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Abstract. A new aerosol microphysical module MATRIX,
the Multiconfiguration Aerosol TRacker of mIXing state,
and its application in the Goddard Institute for Space Stud-
ies (GISS) climate model (ModelE) are described. This
module, which is based on the quadrature method of mo-
ments (QMOM), represents nucleation, condensation, coag-
ulation, internal and external mixing, and cloud-drop activa-
tion and provides aerosol particle mass and number concen-
tration and particle size information for up to 16 mixed-mode
aerosol populations. Internal and external mixing among
aerosol components sulfate, nitrate, ammonium, carbona-
ceous aerosols, dust and sea-salt particles are represented.
The solubility of each aerosol population, which is explicitly
calculated based on its soluble and insoluble components,
enables calculation of the dependence of cloud drop activa-
tion on the microphysical characterization of multiple solu-
ble aerosol populations.

A detailed model description and results of box-model
simulations of various aerosol population configurations are
presented. The box model experiments demonstrate the de-
pendence of cloud activating aerosol number concentration
on the aerosol population configuration; comparisons to sec-
tional models are quite favorable. MATRIX is incorpo-
rated into the GISS climate model and simulations are car-
ried out primarily to assess its performance/efficiency for
global-scale atmospheric model application. Simulation re-
sults were compared with aircraft and station measurements
of aerosol mass and number concentration and particle size
to assess the ability of the new method to yield data suit-
able for such comparison. The model accurately captures the
observed size distributions in the Aitken and accumulation
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modes up to particle diameter 1µm, in which sulfate, nitrate,
black and organic carbon are predominantly located; how-
ever the model underestimates coarse-mode number concen-
tration and size, especially in the marine environment. This
is more likely due to oversimplifications of the representation
of sea salt emissions – sea salt emissions are only calculated
for two size classes – than to inherent limitations of MA-
TRIX.

1 Introduction

The impact of natural and anthropogenic aerosols on the cli-
mate system is the subject of numerous laboratory, experi-
mental, and theoretical studies (Ghan and Schwartz, 2007).
The spatial and temporal scales of these studies span several
orders of magnitude. Global climate models, at the upper
end of those time scales, are the ultimate integrative tool to
estimate the impacts of aerosols on climate and their role in
climate change. The treatment of aerosol properties and pro-
cesses in regional and global models is becoming increas-
ingly complex (Ackermann et al., 1998; Adams and Sein-
feld, 2002; Binkowski and Shankar, 1995; Binkowski and
Roselle, 2003; Easter et al., 2004; Gong et al., 2003; Herzog
et al., 2004; Jacobson, 2001; Lauer et al., 2005; Riemer et al.,
2003; Stier et al., 2005; Wilson et al., 2001; Wright et al.,
2000, 2001; Yu et al., 2003), taking into account detailed mi-
crophysical and chemical interactions that underlie the for-
mation of aerosol particles which then impact the climate
system. Increasingly detailed representations of key aerosol
properties such as size distributions, chemical composition
(e.g., internal vs. external mixtures), hygroscopicity, optical
properties, and cloud activation are also being incorporated
into global climate models. One challenge is to determine
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the most appropriate method of implementing this increased
detail.

The most common methods of including aerosol size dis-
tributions and aerosol mixing information into models are the
sectional-, modal-, and moment-based schemes. Sectional
models (Adams and Seinfeld, 2002; Gong et al., 2003; Jacob-
son, 2001) divide the size domain into intervals, or bins, and
calculate the evolution of the number concentrations in each
size bin. This method is very accurate when a large number
of size bins is used to track detailed information about mix-
ing state and size distribution, but has the disadvantage of
being computationally expensive because of the large num-
ber of bins required to accurately represent size and chem-
ical mixing information. The modal method (Wilson et al.,
2001; Iversen, 2002; Stier et al., 2005) approximates the size
distribution by an assumed statistical function, most com-
monly multiple lognormal functions. This approach can be
very flexible and computationally fast, but accuracy is depen-
dent on the suitability of the aerosol size distribution. The
quadrature method of moments (QMOM) (McGraw, 1997)
provides a computationally efficient statistically-based al-
ternative to modal and sectional methods for aerosol sim-
ulation that does not make a priori assumptions about the
shape of the size distribution. Numerous modules based
on the flexible and efficient moments method, tracking 2–
6 moments, have been implemented into three-dimensional
transport models (Ackermann et al., 1998; Binkowski and
Shankar, 1995; Binkowski and Roselle, 2003; Easter et al.,
2004; Herzog et al., 2004; Riemer et al., 2003; Wright et al.,
2000, 2001; Yu et al., 2003). According to the theoretical
framework, key moments of the aerosol population (such as
number and mass) that enter the covariance matrix of a prin-
cipal component analysis are tracked instead of the distribu-
tion itself. The approach is flexible and highly efficient, yet
can provide comprehensive representation of natural and an-
thropogenic aerosols and their mixing states.

The representation of advanced chemistry and thermody-
namics in climate models has evolved considerably, with a
focus on the chemical composition. In contrast, aerosol mi-
crophysical models have developed with a focus on the pre-
diction of the size distribution and with less detail of the
aerosol composition. Yet the aerosol mixing state in turn af-
fects the microphysical, chemical, and radiative properties
of aerosols. The computational burden of multicomponent
aerosol models with size-resolved description of the mixing
state is too demanding for long-term transient climate sim-
ulations of the global aerosol system with current computa-
tional resources. Up to now, only a few global aerosol models
suitable for long-term integrations simulate the size distribu-
tion and mixing state of interacting multicomponent aerosols
(Ghan et al., 2001a,b; Stier et al., 2005).

In this paper we introduce MATRIX, a microphysical
scheme that can simulate very detailed aerosol mixing state
information but is also computationally very efficient. Un-
til recently, the GISS climate model (Schmidt et al., 2006)

aerosols were treated in a mass-based scheme, in which the
life cycles of sulfate, nitrate, black and organic carbon, sea
salt, and dust were relatively independent of each other, ex-
cept for surface reactions on mineral dust (Bauer and Koch,
2005; Bauer et al., 2007; Koch et al., 2006; Miller et al.,
2006). Size information was included only for dust and sea
salt (using a bin scheme). For other species, size distributions
were specified, number concentrations were not calculated,
and water uptake effects were parameterized to depend upon
relative humidity in the radiation and gravitational settling
schemes. The implementation of MATRIX into the GISS
climate model provides detailed aerosol characterization cal-
culations of formation, removal, and climate interactions. In
the current module each of several aerosol populations is
treated by a two-moment method, in which a set of mass
and number concentrations evolves. Efficient solvers based
on analytic solutions to the moment equations are available
(Binkowski and Roselle, 2003). This two-moment method
is free of the concerns with moment consistency associated
with larger moment sets, as number and mass concentrations
are mathematically independent (unlike sets of three or more
moments per mode), and solver errors cannot generate incon-
sistent moment sets (Wright, 2007).

The goal of this paper is to give a complete model descrip-
tion of the microphysical model MATRIX (Sect. 2), present
applications of MATRIX as a box model (Sect. 3), and as
part of the GISS global climate model (Sect. 4). The MA-
TRIX model provides a large set of possible model configu-
rations of aerosol population formulations and microphysical
parameterizations. The full range of population formulations
is discussed and tested with the box model in Sect. 3; how-
ever, we evaluate the model against field and station obser-
vations (Sect. 5) observations using only a single set of mi-
crophysical parameterizations. In a subsequent publication
we will test the sensitivity of the global model performance
for several new particle formation schemes, thermodynam-
ical modules, coagulation settings, and aerosol population
formulations. Summary and conclusions are given in Sect. 6.

2 The microphysical model MATRIX

MATRIX aims at an intermediate degree of detail, com-
pleteness, and computational burden, greater than that typ-
ical of models with a small number of two-moment modes,
but less than that of a sectional representation of multiple
aerosol populations. The module represents new particle for-
mation, particle emissions, gas-particle mass transfer, incor-
poration of sulfate from cloud-phase chemistry into the var-
ious modes, condensational growth, and coagulation within
and between aerosol populations.

One goal of the model is to provide the number concen-
tration and particle size information characterizing soluble
particles for the treatment of cloud drop activation. This
requires a representation of internal and external aerosol
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Table 1a. Populations, constituents, and transported variables for aerosol configuration 1.Dg,E , are the geometric mean diameter values
used for primary emissions, andσg,E are the geometric standard deviations.

population description symbol constituents other than NH+

4 ,

NO−

3 , and H2O

transported variables Dg,E

[µm]
σg,E

sulfate Aitken mode AKK SO2−

4 NAKK , MAKK ,SO4 0.013 1.6

sulfate accum. mode ACC SO2−

4 NACC, MACC,SO4 0.068 1.8

dust accum. mode (≤%5 inorg.) DD1 mineral dust, SO2−

4 NDD1, MDD1,dust, MDD1,SO4 0.58 1.8

dust accum. mode (>%5 inorg.) DS1 mineral dust, SO2−

4 NDS1, MDS1,dust, MDS1,SO4 – –

dust coarse mode (≤%5 inorg.) DD2 mineral dust, SO2−

4 NDD2, MDD2,dust, MDD2,SO4 5.4 1.8

dust coarse mode (>%5 inorg.) DS2 mineral dust, SO2−

4 NDS2, MDS2,dust, MDS2,SO4 – –

sea salt accum. mode SSA sea salt, SO2−

4 MSSA,seasalt 0.37 1.8

sea salt coarse mode SSC sea salt, SO2−

4 MSSC,seasalt, MSSC,SO4 + MSSA,SO4 3.93 2.0

OC OCC OC, SO2−

4 NOCC, MOCC,OC, MOCC,SO4 0.030 1.8

BC (≤5% inorg.) BC1 BC, SO2−

4 NBC1, MBC1,BC, MBC1,SO4 0.030 1.8

BC (5–20% inorg.) BC2 BC, SO2−

4 NBC2, MBC2,BC, MBC2,SO4 – –

BC (>20% inorg.) BC3 BC, SO2−

4 NBC3, MBC3,BC, MBC3,SO4 – –

BC–mineral dust DBC BC, mineral dust, SO2−

4 NDBC, MDBC,dust, MDBC,BC, MDBC,SO4 – –

BC–OC BOC BC, OC, SO2−

4 NBOC, MBOC,BC, MBOC,OC, MBOC,SO4 0.037 1.8

BC–sulfate BCS BC, SO2−

4 NBCS, MBCS,BC, MBCS,SO4 – –
mixed MXX BC, OC, mineral dust,

sea salt, SO2−

4

NMXX , MMXX ,BC, MMXX ,OC,
MMXX ,dust, MMXX ,seasalt, MMXX ,SO4

– –

Table 1b. Coagulation interactions for aerosol configuration 1. Donor populations are in bold font, receptor populations in normal font.

donor population
donor population

AKK ACC DD1 DS1 DD2 DS2 SSA SSC OCC BC1 BC2 BC3 DBC BOC BCS MXX

AKK AKK ACC DD1 DS1 DD2 DS2 SSA SSC OCC BCS BCS BCS DBC BOC BCS MXX
ACC ACC ACC DD1 DS1 DD2 DS2 SSA SSC OCC BCS BCS BCS DBC BOC BCS MXX
DD1 DD1 DD1 DD1 DD1 DD2 DD2 MXX MXX MXX DBC DBC DBC DBC MXX DBC MXX
DS1 DS1 DS1 DD1 DS1 DD2 DS2 MXX MXX MXX DBC DBC DBC DBC MXX DBC MXX
DD2 DD2 DD2 DD2 DD2 DD2 DD2 MXX MXX MXX DBC DBC DBC DBC MXX DBC MXX
DS2 DS2 DS2 DD2 DS2 DD2 DS2 MXX MXX MXX DBC DBC DBC DBC MXX DBC MXX
SSA SSA SSA MXX MXX MXX MXX SSA SSC MXX MXX MXX MXX MXX MXX MXX MXX
SSC SSC SSC MXX MXX MXX MXX SSC SSC MXX MXX MXX MXX MXX MXX MXX MXX
OCC OCC OCC MXX MXX MXX MXX MXX MXX OCC BOC BOC BOC MXX BOC BOC MXX
BC1 BCS BCS DBC DBC DBC DBC MXX MXX BOC BC1 BC1 BC1 DBC BOC BCS MXX
BC2 BCS BCS DBC DBC DBC DBC MXX MXX BOC BC1 BC2 BC2 DBC BOC BCS MXX
BC3 BCS BCS DBC DBC DBC DBC MXX MXX BOC BC1 BC2 BC3 DBC BOC BCS MXX
DBC DBC DBC DBC DBC DBC DBC MXX MXX MXX DBC DBC DBC DBC MXX DBC MXX
BOC BOC BOC MXX MXX MXX MXX MXX MXX BOC BOC BOC BOC MXX BOC BOC MXX
BCS BCS BCS DBC DBC DBC DBC MXX MXX BOC BCS BCS BCS DBC BOC BCS MXX
MXX MXX MXX MXX MXX MXX MXX MXX MXX MXX MXX MXX MXX MXX MXX MXX MXX

mixing processes. For example, insoluble particles can be-
come soluble by acquiring soluble inorganic coatings as a re-
sult of either condensation of soluble species or coagulation
with particles containing soluble materials.

The total aerosol is represented by a user-selected set of
distinct populations, along with a specification of the coag-
ulation interaction between the aerosol populations, that we
refer to as an “aerosol module configuration”. Each popu-
lation has a distinct composition or set of chemical compo-
nents, which is treated as being independent of size. Aerosol

populations may be primary (those that receive particle emis-
sions), secondary (those formed by coagulation among pri-
mary aerosol populations or condensation of gaseous compo-
nents onto primary particles); or a mixed population, which
includes all aerosol constituents. When particles from two
populations coagulate such that the resulting particle cannot
be accommodated in one of the defined populations, the par-
ticle is placed into the mixed population.

