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Abstract. The relationship between cloud condensation nu-
clei (CCN) number and the physical and chemical proper-
ties of the atmospheric aerosol distribution is explored for a
polluted urban data set from the Study of Organic Aerosols
at Riverside I (SOAR-1) campaign conducted at Riverside,
California, USA during summer 2005. The mixing state
and, to a lesser degree, the average chemical composition are
shown to be important parameters in determining the activa-
tion properties of those particles around the critical activation
diameters for atmospherically-realistic supersaturation val-
ues. Closure between predictions and measurements of CCN
number at several supersaturations is attempted by modeling
a number of aerosol chemical composition and mixing state
cases of increasing complexity. It is shown that a realistic
treatment of the state of mixing of the urban aerosol distribu-
tion is critical in order to eliminate model bias. Fresh emis-
sions such as elemental carbon and small organic particles
must be treated as non-activating and explicitly accounted for
in the model. The relative number concentration of these par-
ticles compared to inorganics and oxygenated organic com-
pounds of limited hygroscopicity plays an important role in
determining the CCN number. Furthermore, expanding the
different composition/mixing state cases to predictions of
cloud droplet number concentration in a cloud parcel model
highlights the dependence of cloud optical properties on the
state of mixing and hygroscopic properties of the different
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aerosol modes, but shows that the relative differences be-
tween the different cases are reduced compared to those from
the CCN model.

1 Introduction

The indirect influence of aerosol particles on the radia-
tive balance of the atmosphere through changes in cloud
droplet number (Nd ) and persistence of clouds, known as the
“aerosol indirect effect” (Twomey, 1974; Albrecht, 1989),
carries the largest uncertainty amongst the presently known
causes of radiative forcing (IPCC, 2001, 2007). McFiggans
et al. (2005) review much of the recent investigative work
aiming to better characterise the physical and chemical pa-
rameters determining the relationship between the aerosol
size distribution and chemical composition and cloud con-
densation nuclei (CCN). Whilst much progress is reported
on our understanding of activation processes, McFiggans et
al. outline measurement requirements which would further
this knowledge, principally details of the physical and chem-
ical nature of Aitken and small-accumulation mode aerosol
in tandem with measurements of the CCN activation spec-
trum.

Recent CCN studies reported in the literature have ad-
dressed the relative importance of the size distribution, par-
ticle composition and mixing state in determining CCN acti-
vation, but there is disagreement on the relative importance
of these parameters (Roberts et al., 2002; Feingold, 2003;
Ervens et al., 2005; Mircea et al., 2005; Dusek et al., 2006a;
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Anttila and Kerminen, 2007; Hudson, 2007; Quinn et al.,
2007). CCN closure studies are a useful approach to test our
knowledge of the controlling physical and chemical prop-
erties and help verify experimental results. Several closure
studies are reported in the literature where CCN activation
measurements are compared with the output from equilib-
rium models which use K̈ohler theory to predict the CCN
number concentration,NCCN, from measured aerosol prop-
erties such as size distribution and composition or hygro-
scopicity. In the background atmosphere, several studies
have been able to show closure between the measured and
modelled results (Chuang et al., 2000; Dusek et al., 2003;
VanReken et al., 2003; Rissler et al., 2004; Gasparini et al.,
2006; Stroud et al., 2007). However, the particle distribu-
tion is more complex in locations such as urban areas where
an air mass may comprise several different externally-mixed
components, each exhibiting different chemical and physi-
cal characteristics (Lee et al., 2003; Alfarra et al., 2004;
Zhang et al., 2004a; Salcedo et al., 2006). Some compo-
nents are shown to exhibit reduced activation properties with
respect to inorganic salts, such as biomass burning plumes
(Mircea et al., 2005; Lee et al., 2006; Clarke et al., 2007),
humic-like substances (Dinar et al., 2006), secondary organ-
ics formed from oxidation of common biogenic emissions
such as monoterpenes (VanReken et al., 2005; Varutbangkul
et al., 2006) and black carbon (Dusek et al., 2006b; Kuwata
et al., 2007). Other organic components are shown to activate
more easily than their solubility might suggest (Raymond
and Pandis, 2002; Hartz et al., 2006), but still much less than
inorganic species. Particles that are generally hydrophobic
or only slightly hygroscopic in nature are observed to signif-
icantly impact CCN properties of the atmosphere (Roberts
et al., 2003; Roberts et al., 2006), and for internally mixed
particles it appears that the moles of insoluble material is
the most important chemical parameter affecting aerosol wa-
ter affinity in the sub- (McFiggans et al., 2005) and super-
saturated (Rissler et al., 2004; Ervens et al., 2007) regimes.
In an urban area, where many such components may be
externally- or internally-mixed with hygroscopic inorganic
aerosol, modelling the CCN activation from basic physical
properties is more difficult. Further information about the na-
ture of the particles, such as size-resolved chemical composi-
tion or detailed properties of the organic component, may be
required in order to successfully predict the CCN activation
(Broekhuizen et al., 2006; Mochida et al., 2006; Quinn et al.,
2007). Furthermore, recent work using data collected from
areas under the influence of recent anthropogenic emissions
has concluded that mixing state needs to be considered in or-
der to resolve bias in the model predictions ofNCCN. Medina
et al. (2007) conclude that an assumption of internal mix-
ing in a CCN model considering size-resolved composition
is responsible for a∼36% over-prediction ofNCCN as com-
pared to measurements of polluted continental or semi-urban
air masses in New Hampshire. Sensitivity studies on data
collected at the Duke Forest site in North Carolina, showed

