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Abstract. In this work, the evaluation of the aerosol radia-
tive forcing at the top of the atmosphere as well as at the
surface over the south of Portugal is made, particularly in the
regions ofÉvora (38◦34′ N, 7◦54′ W) and of Cabo da Roca
(38◦46′ N, 9◦38′ W), during years 2004 and 2005.

The radiative transfer calculations, using the radiative
transfer code Second Simulation of the Satellite Signal in
the Solar Spectrum (6S), combine ground-based measure-
ments, from Aerosol Robotic NETwork (AERONET), and
satellite measurements, from MODerate Imaging Spectrora-
diometer (MODIS), to estimate the direct SW aerosol radia-
tive forcing. The method developed to retrieve the surface
spectral reflectance is also presented, based on ground-based
measurements (AERONET) of the aerosol optical properties
combined with the satellite-measured radiances (MODIS).

The instantaneous direct SW aerosol radiative forcing val-
ues obtained at the top of the atmosphere are, in the major-
ity of the cases, negative, indicating a tendency for cooling
the Earth at the top of the atmosphere. For Desert Dust
aerosols, over théEvora land region, the average forcing
efficiency is estimated to be−25 Wm−2/AOT0.55 whereas
for the Cabo da Roca area, the average forcing efficiency
is −46 Wm−2/AOT0.55. In the presence of Forest Fire
aerosols, both from short and long distances, the average
value of forcing efficiency at the top of the atmosphere
over Cabo da Roca is found to be−28 Wm−2/AOT0.55
and, overÉvora, −27 Wm−2/AOT0.55. For specific situ-
ations, discussed in this work, the average surface direct
SW aerosol radiative forcing efficiency due to the Desert
Dust aerosols, inÉvora region, is−66 Wm−2/AOT0.55,
whereas in Cabo da Roca region, the corresponding average
value is−38 Wm−2/AOT0.55. Considering the Forest Fire
aerosols, oveŕEvora region, the average surface direct SW
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aerosol radiative forcing efficiency can vary between−36
and −113 Wm−2/AOT0.55, the more negative value corre-
sponding to forest fire aerosols coming only from shorter dis-
tances.

1 Introduction

Aerosols play a key-role in the atmosphere by increasing
back-scattered solar radiation and by absorbing solar and
longwave radiation. They indirectly affect climate by chang-
ing the microphysical properties of clouds and their life span,
thereby modifying the planetary albedo and precipitation
regime. Depending on their properties, aerosols can have ei-
ther positive or negative contributions to radiative forcing in
the atmosphere. When absorbing aerosols are present in the
atmosphere, a positive radiative forcing is found, producing
then a warming effect. On the other hand if a negative radia-
tive forcing is found a cooling effect is produced. However,
the limited information on aerosol properties and dynamics,
particularly in the troposphere, is a major uncertainty. In fact,
the confidence in current climate change predictions is still
very low (IPCC, 2007), thus warranting detailed investiga-
tion of aerosols.

Within Europe, Portugal is a unique location for aerosol
studies because it is affected by contrasting air masses
(Verver et al., 2000). Here, large unperturbed rural areas
co-exist with dense pollution-generating industrial and urban
agglomerates. Maritime aerosols are a pervasive component
of the regional atmosphere – particularly over land adjacent
to the western and southern coasts, and the region is also af-
fected by the long-range transport of anthropogenic aerosols
emitted in northern Europe, and by desert dust plumes ad-
vected from Africa. Desert dust, and frequently during sum-
mer, smoke from forest fires, account for a significant amount
of the suspended particle mass. These particles are very ef-
ficient at scattering and absorbing both short and longwave
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radiation, being then of primary importance for the estima-
tion of radiative forcing due to aerosols.

Long-term monitoring is necessary for understanding cli-
mate change implications, in particular to identify major
aerosol types, to characterise their spatial and temporal dis-
tribution and their optical and physical properties, and to es-
timate their local and regional radiative forcing. In Portu-
gal, long-term monitoring is being undertaken with measure-
ments from ground-based instruments atÉvora, extended
with measurements from Cabo da Roca (Elias et al., 2006).
The instrumentation at́Evora and Cabo da Roca includes
a multi-wavelength, angular-resolving sun/sky photometer
(Silva et al., 2003).

The present work aims to estimate the direct shortwave
(SW) aerosol radiative forcing at the top of the atmosphere
(TOA) over the south of Portugal, particularly in the regions
of Évora and of Cabo da Roca, where ground-based measure-
ments are taken. Also for special aerosol events the direct
shortwave aerosol radiative forcing, overÉvora and Cabo da
Roca, is estimated at the surface. Special attention is given
to significant aerosol events of desert dust and forest fires,
which often occur in the territory, as described before. A
second objective is aimed, which consists in developing a
method for retrieving the surface spectral reflectance based
on ground-based measurements of the aerosol optical prop-
erties combined with the satellite-measured radiances.

The methodology is based on radiative transfer calcula-
tions combined with surface and satellite measurements. The
ground-based measurements of the aerosol optical properties
provide the essential atmospheric characterization that com-
bined with the satellite-measured radiance allow for the re-
trieval of the surface spectral reflectance, which is crucial
for the irradiances calculations. When the surface charac-
terization is achieved, the upwelling shortwave irradiances
are calculated, using the same atmospheric characterization
(obtained from the ground-based measurements of aerosol
properties). The TOA direct SW aerosol radiative forcing is
then determined as being the difference between the net irra-
diances obtained for an atmosphere loaded with aerosols and
the net irradiances of a pristine atmosphere, in the shortwave
spectral region. The net irradiances are given by the dif-
ference between the downwelling and upwelling shortwave
TOA irradiances.

The net radiative forcing can be either positive or nega-
tive, depending on several key parameters such as the sur-
face spectral reflectance, aerosol single scattering albedo and
aerosol optical thickness (Tegen and Lacis, 1996; Liao and
Seinfeld, 1998; Haywood and Boucher, 2000; Kaufman et
al., 2002). The results obtained substantiate these effects,
illustrating also the importance of considering the actual
aerosol properties, in this case measured by ground-based
instrumentation, since different aerosol types or long range
transported aerosols mixing with already existing aerosols
may alter their properties and originate different forcing
magnitudes, sometimes changing the signs. In the major-

ity of the cases, the aerosol radiative forcing values obtained
are negative, indicating a tendency for cooling the Earth, at a
local/regional scale.