The aerosol species treated in the present study are sul-
fate, nitrate, ammonium, water, black carbon (BC), organic
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Table 2. Table of aerosol configurations.

configuration number of number of populations represented
number populations transported species

1 16 51 AKK, ACC, DD1, DS1, DD2, DS2, SSA, SSC, OCC,
BC1, BC2, BC3, BCS, DBC, BOC, MXX

2 16 51 AKK, ACC, DD1, DS1, DD2, DS2, SSA, SSC, OCC,
BC1, BC2, OCS, BCS, DBC, BOC, MXX

3 13 41 AKK, ACC, DD1, DS1, DD2, DS2, SSA, SSC, OCC,
BC1, BC2, BOC, MXX

4 10 34 ACC, DD1, DS1, DD2, DS2, SSS, OCC,
BC1, BC2, MXX

5 14 45 AKK, ACC, DD1, DS1, SSA, SSC, OCC,
BC1, BC2, BC3, BCS, DBC, BOC, MXX

6 14 45 AKK, ACC, DD1, DS1, SSA, SSC, OCC,
BC1, BC2, OCS, BCS, DBC, BOC, MXX

7 11 35 AKK, ACC, DD1, DS1, SSA, SSC, OCC,
BC1, BC2, BOC, MXX

8 8 28 ACC, DD1, DS1, SSS, OCC,
BC1, BC2, MXX

carbon (OC), mineral dust, and sea salt. Not all species are
defined for each population, but the inorganic species NO−

3 ,
NH+

4 , and H2O are defined for all populations containing
SO2−

4 . Although the aerosol consists of particles with dif-
fering composition and arbitrary size, the particles are as-
sumed to be internally mixed with respect to the ammo-
nium/sulfate, nitrate/sulfate and water/sulfate such that ratios
of the amounts of these substances are the same for all SO2−

4
containing populations and all particle sizes (except for the
additional water uptake by sea salt due to NaCl). This ap-
proach greatly reduces the required number of transported
variables. Sulfate is transported for each SO2−

4 contain-
ing population; however for ammonium, nitrate, and aerosol
water, only the total concentrations summed over all pop-
ulations needs to be transported. The ammonium, nitrate,
and water concentrations are directly proportional with sul-
fate and hence the distribution of these species among the
populations is derived from the sulfate distribution. An
aerosol equilibrium module is used for gas-particle parti-
tioning of inorganic species (SO2−

4 , NO−

3 , NH+

4 , Na+, Cl−,
H2O). Aerosol liquid water is a transported variable so that
deliquescence-crystallization hysteresis can be represented.

MATRIX can be compiled in a variety of alternative “con-
figurations”, each defined with a different set of aerosol
populations. The module also includes multiple alterna-

tive parameterizations for processes with important uncer-
tainties, especially new particle formation. There are also
multiple options for calculation of coagulation coefficients,
intermodal transfer between the Aitken and accumulation
modes, and inorganic aerosol equilibrium models. This pa-
per presents a version of the module in which populationi of
aerosol speciesq is transported as a set of mass concentra-
tions (Mi, q) and a number concentration (Ni), which pro-
vides the total mass and number in a population and yields a
2-moment-per-population representation.

2.1 Aerosol population configurations

MATRIX allows different choices in defining an aerosol pop-
ulation, called an aerosol population configuration. The con-
figurations presented here vary in the number, composition,
and the interaction among the populations defined. Eight
configurations are currently set up as summarized in Tables 1
and 2. The design of these configurations follows in large
part the sectional model of Jacobson (2002) (J02 hereinafter).
All configurations track the total aerosol ammonium, total
aerosol nitrate, and total aerosol water, in addition to the
species defined for individual populations.

Configuration 1, the most complex mechanism, consists
of 16 populations and requires 51 transported species. Ta-
ble 1a and b presents the populations, species, lognormal
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parameters, and coagulation interactions for configuration
1. Configuration 1 has 9 primary populations that receive
particles through particle emissions: Aitken mode sulfate
particles (AKK; ambient diameter less than 0.1µm), accu-
mulation mode sulfate (ACC; ambient diameter greater than
0.1µm), insoluble fine mineral dust (DD1) and coarse min-
eral dust (DD2), fine sea salt (SSA), coarse sea salt (SSC),
organic carbon (OCC), insoluble black carbon (BC1) and
mixed BC-OC (BOC). The transfer between Aitken (AKK)
and accumulation (ACC) mode is described in Sect. 2.8.

Among these populations, AKK also receives particles
from new particle formation, population BOC also receives
particles through BC-OC coagulation, and ACC also receives
particles through growth of particles in population AKK. All
other populations acquire particles only as receptor popula-
tion for particles formed through coagulation of other (donor)
populations, or reclassification of particles from other pop-
ulations as they become soluble through acquisition of in-
organic coatings. All populations undergo condensational
growth and self-coagulation, and all but the mixed population
(MXX) undergo loss due to hetero-coagulation with other
populations. Population BC1, BC2, and BC3 contain black
carbon with different volume fractions of inorganic coating
(set to 0–5%, 5–20%, and>20%, respectively). All (non-
biomass burning) black carbon is emitted into the insoluble
primary population BC1. Biomass burning emissions are as-
sumed to go into the BOC population. Condensation of inor-
ganics on BC1, BC2, and BC3, and coagulation among these
three populations may increase the volume fraction of inor-
ganics in these populations. When BC1 (BC2) coagulates
with BC2 (BC3), the resulting particles initially go into BC1
(BC2) since they may have insufficient coating for classifi-
cation as BC2 (BC3). At the end of each time step, if the
volume fraction of inorganics in BC1 (BC2) rises above 5%
(20%), all BC1 (BC2) particles are moved to population BC2
(BC3). Particles in population BCS (BC-sulfate) are formed
solely through coagulation of AKK or ACC with BC1, BC2,
or BC3. The secondary populations DS1 (soluble dust ac-
cumulation mode) and DS2 (soluble dust coarse mode) rep-
resent soluble particles produced by condensation of inor-
ganics onto DD1 (insoluble dust accumulation mode) and
DD2 (insoluble dust coarse mode), respectively. Population
DD1 and DD2 can also acquire inorganics through coagula-
tion with population AKK or ACC. Particles are transferred
from DD1 to DS1 or DD2 to DS2 when the volume fraction
of inorganics in DD1 or DD2 exceeds a threshold (set to 5%).
The secondary population DBC (dust-BC) receives particles
solely through coagulation of any of the populations DD1,
DD2, DS1, DS2 with any of the populations BC1, BC2,
BC3, BCS. The mixed population MXX receives the more
complex aerosol mixtures and grows as the total aerosol ap-
proaches an internally mixed state. The transported species
for the sea salt populations are the mass concentrations of
dry sea salt (treated as NaCl) and the total non-sea salt sul-
fate summed over both populations. The non-sea salt sulfate

is apportioned between the SSA and SSC populations in pro-
portion to the sea salt (NaCl) in each population. Number
concentrations are derived from mass concentrations using
assumed lognormal distributions (σg,N ) given in Table 1a.

Configuration 2, which also consists of 16 populations
and 51 transported species, differs from configuration 1 only
in omission of population BC3 and inclusion of population
OCS (OC-sulfate) resulting from coagulation of population
OCC with population AKK or ACC, analogous to population
BCS. Configuration 3 consists of 13 populations and requires
41 transported species. It differs from configuration 1 in that
(1) populations BC3 and BCS are omitted and black carbon
aerosols are represented only by populations BC1 (insolu-
ble) and BC2 (soluble), and (2) population DBC (mineral
dust-BC) is omitted and these particles are now placed in the
mixed population MXX.

Configuration 4 consists of 10 populations and requires
34 transported species, described in Table 2. It differs from
configuration 1 in the omissions of populations AKK, BC3,
BCS, DBC, and BOC, and the use of a single population for
sea salt (SSS). Configuration 5–8 differ from configuration
1–4 only in the representation of mineral dust by one insolu-
ble and one soluble population only. The numbers of popu-
lations are 14, 14, 11, and 8, and the number of transported
species are 45, 45, 35, and 28, respectively.

2.2 Equations for evolution of number and mass concentra-
tions

Equations for number and mass concentrations for each pop-
ulation must be solved. These equations are similar to those
solved by the Community Multiscale Air Quality (CMAQ)
chemical transport model as described in Binkowski and
Roselle (2003). Secondary particle formation from gaseous
precursors, condensational growth, all coagulation pro-
cesses, and addition of sulfate formed by in-cloud oxida-
tion are treated as a group without operator splitting. The
partitioning of semi-volatiles between the gas- and particle-
phases is done just prior to, and again subsequent to, the cal-
culation of the primary dynamical processes just cited. Any
reclassification of particles from one population to another is
done at the end of the time step.

For the number concentrationNi of populationi

dNi

dt
=Pi − Li (1)

Pi=Ji+Enum
i +Ri=Ji+Enum

i +

n∑
k 6=1

n∑
l>k,l 6=i

diklK
(0)
kl NkNl ≡ ci (2)

Li=
1

2
K

(0)
ii N2

i +(

n∑
j 6=i

dijK
(0)
ij Nj )Ni ≡ aiN

2
i +biNi (3)

wherePi andLi are the production and loss rates of number
concentrations,Ji the secondary particle formation rate (to
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be distinguished from the nucleation rate below),Enum
i the

number concentration emission rate,Ri the rate at which par-
ticles enter populationi due to coagulation among all other
populations.K(0)

kl is the population-average coagulation co-
efficient (defined in Sect. 2.7 and Appendix B) for population
i andj ; n is the number of populations,dikl is unity if coagu-
lation of populationk with l produces particles in population
i and zero otherwise;dij is unity if coagulation of population
j with i results in the removal of particles from populationi

and zero otherwise. The coefficientsai , bi , andci are defined
for convenience and all subscripts are dropped in considering
solutions to the resulting equation, which is solved for each
population.

dN

dt
=c − aN2

− bN (4)

Analytic solutions are obtained by holding the coefficients
constant over a time step1t=t−t0 and are expressed using
the quantities

δ=(b2
+4ac)1/2, r1=

2ac

b + δ
, r2= −

b + δ

2
, γ= − (

r1 − aN(t0)

r2 − aN(t0)
) (5)

For c 6=0 the solution to Eq. (4) is

N(t)=
r1+r2γ exp(−δt)

a[1 + γ exp(−δt)]
(6)

For c=0 andb 6=0 the solution is

N(t)=
bN(t0) exp(−bt)

b + aN(t0)[1 − exp(−bt)]
(7)

and forc=0 andb=0 the solution is

N(t)=
N(t0)

1+aN(t0)t
(8)

where sign errors in Eqs. (7) and (8) have been corrected
from Binkowski and Roselle (2003).

For the mass concentrationQi,q of speciesq in population
i

dQi,q

dt
=Pi,q − Li,q=Pi,q − f

(3)
i Qi,q (9)

wherePi,q andLi,q are the production and loss rates of mass

concentration andf (3)
i is defined through the second equal-

ity. Analytic solutions are again obtained by holding the co-
efficient constant over the time step. Forf

(3)
i 6=0 the solution

is

Qi,q(t)=
Pi,q

f
(3)
i

+ [Qi,q(t0) −
Pi,q

f
(3)
i

] exp(−f
(3)
i t) (10)

and forf (3)
i =0 the solution by an Euler forward step is

Qi,q(t) = Qi,q(t0)+Pi,q1t (11)

The mass concentration production and loss terms treated in
the aerosol module are

Pi,q=P emis
i,q + P

npf
i,q + P

coag
i,q + P

growth
i,q + P cloud

i,q (12)

Li,q=L
coag
i,q + L

gas−particle
i,q (13)

where terms are included for particle emissions, new parti-
cle formation, coagulation, growth due to condensation and
other gas-particle mass transfer, and incorporation of sulfate
produced by in-cloud oxidation. Each of these terms and
those for number concentrations in Eqs. (2) and (3) are dis-
cussed in a following section.

2.3 New particle formation

This section describes the formation of new particles through
nucleation. The nucleation rate is the rate at which critical-
sized clusters of∼1 nm diameter are formed. The NPF rate
Jp is usually defined as the rate at which particles at the
minimum detectable size are formed and is thus a function
of measurement techniques, but in the present contextJp is
the rate at which particles of a user-selected small ambient
diameterDnpf (3–20 nm) enter the Aitken mode. Explicit
representation of particle dynamics at sizes less thanDnpf
is avoided through parameterizations that convert the nucle-
ation rateJ to the NPF rate at sizeDnpf, or directly give a
NPF rate derived from field observations without reference
to a nucleation rate.

The new particle formation production term is

P
npf
i,q =Jp,im

npf
i,q (14)

wherem
npf
i,q is the mass of speciesq in a newly formed par-

ticle added to populationi, andJp,i is the new particle for-
mation (NPF) rate, determined from and less than the nu-
cleation rateJ . Only population AKK receives nucleated
particles, and only sulfate is directly acquired by population
AKK; water and ammonium uptake are determined by sub-
sequent equilibrium calculations.Jp,i is zero for all other
populations.

This section describes the MATRIX NPF model, which
contains several nucleation parameterizations. The following
submodules of the NPF model are described in Appendix A:
(A1) parameterizations to convertJ to Jp,i by implicitly
treating the particle dynamics at sizes less thanDnpf, (A2)
calculation of the mass of sulfate in a newly formed parti-
cle, and (A3) calculation of the steady-state concentration
[H2SO4]SS used in the nucleation and NPF parameteriza-
tions.

Five nucleation or direct NPF parameterizations can be
chosen in MATRIX, two for binary homogeneous nucle-
ation of H2SO4-H2O (Jaecker-Voirol and Mirabel, 1989;
Vehkam̈aki et al., 2002), one for ternary homogeneous nu-
cleation of H2SO4-NH3-H2O (Napari et al., 2002), one for
nucleation by ion-ion recombination (Turco et al., 1998), and
one for formation of particles of 3-nm diameter derived from
field observations (Eisele and McMurry, 1997). The ion-
ion recombination mechanism is taken as independent of the
homogeneous mechanisms, and the ion-ion recombination
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contribution to the total nucleation rate is optionally included
or set equal to zero.

