−1 s−1

(293 K) (Herron, 1988).

O(3P)+1, 3, 5 − trimethylbenzene=1, 3, 5 − trimethylphenol (R1)

O(3P) + methylglyoxal= OH + CH3CO3 (R2)

Atmos. Chem. Phys., 8, 6453–6468, 2008 www.atmos-chem-phys.net/8/6453/2008/



A. Metzger et al.: Evaluation of an aromatic mechanism against smogchamber data 6465

Fig. 10. Example plot ofα-pinene photo-oxidation experiments, where HONO was measured with the LOPAP. The left panel shows the
measuredα-pinene concentration together with base (red) and tuned (green) model simulations. The right panel shows the HONO measured
with the LOPAP and the model results. In addition, it shows results from a second experiment at similar conditions, where HONO was
measured with the PTR-MS. The results from the two methods are in fairly good agreement. The discrepancies in the HONO concentration
after around 120 min can be explained with slightly different NOx input concentrations and a higher light intensity in the chamber during the
experiment with the PTR-MS measurement leading to a lower HONO concentration due to the increased photolysis of HONO which is the
main loss process. The fluctuations of the PTR-MS signal was mostly caused by instability sometimes occurring within the first 24 h after
switching from normal to HONO measuring mode.

The inclusion of these reactions had a negligible effect on
the simulations (<0.34% of TMB reacted for the 1200 ppb
TMB experiments and no effect for experiments conducted
at lower concentrations, see Fig. 9).

The uncertainties of single parameters are not sufficient to
describe the observed discrepancy between measurement and
model. A relatively good agreement could only be reached
when all important parameters were biased in such a way that
the TMB decay is maximized.

5.2 Nature of the light induced HONO formation as the
missing OH radical source

In Figs. 3–5 it was clearly shown that the model is only able
to simulate the TMB decay reasonably well when the uni-
form tuning reaction (NO2+light/surface→HONO) is imple-
mented into the mechanism. Very recently Li et al. (2008) de-
termined new rate constants for a gas phase production of OH
and HONO from the reaction of excited NO2 with water. Im-
plementing their mechanism into our model did only provide
a negligible amount of additional HONO and OH reactivity.
In the work of George et al. (2005) a photo-induced conver-
sion of NO2 into HONO was observed on organic films. It
was shown that organic substrates containing a combination
of electron donors, such as phenols, and of compounds yield-
ing excited triplet states, such as aromatic ketones, showed
a high reactivity towards NO2. The resulting uptake coef-
ficient of this light induced conversion exceeds that of the
heterogeneous dark conversion by more than one order of
magnitude. A similar light induced conversion of NO2 into
HONO on humic acid films and humic acid aerosol particles
was observed by (Stemmler et al., 2006, 2007). In our ex-
periments secondary organic aerosol (SOA) formation was

followed using a scanning mobility particle sizer (Paulsen
et al., 2005). Under low VOC-NOx conditions (Figs. 3 and
4 left) SOA formation is suppressed by high NOx concentra-
tions throughout the first∼400 min of the experiment. Under
medium VOC-NOx (Figs. 3, 4 right and 5) conditions nucle-
ation occurred typically after 120–200 min. The fact that
HONO is already needed in the initial phase of the experi-
ment when no secondary organic aerosol (SOA) is formed
yet and under conditions where SOA formation is totally sup-
pressed by high NOx concentrations indicates that the aerosol
pathway cannot be a dominant HONO source in our sys-
tem. In the work of Bloss et al. (2005b) a conversion of
NO2 to HONO on SOA has been introduced to improve the
model measurement agreement for toluene for a case study
in the EUPHORE chamber. However, no experimental proof
was given for the relatively high HONO concentrations that
would be generated by such a reaction. They also stated that
the reactive uptake coefficient required was much higher than
the upper limit for such a dark process suggested by (Bröske
et al., 2003).

A wall related reaction producing HONO is therefore more
likely. This reaction would be in addition to the HONO for-
mation included in the chamber auxiliary mechanism. Addi-
tional reactants (HCad) on the wall are needed to describe this
extra NO2 to HONO conversion. Considering the complex
mixture of organics produced in these photochemical reac-
tions it is well possible that photo-active compounds similar
to humic acids deposit on the chamber walls. The overall
reaction would then be in analogy to Stemmler et al. (2006):

NO2 + (HCad) + light/surface= HONO+ products (R3)
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Another possibility could be a reaction of nitric acid with
organics on the chamber wall as speculated by Rohrer et
al. (2005):

HNO3+(HCad)+light/surface=HONO+products (R4)

In this work we implemented Reaction (R4) in a simpli-
fied way: first order dependence on NO2 and no influence
of organics (HCad). Although this simple tuning reaction led
to a good agreement between modeled and measured TMB
decay (Figs. 3–5) there occurs some deviation between mea-
sured and modeled HONO concentrations (Figs. 6 and 10).
Based on our data it is not possible to clarify the nature of this
light induced HONO production. A systematic investigation
of the HONO evolution in these reaction systems is neces-
sary to determine the responsible formation process. Based
on these uncertainties it seems to be inevitable that HONO is
measured during smog chamber experiments.