2 Methodology

The methodology developed to derive de surface spectral re-
flectance and to estimate the aerosol radiative forcing is de-
scribed next.

2.1 Data and region of study

The Aerosol Robotic NETwork (AERONET) is a global
ground-based network of sun/sky multiwavelength radiome-
ters that provide relatively long-term records of aerosol op-
tical properties (Holben et al., 1998, 2001). In the region
investigated in this study, data from the two stations,Évora
(38.5 N, 7.9 W, 293 m a.m.s.l.) and Cabo da Roca (38.78 N,
9.5 W, 140 m a.m.s.l.), are available during years 2004 and
2005. The CIMEL spectral radiometer measures the direct
solar irradiances with a field of view of approximately 1.2◦

and sky radiances (at two different observing geometries),
at four spectral channels (0.441, 0.675, 0.87 and 1.02µm).
Between morning and afternoon, direct solar radiances are
measured, approximately every 15 min, and the aerosol op-
tical thickness (AOT), estimated, according to AERONET’s
official inversion product (Dubovik and King, 2000; Dubovik
et al., 2002). After using the proper calibrations and cor-
rections, the estimated accuracy is between 0.01 and 0.02
(Holben et al., 1998). Sky radiance scans are made in 0.5◦

increments through the aureole up to 30◦ increments in the
backscattered direction along solar principal plane and solar
almucantar plane. An estimated absolute accuracy of 3 to 5%
is set to the measured radiances (Dubovik et al., 2000, 2002).
AERONET data used in this work are level 1.5 of the volume
particle size distribution (V (r)), the complex refractive index
(m) and the AOT values at 0.441, 0.673 and 0.873µm. Al-
though the 1.5 data are not quality assured (it can be cloud
contaminated), additional information from satellite data was
also used to ensure the clear-sky situation.

Satellite radiance measurements from the MODerate
Imaging Spectroradiometer (MODIS) installed onboard the
Earth Observing System Terra and Aqua satellites, are used.
MODIS has a viewing swath width of 2330 km, and scans
the entire surface of the Earth in 36 spectral bands (from 0.4
to14µm) (Barnes et al., 1998). The spectral bands used here
are 434–448 nm, 620–670 nm and 841–876 nm. The spatial
resolution is for the first spectral band 1000×1000 m2 and
for the second and third spectral bands 250×250 m2.

The study areas selected for this work are presented in
the map of Fig. 2:Évora (150 km south-east of Lisbon) and
Cabo da Roca (20 km west of Lisbon, on the Atlantic Ocean
west coast). ThéEvora site coincides with the first continen-
tal Portuguese Aerosol Robotic Network (AERONET) site,
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operating since 2002. Cabo da Roca, the second continental
Portuguese AERONET site, operating since December 2003,
is the continental western-most site in Europe.

2.2 Classification of the aerosol case studies

In order to interpret the optical measurements in terms of the
aerosol origins, the 72-h air mass back-trajectories, ending
overÉvora and Cabo da Roca regions are calculated at three
pressure levels, using HYSPLIT (HYbrid Single-Particle La-
grangian Integrated Trajectory) model available from the US
National Oceanic and Atmospheric Administration (NOAA)
(Draxler and Hess, 1998; Draxler and Rolph, 2003; Rolph,
2003). The pressure levels chosen are 970 hPa, which repre-
sents the surface level, 850 hPa (at about 1.5 km height) cor-
responding to the characteristic boundary layer height, where
the majority of aerosols are concentrated in the absence of
strong aerosol episodes, and 700 hPa (at about 3 km height)
to take into account the long-range transport of particles (as
Saharan desert dust). For the vertical motion, the Model Ver-
tical Velocity is considered.

The criteria used for aerosol classification is the same
followed by Elias et al. (2006). Threshold values are set,
for different aerosol events, on the aerosol optical thickness
(AOT) at 0.441µm and 0.873µm and on theÅngstr̈om ex-
ponent (αc), between 0.441µm and 0.873µm. The events
considered are “Forest Fire” and “urban/industrial”, when
AOT0.441>0.30 andαc>1.0. The distinction between the
“Forest Fire” and “urban/industrial” events is based on the
corresponding air mass backward trajectories. An aerosol
event is classified as “Desert Dust” whenAOT0.873>0.10
and αc<1.0. A “Clean” situation is considered when
AOT0.441<0.12 andAOT0.873<0.04 for any value of the
Ångstr̈om exponent.

Table 1 shows the threshold values used for the aerosol
events classification. “NC” indicates no conditions on this
quantity.

2.3 Retrieval of the surface spectral reflectance

The surface spectral reflectance is derived using MODIS
satellite measurements in the following three spectral bands:
0.434–0.448µm (band 9), 0.620–0.670µm (band 1) and
0.841–0.876µm (band 2) combined with radiative transfer
calculations. As mentioned before, the spatial resolution of
band 9 differs from that of bands 1 and 2 (1000×1000 m2 in
the first case and 250×250 m2 for bands 1 and 2). MODIS
band 9 images were linearly interpolated in-between pixels
in order to obtain the spatial resolution of bands 1 and 2
(250×250 m2). This is done assuming that the surface is
fairly homogeneous in each area of 1000×1000 m2 so that no
important features are smoothed or accentuated by the pro-
cedure. These assumptions are applicable for the areas under
study (Fig. 2) and provided that, in the case of Cabo da Roca,
the pixels over land are totally separated from those over the

Table 1. Criteria for the classification of the aerosol events used in
this work. “NC” indicates no conditions on this quantity.

Event type AOT0.441 AOT0.873 αc

Clean < 0.12 <0.04 NC
Forest Fire/ Urban >0.30 NC >1.0
Desert Dust NC >0.10 < 1.0

ocean, since pixels over the ocean are not considered in the
study. The surface spectral reflectance is then determined in
the three spectral intervals with the same spatial resolution of
250×250 m2.