– The Jaecker-Voirol and Mirabel (1989) parameteriza-
tion, is based on classical binary nucleation theory
with hydrates, presented graphically and designed for
simple interpolation inT and RH. Each plot of logJ
vs. log [H2SO4] for T =[223, 248, 273, 298, 323]K and
RH=[20, 40, 60, 80, 100]% was scanned, digitized, and
fit to low-order polynomials. The range ofJ covered by
these fits is 10−3–105 cm−3s−1.

– The Vehkam̈aki et al. (2002) parameterization, also
based on classical binary nucleation theory with hy-
drates, is valid forT =230.15–305.15 K and extrapo-
lation to 190 K, RH=0.01–100% and [H2SO4]=104–
1011 molecules/cm3. The parameterization is limited to
conditions for which 10−7<J<1010 cm−3 s−1 and the
critical nucleus contains at least 4 molecules.

– The Napari et al. (2002) parameterization, based on
classical ternary nucleation theory involving H2SO4,
NH3 and H2O is valid forT =240–300 K, RH=5–95%,
[H2SO4]=104-109 molecules/cm3, and [NH3]=0.1–100
ppt (parts per trillion). The parameterization is limited
to conditions for which 10−5<J<106 cm−3 s−1. For
[NH3]>100 ppt,J is calculated using [NH3]=100 ppt.

– The Turco et al. (1998) parameterization for ion induced
nucleation is

J=Qifi0

(
[H2SO4]

[H2SO4]0

)n∗

(15)

whereQi is the local ionization (and recombination)
rate, andfi0 is the fraction of stabilizing recombination
events at a reference vapor concentration of [H2SO4]0.
Following Turco et al. (1998), we set [H2SO4]0 to
5×106 cm−3, n∗ to 3, andfi0 to 1×10−3. The ioniza-
tion rateQi increases linearly and varies with altitude
from 2 cm−3 s−1 near the surface to∼30 cm−3 s−1 at
∼12 km. Latitudinal variations of cosmic rays (Usoskin
and Kovaltsov, 2006) are not considered in the current
model. The ionization rate is an upper limit on the nu-
cleation rate. No lower limit is placed on this rate.

– The observations of Eisele and McMurry (1997) for the
flux of particles through the size 3–4 nm diameter were
fit to the formJ=K [H2SO4]n with (n, K) given by (1,
5.8×10−13) for the lower curve of Fig. 7 in Eisele and
McMurry (1997), (2, 3.5×10−15) for the upper curve,
and (1.5, 3.7×10−14) for a curve drawn intermediate
between the two. There are no bounding limits on input
concentrations or new particle formation rates.

The conversion of the nucleation rate into a NPF and the
calculation of the sulfate mass in a newly formed particle are
presented in Appendix A and further discussion can be found
in Chang et al. (2008).

2.4 Condensational growth and gas-particle mass transfer

The total production rate (averaged over the time step) of
speciesq in populationi due to condensation of nonvolatile
species and subsequent gas-particle mass transfer due to
equilibration of other species is given by

P
growth
i,q =P kinetic

i,q +P
equil
i,q =hiP

kinetic
q + P

equil
i,q (16)

whereP
growth
i,q is the total production rate of speciesq in

populationi averaged over the time step,P kinetic
q represents

species treated kinetically (H2SO4), P equil
i,q represents species

for which equilibrium is assumed (H2O, NH3, HNO3), hi is
the fraction of the total H2SO4 condensation rate due to par-
ticles in populationi, andP kinetic

i,q is the total condensation
rate of H2SO4 summed over all populations, calculated as

P kinetic
q =

|1[H2SO4]cond|

1t
=

[H2SO4][1 − exp(−kc1t)]

1t
, (17)

wherekc is the total condensation sink. The condensation
sink is the first-order rate constant for loss of [H2SO4] onto
particle surfaces (Kulmala et al., 2001) and is obtained as
kc=

∑n
i=1 kc,i with kc,i the contribution of populationi. For

each population the calculation ofkc,i is based upon a sin-
gle particle size, the diameter of average massD̄p,i , and an
adjustment factorθi= exp[−(lnσg,i)

2
] to prevent excessive

condensation due to the use of a monodisperse distribution
of diameterD̄p,i (Okuyama et al., 1988). For populationi

kc,i=2πDdiff

∫
Dpβ(Kni, α)ni(Dp)dDp (18)

calculates as

kc,i=2πθiDdiff D̄p,iβ(Kni, α)Ni (19)

whereDdiff is the binary diffusion coefficient of H2SO4 in
air, Dp is the particle diameter,Kni=2λ/Dp,i is the Knud-
sen number withλ the vapor (H2SO4) mean free path in air,α
the mass accommodation coefficient of H2SO4, ni the num-
ber size distribution of populationi, Ni the particle number
concentration in populationi, andβ the transition regime
correction to the condensational mass flux (Seinfeld and Pan-
dis, 1998), given by

β(Kni, α)=
1+Kni

1 + 0.377Kni+1.33Kni(1 + Kni)/α
(20)

A particle density is needed for each population to obtain
the diameter of average mass; this is calculated asρ=m/V ,
where the volume concentrationV is calculated as a sum of
contributions for each chemical component based on the cur-
rent populations composition. The condensation sink is im-
plemented through lookup tables forkc,i/Ni as a function
of particle diameter calculated at representative heights for
each vertical level of the host model using the standard at-
mosphere to obtain an appropriate characteristic temperature
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and pressure to calculateDdiff andλ. The condensation sink
was calculated with the mass accommodation coefficientα

for H2SO4 set to 0.86 (Hanson, 2005),α=1 andλ=λair, at
the ambient temperature and pressure.

2.5 Partitioning (P equil
i,q ) of semi-volatile species

Two different thermodynamic modules are included in MA-
TRIX. The highly computational efficient EQSAM (Met-
zger et al., 2002b,a, 2006) which is built upon a simpli-
fied non-iterative expression for the activity coefficients, and
ISORROPIA (Nenes et al., 1998) a model that calculates the
composition and phase state of an ammonia-sulfate-nitrate-
chloride-sodium-water inorganic aerosol in thermodynamic
equilibrium, which is more accurate than EQSAM but has a
much greater computational burden.

At each time step, the number concentrations and mass
concentrations of sulfate, BC, OC, mineral dust, sea salt are
passed for each population, and also the total aerosol nitrate,
ammonium, liquid water, NH3(g) and HNO3(g) to MATRIX.
The chosen aerosol thermodynamic model is used to partition
the total [NH3]+[NH+

4 ] and total [HNO3]+[NO−

3 ] between
the gas and condensed phase, and to obtain the liquid aerosol
water concentration.

Aerosol phase water concentrations are calculated in two
parts: (1) the water associated with all aerosol phase sulfate,
nitrate, ammonium, and mineral dust concentrations summed
over all populations, omitting sea salt (treated as NaCl) con-
centrations, using either EQSAM or ISORROPIA, and (2)
the water associated with sea salt. The water from step 1
is distributed over populations in proportion to its sulfate
concentration, whereas the water from step 2 is distributed
over populations in proportion to their sea salt concentra-
tions. Note, we neglect the impact of organic carbon in this
parameterization, as this parameterization is not included in
the current version of the thermodynamical models we apply.

Water uptake by sea salt aerosol and its dependence on
RH (parameterized by fractionh≡RH(100%)) is calculated
after Lewis (2006) as follows. The assumption is made that
the volume concentration of water (volume H2O(l) per unit
volume of space) in sea salt aerosol is given byVH2O=V –
VNaCl, with V the total volume concentration of the wet sea
salt andVNaCl the volume concentration of dry sea salt. The
water mass concentrationmH2O is then calculated from the
total sea salt concentrationmNaCl as

mH2O = ρH2OVH2O

= ρH2O(V − Vdry)

= ρH2O(ξ3Vdry − Vdry)

= ρH2OVdry(ξ
3
− 1)

= ρH2O(mNaCl/ρNaCl)(ξ
3
− 1)

= mNaCl × (ρH2O/ρNaCl)(ξ
3
− 1)

with ξ(RH)=r/rdry. This holds for the fractional relative hu-
midity h greater than the crystallization value 0.45. The ex-
pression forξ is ξ (h)=cSS[bSS+1/(1 − h)]1/3 with ρNaCl
the density of NaCl (2.165 g cm−3) and withcSS =1.08 and
bSS=1.2.

Hysteresis effects are represented by the treatment of Ghan
et al. (2001a). For RH between the crystallization and del-
iquescence RH, the total metastable aerosol water content
(step 1+step 2) is calculated. If the actual current aerosol
water content is greater than half this value, the aerosol is
taken to be wet and the equilibrium water content is dis-
tributed over all modes in proportion to their sulfate and sea
salt concentrations. Otherwise, the aerosol is taken to be dry.
The deliquescent-RH point is set to a constant value of 80%
(appropriate for ammonium sulfate, following Ghan et al.,
2001a). The critical RH is set to a constant value of 35%
(appropriate for ammonium sulfate, following Ghan et al.,
2001a) for the hysteresis calculation. As the water associ-
ated specifically with sea salt is not a tracked variable, this
treatment is for the aerosol phase water as a whole.

2.6 Incorporation of sulfate produced by in-cloud aqueous-
phase oxidation

The sulfate produced by in-cloud oxidation of SO2 is dis-
tributed over a selected set of populations such that each ac-
tivating particle receives an equal portion of that sulfate:

P cloud
i,q =

ζiNi∑
ζiNi

1[H2SO4]cond

1t
(21)

whereζi is the fraction of particles in populationi that acti-
vate to form cloud droplets,Ni the particle number concen-
tration in populationi, and1[H2SO4]cond is the concentra-
tion of sulfate produced in-cloud during the time step1t .

MATRIX provides the host model cloud module with ei-
ther the number concentration of soluble particles for each
population, an estimate of the number of activating particles
based on constant activating fractions for each population,
or an estimate of the number of activating particles based
on the aerosol activation parameterizations of Abdul-Razzak
and Ghan (1998, 2000). For the number concentration of sol-
uble particles, the populations treated as soluble are selected
by setting the soluble (or activating) fraction of particles,κi ,
for each population. Default values forκi are set to unity for
populations ACC, DS1, DS2, BC2, BC3, BCS, OCS, SSA,
SSC, SSS, and MXX, 0.7 for population OCC, and zero for
all other populations.

The droplet activation parameterization of Abdul-Razzak
and Ghan (1998, 2000), which treats multimodal and mul-
ticomponent aerosols, provide the activated fraction for the
number and mass concentrations for each population, based
on the composition of each population and the cloud up-
draft velocity. The population-average hygroscopicity pa-
rameters are key in this treatment. The composition of the
soluble components of mineral dust is treated as in Ghan
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et al. (2001a). Populations that are thought of as insoluble
cores with soluble shells, such as coated BC and dust pop-
ulations, may have a small soluble mass fraction that is ef-
fective at enhancing activation. All populations are included
in the activation calculation and each population may have a
nonzero activated fraction. The number concentration of ac-
tivating particles for each population is saved for use in the
cloud module, where aqueous chemistry, scavenging of in-
terstitial particles (due to Brownian diffusion of particles to
droplets), collision-coalescence, evaporation, aerosol resus-
pension, and wet removal are calculated.

2.7 Coagulation

A derivation of coagulation between populations for produc-
tion termsP coag

i,q and loss termsLcoag
i,q for the mass concen-

tration of speciesq in populationi is given in Appendix B.
The production terms are

P
coag
i,q =

n∑
k=1

n∑
l>k

gikl,qK
(3)
kl NkNl[(1 − δki)mk,q+(1+δli)ml,q ] (22)

wheregikl,q is unity if coagulation between populationk and

l adds speciesq to populationi and is zero otherwise,K(3)
kl is

a population-average coagulation coefficient (defined in the
Appendix B),δkl is the Kronecker delta, andmj,q is the mean
mass concentration of speciesq per particle in populationj .
Populationsk andl are distinct populations, and populationi

may be a third distinct population or the same population as
k or l. The loss terms are

L
coag
i,q =

n∑
j 6=1

dijK
(3)
ij NjNimi,q =

(
n∑

j 6=i

dijK
(3)
ij Nj

)
(Nimi,q) ≡ f

(3)
i Qi,q

(23)

The coagulation coefficientKij is the sum of five contri-
butions: Brownian coagulation, the convective Brownian dif-
fusion enhancement, gravitational collection, turbulent iner-
tial motion, and turbulent shear. The kernels are described
in Jacobson (2005), and the values shown in Fig. 15.7 of
Jacobson (2005) were reproduced by the MATRIX model.
The collision efficiency for the gravitational collection was
taken from Eq. (12–78) of Pruppacher and Klett (1980).
The dependence ofKij on temperature and pressure was
examined by calculatingKij for all pairs of particle sizes
for a set of diameters ranging from 0.003–30µm at sev-
eral valuesT and p. At a pressure of 101325 Pa, the ra-
tio Kij (200 K)/Kij (288 K) ranged from 0.6 to 1.4, and the
ratio Kij (325 K)/Kij (288 K) ranged from 0.9 to 1.2, show-
ing a rather weak temperature dependence forKij . The
Brownian Kij is directly proportional to the sum of par-
ticle diffusion coefficients and thus depends on the Cun-
ningham slip-flow correction to those coefficients, the par-
ticle Knudsen numbers, the mean free path of air, and thus
the ambient pressure. At a temperature of 288 K, the ra-
tio Kij (10132.5 Pa)/Kij (101325 Pa) ranged from 0.41 to 8.0,

and the ratioKij (1013.25 Pa)/Kij (101325 Pa) ranged from
0.29 to 46, showing a significant dependence forKij on pres-
sure. The dependence ofT andp onKij is included through
lookup tables for the population-average coagulation coeffi-
cientsK̄ij with table dimensions forT , p, and each of the
lognormal parametersDg,i , Dg,j , σg,i , andσg,j for popu-
lations i and j . Table temperatures were 200, 288, 325 K
and pressures were 101325, 10132.5, and 1013.25 Pa.Dg,i

andDg,j each spanned the interval [0.003, 30.0]µm with 81
evenly-spaced (log scale) values, and forσg,i andσg,j 1.6,
1.8, and 2.0. For each pair of coagulating modes,σg,i and
σg,j are fixed, andT , p, Dg,i andDg,j are each linearly in-
terpolated from the tabulated values. Precise mass conserva-
tion is accomplished by rescaling all mass variables for each
species at the end of each time step as needed to remove mi-
nor inaccuracies in the approximate analytic solutions when
large time steps are used. These inaccuracies are decreased
as the time step or coagulation rates are reduced.