that model predictions were highly sensitive to the assumed
mixing state of the aerosol size distribution modes used for
size distribution input, but lack of mixing state measurements
precluded a quantitative evaluation of the effect of this pa-
rameter on closure (Stroud et al., 2007). Parameterisation
of the mixing state of urban aerosol modes and their hygro-
scopic parameters has also been recently shown as important
with respect to interpreting satellite retrieval data on urban
aerosols (Wang and Martin, 2007).

Whilst aerosol-CCN closure studies improve our under-
standing of the importance of physical and chemical proper-
ties for aerosol activation, they only refer to equilibrium con-
ditions at one (or several) constant supersaturations, and thus
neglect feedbacks on supersaturation and drop growth due to
dynamic processes in clouds, which often dampen the effects
of variations in CCN number. In a recent cloud model study,
it was shown that composition only has a significant effect
on cloud drop number concentration for an internally mixed
aerosol population when competition for water is strong, i.e.
at low updrafts, and/or high particle concentrations (Ervens
et al., 2005). However, the role of the mixing state of aerosol
was neglected in that study. Recent work shows that the un-
certainty in predicting cloud droplet number (Nd ) can be re-
lated to the uncertainty inNCCN over a wide range of cloud
microphysical conditions (Sotiropoulou et al., 2006). How-
ever, it has been shown that the relationship that is predicted
betweenNCCN and aerosol number concentration (Na) often
cannot be extrapolated to a relationship betweenNCCN and
Nd because the drop number concentration is influenced by
updraft velocity (w) and shape of the aerosol size distribution
(Warner, 1969; Twomey, 1977).

Twomey’s definition of the first indirect effect predicts a
relationship between a change in the cloud droplet radius and
cloud albedo with a change in aerosol number concentration
for a constant liquid water content (Twomey, 1991). In the
more general case, changes in water content and shape of the
cloud droplet distribution should also be considered in order
to evaluate the effect of aerosols on cloud microphysics and
optical properties. It has been shown that when droplet dis-
tribution broadening is associated with an increase in drop
concentration, the predicted Twomey effect is reduced (Liu
and Daum, 2002). Conversely, when broadening accom-
panies decreases in drop concentration (e.g., via collision-
coalescence), the Twomey effect is enhanced (Feingold et al.,
1997).