5.3 Ozone chemistry – NOy-budget

As summarized from several chambers in Fig. A3 the model
error in predicting the peak ozone concentration depends on
the initial VOC/NOx and the initial precursor concentration.
It is most pronounced at medium VOC/NOx and low precur-
sor concentrations with ozone over-predictions up to 80%.
This is directly linked to the NOx chemistry and is reflected
in the over-prediction of NO2 as can be seen in the right pan-
els of Figs. 3 and 4. Constraining the model with the mea-
sured NO2 concentrations leads to a proper simulation of the
ozone concentration.

Ozone production is determined by the ability of the mech-
anism in either converting NO to NO2 or providing sinks
of NOx, such as HNO3 and PAN, or peroxy radicals. As
discussed in previous appraisals of aromatic mechanisms re-
ducing the conversion of NO to NO2 would result in a lower
radical level and therefore in a lower oxidative capacity of
the system. The implemented photo-enhanced conversion of
NO2 to HONO increases the reactivity due to the rapid pho-
tolysis of HONO. In addition this process converts NO2 to
NO without producing ozone. Therefore, this additional re-
action is able to improve the ozone chemistry and even in-
creases the radical level. Nevertheless, the tuned model still
over-predicts the ozone formation at a later stage of the re-
action. For further improvements of the mechanism mea-
surements of NOx sink species like HNO3, PAN and organic
nitrates are necessary.

5.4 Implications for other systems

Increased HONO concentrations in our smog chamber could
also influence other systems which have been subject of re-
cent mechanism evaluations (e.g. Pinho et al., 2005, 2006,
2007). While for the aromatics the MCM tends to underes-
timate the reactivity it tends to overestimate it forα-pinene
(Pinho et al., 2007) and isoprene (Pinho et al., 2005). We

also performed experiments with these two precursors and
observed higher HONO concentrations than predicted by the
respective MCM model for these systems too. As an ex-
ample,α-pinene photo-oxidation experiments are shown in
Fig. 10 where HONO was measured either with the LOPAP
or with PTR-MS. The fluctuations of the PTR-MS signal
was mostly caused by instability sometimes occurring within
the first 24 h after switching from normal to HONO mea-
suring mode. The mechanism was downloaded from the
MCM website and O(3P) reactions were included as recom-
mended from Pinho et al. (2007). Similar to the TMB sys-
tem the tuning reaction has to be implemented to describe
the higher observed HONO concentrations during these ex-
periments. The simulations show that the influence of this
light induced HONO formation on the predicted amount of
α-pinene reacted is negligible. This is explained by the mi-
nor importance of HONO as a radical source compared to
other reactions: the contribution of the HONO photolysis to
the total new radical formation is only around 4%. However,
the HONO concentration is not simulated well by the model,
even with the tuned mechanism. Although the magnitude of
HONO concentration is properly simulated, large deviations
occur in the later stages of the experiment. This suggests
again the simplified light induced NO2 conversion as imple-
mented here does not properly describe the system and that
with increasing reaction time the light induced conversion of
NO2 to HONO is getting more efficient.

6 Conclusions

Consistent with previous appraisals of the aromatic mecha-
nism as implemented in the MCM using chamber data, we
found that the model significantly under-predicts the reac-
tivity in the system. Higher measured than modeled HONO
concentrations provide evidence for a light induced NO2 to
HONO conversion at the chamber walls, where the subse-
quent HONO photolysis explains the enhanced reactivity.
This study shows the importance of HONO chemistry and the
uncertainties introduced by surface reactions in smog cham-
ber studies.

With the available dataset the exact mechanism of the pho-
tochemical source of HONO could not be constrained. It is
expected that the source strength varies with the properties
of the wall and thus the history of the chamber. Therefore,
when using smog chamber data for the evaluation of chemi-
cal mechanisms, HONO measurements seem to be essential.

It was further shown that this increased HONO formation
is not limited to TMB photo-oxidation. It is also observed in
other chemical systems. However, the importance of HONO
as a source of OH radicals may be less important as shown
e.g. in theα-pinene photo-oxidation experiments and there-
fore the HONO chemistry is less obvious in this system.

By properly accounting for all chamber related reactions
the aromatic mechanism as implemented in the MCM is able
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to describe the measurements fairly well. Uncertainties re-
main with respect to the NOx sinks.
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