2.8 Intermodal transfer of sulfate from the Aitken to the
accumulation mode

As newly-formed particles grow by condensation of gases
onto a preexisting particle and self-coagulation of particles,
the mean diameter of the Aitken (AKK) mode may approach
that of the accumulation (ACC) mode. To prevent the AKK
mode from becoming too broad and containing excessively
large particles, particles may be transferred to the ACC mode
as the diameter of the AKK mode approaches that of the ACC
mode. This can be done in MATRIX in one of three ways.
The first method is to transfer the fractionFtrans

Ftrans=

[
(Dp,AKK − Dp,AKK ,min)

(Dp,ACC − Dp,AKK ,min)

]p

(24)

from AKK to ACC during the time step, whereDp,AKK is
the mean mass diameter of mode AKK.Dp,AKK ,min is the
minimum value ofDp,AKK and as well the pre-selected size
at which newly-formed particles may appear (3–20 nm in
this model). Dp,ACC is the mean mass diameter of mode
ACC. The exponentp is an adjustable parameter in the range
2≤p≤6; the larger its value, the more intermodal transfer
is delayed until the mean mass diameter of the AKK mode
closely approaches the diameter of the ACC mode. As long
asDp,AKK is near the size at which new particles are formed,
there is no transfer; if the particles in mode AKK have grown
to the size of mode ACC, the two modes are fully merged
and the AKK mode is emptied and ready to receive freshly-
formed particles. When there are modest differences in mean
particle size between the two modes, the transfer is spread
over several time steps. This approach meets the criteria
given in Whitby et al. (2002) for a stable intermodal trans-
fer scheme. The second method follows Wilson et al. (2001),
which is equivalent to Binkowski and Roselle (2003) with
the diameter of intersection replaced by the fixed diameter
(DgnAKK DgnACC)1/2. The third method is that of Binkowski
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Fig. 1. Number and mass concentrations as a function of time for the coagulation of population OCC
and BC1 to form BOC. Solid lines are results from MATRIX applied as a discrete model, open symbols
are results from the standard MATRIX model.
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Fig. 1. Number and mass concentrations as a function of time for the coagulation of population OCC and BC1 to form BOC. Solid lines are
results from MATRIX applied as a discrete model, open symbols are results from the standard MATRIX model.

and Roselle (2003) without modification, where the intersec-
tion of the size distributions of AKK and ACC is calculated
and than the fraction of the total number of Aitken mode par-
ticles greater than this diameter is moved over into the larger
mode.

3 Box model results

To evaluate some of the capabilities of MATRIX, first we
examine it as as a box model. The coagulation scheme is
tested, followed by a sensitivity study on aerosol activation
for configuration 1–8. The following parameterizations were
used: (1) the thermodynamic equilibrium model EQSAM
(see Sect. 2.4), (2) the nucleation mechanism by Napari et al.
(2002), including ion to ion recombination by Turco et al.
(1998) (see Sect. 2.3) and conversion into NPF by Kermi-
nen and Kulmala (2002) (see Appendix A1), and (3) mode
transfer by the fractional transfer method (Eq. 23) withp=4.

3.1 Sensitivity of coagulation to model time stepping

Several test cases are examined focusing on coagulation of
donor populations A and B to produce a distinct receptor
population C. This process is symbolized by the key inter-
action A+B→C, although there are six distinct interactions:
A+C→C, B+C→C, A+B→C, and self-coagulation within
all three populations. Here we compare MATRIX box sim-
ulations with a 0.5–1 h time step, to a discrete model simu-
lation, where the time step was subdivided as needed so as

not to remove more particles from a grid box than present in
that box. In all cases a 24-h period was simulated with a 0.5–
1 h time step. Initial lognormal distributions are indicated as
[N (cm−3),Dg(µm), σg(1)].

Figure 1 shows results for number and mass concentra-
tions N(t) and M(t) for the coagulation OCC+BC1→
BOC. Initial distributions for the donor populations were
[103, 0.053, 1.8]. BothN(t) andM(t) were accurately pre-
dicted for all three populations. Figure 2 shows results for
AKK+BC1 → BCS where the initial distributions were [104,
0.026, 1.6] for AKK and [103, 0.053, 1.8] for BC1. Even
though bothN(t) andM(t) changed considerably more than
in Fig. 1, the results were again quite accurate; the number of
sulfate-coated BC particles was very well predicted. There-
fore we conclude that the coagulation scheme is suitable to
be applied for long time steps of 0.5–1 h such as used in
global climate models.

3.2 Aerosol activation and configuration of aerosol popula-
tions

Aerosol activation is tested for each of the eight configu-
rations described in Sect. 2. Initial number concentrations
N(cm−3) were AKK (2000), ACC (200), DD1 (10), DD2 (1),
SSA (20), SSC (0.08), BC1 (1000), OCC (1000), and initial
mass concentrations M(µg m−3) were sulfate (0.913), BC
(0.627), OC( 0.369), dust (6.53), sea salt (7.16), ammonium
(0.343). The production rates of gas-phase H2SO4 and aque-
ous sulfate were both set to 0.18µg m−3 h−1, and the NH3
source rate was set to two moles ammonia per mole sulfate.
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Fig. 2. Number and mass concentrations as a function of time for the coagulation of population AKK and BC1 to form BCS. Line styles the
same as in Fig. 1.

A fixed updraft velocity was set to 0.5 m s−1. Figure 3 shows
that both at the initial time and 6 hours later, all configura-
tions except 4 and 8 give very similar numbers of activated
particles though the number of aerosol species tracked varies
from 35 to 51; configuration 4 and 8 do not represent the
smaller sulfate particles with a distinct Aitken mode.

For all configurations except 4 and 8, the activated aerosol
was comprised of all of SCC and DD2 (DS2 acquired no
particles),∼95% of population SSA, two-thirds of popula-
tion ACC, ∼0.6% of population AKK, and variable contri-
butions from populations containing BC and OC. For con-
figuration 1–3, the activating fraction of accumulation mode
dust was smaller than that of population ACC, but increased
over the 6-h period as dust particles acquired sulfate. Parti-
cles remaining in population BC1 acquired enough sulfate to
yield a small activating fraction (0.0006 with configuration
1) after 6 h. When population BCS was present it showed
an activated fraction of∼30%; when absent there were more
particles present in population BC2. The total particle num-
ber increased slightly due to a small amount of new parti-
cle formation. Configurations 5–8 do not represent distinct
populations for accumulation and coarse mode dust, yet the
total numbers of activating particles for these configurations
was very similar to those for configurations 1–4; however,
combining population AKK and ACC to form a single sul-
fate population (configuration 4 and 8) led to a significantly
higher number of activated particles. The box model results
demonstrate the significant impact the choice of aerosol con-
figuration has on the overall aerosol simulation. Considering

that mode or population configurations are usually fixed in an
aerosol model, it is important to point out the consequences
of those basic model settings.

4 The global climate model

This section demonstrates the power of MATRIX for applica-
tions on a global model scale. We demonstrate that with rea-
sonable model input, model output is suitable for comparison
with observations. For this purpose, we introduce MATRIX
into the Goddard Institute for Space Studies (GISS) General
Circulation Model (GCM) climate modelE (Schmidt et al.,
2006; Hansen et al., 2005), which was used as the host model
for the microphysical MATRIX scheme. The model was em-
ployed on a horizontal resolution of 4◦

×5◦ latitude by lon-
gitude and 23 vertical layers. The model uses a 30 min time
step for all physics calculations. A complete model descrip-
tion is given by Schmidt et al. (2006); features of the model
relevant to the present calculations are briefly presented here.

4.1 Sulfate chemistry

The sulfate aerosol module is based on the earlier work of
Koch et al. (1999) and Koch et al. (2006) and includes prog-
nostic simulations of the mass distributions of DMS, MSA,
SO2 and sulfate. It also includes a semi-prognostic simu-
lation of H2O2, full details of which can be found in the
work of Koch et al. (1999). Briefly, the H2O2 production
rate is calculated using fields of hydroperoxy radical (HO2)
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Fig. 3. Illustration of cloud activation for each of the eight aerosol configurations (mechanisms 1 - 8).
White bars are initial total number concentrations, light-gray bars are initial activating number concen-
trations, dark gray bars are total number concentrations after 6 h evolution, black bars are activating
number concentrations after 6 h evolution.
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Fig. 3. Illustration of cloud activation for each of the eight aerosol configurations (mechanisms 1–8). White bars are initial total number
concentrations, light-gray bars are initial activating number concentrations, dark gray bars are total number concentrations after 6 h evolution,
black bars are activating number concentrations after 6 h evolution.

concentration and H2O2 is destroyed photochemically and
by reaction with OH using fields of H2O2 photolysis rate and
OH concentration. Optional, modelE can be run with sul-
fate and nitrate chemistry coupled (Bell et al., 2005; Bauer
et al., 2007) to the tropospheric gas-phase chemistry scheme
(Shindell et al., 2003). The sulfate chemistry scheme pro-
vides the aqueous sulfate production rate for liquid clouds
and the H2SO4 concentration for the MATRIX scheme.

4.2 Emissions

The termP emis
i,q (see Sect. 2.2) is the mass concentration

emission rate of speciesq into populationi. Number concen-
tration emission ratesEnum

i are derived from mass concen-
tration emission rates assuming lognormal size distributions
and particle densities. Lognormal parametersDg,E andσg,E

(Table 1a) are derived from Table 2 of Easter et al. (2004),
except for sea salt and dust particles, which use particle sizes
appropriate for the GISS interactive emission models.

The emissions of the natural aerosols sea salt, dimethyl-
sulfide (DMS) (Koch et al., 2006), and mineral dust (Miller
et al., 2006) are calculated interactively in the model, de-
pending on surface wind speed and other surface conditions.

Sea salt emissions are calculated for two size classes, appro-
priate for the SSC and SSA populations. Mineral dust emis-
sions are calculated for 4 size bins, as described in (Miller
et al., 2006), and are distributed into the DD1 and DD2 pop-
ulations.

Most sulfur emissions are in form of gaseous phase sulfur
dioxide (SO2); we assume that 2.5% of the sulfur is emitted
as sulfate particles. 99% of the mass of these direct sulfate
emissions are assigned to the ACC population, and 1% of
its mass into the AKK population. Industrial carbonaceous
emissions are assigned to the BC1 and OCC population, but
carbonaceous emissions from biomass burning sources are
assigned to the BOC population.

Since here we wish to simulate present-day climate, the
trace gas SO2 and ammonia (NH3) (Bouwman et al., 1997)
emissions are based on the anthropogenic emissions for 1995
from the Emissions Database for Global Atmospheric Re-
search (EDGAR3.2) (Olivier and Berdowski, 2001). Black
(BC) and organic carbon (OC) emissions are from Bond et al.
(2004). Biomass burning emissions for BC and OC are from
the Global Fire Emission Database (GFED) model by van der
Werf et al. (2003). Natural OM emissions are derived from
terpene emissions (Guenther et al., 1995), by assigning 10%
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Fig. 4. Column mean load per species (left column) and difference between NO-MIC and BASE (middle column) in units of
[µg/m3]. The right column presents the percentage change of NO-MIC in respect to the BASE simulation [(NO-MIC–BASE)/NO-
MIC] in [%]. Note that the load and difference plots of black carbon, dust and sea salt are multiplied by a factor, given in the maps
title, to match the color bar scheme.
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Fig. 4. Column mean load per species (left column) and difference between NO-MIC and BASE (middle column) in units of [µg/m3]. The
right column presents the percentage change of NO-MIC in respect to the BASE simulation [(NO-MIC-BASE)/NO-MIC] in [%]. Note that
the load and difference plots of black carbon, dust and sea salt are multiplied by a factor, given in the maps title, to match the color bar
scheme.
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of the terpene emission mass to the organic carbon mass and
number concentration emission. The 10% fraction of the ter-
pene emissions is added to the mass of the OC emissions,
before conversion to number concentrations as we assume
that a certain amount of this material tributes to new particle
formation as supposed to condense on preexisting particles.

4.3 Transport and removal

Tracers, heat, and water vapor are advected using the highly
nondiffusive Quadratic Upstream Scheme (QUS) of Prather
(1986), which uses nine subgrid-scale spatial moments as
well as the mean within each grid box. This increases the
effective resolution of the tracer field and allows the GISS
model to produce reasonable climate fields with relatively
coarse resolution.

Turbulent dry deposition is based on the resistence-in-
series scheme described in Koch et al. (1999) and Chin et al.
(1996). The scheme is coupled to the model boundary layer
scheme of the GCM and depends on the mean diameter of
the aerosol population. Gravitational settling depends on the
aerosol population mean diameter and density and accounts
for the effects of RH on density and size. The wet deposition
schemes of the GISS modelE are described in Koch et al.
(1999, 2006). The model treats two types of clouds, convec-
tive and stratiform clouds. Tracer treatment in clouds follows
the cloud processes, so that tracers are transported, dissolved,
evaporated, and scavenged (with cloud-water autoconversion
and by raindrop impaction beneath clouds). This parame-
terization requires information about aerosol size and solu-
bility, which are calculated for each aerosol population by
MATRIX. The averaged solubility per aerosol population is
calculated by using a volume weighted approach, depending
on the chemical composition of the aerosol particles. Num-
ber and mass concentrations are both treated in the model’s
advection and deposition schemes.