The study of aerosol-CCN and aerosol-Nd closure and re-
lationships inside and in the near-field outflow of large urban
areas is of interest for two main reasons: (a) as the locus of
intense primary particle emissions for a variety of sources
which are often gradually internally mixed during the day
due to coagulation and condensation of secondary species
(from intense local emissions of secondary precursors), ur-
ban areas present one of the most challenging cases to test
our understanding of the parameters controlling droplet ac-
tivation and growth. Furthermore, recent work has shown
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that the principal uncertainty in predicting the magnitude of
the global aerosol indirect effect arises from regions where
the atmosphere is under the influence of urban emissions
(Sotiropoulou et al., 2007); (b) at present more than 50%
of the world population lives in urban areas and this frac-
tion is growing, including numerous megacities, and thus the
fraction of the polluted regions affected by urban aerosols
(with atmospheric aging times≤1 day) is non-negligible and
growing rapidly (Molina et al., 2007).

In this study, we present results from the Study of Organic
Aerosols at Riverside (SOAR-1) campaign held in Riverside,
California, during July and August of 2005, a polluted area
within the Los Angeles megacity. Riverside experiences both
fresh emissions and the advection of urban aerosols with at-
mospheric ages of∼1–2 days, and thus is a good location
to study the aerosol properties encountered inside and in the
near-field outflow of megacities. We investigate the diurnal
cycles of urban aerosol and CCN and use an activation model
to probe the influences of size distribution, chemical com-
position, and mixing state on CCN. We use a CCN model
employing increasingly complex cases of composition and
mixing state, which highlight the importance of the mixing
state of the various aerosol species. In addition to CCN pre-
dictions, we use these approaches as input data for a cloud
model that we initialize with the measured size distributions
and the different cases of composition and mixing state that
are used to predict CCN number concentrations. We use the
cloud model results to evaluate the extent to which the impact
on CCN arising from differences in aerosol composition and
mixing state typical of an urban area can affect cloud droplet
concentrations and cloud optical properties.

2 Experimental description

The city of Riverside lies about 80 km east of the Pacific
coast on the eastern edge of the Los Angeles (LA) – San
Bernardino-Riverside conurbation, population 18 million.
The prevailing westerly winds advect the accumulated pol-
lution from the densely populated coastal and downtown LA
areas and upwind farmlands eastwards towards Riverside.
During this process, the pollution is largely confined to the
LA basin by inversions which cap the highly polluted bound-
ary layer air within the surrounding topography. The SOAR-
1 campaign, conducted between 16 July and 15 August 2005,
sampled at a location on the University of California at River-
side campus, about 1 km east of Highway 60 carrying com-
muting traffic to the LA area. The meteorological conditions
during the summer campaign were very consistent, with a
clear diurnal cycle, low cloud cover and temperatures gener-
ally peaking around 35 to 40◦C in the afternoon and reaching
a low of 15 to 20◦C in the early morning. The location and
weather conditions combine to produce a very polluted at-
mosphere consisting of a complex mixture of locally-emitted

traffic emissions combined with high advected levels of pri-
mary and secondary aerosols.

The aerosol inlet was approximately 7 m above ground
level. A bypass flow was used to facilitate the use of
a 2.5µm cut-off cyclone designed for a 10 lpm flow rate
(URG-2000-30EN,www.urgcorp.com/cyclones) on the in-
let and minimize losses in the line. The inlet flow was
dried using either Nafion driers (PermaPure PD Series,www.
permapure.com) or silica gel diffusion dryers before pass-
ing through Y stainless steel flow splitters (Brechtel Manu-
facturing, Inc.,www.brechtel.com) for analysis by the vari-
ous instruments. The aerosol size distribution was measured
from 3 nm to 32µm using a combination of two Scanning
Mobility Particle Sizer systems (SMPS, TSI Model 3080,
www.tsi.com) and an Optical Particle Counter (OPC, Grimm
Model 1.110,www.grimm-aerosol.com). A time series of
particle effective density was available for the latter stage
of the campaign from the combination of an SMPS system
with the Aerosol Particle Mass Analyser (APM, Kanomax,
www.kanomax-usa.com) (McMurry et al., 2002). Elemental
carbon (EC) and organic carbon (OC) mass measurements
were available from the commercially available Sunset Labs
Semi-Continuous EC/OC Analyzer (www.sunlab.com) (Sny-
der and Schauer, 2007).