Only “clear-sky” situations are considered, that is, no
clouds are present in the regions of study. MODIS data
are thus collected for typically “clear-sky” days. This se-
lection is done through visual inspection of the MODIS
RGB images (http://modis-atmos.gsfc.nasa.gov/IMAGES/
index.html) over the areas of study (Fig. 2). On the other
hand, the images used correspond to situations of very low
aerosol loads in the atmosphere (“clean” days), as defined
in Sect. 2.2. The aim of using “clean” and “clear-sky” atmo-
spheric days is the reduction to a minimum of the impact that
the atmospheric correction (due to aerosols) may have on the
surface spectral reflectance retrievals. Gaseous absorption
errors are reduced to a minimum since no important gas ab-
sorption bands are present in the spectral regions where the
surface reflectance is determined.

The Second Simulation of the Satellite Signal in the Solar
Spectrum (6S) (Vermote et al., 1997a) is the radiative trans-
fer code used to correct the satellite measured signal for the
atmospheric contribution and to model the TOA upwelling
and downwelling irradiance values. This code can simulate
satellite radiation measurements in cloudless atmospheres,
between 0.25 and 4.0µm, for a wide range of atmospheric
and surface conditions (Vermote et al., 1997b). The 6S takes
into account the atmospheric compounds considering 34 at-
mospheric levels distributed from the ground up to 100 km
altitude, which is considered the TOA level. A standard at-
mospheric profile typical of mid-latitude summer or winter,
according to the case under study and the aerosol properties
obtained at the two AERONET stations (see Sect. 2.1) are
considered.

The aerosol optical quantities are retrieved from the
volume particle size distribution (with 22 logarithmically
equidistant bins from 0.05 to 15µm) and from the complex
refractive indexm, both taken from the AERONET prod-
uct (level 1.5), which are then used as input to Mie calcu-
lations, since aerosol particles are assumed to be spherical
(not necessarily true for desert dust aerosols). The AOT at
0.55µm is obtained using the̊Angstr̈om exponent between
0.441µm and 0.873µm. The Mie calculations provide the
phase function, the asymmetry factor, the single scattering
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Fig. 1. Block diagram of the methodology followed in this work.

albedo and the scattering and extinction coefficients. These
aerosol quantities are then used once more, to compute the
upwelling irradiance at the TOA, as well as the downwelling
and upwelling irradiances at the surface level.

Since the atmospheric correction parameters are known, as
well as the geometry and the satellite measured spectral ra-
diance, the surface reflectance is determined, with 6S radia-
tive transfer code, considering the surface behaves as a Lam-
bertian reflector. The surface reflectance is thus obtained in
the three spectral bands mentioned before (0.438–0.448µm,
0.620–0.670µm and 0.841–0.876µm), with the spatial res-
olution of 250×250 m2.

The surface spectral reflectance values obtained from
MODIS data and 6S radiative transfer code (0.438–
0.448µm, 0.620–0.670µm and 0.841–0.876µm) are com-
pared with spectral reflectance curves typical of different
surface types, contained in a surface spectral reflectance
database – the USGS Digital Spectral Library (see on-
line http://speclab.cr.usgs.gov/spectral-lib.html). The satel-
lite derived surface spectral reflectance values are compared
with the spectral surface reflectance values from the USGS
database and the curve that better reproduces the MODIS
surface reflectance spectral behaviour is taken (see the block
diagram in Fig. 1). Since the surface reflectance values ob-
tained from MODIS and from the database for the three spec-
tral bands are proportional, a linear relation is adjusted with
the correlation coefficients varying between 0.91 and 0.99.
The linear regression calculated allows for obtaining an ad-
justed curve, which permits an extension of the satellite de-
rived spectral reflectance coverage from the three above men-
tioned spectral bands, to the whole shortwave spectral re-
gion (0.25–4.0µm). The results obtained are presented in
Sect. 3.1 (Figs. 3–4).

 

Fig. 2. Regions selected for the study:Évora and Cabo da Roca.

2.4 Assessment of the radiative forcing for different aerosol
type events

The aerosol characterization obtained from the AERONET
sites (́Evora and Cabo da Roca), as well as the surface spec-
tral reflectance retrieved, as explained in Sect. 2.3, are used
to estimate the upwelling shortwave (SW ) irradiances at the
top of the atmosphere (F

↑TOA
SW ). This is done according to the

procedure described by Costa et al. (2004) for the calculation
of the upwelling shortwave irradiances emerging at the TOA
level that can be summarized by Eq. (1):

F
↑TOA
SW =

4∫
0.25

 2π∫
0

+1∫
0

Iλ (+µ, φ) .µ.dµ.dφ

 .dλ (1)

whereIλthe monochromatic radiance in the zenith and az-
imuth directions is,µ is the cosine of the viewing zenith an-
gle andφ is the azimuthal angle. The irradiances are also
calculated for a pristine atmosphere (AOT=0), in order to al-
low for the calculation of the radiative forcing induced by
several aerosol types and loads (1F TOA).

The instantaneous direct SW aerosol radiative forcing
(1F) at the TOA, expressed in units of energy per unit time
and area, is defined as:

1F TOA
=F net TOA

AER −F net TOA
CLEAN . (2)

The first term on the right corresponds to the total net irradi-
ance at the TOA that suffered an external perturbation due to
aerosols and the second term to the total atmospheric net ir-
radiance at the same level that did not suffer the perturbation.
For aerosol study purposes, the SW radiative forcing1FSW
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Fig. 3. Surface spectral reflectance values: from the USGS database (grey line), retrieved from MODIS (black circles) and obtained combin-
ing the database with MODIS retrievals (black line) forÉvora nearby rural area, during 2004 winter(a) and summer(b) periods, and during
the 2005 summer period(c).

has been considered the most adequate since the direct effects
of these particles on the radiation field are mainly connected
to their interaction with sunlight through the scattering and
absorption processes. Hence, the shortwave radiative forcing
due to an increase of the aerosol load in the atmosphere is
here determined in the spectral region from 0.25 to 4.0µm
(see the block diagram in Fig. 1). Equation (2) can be rewrit-
ten in terms of the downwelling and upwelling shortwave ir-
radiances as follows:

1F TOA
SW =(F

↓TOA
SW −F

↑TOA
SW )AER−(F

↓TOA
SW −F

↑TOA
SW )CLEAN. (3)

Since the incident downwelling irradiance at the TOA does
not depend on aerosols, the TOA direct SW aerosol radiative
forcing (DSWARF) can be finally written as:

1F TOA
SW =(F

↑TOA
SW )CLEAN−(F

↑TOA
SW )AER. (4)

The instantaneous TOA DSWARF is calculated in this way
and the results obtained are presented in Sect. 3.2.