5 GCM simulations

The performance of MATRIX on the global scale was exam-
ined by comparing a simulation of the full MATRIX scheme
(configuration 1) with a simulation that excludes the micro-
physical processes of nucleation, coagulation and condensa-
tion. This leads basically to a simulation where all aerosols
stay externally mixed as emitted, except particles that are
emitted as internal mixtures (i.e. BC and OC from biomass
burning). We compare these two extreme cases, detailed
mixed populations and externally mixed populations, to ob-
servations, in order to examine the combined impact of mi-
crophysical processes such as nucleation, coagulation and
condensation on the overall aerosol simulation.

As discussed in the previous sections, MATRIX provides
a wide choice of configurations and parameterizations. In
Sect. 3 all eight configurations for different definitions re-

garding aerosol populations were tested with the box model.
On the global scale now we examine configuration 1, the
most complex setup, using the following parameterizations:
(1) The thermodynamic equilibrium model EQSAM (see
Sect. 2.4), (2) the nucleation mechanism by Napari et al.
(2002), including ion to ion recombination by Turco et al.
(1998) (see Sect. 2.3) and conversion into NPF by Kerminen
and Kulmala (2002) (see Appendix A1) and (3) mode trans-
fer by the fractional transfer method (Eq. 23) withp=4. The
GCM is applied for a 6 year simulation under current climate
conditions; the mean over the last 5 years of the simulations
is analyzed in the following sections.

5.1 Aerosol mass sensitivity and comparison to observa-
tions

Two experiments were carried out to examine the impact of
microphysical processes on the overall aerosol simulation.
The experiment that includes the most complex configura-
tion 1 (BASE) is compared with an experiment using ex-
actly the same model setup, but excluding the microphysical
processes of nucleation, condensation and coagulation (NO-
MIC). The NO-MIC experiment basically represents an mass
only scheme, representing only externally mixed aerosols,
where only those aerosol populations are filled that experi-
ence chemical production or emission. For the current con-
figuration following populations will be used: ACC (com-
prises entirely of sulfate), BC1, BOC, OCC, DD1, DD2, SSA
and SSC. Fixed size and solubility is assumed for each pop-
ulation. Note that for NO-MIC there is no means to render
the insoluble populations (BC1, DD1, DD2) soluble.

Table 3 presents the budget for each mass tracer, and the
summation over each species, for the BASE simulation in-
cluding atmospheric burden, emission- and removal rates,
and production and loss terms for individual microphysical
processes. The summation over all species in one popula-
tion, e.g. BOC, including the contributions from nitrate, am-
monium, ammonia, and aerosol water, determines the over-
all chemical composition in each population. Since nitrate,
ammonium, ammonia, and aerosol water are treated as bulk
species and are distributed over the populations like sulfate
we give here only their annual mean burdens; NH3(0.15 Tg),
NH−

4 (0.37 Tg), NO3(0.13 Tg), and aerosol water (27.8 Tg).
For each mass tracer, e.g., accumulation mode sulfate

ACC SU, the total production rate (e.g. emission, nucleation,
coagulation, in-cloud condensation, outside-cloud condensa-
tion, plus mode transfer) is balanced by the total loss rate
(here coagulation, wet and dry removal). The mean atmo-
spheric lifetime (turnover time) is calculated as the atmo-
spheric load divided by the total loss rate. The total loss rate
is balanced by the total production rate. Because of conser-
vation of matter for all species, except sulfate which as well
experiences condensation, the total production by coagula-
tion, summed over the populations, is equal to the total loss
by coagulation, the only loss of the species being wet or dry
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Table 3. Annual mean budget per microphysical process. Budget information are presented for the microphysical procesees of coagulation
(production and loss term are given separately), condensation (dry (outside cloud) and aqueous (in cloud)), and mode transfer (overall
loss or production rate due to mass transfer into a different population). The minus signs mark loss processes. For rates no entry means
|rate|<1 Gg yr−1.

species emission nucleation coag. coag. conden. conden. mode – wet – dry – load lifetime
prod. loss outside in cloud transfer removal removal

cloud
[Gg/a] [Gg/a] [Gg/a] [Gg/a] [Gg/a] [Gg/a] [Gg/a] [Gg/a] [Gg/a] [Gg] [d]

AKK SU 50 2288 – −7050 6350 393 −1254 −666 −109 11.7 0.5
ACC SU 4921 – 1928 −1732 9643 25 415 1025 −35 663 −5466 478.0 4.0
DD1 SU – – 1096 −721 1193 361 −1554 −179 −192 31.4 4.3
DS1 SU – – 314 −613 639 737 1733 −2410 −392 55.4 5.8
DD2 SU – – 7 −12 7 1 −1 −1 −1 0.1 1.3
SSA SU – – 297 −48 126 1153 – −881 −146 9.3 2.5
OCC SU – – 17 002 −12 013 6110 14 761 – −21 164 −4577 552.1 5.3
BC1 SU – – – – 1 – – – – – 0.4
BC2 SU – – – – – – – – – – 0.5
BC3 SU – – – – – 1 – −1 – – 0.5
DBC SU – – 469 −344 56 27 – −132 −75 10.9 7.1
BOC SU – – 5483 −235 2038 5188 – −10 405 −1999 244.9 7.0
BCS SU – – 1679 −1724 737 984 – −1414 −259 17.4 1.8
MXX SU – – 5846 – 893 230 – −4786 −2148 131.3 6.8
BC1 BC 4615 – – −3593 – – −89 −319 −615 1.2 0.1
BC2 BC – – – −39 – – 67 −26 −3 0.1 0.4
BC3 BC – – – −10 – – 22 −11 −1 – 0.4
DBC BC – – 11 −6 – – – −3 −1 0.3 8.6
BOC BC 3690 – 388 −789 – – – −2509 −765 50.5 5.5
BCS BC – – 4533 −522 – – – −3152 −847 50.2 4.0
MXX BC – – 27 – – – – −20 −6 0.6 8.2
OCC OC 32 102 – – −2655 – – – −21 159 −8183 489.7 5.5
BOC OC 30 214 – 2391 −241 – – – −24 450 −7747 575.7 6.4
MXX OC – – 506 – – – – −360 −132 12.8 9.4
DD1 DU 643 451 – 3977 −213 010 – – −279 445 −46 381 −107 990 8429.8 4.7
DS1 DU – – – −61 012 – – 279 425 −189 883 −28 085 3535.5 4.6
DD2 DU 914 699 – 223 −721 516 – – −2511 −11 913 −179 165 1408.5 0.6
DS2 DU – – – −481 – – 2512 −1396 −622 6.4 0.9
DBC DU – – 90 368 −62 134 – – – −12 098 −16 220 1451.6 5.8
MXX DU – – 963 602 – – – – −633 254 −321 310 26739.1 10.1
SSA SS 370 628 – – −73 280 – – – −246 915 −49 684 1564.3 1.5
SSC SS 1 366 580 – 16 −724 004 – – – −73 954 −568 438 236.4 0.1
MXX SS – – 797 268 – – – – −354 522 −441 422 1996.5 0.9

species [Tg/a] [Tg/a] [Tg/a] [Tg/a] [Tg/a] [Tg/a] [Tg/a] [Tg/a] [Tg/a] [Tg] [d]

SU 5.0 2.3 33.5 −24.4 27.8 49.3 – −77.7 −15.4 1.5 4.6
BC 8.3 – 4.9 −4.9 – – – −6.0 −2.2 0.1 2.8
OC 62.3 – 2.9 −2.9 – – – −46.0 −16.1 1.1 6.0
DU 1558.1 – 1058.2 −1058.2 – – – −895.9 −653.4 41.6 5.2
SS 1737.2 – 797.3 −797.3 – – – −675.4 −1059.5 3.8 0.5

deposition. In the case of sulfate, the production and loss
term of coagulation are not equal, as a sulfate particle can
experience growth through condensation before coagulation
with another particle. (Note, the formation and loss rates for
the SSA SU tracer are not balanced in this table, as SSC SU is
added to the SSA SU tracer when transported in the model.)

The breakdown of the single processes in Table 3 illus-
trates some important features of the BASE simulation. Con-
densation of H2SO4 in clouds is the largest source of sul-

fate in the atmosphere, producing predominantly externally
mixed ACC SU particles, followed by substantial sulfate
condensation on preexisting aerosols, especially OCC and
BOC particles. Coagulation is an equally important mixing
process for sulfate-containing particles. This leads especially
to the formation of OCC SU, BOC SU and MXX SU parti-
cles. The total atmospheric loads show that sulfate mass is
present largely in internally mixed populations such as OCC,
BOC and MXX, and only 32% of sulfate mass is present in
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externally mixed populations, such as ACC and AKK. As so
far only the condensation of H2SO4 is considered in MA-
TRIX, all non-sulfate species can only mix through coagula-
tion. Industrial BC is emitted into the atmosphere as exter-
nally mixed particle, populating BC1. Those small-diameter
particles coagulate quickly with larger preexisting particles
and mainly move into the BCS population. Biomass burning
BC is emitted directly into the BOC population. The total
loads show that the BOC and BCS populations, contain al-
most all BC in the atmosphere, which basically only leaves
1% of BC in the atmosphere as external mixture. The co-
agulation rates for OC are a bit smaller than those of BC,
however, the much larger emission rates of OC leads to a
much larger fraction, 45% of OC as external mixture. Co-
agulation among dust species puts most of the dust into the
MXX population. The main constituents of the MXX popu-
lation are sea salt and dust, mainly because no other popula-
tion accommodates the combination of those species. Mode
transfer, the transfer of a particle into a new population due
to its chemical composition, is transferring large amounts of
externally mixed dust DD1 or DD2 into the sulfate coated
dust populations, DS1 and DS2.

Figure 4 shows the annual mean column load concentra-
tions per species averaged over the last 5 years of the simula-
tions. Including microphysical processes leads to a global
increase of sulfate mass by 22% in the BASE simulation
compared to the NO-MIC case. NO-MIC is lacking sulfate
nucleation, condensation and coagulation processes. When
those processes are neglected less sulfate mass is calculated,
which would mainly come from nucleation and condensation
(see Table 3). Nucleation adds small Aitken-mode particles
into the atmosphere, leading to an overall longer lifetime of
sulfate mass. This explains why the changes mainly occur
in remote regions. Freshly nucleated particles tend to be en-
gaged in the coagulation and condensation processes, which
leads to a wide spread of sulfate material over aerosol popu-
lations and size ranges.

The changes seen in the nitrate concentrations simply
complement the sulfate changes. More sulfate in the BASE
case leads to less nitrate, as sulfate and nitrate compete for
available ammonia in the system. Nitrate is reduced by 30%
in the BASE simulation compared to the NO-MIC experi-
ment.

Black carbon and organic carbon mass concentrations de-
crease globally by 20% and 10% in BASE, respectively,
compared to NO-MIC. In BASE the coagulation and con-
densation processes lead to an increase in particles size and
solubility and therefore shorten the lifetime of carbonaceous
material in the atmosphere. These effects are especially im-
portant for reducing concentrations in remote regions.

The dust load is increased by 5% in the BASE simulation.
Including microphysical processes, leads to decreasing dust
loads in remote areas and increasing dust loads close to its
sources. The removal in remote regions is explained by the
fact that aged dust has a higher solubility, and therefore has

higher wet removal rates which shortens lifetime and travel
distance. The increase in the source region occurs because
dust in the MXX population has a smaller mean particle size
than the pure DD1 or DD2 populations, which leads to less
dry removal, especially gravitational settling of the very large
particles in the source regions.

The changes in sea salt mass concentrations are rather
small. Sea salt mass increases by 6% without microphysics,
again caused by the shift in size distribution. As number
and mass are independent, the mean particle size is not con-
strained to appropriate or even physically reasonable values.
Hence, these distributions of number mean diameter reveal
model characteristics not to be taken for granted. For the
coarse mode populations, MATRIX tends to transfer mass
out of the DS2 and SSC populations too quickly, but not
number, with a tendency to predict mean particle sizes that
are too small. As the SSC (and SSA) mean particle dry
masses are fixed (so that number can be prescribed for these
populations), the mean diameter distributions are sharply
peaked for these populations. However, for population DS2,
there is a large spread in mean diameter per grid box extend-
ing to rather small sizes. This is not seen in population DD2
as the mean diameter of this population is strongly influenced
by emissions at a fixed mean particle size.

The evaluation of the mass concentrations for the BASE
simulation is presented in Fig. 5, where the surface mass
concentrations of nitrate, sulfate, black and organic carbon
are compared to observations from the North American IM-
PROVE and the European EMEP network. Nitrate aerosol
mass concentrations in the scatter plot show a poor corre-
lation (see Table 4 for statistical measures), which is partly
caused by the high spatial fluctuation of nitrate mass con-
centrations within a grid box. The comparison plots on the
regional maps, show that model nitrate tends to be too low in
California, but reasonable elsewhere in the country. The sim-
ulated European nitrate concentrations show a good match to
the observations. Sulfate mass shows an excellent compari-
son to observations on an annual mean basis in Europe and
the United States. The scatter plot shows the slight tendency
of the model to simulate too high sulfate mass concentrations
in the United States and too low concentrations in Europe.
Carbonaceous aerosols are generally underestimated in both
regions by the model. However black and organic carbon
show high correlation to observations of the IMPROVE data
sets. Only few measurement stations in Europe report car-
bonaceous aerosol concentrations, but compared to those the
model seems to underestimate European concentrations.

Comparing the NO-MIC simulation to the above discussed
data sets in Europe and the United States (see Table 4), we
find quite similar results as comparing the BASE simula-
tion to observations, with a few exceptions; nitrate over Eu-
rope and sulfate over the United States significantly better
matches the observations in the model simulation including
microphysical processes (BASE). However, microphysical
mixing processes (as excluded in NO-MIC) have stronger
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Fig. 5. Scatter plots and maps of surface mass concentrations of nitrate, sulfate, black carbon, and organic carbon as compared to the
IMPROVE data set over North America and the EMEP observation data set over Europe. The blue points in the scatter plots (upper panel)
show the model to observation comparisons at EMEP stations, and the red points at IMPROVE stations. The measured surface observations
are presented as filled circles in the map projections. Units are [µg/m3].