Size-resolved chemical composition information was
available from an Aerodyne Time-of-Flight Aerosol Mass
Spectrometer (ToF-AMS) (Drewnick et al., 2005; DeCarlo
et al., 2006). The AMS uses an aerodynamic lens (Zhang
et al., 2004b) to focus particles into a particle time-of-flight
chamber to separate aerosol according to their vacuum aero-
dynamic diameter and flash vapourise them under high vac-
uum, ionise the vapors by electron impact, and analyse the
ions with a time-of-flight mass spectrometer. The mass spec-
trum is used to determine the mass loadings of several chem-
ical species or groups of species (Allan et al., 2004), size
segregated in the range of approximately 35 nm to 1µm.
In addition, size-resolved single-particle chemical composi-
tion was also acquired with a Aerosol Time-Of-Flight Mass-
Spectrometer (ATOFMS) (Noble and Prather, 1996). This
version of the ATOFMS uses a similar aerodynamic lens in-
let as the AMS, but employs dual timing lasers to determine
the arrival of single particles into a the focus point of a Nd-
YAG laser which desorbs and ionises particle constituents
into both positive and negative ions, which are analysed by
dual time-of-flight mass spectrometers. Both instruments
measure the size-resolved chemical composition according
to vacuum aerodynamic diameter,dva , defined in DeCarlo et
al. (2004). A comparison and discussion of the ATOFMS,
AMS, and two other laser ablation instruments is given by
Middlebrook et al. (2003). The combination of the two pro-
vides an extensive data set including both quantitative size-
resolved chemical information and a direct determination of
the mixing state of the aerosol from single particle analysis.

The CCN activation properties of the aerosol ensemble
were measured at various different supersaturations using the
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Figure 1: Size resolved mass loadings from the AMS averaged for weekdays over the periods 0600-0700 771 
(top), 1200-1300 (center) and 1800-1900 (bottom) hrs. The relative fractions of the inorganics to organics 772 
in the large-diameter internally-mixed mode are used to determine the assumed externally-mixed small 773 
mode organics. A more thorough explanation is given in the text. The size-resolved fraction of the organics 774 
calculated in the SMO is also shown. Although this does not change much over the diurnal cycle, there is 775 
more mass at the smaller diameters during the morning rush-hour period. 776 
 777 
 778 

Fig. 1. Size resolved mass loadings from the AMS averaged
for weekdays over the periods 06:00–07:00 h (top), 12:00–13:00 h
(center) and 18:00–19:00 h (bottom) The relative fractions of the
inorganics to organics in the large-diameter internally-mixed mode
are used to determine the assumed externally-mixed small mode
organics. A more thorough explanation is given in the text. The
size-resolved fraction of the organics calculated in the SMO is also
shown. Although this does not change much over the diurnal cy-
cle, there is more mass at the smaller diameters during the morning
rush-hour period.

Continuous Flow Streamwise Thermal Gradient CCN Cham-
ber (Droplet Measurement Technologies, Boulder, CO, USA,
www.dropletmeasurement.com) (Roberts and Nenes, 2005;
Lance et al., 2006). This new CCN instrument has greatly
facilitated CCN research by providing a rapid, precise, and
stable continuous flow instrument that is commercially avail-
able and that can be interfaced to other continuous flow in-
struments. During the SOAR-1 campaign the instrument was
set up to record CCN activation at supersaturation set points
of S=0.1, 0.3, 0.5, 0.7 and 0.9% at 30-min intervals. The
actual operational supersaturation in the instrument was cal-
culated from the instrument temperature and flow readings
using the model of Lance et al. (2006), and used in custom
software to analyse the flow rate, temperature and pressure
variations within the instrument and thus eliminate errant
readings such as those during unstable or rapidly changing
conditions.

3 Methods

To investigate the relative importance of the physical and
chemical characteristics and the mixing state of the aerosol
on their CCN activation properties, the CCN model described
by Ervens et al. (2007) was used to predict the CCN acti-
vation for comparison to the measurements from the CCN
chamber using a number of different composition and mixing
state cases. The model considers particles consisting of an in-
ternal mixture of very hygroscopic material, with the proper-
ties of ammonium sulphate, with a less-hygroscopic organic
component. A further completely non-activating component,
which is externally mixed with respect to the organic and
ammonium sulphate particles, can also be introduced into
the model cases. The CCN activation is calculated at the
modeled supersaturation in the CCN chamber rather than the
nominal set point values.