The instantaneous DSWARF at the surface was calculated
in terms of the downwelling and upwelling shortwave irradi-
ances at the surface as follows:

1F SURF
SW =

(F
↓SURF
SW −ρsF

↓TSURF
SW )AER−(F

↓SURF
SW −ρsF

↓SURF
SW )CLEAN (5)

whereρs stands for the surface reflectance; the DSWARF
of the entire atmosphere can be estimated, according to Ra-
manathan et al. (2001) as follows:

1F atm
SW =1F T OA

SW −1F surf
SW (6)

When studying the aerosol-radiation interactions, it is very
useful to define the forcing efficiency term,1Fe, in order
to compare a quantity that is independent of the aerosol
load, depending thus only on the aerosol type and underlying
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Fig. 4. Same as in Fig. 3 for Cabo da Roca land area, during 2004 winter(a) and summer(b) periods, and during 2005 spring(c) and summer
(d) periods.

surface. As expressed in Eq. (7),1Fe is simply the radiative
forcing per unit aerosol optical thickness:

1Fe=1F TOA
SW

/
AOTλ. (7)

This term represents the effectiveness of the aerosol in per-
turbing the radiative environment.

To note that the longwave forcing of aerosols is not in-
cluded in the forcing efficiencies presented in this work.

3 Results and discussion

3.1 Retrieval of the surface spectral reflectance

MODIS data are collected for typically “clean” (very low
aerosol load) and “clear-sky” (no clouds) days over the area
of study illustrated in the map of Fig. 2. The days selected for
the study, accordingly to the criteria explained in Sect. 2.2,
as well as the satellite images used, are identified in Table 2.

The satellite derived surface reflectance values obtained
in three spectral bands are extended to the whole visible
range (from 0.25 to 4.0µm) as explained in Sect. 2.3. Ta-
bles 3 and 4 show the surface spectral reflectance values
taken from the database (ρs), as well as the mean sur-
face spectral reflectance values retrieved from MODIS spec-
tral bands (0.438–0.448µm, 0.620–0.670µm and 0.841–
0.876µm) (ρs), averaged over the areas of study –Évora
nearby rural region (20×20 km2 area) and Cabo da Roca land
region (5×5 km2 area), and the corresponding standard devi-
ation values. To note that, for all situations, more than 4000
(Évora) and 250 (Cabo da Roca) MODIS pixels were consid-
ered for the average. The number differs from case to case
because the pixels corresponding to concrete surfaces (cities
and other urban spots) are not taken into account.

The satellite derived surface spectral reflectance values
follow the spectral behaviour of the surface reflectance curve
taken from the database (Figs. 3 to 4). ForÉvora region, in
the majority of the cases, the database reflectance values are
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Table 2. MODIS granules used for the study.

Satellite Date MODIS granule Aerosol type
acquisition time (UTC)

Terra

5 Feb 2004 From 11:25 to 11:30

Clean

21 Feb 2004 From 11:25 to 11:30
20 Jul 2004 From 10:45 to 10:50
14 Aug 2004 From 10:40 to 10:45
1 Jul 2005 From 11:25 to 11:30
3 Aug 2005 From 12:05 to 12:10
27 Aug 2005 From 11:15 to 11:20
12 Sep 2005 From 11:15 to 11:20

Satellite Date MODIS granule Aerosol type
acquisition time (UTC)

Terra

14 Mar 2004 From 10:45 to 10:50

Clean

23 Apr 2004 From 11:35 to 11:40
15 Jun 2004 From 11:55 to 12:00
10 Aug 2004 From 11:05 to 11:10
14 Aug 2004 From 10:40 to 10:45
17 Sep 2004 From 12:05 to 12:10
12 Apr 2005 From 11:25 to 11:30
18 May 2005 From 11:00 to 11:05
15 Jun 2005 From 11:25 to 11:30
3 Aug 2005 From 12:05 to 12:10
19 Sep 2005 From 11:20 to 11:25

within the error bars (standard deviation) of the MODIS de-
rived surface spectral reflectance. As for Cabo da Roca area,
some differences may arise since this is a coastline region,
where the atmospheric correction may sometimes be prob-
lematic due to cloud and/or fog occurrences that may not be
properly screened in the AERONET 1.5 level data used in the
present study, introducing considerable errors in the aerosol
inversions and radiative transfer calculations.

The surface spectral reflectance is determined in the area
of Évora, for winter and summer periods in 2004 (Table 3
and Fig. 3a and b). In 2005, only the summer period is
considered to derive the surface spectral reflectance (Table 3
and Fig. 3c). This is done in order to allow for the study of
strong aerosol events that occurred in that period. Although
it doesn’t completely belong to that period, the September
month is also included in the summer period since the sur-
face spectral reflectance curve is approximately the same as
the curves considered in the summer months. The winter sea-
son, for 2005, is not considered at theÉvora site since on one
hand, typically clean days (low aerosol loads in the atmo-
sphere) were cloud contaminated over the areas of study and
on the other hand, no significant aerosol events occurred dur-
ing this season. For Cabo da Roca region, during year 2004,
both winter and summer periods are considered as well (Ta-
ble 4 and Fig. 4a and b). In 2005, the periods considered are
spring and summer, with the September month included in
the summer period once again because the surface spectral
reflectance curve for this month is very similar to the curves
considered for the summer period (Table 4 and Fig. 4c and
d).
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Fig. 5. Instantaneous TOA Direct Shortwave Aerosol Radia-
tive Forcing (DSWARF –1F) versus aerosol optical thickness at
0.55µm, over Évora (Ev) during 2004 (open symbols) and 2005
(solid symbols), in the presence of Desert Dust (DD) and Forest
Fires (FF) aerosol types.