Table 4. Statistical analysis of model concentrations and EMEP and IMPROVE observations

data set mean value [µg/m3] correlation
species observation BASE NO-MIC BASE NO-MIC

EMEP
NO3 0.48 0.50 1.06 0.62 0.30
SO4 1.22 1.21 1.21 0.41 0.41
OC 0.64 0.56 0.55 0.41 0.39
BC 2.83 1.73 1.83 0.21 0.23
IMPROVE
NO3 0.41 0.11 0.11 0.28 0.28
SO4 0.55 0.64 0.99 0.83 0.62
OC 0.29 0.18 0.17 0.70 0.69
BC 1.28 1.17 1.21 0.70 0.70

impacts on aerosol loads in the remote atmosphere (as dis-
cussed in Fig. 4).

Black carbon aircraft measurements using the SP2 in-
strument were performed during three campaigns: win-

ter (February 2006) and summer (August 2007) campaigns
in Costa Rica (Schwarz et al., 2008) and two flights over
Houston Texas in November 2004 (Schwarz et al., 2006).
The comparisons between model and observations of black
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Fig. 6. Vertical profiles of black carbon mass concentrations as observed (red line) over Costa Rica
(upper panel) in February 2006 and August 2007 (mean over three flights), and two single flights over
Houston, Texas (lower panel) in November 2004 (Schwarz et al., 2008, 2006). The total simulated BC
mass (black line) and it’s contribution from the individual populations are shown (colored symbols).
Units are [ng/kg-air]. Height in [Km] (upper panel) and on pressure levels [hPa] (lower panel).
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Fig. 6. Vertical profiles of black carbon mass concentrations as observed (red line) over Costa Rica (upper panel) in February 2006 and
August 2007 (mean over three flights), and two single flights over Houston, Texas (lower panel) in November 2004 (Schwarz et al., 2008,
2006). The total simulated BC mass (black line) and it’s contribution from the individual populations are shown (colored symbols). Units
are [ng/kg-air]. Height in [km] (upper panel) and on pressure levels [hPa] (lower panel).

carbon mass vertical profiles are presented in Fig. 6. The
observed concentrations show a sharp gradient in concentra-
tions between boundary layer (PBL) and free tropospheric air
over Costa Rica. The model predicts good boundary layer
heights, but underestimates BC in the PBL, especially in
summer, and overpredicts BC in the free troposphere. Black
carbon in Costa Rica mostly comes from biomass burning
sources, which has large temporal variability. The model
monthly average cannot capture the temporal variability as
seen in the aircraft observations. The overestimated BC con-
centrations in the free troposphere over Costa Rica and Texas
may be caused by inefficient cloud scavenging or possibly
by underestimated cloudiness in modelE. The predominant
aerosol population in both regions is BOC. In both cases OC
dominates the population fraction, making those particles hy-
droscopic. However this still does not lead to sufficient wet
removal.

An interesting aspect of the BC aircraft measurements is
that black carbon coatings were also detected. Schwarz et al.
(2006) present (see their Fig. 6) the number fractions of inter-
nally mixed BC particles, ranging form 0.2 to 0.8. As shown
in Fig. 6 our simulation predicts BOC as main aerosol pop-

ulation class in both regions, Costa Rica and Texas. This
would translate into an internally mixing fraction of 1. In
order to match the observed mixing fraction we would need
much more pure BC, i.e. BC in the BC1 mode. To investigate
the simulated BC mixing states, we performed two sensitiv-
ity studies. (1) As discussed in the previous sections, BC and
OC from biomass burning sources are directly assigned into
the BOC population. A test run was performed where all BC
and OC is emitted as external mixture to the BC1 and OCC
populations. However the results of this experiment looked
virtually identical to the original experiment as the particles
mixed very rapidly and populate BOC. (2) Again BC and OC
emissions are treated as an external mixture, but the sizes of
the emitted OC and BC particles were doubled. The total
mass of the emissions remained the same. The results of this
test are presented in Fig. 7. Total BC mass concentrations
remain very similar to the original experiment, but the pre-
dominant aerosol population is now BCS. This demonstrates
the importance of the emitted aerosol size distribution. The
main mixing process among aerosols is coagulation, which
strongly depends on particle size. Shifting OC particles into
a larger size class leads to less mixing of BC and OC.
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Fig. 7. Like Fig. 6, but presenting model results of Exp. 2.
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Fig. 7. Like Fig. 6, but presenting model results of Exp. 2.

Figure 8 shows the column load and zonal mean distribu-
tion of BC, as sum over all BC containing populations, for
the BASE experiment, and the differences between BASE
and Exp. 2. On a global average, BC mass is decreased by
10% in Exp. 2. A decrease of BC mass is simulated all over
the Northern Hemisphere and is most pronounced over East-
ern Asia. In the BASE case, most BC is mixed with OC,
whereas in Exp. 2 most BC is located in the BCS mode,
therefore predominately mixed with sulfate. The shift of BC
form the BOC into the BCS population, leads to a longer life-
time of particles in the BOC population (from 5.2 (BASE) to
6 (Exp. 2) days) and a shortened lifetime of the BCS pop-
ulation (from 5.4 (BASE) to 4.2 (Exp. 2) days), which con-
sequently leads to lower BC concentrations in sulfate rich
areas, like for example East Asia. However, the changes in
total BC mass are very small in the regions where the BC
aircraft measurements took place, Costa Rica and Houston
Texas.

5.2 Comparison of aerosol number and size to observations

Aircraft observations from various campaigns (flight tracks
are displayed in Fig. 9) and station data from aerosol su-
persites of the Global Atmosphere Watch program (http:
//wdca.jrc.it), are used for the evaluation of modeled aerosol
number and size distributions.

The PEM Tropics-B campaign Raper et al. (2001) took
place over the South Pacific ocean in spring 1999. Aerosol
size distributions were measured in 30 size bins by two
aerosol probes on board the DC-8 plane. Aerosol number
concentrations spanning from 0.1 to 3µm particle diameters
as measured by the PCASP, and for particles of diameters be-
tween 0.34 and 20µm by the FSSP aerosol probe. In order to
compare those observations with the model, model data are
interpolated to the flight tracks and monthly mean vertical
profiles are calculated. Figure 10 shows the modeled and ob-
served data for fine and coarse mode aerosols and indicates
the simulated contributions from the individual populations
to the total aerosol number concentration.

The differences between the two aerosol probes are quite
large. The model simulation falls between the two measure-
ments for particles sizes smaller than 1µm. Here most parti-
cles come from the AKK, followed by the ACC, OCC, BOC
and BCS populations. Close to the surface, the coated black
carbon populations BC1, BC2 and BC3 show some small
contribution to the total number concentration. Sulfate, ni-
trate and ammonium are the dominant species in this distri-
bution, as they populate the AKK and ACC class. The two
aerosol probes show very different number concentrations
for particles larger than 1µm. However the model under-
estimates the number concentrations of those larger particles,
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Fig. 8. Total column and zonal mean concentrations of BC mass concentrations for the BASE experiment
and differences between BASE and Exp. 2.
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Fig. 8. Total column and zonal mean concentrations of BC mass concentrations for the BASE experiment and differences between BASE
and Exp. 2.
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Fig. 9. Flight tracks of the INTEX (green), Trace P (blue) and PEM Tropics (purple) campaign.
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Fig. 9. Flight tracks of the INTEX (green), Trace P (blue) and PEM
Tropics (purple) campaign.

which mainly come from the MXX and SSA population. The
main aerosol components in the MXX population are dust,
followed by sea salt and sulfate.

The TRACE-P Jacob et al. (2003) campaign took place
from February to April in 2001 over the North Pacific ocean.
Vertical profiles of mass and number concentrations are
shown in Figs. 11 and 12 as measured on the DC-8. In Febru-
ary the aircraft flew between 150E and the US West coast
sampling much cleaner air than during March and April,
when Asian pollution dominated the shown profiles. Fig-
ure 11 shows an excellent comparison between modelled and
observed SO2 and a good comparison to sulfate mass con-
centrations. Nitrate and ammonia tend to be underestimated
by the model. The measurement data show the same order
of magnitude of sulfate and nitrate concentrations in the pol-
luted profiles during March. Number size distributions dur-
ing TRACE-P were measured in six size bins, spanning from
0.1 to 1550µm. Number concentration of particles lower
than 1µm are simulated reasonably well by the model (see
Fig. 12) and the aerosol number concentrations in the coarse
mode are underestimated. The precedence of populations is
the same as over the South Pacific as seen from the compar-
isons to the PEM-Tropics-B campaign.
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Fig. 10. Vertical profiles of number concentrations as measured by the FSSP (green dotted line) and PCASP (black solid line) aerosol
probe on board of the DC-8 air plane are compared to model results (red line). Number concentrations for particles smaller (left) and larger
(right graph) than 1µm diameter are shown. The symbols indicate the contribution to the total number concentrations from the individual
populations as marked in the graph. Units are [particles/ cm3].
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Fig. 11. Vertical profiles of mass concentrations for February (left column), March (middle column) and April (right column) during the
TRACE-P campaign in 2001. Measurements by the DC-8 air craft are printed in black, and model results are shown in red. The black dots
indicate the model layers onto which the measured data points are interpolated. Following species are presented per panel: nitrate, ammonia,
sulfur dioxide and sulfate. Units are [pptv ] and height in [km].
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Fig. 12. Vertical profiles of number concentrations for February (left column), March (middle column) and April (right column) during the
TRACE-P campaign in 2001. Observations are shown in black, model data are presented as described in Fig. 10. Units are [particles/ cm3]
and height in [km].

The campaigns discussed so far mainly sampled marine
air masses. In contrast, the INTEX-A (Singh et al., 2006)
(Figs. 13 and 14) campaign took place over the North Amer-
ican continent and to a smaller extent over the North Atlantic
and Pacific Oceans. The mass observations show a good
simulation of nitrate close to the surface, but lack of mod-
elled nitrate at higher altitudes. Model sulfate aerosol mass
seems reasonable in the lower atmosphere, but overestimated
in higher levels. The comparison to number concentrations
shows good agreement for particles lower than 2µm and a
lack of particles in the coarse mode, especially in the free
troposphere. Observations are given in six size bins spanning
from 0.3 to 2µm. For these conditions, different populations
are important. The BOC population clearly dominates, fol-
lowed by OCC and ACC in the boundary layer and the MXX
population in the free troposphere. The coarse mode shows
again mostly contributions from SSC and MXX. Again the
MXX population mostly contains dust and sea salt, with mi-
nor contributions of sulfate and nitrate.

Station measurements provide the unique possibility to
compare model data to long-term observations. Unfortu-
nately only few data sets providing detailed particle size reso-

lution information are available. Here we show comparisons
to three European stations, provided by the Global Atmo-
sphere Watch program (http://wdca.jrc.it/).

Hohenpeißenberg is a mountain station at 988 m altitude
located in southern Germany. Aerosol size distributions were
measured from 0.1 to 6µm. The year to year variability is
very low, therefore we only compare data to the year 2002,
as this was the most complete data set available. Figure 15
shows the annual mean size distribution as observed at Ho-
henpeißenberg. The model data are interpolated into the ob-
served size bins. The smallest size bin starts at 0.1µm. That
is the bin in which the highest number concentrations are
observed, however even higher concentration might occur at
smaller particle sizes. The model captures the size distribu-
tion fairly well, but overpredicts the number concentration
of particles greater than 1µm. The two graphs in the top
panel of Fig. 15 show us the population and species con-
tributions to this distribution. Particles smaller than 1µm
come from the AKK, and the black carbon populations (BC1,
BC2, BC3). Dominating chemical species are sulfate and
nitrate for the Aitken mode and black carbon for particles
around 0.05µm size. The part of the size distribution that
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Fig. 13. Vertical profiles of mass concentrations for July (left column), and August (right column) during
the INTEX-A campaign in 2001. Measurements by the DC-8 air craft are printed in black, and model
results are shown in red. The black dots indicate the model layers onto which the measured data points
are interpolated. Following species are presented per panel: nitrate, ammonia, sulfur dioxide and sulfate.
Units are [pptv] and height in [km].
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Fig. 13. Vertical profiles of mass concentrations for July (left column), and August (right column) during the INTEX-A campaign in 2001.
Measurements by the DC-8 air craft are printed in black, and model results are shown in red. The black dots indicate the model layers onto
which the measured data points are interpolated. Following species are presented per panel: nitrate, ammonia, sulfur dioxide and sulfate.
Units are [pptv ] and height in [km].
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Fig. 14. Vertical profiles of number concentrations as observed during the INTEX-A campaign in 2001, for aerosol particles with diameters
between 0.3 to 2.µm (upper panel) and larger than 2µm (lower panel). Color coding as in Fig. 10. Units are [particles/cm3] and height in
[km].

is observed and agrees well with the model, particle sizes
0.1 to 1µm, have contributions from OCC, BOC, BCS and
ACC, and to a limited extent contributions from the dust pop-
ulations DS1 and DBC. The dominating chemical species in
this part of the size distribution are sulfate, nitrate, organic
carbon, and black carbon. Particles larger than 1µm belong
to the mixed population MXX, and comprise dust, sea salt
mixed with sulfate and nitrate.

Pallas is a station located in northern Finland, at 560 m
altitude. Size distribution measurements are available from
0.007 to 0.4µm (see Fig. 15). The model captures the num-
ber concentrations at the lower end of the size spectrum.
Those particles get formed through nucleation events, belong
to the AKK mode and are comprised mostly of sulfate and ni-
trate. Particle number concentrations of around 0.05µm size
are under-predicted by the model, which is primarily black
carbon, and model and observations again agree pretty well
for particles above 0.07µm. Furthermore, the decreasing
slope of the size distribution is captured by the model.