The hygroscopicity and CCN activity of the individual
model components (i) can be summarized by considering a
single parameter,κ (Petters and Kreidenweis, 2007):

κ=Mw/ρw6(νi8i/Msiρsi) (1)

whereν is the number of molecules or ions a salt in solution
dissociates into,8 is the osmotic coefficient,Mw andMs are
the molecular weight of water and the solute, andρw andρs

are the density of water and the solute respectively. Using
this representation, it is shown that the relationship between
the critical supersaturation and diameter can be defined using
the κ parameter, with highly soluble materials exhibitingκ

values around unity. Moderately hygroscopic organic species
such as levoglucosan and malonic acid are shown to haveκ

values in the range 0.01 to 0.5, whilst hydrophobic particles
would exhibitκ values approaching zero (Petters and Krei-
denweis, 2007). Hygroscopicity or CCN measurements of
various secondary organic aerosol (SOA) compounds formed
atmospheric simulation chambers give derivedκ values of
around 0.06 to 0.2 (VanReken et al., 2005; Varutbangkul et
al., 2006; Prenni et al., 2007), whereas oxidised primary or-
ganics haveκ values of around 0.01 or less (Petters et al.,
2006). We thus useκ values for our base case model of∼0.5
(ammonium sulphate) for the inorganic fraction and∼0.01
for the organic fraction. The sensitivity of the model to in-
creasing the hygroscopicity of the organics is later studied.
Although it was observed during the SOAR-1 campaign that
the nitrate mass concentrations were broadly similar to the
sulphate, use of the model components described above is
consistent with earlier work (Koehler et al., 2006; Ervens et
al., 2007), and unlikely to introduce much error as ammo-
nium nitrate is also a soluble compound with a propensity to
readily form CCN. It has aκ value of 0.78, similar to am-
monium sulphate (Petters and Kreidenweis, 2007), thus the
activation diameters do not vary greatly (47 nm as compared
to 42 nm forS=0.5%). Hence the two compounds are inter-
changeable in the model calculations, to good accuracy.
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In all model variants, the SMPS size distribution and AMS
chemical composition measurements provided the basis for
the model calculations. Several different composition modes
were determined using the mass spectrometers for input to
the CCN model. In the urban atmosphere, small mode or-
ganic (SMO) particles are often observed with the AMS and
other techniques, which many studies have shown are typ-
ically externally-mixed with respect to a more aged, larger
diameter internally-mixed mode of organics and inorganics
(Lee et al., 2002; Alfarra et al., 2004; Zhang et al., 2004a,
2007; Bein et al., 2005; Tolocka et al., 2005; Murphy et al.,
2006; Niemi et al., 2006; Salcedo et al., 2006; Molina et al.,
2007). If the larger-diameter accumulation mode is assumed
to maintain a consistent composition across its size range
(due to its longer “integration time” for atmospheric aging),
then the organic/inorganic ratio for this entire mode can be
estimated as the measured ratio at the larger diameters where
there is no influence from smaller, externally mixed modes in
the size distribution. The SMO mass concentration can then
be calculated by subtracting the accumulation-mode organic
size distribution estimated in this manner from the total mea-
sured organics, as demonstrated in Fig. 1. As expected, the
SMO mass is significant at small diameters and falls to zero
at dva∼300–400 nm. These mass loadings are converted to
mobility space for direct comparison to the SMPS and input
to the model using measured values of the particle effective
density, using diurnal cycle measurements taken using the
DMA-ATOFMS technique (Spencer et al., 2007) and from
APM measurements in the work of Geller et al. (2006). The
effective density of dry particles can also be estimated from
the particle composition using estimated values for the dif-
ferent particle components. It is noted that these different
techniques for calculating the particle effective densities have
different dependencies on the particle morphology (DeCarlo
et al., 2004), although they return similar results, with values
around 1.2 to 1.4 g cm−3 for accumulation mode particles.