The graphs of Figs. 3 to 4 show the spectral reflectance
obtained, respectively foŕEvora and Cabo da Roca surround-
ing land areas. The graphs include the satellite derived
surface reflectance values in the three spectral bands men-
tioned before (0.434–0.448µm, 0.620–0.670µm and 0.841–
0.876µm) (black circles), as well as the spectral reflectance
curves taken from the database (grey line) and the best-fit
curves (black line), obtained from the linear regression be-
tween the satellite derived surface spectral reflectance and
the database spectral reflectance values, explained previously
in Sect. 2.3. FoŕEvora land area in 2004, the winter surface
reflectance is based on the Aspen (name used according to
the names in the database) curve (Fig. 3a) whereas for the
two consecutive years (2004 and 2005) the summer surface
reflectance is based on a dry grass curve (Fig. 3b and c), both
surface types present in the USGS database.

As it would be expected, théEvora land vegetation type in
winter presents substantial differences from that in summer,
as it can be observed in Fig. 3a and b, which shows the re-
sults obtained foŕEvora nearby rural area during winter and
summer 2004.

For Évora land area (Fig. 3c), the curve obtained for the
surface spectral reflectance during summer 2005, is based
again on a dry grass curve (the same as summer 2004).

For Cabo da Roca land area, the surface reflectance is, for
all seasons in 2004 and 2005, based on the Aspenynp spec-
tral reflectance curve of the USGS database (Fig. 4).

An interesting feature of the spectral reflectance curves
obtained for 2005 in Cabo da Roca (Fig. 4c and d), is that
these values overestimate the database surface spectral re-
flectance values, whereas the same is not observed for 2004.
This may be connected to the fact that 2005 was a very
dry year in continental Portugal, with very few precipitation
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Table 3. Surface spectral reflectance obtained from the USGS database (ρs) and spatial mean values (ρs) retrieved from satellite measure-
ments forÉvora region, years 2004 and 2005.

Évora Winter 2004 Summer 2004 Summer 2005
Wavelength ρs ρs Standard ρs ρs Standard ρs ρs Standard

(µm) database MODIS deviation database MODIS deviation database MODIS deviation

0.440 0.056 0.024 0.002 0.080 0.070 0.017 0.080 0.070 0.009
0.670 0.056 0.041 0.001 0.235 0.201 0.022 0.235 0.183 0.020
0.870 0.475 0.455 0.003 0.316 0.298 0.033 0.316 0.309 0.035

Table 4. The same as in Table 3 but for Cabo da Roca region, years 2004 (upper part) and 2005 (lower part).

Cabo da Roca Winter 2004 Summer 2004
Wavelength ρs ρs Standard ρs ρs Standard

(µm) database MODIS deviation database MODIS deviation

0.440 0.024 0.052 4.407E-4 0.024 0.058 0.019
0.670 0.030 0.057 0.004 0.030 0.063 0.020
0.870 0.321 0.306 0.056 0.321 0.317 0.013

Cabo da Roca Spring 2005 Summer 2005
Wavelength ρs ρs Standard ρs ρs Standard

(µm) database MODIS deviation database MODIS deviation

0.440 0.024 0.057 0.010 0.024 0.050 0.025
0.670 0.030 0.060 0.008 0.030 0.051 0.011
0.870 0.321 0.334 0.020 0.321 0.33 0.036
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Fig. 6. Same as in Fig. 5 but for Cabo da Roca (CR) land area
considering also the presence of Urban (Urb) aerosol type.

occurrences, classified as severe and extreme drought from
January until September 2005. Therefore, the vegetation suf-
fered a change related to the increase of the surface spec-
tral reflectance, which was not taken into consideration in
this case, since the same database spectral reflectance val-

ues were considered both for 2004 and 2005 (Aspen type).
This is notable for the Cabo da Roca site, where precipita-
tion plays a core role in the surface vegetation characteris-
tics. Évora site is characterized by semi-arid surfaces, which
leads to a lower impact of droughts in terms of changes in
the surface spectral reflectance, in the summer season.

3.2 Assessment of the radiative forcing for different aerosol
type events

The instantaneous TOA Direct Shortwave Aerosol Radiative
Forcing (DSWARF) is calculated as described in Sect. 2.4.
The major aerosol events that occurred in the regions of
study were Forest Fires (FF) and Desert Dust (DD). How-
ever, the analysis of air mass backward trajectories, as well
as the aerosol type classification criteria of Table 1, allowed
for considering also the urban/industrial (Urb) aerosol type
for Cabo da Roca area, in 2004.

The results obtained foŕEvora land area (Fig. 5) during
years 2004 and 2005, show that negative TOA DSWARF val-
ues are found in the majority of the cases, nevertheless three
positive TOA DSWARF values are found for the Desert Dust
aerosol and another three cases for the Forest Fire aerosol
type.
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Fig. 7. Air mass backward trajectories ending over Cabo da Roca region on 13 April(a) and 18 May 2004(b).

As for Cabo da Roca land area, results are shown in the
graph of Fig. 6 during the same years for the Forest Fire,
Desert Dust and urban/industrial aerosol types, the latter be-
ing considered only for year 2004. To note that, negative
TOA DSWARF values are always found for Desert Dust and
Forest Fire aerosol types, thus contributing to a cooling effect
at the TOA over Cabo da Roca land area. For urban/industrial
aerosol type, both positive and negative TOA DSWARF val-
ues are found, although these values are very close to zero.

The different TOA DSWARF values found for the same
site and for the same aerosol type may be associated with
the presence of aerosols in the atmosphere with different
scattering/absorbing capabilities (Haywood and Shine, 1995;
Hansen et al., 1997; Russel et al., 2002; Elias et al., 2004;
Costa, 2004; and Costa et al., 2006). Pure scattering aerosol
particles induce a cooling effect, whereas absorbing aerosols
lead to a warming effect (Satheesh, 2002). The magnitude
of the single scattering albedo (SSA) can be considered as
an index for the relative dominance of the scattering process
with respect to absorption. Therefore, the knowledge of the
SSA is crucial and even a small change in its estimation can
flip the sign of TOA DSWARF as observed and in agreement
with other authors (Takemura et al., 2002).

In order to understand the different SSA values found for
aerosols oveŕEvora and over Cabo da Roca, the 72-h air
mass back-trajectories at several altitudes (between 200 to
3000 m a.g.l.), ending ińEvora and Cabo da Roca are also
calculated using the HYSPLIT model (see Sect. 2.2).