Ålesund is located in Spitzbergen, even further north of
the Finish station Pallas. The observations show somewhat
smaller number concentrations in the nucleation mode, but
a maximum in the distribution around 0.2µm. The model
underestimates the number concentrations at this remote sta-
tion, where black carbon, sulfate and nitrate dominate the

size distribution below 0.1µm. Above that size organic car-
bon is present, and the agreement to observations is much
improved.

Figure 16 presents the comparison of the three stations
with model results from Exp. 2, where OC and BC emis-
sion sizes were doubled. It is very interesting to see how the
prior visible gap in Fig. 15 around 1µm particle sizes is now
closed, at the expense of underestimating particles around
0.1µm.

Overall each population covers a fairly limited size range,
causing gaps in the size distribution. This problem is caused
by choosing fixed sigma-values for the size distribution of
each population in our here presented two-moment model.
We expect to see smoother size distributions when resolving
higher moments.

5.3 Summary of GCM results

MATRIX has been successfully implemented into the GISS
climate model and all 8 MATRIX configurations (see
Sect. 2.) are functional in the global model. Although not
shown here, the performances of configuration 1–4 show
comparable results as the box model study. Especially the
lack of the Aitken mode AKK in configuration 4 leads to
significant changes in the overall model performance. Com-
pressing the dust modes as done in configuration 5–8 further
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Fig. 15. Aerosol size distributions at three surface stations: Hohenpeißenberg (upper panels), Pallas (middel panels) andÅlesund (lower
panels). The observed size distributions are shown in black, and simulated size distributions in blue. The solid lines show the annual
mean values and the dotted lines the seasonal maxima and minima. The red triangles at the top of the graph indicated the size bins of the
observational data, onto which the modelled data have been interpolated. The colored symbols in the graph indicate the contribution to
particles number concentration by population (left column), and by species (right column). Units are [µm] and [particles/cm3].

leads to a decrease in accuracy in the coarse mode model
performance. Therefore for global studies configuration 1–3
are the most useful options, although the model populations
need further optimization.

The novelty of MATRIX is adding aerosol number, size
and mixing to the mass concentrations in the GISS climate
model. The strengths and weaknesses of the MATRIX appli-
cation on the global scale can be summarized as follows:

– The evaluation of aerosol number and size distribution
against surface and aircraft measurements demonstrate
a good simulation of Aitken and accumulation mode
particle sizes. In this study we compared ultra-fine par-
ticles, particles below 0.05µm, only to two northern
European stations,̊Alesund and Pallas, and found that
the simulated ultra-fine particle number concentrations
are a bit too small at̊Alesund, Spitzbergen, and too large
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Fig. 16. Aerosol size distributions per population, as shown in the
left column in Fig. 15, but for Exp. 2.

in Pallas, Finland. Although MATRIX includes five dif-
ferent nucleation scheme options, in this paper we em-
ployed only the Napari scheme, which is known to give
very large, most likely excessive, nucleation rates. Fur-
ther studies are in progress to test all nucleation schemes
and their climate impacts. Coarse mode particles are
under-represented in the marine environment. Coarse
mode aerosol data over land do not show this bias. This
points to a lack of coarse sea salt aerosol in our model.
Our model calculates sea salt emissions only for two

size bins. This was sufficient for the mass based aerosol
model version (Koch et al., 2006) of the GISS model,
as only the small sea salt particles are important for
the calculation of aerosol radiative forcing. However,
coarse sea salt particles are important for aerosol mix-
ing processes, since the coarse particles provide large
surface areas for chemical and physical interaction. On
the other hand the lifetime of coarse particles is very
short, therefore their direct climate impacts are probably
small. Further studies are needed to determine the detail
required for representation of coarse model aerosols to
adequately simulate their chemical and climate impacts.
Thus, more evaluation has to be carried out in order to
better quantify and statistically analyze MATRIX.

– More data sets are available to evaluate aerosol mass
concentrations for individual species. Sulfate mass
in MATRIX at the surface as well as throughout the
troposphere compared very well with observations.
This sulfate is formed through gas-phase and aqueous-
chemistry, nucleation and condensation processes, and
spans over the total size range from Aitken mode to
coarse mode particles. However due to the lack of de-
tailed observations we could not yet evaluate the mixing
state of sulfate.

Nitrate aerosols are calculated only as a mass based
scheme, and the distribution over the populations is
scaled relative to the sulfate distribution (the same
concept applies for ammonium and aerosol water), as
discussed in Sect. 2. The evaluation showed rather
mediocre results for nitrate mass simulation, with rea-
sonable results close to the earth’s surface but underes-
timation of nitrate mass above the boundary layer. In
this simulation the condensation of nitric acid on par-
ticle surfaces is not yet explicitly taken into account.
This can lead to a lack of nitrate on coarse aerosol parti-
cles and explains the poor nitrate correlations in the re-
mote atmosphere and higher altitudes, as demonstrated
in Bauer et al. (2007); Bauer and Koch (2005).

The evaluation of the carbonaceous aerosol mass close
to the surface shows good results, however the verti-
cal distribution of black carbon in the atmosphere gave
very different results between the microphysical model
and the sensitivity experiment where microphysical pro-
cesses are excluded. Although the comparison to air-
craft profiles in Texas and Costa Rica showed that MA-
TRIX overestimates tropospheric black carbon concen-
trations in those regions, we know from further eval-
uations with AERONET data (not shown in this pa-
per) that we generally underestimate black carbon col-
umn concentrations. Furthermore we learned from the
comparison to the Costa Rica aircraft measurements
that black carbon is too frequently mixed in MATRIX,
which leads globally to excessive solubility rates and
too short life time for black carbon.
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– A major challenge in this endeavor is the evaluation of
the aerosol mixing state. Observations of the chemi-
cal composition of single particles are extremely lim-
ited. Initial evaluation indicates that MATRIX underes-
timates the fraction of externally mixed aerosols. Co-
agulation is the most efficient process for generating in-
ternally mixed aerosols. Coagulation depends strongly
on the size of the particles, as demonstrated in this pa-
per by the sensitivity experiments. However, there is
limited information in emission inventories about the
size of the emitted particles. One problem thus could
be the quality of model inputs. Aerosol number, surface
area, composition, and mixing state is now included in
global models, but these properties are not given for
emissions, so the aerosol fields cannot be initialized cor-
rectly. Some emission models (Hogrefe et al., 2003;
Bond et al., 2004) can apply chemical specification or
size distribution when the emission inventory contains
sufficient description of the underlying sources. Com-
pounding this challenge, however, is the fact that pro-
cesses affecting important aerosol characteristics occur
rapidly after emission (Zhang et al., 2004; Jacobson and
Seinfeld, 2004; Shiraiwa et al., 2007). Thus, even if
aerosol characteristics suited to provide inputs for mi-
crophysical models such as MATRIX were measured
near a source, the size distributions and chemical mix-
ing could be unrepresentative of the actual aerosol prop-
erties in a corresponding global model grid box.

– Testing the design of the MATRIX aerosol population
concept (the design was guided in large part by the
definition of mixing states in the sectional model of
Jacobson (2002)) on the global scale showed that the
definition of the populations can still be optimized.
Some populations are sparsely populated, for exam-
ple the coated dust and black carbon classes, whereas
fine aerosols tend to accumulate in the BCS, the black
organic carbon-sulfate population and coarse mode
aerosols accumulate in MXX, the mixed population.
Change in selection of aerosol population definition
may allow more even distribution among them.

6 Conclusions

This manuscript gives a detailed description of the micro-
physical model MATRIX and also describes its performance
as box and global models, as part of the GISS climate model.
The climate model including MATRIX takes 6 h comput-
ing time to simulate 1 model year, using 15 processors on
a Linux Networx cluster. Therefore this model system is
very suitable to perform many sensitivity studies as well as
perform transient climate simulations. MATRIX provides a
wide set of possible aerosol populations or aerosol mixing
state configurations, and microphysical parameterizations. It

is beyond the scope of this first publication to present, ana-
lyze, and evaluate all options of the MATRIX model. How-
ever, this paper gives a complete model description, which
will serve as reference for all future studies. The MA-
TRIX code is written as a box model and should be readily
adaptable within other regional or global model frameworks.
MATRIX is based on the quadrature method of moments
(QMOM) scheme and the version presented in this paper in-
cludes two moments, number and mass, and one quadrature
point. The two moment scheme was chosen as a starting
point to develop the microphysical package, however our in-
tention is to use higher aerosol moments in the future.

When designing a new model, decisions about what pa-
rameterizations to include or how to represent the aerosols
will have large impacts on the end product, the impact of
aerosols on the earth system. MATRIX tries to be as flexible
as possible at this point by including various sub-models and
allowing a wide variety of different aerosol population con-
figurations. The presented box model results demonstrate the
large impact population configuration can have on cloud ac-
tivation. However the simulations on the global scale showed
that some populations are sparsely populated, because of
the tendency for aerosols to mix and to include more than
two chemical components. For the Aitken and accumula-
tion mode particles, this leads to a dominance of the black
carbon, organic carbon, nitrate and sulfate mixture. In the
coarse mode this favors the mixed mode, which allows all
chemical species to be included in the aerosol. Our future
work will focus on improving the simulation of aerosol mix-
tures, which will be an ongoing and difficult task. Detailed
aerosol measurements are necessary to achieve this goal.

The coupling of the MATRIX aerosol scheme to radiation
and cloud schemes will be discussed in separate publications.

Appendix A

New particle formation

A1 Conversion of the nucleation rate to a NPF rate

The nucleation rate (or observed NPF rate at 3-nm diameter
in the case of Eisele and McMurry (1997)) is converted to a
NPF rate atDnpf for all parameterizations. MATRIX is cur-
rently set up to useDnpf as either 3, 10, or 20 nm. Conversion
is affected by the factorF in the expressionJp,i=FJ . Two
choices toF are available: (1) A simple mass-conversation
approach withF=[D∗

p/Dnpf]
3 conserves the total mass of

sulfate in the nucleated particles, whereD∗
p is 1 nm except

for the Eisele and McMurry (1997) expression where it is
3 nm. (2) A more physically-based expression taking into
account the small-particle dynamics is the analytic formula
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for F derived from Kerminen and Kulmala (2002) and Ker-
minen et al. (2004). It is given by

Jp,i(Dnpf, t
′)=J (D∗

p, t) exp

(
η

Dnpf
−

η

D∗
p

)
(A1)

where the timet ′ at which the new particles appear and is
later than the timet at which nucleation occurred on ac-
count of the time required for growth, and the parameterη

is calculated asγ kc,α=1/4πgrDH2SO4 with γ a proportion-
ality factor,kc,α=1 the condensation sink (see Eq. 18) calcu-
lated with the mass accommodation coefficientα set to unity
and the mean free path of air (λair), gd the diameter growth
rate dDp/dt , andDH2SO4 the diffusivity of H2SO4 in air.
The formula is applicable when the pre-existing aerosol and
condensable vapor concentrations remain relatively constant
during the time step and the total concentration of particles
smaller thanDnpf remains below 105-106 cm−3 and there is
no self-coagulation. The values of andgd are assumed con-
stant over a time step, andγ is a weakly varying function
given by

γ=γ0

[
D∗

p

1 nm

]0.2 [
Dnpf

3 nm

]0.075[
Dmean

150 nm

]0.048[
ρ∗

1000 kg m−3

]−0.33[
T

293K

]−0.75

(A2)

whereγ0 is 0.23 nm2 m2 h−1, Dmean is the number mean di-
ameter of the pre-existing aerosol andρ∗ the density of the
critical nucleus (set to 1.6 g cm−3). Thusγ is nearly con-
stant over the time step when these conditions are satisfied.
If conditions are approximately steady-state, the difference
in times t ′ and t is immaterial. Steady-state assumptions
are discussed below. Ifη exceeds 56 nm,F is set to 10−17.
The diameter growth rategd of freshly nucleated particles
is calculated as that due to condensation of inorganic vapors
(H2SO4, NH3, H2O) only (contributions from low-volatility
organic vapors are not yet represented) and is that of free
molecular growth given by

gd=
dDp

dt
=

α

2ρ
c̄MeffC

with α the mass accommodation coefficient of H2SO4 (taken
as unity following Kerminen and Kulmala, 2002),ρ the
density of such particles (set to 1.6 g cm−3), c̄ the mean
thermal velocity of an H2SO4 molecule, C the (steady-
state) vapor concentration of H2SO4, andMeff is an effec-
tive molar mass for H2SO4 along with the NH3 and H2O
that accompany it under the assumption of rapid equilibra-
tion, Meff=MH2SO4+nNH3MNH3+nH2OMH2O where nNH3

andnH2O are the number of NH3 and H2O molecules con-
densing per H2SO4 molecule. For the number of NH3
molecules per H2SO4 molecule condensing

nNH3=
fluxofNH3toparticle

fluxofH2SO4toparticle
=

c̄NH3

c̄H2SO4

CNH3

CH2SO4

=

(
MH2SO4

MNH3

)1/2
CNH3

CH2SO4

with c̄i the mean thermal velocity of a molecule of typei, Ci

the vapor number concentration of molecular speciesi, and

with an upper bound of 2 imposed onnNH3. With nNH3 deter-
mined,nH2O is calculated by first treating the H2SO4 in the
particles as either (a) H2SO4 for nNH3< 0.5, (b) NH4HSO4
for 0.5 ≤ nNH3 ≤ 1.5, or (c) (NH4)2SO4 for nNH3 > 1.5.
The mole fraction sulfur in the particleχS is then defined as
[mole S/(mole S+mole H2O)]. For each neutralization state,
polynomial fits forχS in terms of the fractional relative hu-
midity h are used. The Kelvin effect reduces water update
and its effect onχS is (optionally) included by replacingh
with h exp(−2A/Dnpf) with A given by

AH2SO4=[1.2 − 0.0072(T − 273.15)] (A3)

A(NH4)2SO4=[1.2 − 0.0072(T − 273.15)] × [1 − 0.17(1 − h)] × [1+0.95(1−h)]

andANH4HSO4 is the same asA(NH4)2SO4 on account of lack
of data for ammonium bisulfate solutions. The first factor
is due to theT dependence of surface tension of the solu-
tion (taken as that for water), the second factor is due to
the dependence of the partial molar volume of water onh,
and the third term is due to the dependence of the surface
tension of the solution onh. OnceχS is obtained, then
nH2O=(1−χS)/χS. Reference Lewis (2006).