The SMO mass in urban areas can be further resolved
into several components using factor analysis of the AMS
mass spectra. Components such as hydrocarbon-like or-
ganic (HOA) and several types of oxygenated organic aerosol
(OOA) (Zhang et al., 2005a; Ulbrich, 2006; Lanz et al.,
2007; Ulbrich et al., 2008) are extracted, and they allow
the introduction of further complexity into the compositional
data in the model. The HOA fraction is assumed to repre-
sent fresh, carbonaceous traffic and other combustion emis-
sions and was shown by Quinn et al. (2007) to be an impor-
tant parameter influencing CCN activation in urban plumes
measured over Houston, Texas. On the other hand, OOA is
thought to be representative of local or regional SOA (Zhang
et al., 2005c; Ulbrich, 2006; Lanz et al., 2007; Zhang et al.,
2007). Similar to the observations of Zhang et al. (2005b)
in Pittsburgh, a diurnal cycle was observed in the HOA and
OOA fractions during the SOAR-1 campaign (Docherty et
al., 2008). The fraction of the SMO mass resolved as HOA
was highest in the morning when the site was under the great-
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Fig. 2. Size-resolved mass loadings of the organics, Hydrocarbon-
Like Organic Aerosol (HOA) and derived elemental carbon (EC, see
methodology in text) for a weekday average from 06:00 to 07:00 h.

est influence from fresh traffic emissions. The OOA fraction
dominated in the afternoon as photochemically-aged air was
advected to the site from the Los Angeles basin. Biomass
burning made a negligible contribution to particle concentra-
tions during the SOAR-1 period, based on low satellite fire
counts, and chemical markers from the AMS, ATOFMS and
GC-MS analysis (Docherty et al., 2008).

There are two important classes of atmospheric aerosol
that are not measured using the AMS. First, dust particles,
which are often observed over Riverside with its location
west of a large desert region. However, during the SOAR-1
study the winds were not favourable for the advection of dust
to the sampling site and this aerosol component was not a
significant feature of the aerosol distribution (Spencer et al.,
2007). Second, elemental carbon (EC) particles are also not
measured using the AMS (although non-refractory compo-
nents internally mixed with them are (Slowik et al., 2004)),
thus the methodology of Zhang et al. (2005b) was employed
to infer the size distribution of black carbon by scaling the
measurements of total EC mass to the observed HOA size
distribution. A relationship is first derived between the ob-
served HOA and EC mass; a regression line is calculated
and then used to scale the HOA distribution to produce an
estimated EC mass size distribution. In this case the HOA
size distribution was calculated following the methodology
of Zhang et al. (2005c), by subtracting 2% of the integrated
signal atm/z44 from the integrated signal atm/z57 (to ac-
count for interferences from OOA in the mass spectra) and
normalizing to the bulk HOA measurement. Figure 2 shows
the resulting size distributions of the weekday average from
06:00–07:00 h of the organic mass fraction, HOA and esti-
mated EC. The EC distribution is very similar to that of the
HOA, but similarly represents a small fraction of the particle
mass.

The diurnal cycle for the measured CCN activated frac-
tions at various supersaturations, the HOA and SMO mass

www.atmos-chem-phys.net/8/5649/2008/ Atmos. Chem. Phys., 8, 5649–5667, 2008
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Table 1. Summary of the different models used in the CCN predictions. Note that in models 4 and 5, some of the hydrocarbon-like organic
aerosol (HOA) is incorporated in the small-mode organics (SMO), see Fig. 4 for more detail. Estimated elemental carbon is treated as an
additional externally-mixed and non-activating component in C3–5.