Another consideration that has to be made is the ef-
fect of the underlying surface by which the aerosol forcing
may change sign from negative (cooling) to positive (warm-
ing) when the surface reflection is high (Liao et al., 1998;
Satheesh, 2002). When aerosols are present over a land sur-
face with high reflection, their impact on solar radiation is
very significant, because the radiation reflected from the sur-
face below would interact again with the aerosols present
above.

Hence, the next three subsections explore three different
situations found in this study, which illustrate the above con-
siderations. According to Eq. (5) the Surface forcing is esti-
mated for these three different situations.

A discussion on the estimated TOA forcing efficiency is
made in the last subsection.
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Figure 8. Spectral aerosol single scattering albedo over Cabo da Roca land area, in the 

presence of Urban/Industrial aerosols in Spring 2004. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Spectral aerosol single scattering albedo over Cabo da Roca
land area, in the presence of urban/industrial aerosols in Spring
2004.

3.2.1 Effect of aerosol absorption – urban/industrial
aerosols

Considering the urban/industrial events occurred in Cabo da
Roca land area in 2004, different signs of the TOA DSWARF
values are found, although results are obtained for the same
region (same surface spectral reflectance is used). This may
be explained through the analysis of the 72-h air mass back-
trajectory calculations at 300, 1500 and 3000 m a.g.l., ending
at Cabo da Roca region, corresponding to the two different
situations (Fig. 7). The different signs of the TOA DSWARF
are connected to the differences in the SSA values shown
in Fig. 8. On 29 March, 13 April, 15 and 24 May, the ob-
tained TOA DSWARF values, normalized to the aerosol op-
tical thickness at 550 nm (1Fe – Sect. 2.4), have a negative
sign, whereas on 17 and 18 May, the TOA DSWARF val-
ues are positive (see upper panel of Fig. 11a). Based on the
72-h air mass back-trajectories, ending over Cabo da Roca
region, it is possible to observe that for those days the TOA
DSWARF have a negative sign (e.g. 13 April), the urban and
industrial pollution particles travel from the North of Europe
to the Atlantic ocean and penetrate into the Iberian Penin-
sula from the North before reaching Cabo da Roca region
(left graph of Fig. 7 as an example). On 17 and 18 May,
when positive TOA DSWARF values are found, the urban
and industrial particles travel from central Europe, pass the
Mediterranean Sea and penetrate into the Iberian Peninsula
coming from East (right graph of Fig. 7 only for 18 May)
before reaching Cabo da Roca region. When the aerosol ar-
rives over Cabo da Roca region, it is constituted by a mix-
ture of pollution, maritime and continental aerosol types.
These different paths followed by the aerosol particles and
the different initial sources may explain the different SSA
values obtained and shown in Fig. 8 for all above mentioned
days. Moreover, the analysis of Fig. 8 shows that the ur-
ban/industrial aerosol particles for 17 and 18 May (positive

TOA DSWARF values – upper panel of Fig. 11a, have ac-
cordingly, lower SSA values, hence more absorbing than the
urban/industrial aerosol particles found on the other days of
the study. To note that these aerosols coming from North Eu-
rope, pass over the Atlantic Ocean, and mix with the more
scattering Sea Salt aerosols, being then less absorbing. For
the days presenting higher SSA values, namely 29 March, 13
April, 15 and 24 May, the TOA DSWARF values are, accord-
ingly, negative (upper panel of Fig. 11a).

According to the upper panels of Fig. 11a and b, and com-
paring the TOA and the surface radiative forcing efficiencies
for 2004, a positive aerosol atmospheric radiative forcing is
found for all the Urban events over Cabo da Roca site, mean-
ing that in all these situations (these type of aerosols) the at-
mosphere is heated and consequently its dynamics affected.

3.2.2 Effect of aerosol absorption – aged smoke aerosols

The different TOA DSWARF signs as well the correspon-
dent Surface DSWARF signs (or DSWARF of the entire
atmosphere, through Eq. 6) found for the Forest Fires
aerosols reachinǵEvora are studied through the examina-
tion of the 72-h air mass back-trajectories at 200, 1400 and
2900 m a.g.l., ending at́Evora (Fig. 9), as well as of the SSA
values obtained foŕEvora region as shown in Fig. 10. From
the AERONET aerosol optical thickness values obtained for
Évora, (and aerosol type classification presented in Table 1),
as well as from the analysis of the back-trajectories of Fig. 9,
it can be noted that, although the aerosol particles belong
to the same type (Forest Fire), they originate in different re-
gions.

For 17, 18, 19 June and 10 July 2005, no information
concerning fire occurrences was available, nevertheless the
AERONET aerosol optical thickness values obtained for
Évora and the aerosol type classification presented in Table 1,
allowed to consider the “Forest Fire” aerosol type. The back-
trajectory calculations, shown on the left graph of Fig. 9 for
19 June, evidence that the aerosol particles coming toÉvora
at the lower levels are originated in central Spain, probably
contaminated by the Forest Fires that were affecting those
regions. The fires, in these cases, produced aerosols that are
measured ińEvora as being less absorbing (higher SSA as
shown in Fig. 10) than the forest fire aerosols also measured
in Évora that originated closer and travelled from different
paths, shown on the right graph of Fig. 9 (see below), in cor-
respondence with the negative radiative forcings obtained at
the top of the atmosphere as well as at the surface, shown
respectively in the lower panels of Fig. 11a and b for 2005.