A2 Calculation of sulfate mass in a newly formed particle

The sulfate mass in a newly formed particle of ambient di-
ameterDnpf as a function of RH and neutralization regime
is now described. For each regime, and forDnpf selected
as either 3, 10, or 20 nm, the diameter ratioDnpf/Dnpf,dry is
calculated from polynomial fits and used to convert the am-
bient particle volume (πD3

npf/6) to dry particle volume, from

which a sulfate (SO2−

4 ) mass can be calculated (using appro-
priate densities and molecular weights for each regime). The
Kelvin effect is taken into account. The calculated sulfate
mass at a given RH is stored in a lookup table at increments
of 1% RH for each regime.

We now describe the determination of the [H2SO4] using
in calculation of the nucleation rate and diameter growth rate
gd. The gas-phase chemistry processes are calculated prior
to the aerosol processes. Accumulation of H2SO4 during the
time step1t of 0.5 h yields spuriously high initial H2SO4
concentrations for calculation of the nucleation rate directly
from the initial [H2SO4] and taking the total number of new
particles formed asJp,i 1t. Under suitable conditions, a
steady-state H2SO4 concentration [H2SO4]SS can be derived
from an estimate of its average production ratePH2SO4 over
the time step and its loss rate due to condensation on exist-
ing particles (the condensation sink)kc. A time constantτ is
defined as 1/kc, and when1t≥nτ τ with nτ a small integer
(see below), the steady-state assumption is invoked, and an
initial estimate of [H2SO4]SS is obtained as (Binkowski and
Shankar, 1995)

[H2SO4]SS=PH2SO4/kc=[H2SO4](τ/1t) (A4)

where the average production rate is based on the assump-
tion that the sulfuric acid concentration at the beginning of
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the time step [H2SO4] was produced by gas-phase chemistry
during the current time step, which is perhaps a good ap-
proximation when significant production has occurred. Since
τ≤1t , [H2SO4]SS can not exceed [H2SO4].

A3 Calculation of steady state concentrations

A further consideration arises under conditions for which
very high nucleation rates would occur and consumption of
H2SO4 by new particles formed during the time step cannot
be neglected in determining the loss rate of H2SO4. This is
especially important with the ternary nucleation parameteri-
zation. A proper balance between consumption of H2SO4 by
NPF and condensational growth is obtained by solving

d[H2SO4]

dt
=P − kc[H2SO4] − Jp,i([H2SO4])m

npf
q,i =0 (A5)

at steady- state with the initial [H2SO4] taken as [H2SO4]SS
obtained from Eq. (A4). The r.h.s. is positive with
this value of [H2SO4] as Jp,i=FJ is always non-zero
(Jp,i≥10−24 cm−3 s−1). Equation (A5) is then solved ap-
proximately by reducing [H2SO4] by a factor of 1.1–1.5 until
the r.h.s. becomes negative and [H2SO4]SS is then set to the
final value. This provides a lower limit (within a factor of
1.1-1.5) for the actual [H2SO4]SS if Eq. (A5) were solved
exactly, and the slight underestimation of the [H2SO4]SS de-
fined by Eq. (A5) in part compensates for the neglect the loss
of [H2SO4] due to condensational growth of the new par-
ticles beyondDnpf during the time step. Whenkc is small
enough thatτ>1t , the calculated initial [H2SO4]SS from
Eq. (A4) exceeds [H2SO4]0 and the steady-state assumption
cannot be invoked. For a time step of 0.5 h,kc must be at
least 5.6×10−4 s−1 to have [H2SO4]SS≤[H2SO4]. For a log-
normal distribution with a number mean diameter of 150 nm
and geometric standard deviation of 1.5, and takingDH2SO4

as 1.0×10−5 m2 s−1, a number concentration of 88 cm−3 is
required to yield akc value of 5.6×10−4 s−1 (derived from
Table 1 of Kerminen and Kulmala (2002). This is a signif-
icant amount of aerosol, and hence smaller aerosol loadings
and values ofkc leading toτ>1t will likely occur at a signif-
icant frequency in atmospheric models. When1t<nτ τ the
steady-state assumption is not invoked and the equation

d[H2SO4]

dt
=P − kc[H2SO4] (A6)

is solved to yield

[H2SO4]=[H2SO4]0e
−kct+

P t

1 + kct
(A7)

where [H2SO4]0 is the concentration at the beginning of
the time step before gas-phase chemistry, and with the as-
sumption that all H2SO4 present was generated by gas-phase
chemistry during the current time step ([H2SO4]0=0), the so-
lution is

[H2SO4]=
P

kc

(
kct

1 + kct

)
=[H2SO4]SS

(
1/τ

1 + t/τ

)
(A8)

and the H2SO4 concentration at the middle of the time step
[H2SO4] 1t/2 is given by

[H2SO4]1t/2=
P

kc+2/1t
(A9)

and is used to calculate the nucleation rate andgd. This ex-
pression neglects the consumption of H2SO4 through the for-
mation of new particles and gives an upper limit for the ac-
tual [H2SO4]1t/2. Equation (A8) shows that fort=1t=nτ τ ,
[H2SO4] is within [100/(nτ +1)]% of its steady-state value
when only production and condensation are considered, and
since inclusion of NPF reducesτ and makes the approach to
steady-state more rapid, the choicenτ =2 leads to application
of the steady-state approximation under conditions for which
the sulfuric acid concentration will rise to within 33% of its
steady-state value within the time step. For all values ofτ ,
the NPF and condensational growth rates are first calculated
independently using the initial concentration [H2SO4]0 as if
each process were permitted to consume all available H2SO4.
If the total H2SO4 consumed by the two processes exceeds
[H2SO4]0, the NPF and condensational growth rates are both
reduced by the same factor such that the total H2SO4 con-
sumption is limited to [H2SO4]0. This favors a proper bal-
ance between consumption of H2SO4 by NPF and by con-
densational growth. For parity between these processes, the
condensation rate is calculated from the same H2SO4 con-
centration described here to calculate the nucleation rate.

Appendix B

Derivation of production and loss
terms for coagulation

For the coagulation of populationk with populationl to pro-
duce particle number or mass (or neither) in populationi,
there are three cases. The first case occurs whenk=l=i,
which is self-coagulation within a single population. The
second case occurs whenk 6=l 6=i, in which the distinct popu-
lationsk andl coagulate to form a third distinct populationi.
The third case occurs when eitherk=i or l=i (but not both)
in which mass and number are lost from populationk or l

and mass but not number is gained in populationi. Before
discussing these cases, we define the population-average co-
agulation coefficient or ordern as

K̄
(n)
kl =

∫
∞

0

∫
∞

0 D
(n)
1 K(D1, D2)nk(D1)nl(D2)dD1dD2∫

∞

0

∫
∞

0 D
(n)
1 nk(D1)nl(D2)dD1dD2

(B1)

for number size distributionsnk andnl for populationsk and
l, respectively, and particle diametersD1 andD2. Note that
for n6=0, K̄

(n)
kl is not symmetric ink andl, and forn 6=0 the

first index labels the donor population (k or l) providing con-
centration of diameter momentn to the receiving population
(i).
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The present model tracks number and mass concentrations
only. The rate of change of number concentrationNi in pop-
ulationi is expressed as

dNi

dt
=P

coag
N,i − L

coag
N,i (B2)

and the rate of change of mass concentrationQi,q of species
q in populationi is similarly expressed as

dQi,q

dt
=P

coag
Q,i − L

coag
Q,i (B3)

Case 1: For the first case (self-coagulation), mass concen-
trations do not change and number concentration is reduced
according to

L
coag
N,i (i+i → i)=

1

2

∫
∞

0

∫
∞

0
K(D1, D2)ni(D1)ni(D2)dD1dD2=

1

2
K̄

(0)
ii N2

i

(B4)

Case 2:For the second case, particles in populationk coag-
ulates with particles in populationl to add new particles and
mass of speciesq to a populationi that is neither population
k nor populationl. Each coagulation event removes a parti-
cle from each of populationsk and l and adds a particle to
populationi. For the number concentration production rate
in populationi

P
coag
N,i (k+l → i)=

∫
∞

0

∫
∞

0
K(D1, D2)nk(D1)nl(D2)dD1dD2=NkNlK̄

(0)
kl

(B5)

and the number concentration loss rate for populationk and
populationl is alsoL

coag
N,i =NkNlK̄

(0)
kl . For the mass concen-

tration ofq, begin from the loss of third diameter moment in
populationk.

dM3,k

dt
= −

∫
∞

0

∫
∞

0
D

(3)
1 K(D1, D2)nk(D1)nl(D2)dD1dD2 (B6)

The normalized third moment for populationk can be ex-
pressed as

M̄3,k=

∫
∞

0

∫
∞

0 D
(3)
1 nk(D1)nl(D2)dD1dD2∫

∞

0

∫
∞

0 nk(D1)nl(D2)dD1dD2
=

M3,kNl

NkNl

(B7)

and combining Eqs. (A6) and (A7)

dM3,k

dt
= − NkNlM̄3,k

∫
∞

0

∫
∞

0 D
(3)
1 K(D1, D2)nk(D1)nl(D2)dD1dD2∫

∞

0

∫
∞

0 D
(3)
1 nk(D1)nl(D2)dD1dD2

= − NkNlM̄3,kK̄
(3)
kl

(B8)

The mass concentrationQk,q of speciesq in populationk is
related to the third moment as

Qk,q=ρk,qVk=
π

6
ρk,qM3,k=

π

6

(
mk,q

π
6 M̄3,k

)
M3,k=

(
mk,q

M̄3,k

)
M3,k (B9)

with Vk the total aerosol volume concentration of population
k, ρk,q the mass ofq per volume of particle,mk,q the average
mass ofq per particle in populationk. Combining Eqs. (B8)

and (B9), for the mass concentration loss ofq in population
k

L
coag
Q,k,q(k + l → i)=

dQk,q

dt
= −

dM3,k

dt

(
mk,q

M̄3,k

)
=NkNlK̄

(3)
kl mk,q (B10)

and for likewise for populationl

L
coag
Q,l,q(k + l → i)=

dQl,q

dt
= −

dM3,l

dt

(
ml,q

M̄3,l

)
=NkNlK̄

(3)
kl ml,q (B11)

The production term for populationi then balances these
losses

P
coag
Q,i,q(k + l → i)=NkNl(K̄

(3)
kl mk,q+K̄

(3)
lk ml,q) (B12)

Case 3: For the third case, populationk (or l) coagulates
with populationi, reducing number and mass concentrations
in populationk and increasing the mass concentration ofq

(but not number concentration) in populationi. Each coagu-
lation event removes a particle from populationk, and using
previous results we have for the loss of number concentration
in populationk

L
coag
N,k (k + i → i)=NkNiK̄

(0)
ki (B13)

and for the loss of mass concentration ofq in populationk.

L
coag
Q,k,q(k + i → i) = NkNiK̄

(3)
ki mk,q (B14)

For the mass production ofq in populationi

P
coag
Q,i,q(k + i → i) = NkNiK̄

(3)
ki mk,q (B15)

The expressions for production and loss rates obtained in
these three cases are now combined and summed over pop-
ulations as appropriate. For the production terms for num-
ber concentration in populationi, only the second case is
nonzero, and summing over all pairs of populationsk andl

P
coag
N,i,q=

n∑
k 6=i

n∑
l>k,l 6=i

diklK
(0)
kl NkNl (B16)

wheredikl is unity if coagulation of populationsk and l is
defined to produce particles in populationi and zero other-
wise, and there aren populations. Recall that in the second
case populationi must be distinct from bothk and l. The
summand is symmetric ink andl, and the summation should
include eitherk>l or l>k, but not both. For the loss terms for
number concentration, there is the self-coagulation term and
all pairs of populations whose intermodal coagulation results
in the loss of particles from populationi

L
coag
N,i =

1

2
K

(0)
ii N2

i +

(
n∑

j 6=i

dijK
(0)
ij Nj

)
Ni (B17)

wheredij (not symmetric ini, j ) is unity if coagulation of
populationj with populationi results in the removal of par-
ticles from populationi and zero otherwise.
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For the production terms for mass concentration ofq in
populationi, only in the second and third cases are nonzero
and are combined as

P
coag
Q,i,q(k + l → i, k + i → i)=NkNl[(1 − δki)K̄

(3)
kl mk,q+(1 − δli)K̄

(3)
lk ml,q ]

(B18)

where the Kronecker deltaδki ( δki=1 fork=i, δki=0 fork 6=i )
omits thek term since ifk=i, populationk does not add mass
to populationi, and similarly forδli . For the first case above,
δki=δli=0 ; for the second case,δki=0 andδli=1. Summing
over all pairs of populationsk andl, the production term for
populationi is

P
coag
Q,i,q=

n∑
k=1

n∑
l>k

gikl,qNkNl[(1 − δki)K
(3)
kl mk,q+(1 − δli)K

(3)
lk ml,q ]

(B19)

wheregikl,q is unity if coagulation of populationsk and l

is defined as producing particles in populationi and either
populationk or l is defined to contain speciesq; it is zero if
either of these conditions is not met. For the loss terms for
mass concentration ofq in populationi

L
coag
Q,i,q=

n∑
j 6=i

dijNjNiK
(3)
ij mi,q=

(
n∑

j 6=i

dijK
(3)
ij Nj

)
(Nimi,q) ≡ f

(3)
i Qi,q

(B20)

wheredij (not symmetric ini, j ) is unity if coagulation of
populationj with populationi results in the removal of parti-
cles from populationi and zero otherwise (as defined above).
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