State of mixing, with respect to the large-mode inorganicsκ=0.5
Model Case Size-Resolved Large-Mode Org. (LMO) Small-Mode Org. (SMO) Hydrocarbon-Like Organics (HOA)

Composition

1 No Internal,κ=0.01
2 Yes External, Non-Activating
3 Yes Internal,κ=0.01
4 Yes Internal,κ=0.01 External, Non-Actv Internal,κ=0.01a

5 Yes Internal,κ=0.01 Internal,κ=0.01b External, Non-Actv

a If not part of SMO.b If not part of the HOA
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Fig. 3. Weekday diurnal cycles in the CCN activation, composi-
tion and size distribution during the SOAR-1 study. A clear cycle is
observed in the CCN fraction, with the lowest value corresponding
to the morning rush hour. The variability in the CCN cycle corre-
sponds both with variations in the aerosol composition, which ex-
hibits the highest hydrocarbon-like organic aerosol fraction during
the rush-hour, and with the size distribution, which grows to larger
diameters during the peak in CCN activation. The fraction of the
aerosol mass in the small organic mode does not vary greatly over
the diurnal cycle.

fractions of total organics, and the average size distributions
from the SMPS are shown in Fig. 3. There is a clear diurnal
variability in both the size distribution, which shifts to larger
diameters during the afternoon, and the composition, which
shows the largest HOA fraction in the morning rush-hour.
Both exhibit trends which correlate with the diurnal changes
in the CCN activation, indicating that both influence the
CCN activation properties at Riverside, but the variation
in the total SMO fraction (which includes both HOA and
OOA mass) over the diurnal cycle is small. Given the

observed very repeatable diurnal cycle and the improved
signal-to-noise obtained by averaging, the measurements
were averaged to a diurnal cycle over the weekday period for
input into the model in hour-long steps. Significant changes
in emission scenarios of urban areas, and the subsequent
impact of urban emissions on the local atmospheric aerosol
distribution, may occur between weekends and weekdays,
and also between Saturday and Sunday (Harley et al.,
2005). Such differences have been shown to exist in the Los
Angeles basin (Lough et al., 2006) and given the much re-
duced statistics, weekends were excluded from the analysis.
Averaging to a diurnal cycle is useful to improve counting
statistics in the size-resolved composition data as the noise
in individual measurement cycles can often introduce unac-
ceptable error into the model predictions. In addition, given
the focus of this work to compare the degree of closure be-
tween various model assumptions, any small errors induced
through diurnal averaging are not critical to the overall
conclusions. The various model cases presented in this
paper are described below and outlined in Table 1. Figure 4
illustrates the size-resolved compositions used in the models.

Case 1. Complete internal mixture

Following the methodology of Ervens et al. (2007), in
this case the submicron aerosol ensemble is considered as
perfectly internally mixed, that is, the aerosol maintains
the same (average) chemical composition across the entire
particle size range. The time-resolved inorganic (organic)
fraction of the aerosol is calculated using the bulk inorganic
(organic) fraction measured by the AMS.

Case 2. Complete external mixture

Using the size-resolved inorganic fraction measured by
the AMS, the organic and inorganic components in the
model are considered to be externally mixed at all diameters;
the organic fraction is treated as entirely non-activating.
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Figure 4: Size-resolved mass (left) and number (right) distributions for a weekday average from 0600 to 794 
0700 hrs showing the different modal inputs used in the various model cases C1 to C5. 795 
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Fig. 4. Size-resolved mass (left) and number (right) distributions for a weekday average from 06:00 to 07:00 h showing the different modal
inputs used in the various model cases C1 to C5.

Whilst this is clearly an atmospherically-unrealistic case, it
is useful to demonstrate the opposite extreme of mixing state
from case 1 and the effect it has on the model predictions.
It is also relevant to global models, since these typically
represent the different aerosol components as externally
mixed (Textor et al., 2006).

Case 3. Using size-resolved composition with internal
mixture at each size

The aerosol ensemble maintains the same composition
at each particle size class, but the inorganic fraction, and
thus theκ value, can vary across the size range to account
for the dominance of the organic component at the smaller
particle diameters. The inorganic fraction at each size is the
measured size-resolved inorganic fraction from the AMS.
To account for the mass not measured by the AMS, the es-
timated EC size distribution is considered externally-mixed
and non-activating at all diameters.