According to the Portuguese Forest Fires Annual Report
(DGRF, 2006), several Forest Fire events started on 14 Au-
gust 2005 on the north and central regions of continental
Portugal, burning an extensive area and lasting a few days.
These particles reached́Evora region (right graph of Fig. 9)
and present lower spectral SSA (more absorbing) for 15, 16
and 20 August 2005, as shown in Fig. 10, than the particles
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Fig. 9. Air mass backward trajectories ending overÉvora region on 19 June(a) and 16 August 2005(b).

travelling longer distances, which is the case of the fires
occurring during June–July 2005 in Spain. The forest fire
aerosols originated in Portugal in 2005, being more absorb-
ing cause the positive radiative forcing values at the top of the
atmosphere (lower panel of Fig. 11a), and a stronger positive
radiative forcing of the entire atmosphere, therefore a neg-
ative radiative forcing at the surface, as shown in the lower
panel of Fig. 11b. It is well known that the travel time of
these aerosols is related to the ratio between elementary car-
bon and organic compounds (EC/OC) content, therefore in-
terfering with their absorption properties (Reid et al., 1998;
Andreae and Merlet, 2001; Eck et al., 2001). On the other
hand, different types of “burned” vegetation may cause dif-
ferent aerosol properties (Ramos, 2006), which could also
explain the different aerosol single scattering albedo values
and the corresponding TOA and Surface DSWARF signs.
Nevertheless, it is not expected that the vegetation types in
the Iberian Peninsula differ that much, therefore the smoke
from the forest fires suffered, most probably, an aging pro-
cess when travelling from Spain to Portugal, becoming less
absorbing than the ones generated in Portugal, originating
negative DSWARF values both at TOA and at the surface.
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Fig. 10. Spectral aerosol single scattering albedo overÉvora land
area, in the presence of Forest Fire aerosol events during Spring and
Summer 2005.

3.2.3 Effect of desert dust absorption and of the underlying
surface

The TOA DSWARF values normalized to the aerosol optical
thickness at 550 nm (1Fe – Sect. 2.4), for a strong Desert
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Fig. 11. Instantaneous TOA(a) and Surface(b) DSWARF values normalized to the AOT at 0.55µm, for selected days, overÉvora (Ev) and
Cabo da Roca (CR) land areas, for the desert dust (DD) and urban/industrial (Urb) during 2004 – (upper panels) and forest fire (FF) during
2005 – (lower panels) aerosol types.
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Figure 12. Spectral aerosol single scattering albedo over Évora (Ev) and Cabo da Roca (CR) 

regions, for a Desert Dust event on 23, 24 and 25 July 2004. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Spectral aerosol single scattering albedo overÉvora (Ev)
and Cabo da Roca (CR) regions, for a Desert Dust event on 23, 24
and 25 July 2004.

Dust aerosol event that occurred from 23 to 25 July 2004,
are shown in the upper panel of Fig. 11a. The comparisons
of the instantaneous TOA DSWARF results obtained, due to
this strong Desert Dust aerosol event, forÉvora and Cabo
da Roca land areas, show that opposite signs are observed:
while over Évora the TOA DSWARF is slightly positive, a
large negative value is obtained over Cabo da Roca.

As explained before, these different TOA DSWARF values
may be associated with the effect of the underlying surface
and with the aerosol absorbing potential. Based on the right
graph of Figs. 3 and 4 (corresponding to the summer period)
and on Tables 3 and 4, it can be observed that the surface
spectral reflectance ińEvora is higher than in Cabo da Roca

(for example, inÉvoraρ̄s,λ=0.67=0.20 and for Cabo da Roca
regionρ̄s,λ=0.67=0.06), therefore their impact on the down-
welling solar irradiance is quite different (Elias and Silva,
2004).

The graph of Fig. 12 shows the SSA values obtained as a
function of wavelength, for the Desert Dust aerosols of the
above mentioned episode reachingÉvora and Cabo da Roca.
We note that although the spectral behaviours are very sim-
ilar, the aerosols ińEvora area have lower SSA values than
aerosols in Cabo da Roca area, thus leading to a warming
instead of a cooling effect at the TOA.

From the 72-h air mass back-trajectories at 200, 1400 and
2900 m a.g.l., ending ińEvora (Fig. 13), it can be observed
that the desert dust leaving the western African coast travel
to the Atlantic ocean and penetrate in Europe passing over
Cabo da Roca before reachingÉvora. As Cabo da Roca is
located in the vicinity of Lisbon and suffers the influence of
the urban and industrial pollution from this city, as well as
from the industrial surrounding region, Desert Dust aerosols
may have mixed with the urban/industrial aerosols already
present in the region. The scattering aerosols coming from
the Sahara Desert and reaching Cabo da Roca become more
absorbing as they mix with urban/industrial aerosols over the
Greater Lisbon area and penetrate into the Continent, about
150 km, to arrive oveŕEvora.

Thus in this case, apparently both the surface reflectance
and the aerosol absorption effects reflect in higher TOA
DSWARF in Évora than in Cabo da Roca, where negative
values are obtained, leading to a cooling effect at the TOA.

As for the atmospheric radiative forcing and according to
the upper panels of Fig. 11a and b, a positive atmospheric
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Figure 13. Air mass backward trajectories ending over Évora region on 25 July 2004. 

 

 

 

 

 

 

 

Fig. 13. Air mass backward trajectories ending overÉvora region
on 25 July 2004.

radiative forcing is found for the period 23–25 July 2004,
overÉvora region, therefore leading to the atmospheric heat-
ing. For Cabo da Roca region, on the first day (23 July
2004) a positive value of atmospheric radiative forcing is
also obtained, whereas for the following days negative at-
mospheric radiative forcing values are found (atmospheric
cooling). These differences can be, once again, verified by
the single scattering albedo values (Fig. 12), which exhibit,
on the first day of the desert dust event, 23 July, lower val-
ues (more absorbing) than the corresponding SSA values for
the following days (24 and 25 July), suggesting that the mix-
ture with the urban/industrial aerosols from the Greater Lis-
bon area, only occurred in the first day of the event giving
rise to the predominance of scattering desert dust aerosols on
the following days. The consequence of the different atmo-
spheric radiative forcing over an horizontal distance of about
150 km, may enhance the atmospheric temperature gradient
and the associated atmospheric dynamics.

3.2.4 Forcing efficiency at the TOA

Figures 14 and 15 also show the relation between the AOT
at 0.55µm and the TOA DSWARF values, where the slopes
of the linear fittings can be interpreted as the average forc-
ing efficiencies (1Fe – Sect. 2.4) respectively ińEvora and
Cabo da Roca land areas, in the presence of Desert Dust
and Forest Fire aerosols, during 2004 and 2005. For Desert
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Fig. 14. Instantaneous TOA DSWARF versus aerosol optical thick-
ness at 0.55µm, during 2004 and 2005 overÉvora land area, in the
presence of Desert Dust (DD) and Forest Fire (FF) aerosol types.R

is the correlation coefficient and SIE is the slope error of the linear
fits.
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Fig. 15. Same as in Fig. 14 but for Cabo da Roca land area.

Dust aerosols, oveŕEvora land region (considering only the
TOA DSWARF negative values), the forcing efficiency is
estimated to be−41 Wm−2/AOT0.55 (Fig. 14) whereas for
Cabo da Roca area the forcing efficiency is estimated to be
−46 Wm−2/AOT0.55 (Fig. 15) for the overall studied cases
(Fig. 6), with the absolute correlation coefficient (R) values
of 0.74 and 0.88, respectively.

According to Lyamani et al. (2006), under a strong desert
dust event over Spain, the value estimated for daily averaged
TOA radiative forcing efficiency was−14.5 Wm−2/AOT0.67.
For Évora region (were a similar surface cover can be
considered) the daily averaged TOA radiative forcing ef-
ficiency, due to Desert Dust aerosols, is estimated to be
−18 Wm−2/AOT0.55. Though the values of the forcing ef-
ficiencies are comparable, one has to be aware that, the ra-
diative forcings are calculated at different spectral regions
by Lyamani (0.4–0.7µm) and by us (0.25–4µm); for Évora
region the daily averaged TOA radiative forcing efficiency
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is estimated assuming that the TOA radiative forcing val-
ues have a constant value through the diurnal part of the day,
which is not the case of Lyamani’s situation.

The forcing efficiency due to the Desert Dust aerosol type
(considering all TOA DSWARF values), is more pronounced
for Cabo da Roca (−46 Wm−2/AOT0.55), the Atlantic Ocean
west coast site, than forÉvora (−25 Wm−2/AOT0.55), the in-
land site.

In the presence of Forest Fire aerosols, over Cabo da
Roca region for the same two years, the forcing efficiency
is estimated to be−28 Wm−2/AOT0.55 for the overall stud-
ied cases (Fig. 6) with an absolute correlation coefficient
value of 0.36 (Fig. 15). IńEvora nearby rural area consid-
ering only the DSWARF negative values a forcing efficiency
of −38 Wm−2/AOT0.55is found (R=0.46), which is in agree-
ment with the value found by Christopher et al. (1999), who
has estimated a forcing efficiency of−43 Wm−2/AOT0.55due
to Forest Fire aerosols over a grass land surface (comparable
to the surface around́Evora). When urban/industrial aerosol
type is considered over Cabo da Roca area, the forcing effi-
ciency is estimated to be−18 Wm−2/AOT0.55, with an abso-
lute correlation coefficient value of 0.72, but with a very low
number of data points, which is not statistically significant.
Further investigation is foreseen for this aerosol type in order
to better assess its radiative effects.

4 Summary and conclusions

The main objective of this work was the assessment of the
aerosol radiative forcing at the TOA in two regions of conti-
nental Portugal,́Evora and Cabo da Roca, with different sur-
face reflectance properties and reached by different aerosol
type events. A method to estimate the direct SW aerosol
radiative forcing at the TOA was developed and applied to
several aerosol situations. An intermediary objective of this
work was the retrieval of the surface spectral reflectance for
these selected regions from satellite spectral measurements.

The methodology developed to retrieve the surface spec-
tral reflectance was considered adequate since the satellite
retrievals obtained fit well to the spectral reflectance curves
obtained from the USGS database, allowing deriving the SW
surface spectral reflectance forÉvora and Cabo da Roca land
regions.

This work shows that the surface spectral reflectance as
well as the aerosol single scattering albedo are very impor-
tant parameters for determining the direct radiative forcing
at the top of the atmosphere, and that Desert Dust and Forest
Fire aerosols play an important role in the radiation budget,
at a local/regional scale. In the majority of the cases, the
aerosol radiative forcing values obtained are negative, indi-
cating a tendency for cooling the Earth.

The TOA forcing efficiency estimated is negative in most
of the cases, indicating a cooling effect at the TOA. For the
Desert Dust aerosol type the efficiency is more pronounced

for Cabo da Roca (−46 Wm−2/AOT0.55), the Atlantic Ocean
west coast site, than foŕEvora (−25 Wm−2/AOT0.55), the
inland site. This large difference is related to the fact
that occasionally Desert Dust aerosols penetrate in Europe
through Cabo da Roca and on their way towards inland re-
gions, they mix with pollution from Lisbon and surround-
ing industrial regions (urban/industrial aerosols), thus be-
coming more absorbing. This effect is also observed in
the surface forcing efficiency where in turn lower values
are found inÉvora, (−66 Wm−2/AOT0.55), than in Cabo da
Roca (−38 Wm−2/AOT0.55) for the considered specific sit-
uations. The fact that at the TOA the forcing efficiency is
more pronounced for Cabo da Roca and at the surface the
opposite is observed, is inherent to the definitions (Eqs. 4
and 5). Consequently, oveŕEvora region, the atmospheric
radiative forcing of the entire atmosphere indicates a warm-
ing of the atmosphere due to absorbing aerosols, as it would
be expected. Whenever the mixing process between different
aerosol types decreases and desert dust aerosols predominate,
an atmospheric temperature gradient can be established over
two different sites (Cabo da Roca andÉvora) due to the dif-
ferent signs of the atmospheric radiative forcing over these
regions, with impact on the atmospheric dynamics.

On the other hand, also the different surface types char-
acterizing both sites (higher surface spectral reflectance in
Évora region) play an important part in the TOA forcing.
Both effects probably combine and give origin to higher TOA
DSWARF values ińEvora than in Cabo da Roca, sometimes
even positive.

As for the forest fire aerosols reachinǵEvora re-
gion and for the specific situations considered, the TOA
and surface DSWARF average values are both negative
(−30 Wm−2/AOT0.55 at the TOA and−36 Wm−2/AOT0.55
at the surface) due to less absorbing forest fire aerosols, com-
ing from longer distances suffering a rapid aging process;
for forest fire aerosols coming only from shorter distances,
with stronger absorbing characteristics (lower single scatter-
ing albedo), the TOA and the surface DSWARF average val-
ues present opposite signs (12 Wm−2/AOT0.55 at the TOA
and −113 Wm−2/AOT0.55 at the surface), meaning a very
pronounced atmospheric heating, as expected.
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