Case 4. External mixture of small diameter organics

As for case 3, except that, in addition to the estimated
EC, the SMO are considered to be externally-mixed with
respect to the background population and treated as non-
activating in the model. This small mode has been observed
to be externally-mixed from the large diameter mixed mode
and largely hydrophobic in a number of hygroscopicity
studies (Svenningsson et al., 1992; McMurry et al., 1996;
Weingartner et al., 1997; Swietlicki et al., 1999; Cubison et
al., 2006).

Case 5. External mixture eliminating hydrocarbon-
dominated small diameter organics

As for case 4, except that the organics are treated as
two different populations. One part, proxied by OOA in
the AMS, is treated as weakly-hygroscopic organics in
the model with aκ value=0.01, internally-mixed with the
inorganic fraction. The remaining fraction is considered
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externally-mixed and totally non-activating in the model, as
determined by measurements of the HOA from the AMS,
and single particle information from the ATOFMS.

4 Results

Figure 5 shows the scatter plots between the predicted and
measured CCN activated number for the five different su-
persaturation set points for case 1 (C1, complete internal
mixing). The particle size distribution is considered as an
internal mixture of two species of differing hygroscopicity;
no entirely non-activating number fraction (e.g. EC) is con-
sidered. In all cases the model prediction is only weakly
correlated with the measurements (r2

∼0.3), which indicates
that, while the diurnal variations in the number concentra-
tion and size distribution exhibited in Fig. 3 do influence
the CCN activation, these properties alone cannot explain
all the variation in the CCN measurements. The model
also over-predicts the CCN number concentration by a fac-
tor of about three atS=0.3 to 0.9%. The much larger over-
prediction at the lowestS=0.1% was also observed by Er-
vens et al. (2007). This has been attributed to problems with
either temperatures (G. Roberts, personal communication)
or high flow rates (Lance et al., 2006) in the CCN instru-
ment, which may not allow for enough time for particles
to reach sizes large enough to be counted by the OPC at
the exit of the CCN chamber. Recently, Rose et al. (2008)
noted that deviations between the measured supersaturation
and the flow model exceeded 20% forS=0.1%, which may
also lead to over-prediction in the CCN model. Composi-
tion effects such as surface tension and/or other assumptions
about soluble organics tend to increase rather than decrease
CCN number, and thus cannot explain the observed discrep-
ancies atS=0.1%. The results are thus shown forS=0.1%
for all the model cases, in part to demonstrate the limitations
of the instrumentation used in this work, but disregarded in
the discussion The over-prediction atS≥0.3% is expected
as many particles smaller than 200 nm are really organic-
dominated and thus, even if consisting of water-soluble or-
ganic compounds (WSOC), are expected to be only weakly-
hygroscopic in nature (Clarke et al., 2007). However, in the
model they are assumed to maintain a sizeable, very hygro-
scopic, inorganic component. It has been previously shown
how a small amount of hygroscopic material on a hydropho-
bic particle can greatly influence its CCN activation proper-
ties (Bilde and Svenningsson, 2004), and thus the assumption
that there is inorganic material in all the particles over the en-
tire diameter range falsely increases the CCN concentration
in the model.

The most extreme opposite case from C1 is the entirely
externally-mixed case C2 as shown in Fig. 6; it is clear that
the modeled CCN number concentrations are drastically re-
duced from C1, and C2 tends to under-predict the measure-
ments at the larger supersaturations. The correlation be-

tween measurements and model is reduced with respect to
C1 (r2

∼0.2), which indicates that the predictive skill of the
model is reduced along with the bias. Whilst this demon-
strates the large influence of assumed mixing state on CCN
prediction in an urban area, the model results cannot be con-
sidered valid given that the assumption of complete external
mixing is not atmospherically feasible. It is likely that any
agreement or correlation with the measurements results from
the specific combination of size distributions and mass load-
ings observed at Riverside. At other locations, model pre-
dictions using a similar mixing state assumption have also
not been able to reach agreement with measured CCN num-
bers (Broekhuizen et al., 2006). We therefore introduce three
model cases of increasing complexity using detailed compo-
sitional data from the AMS and ATOFMS.

Figure 7 shows the scatter plots between the model and
measurements for the CCN model using internally-mixed,
size-resolved composition (Case 3, C3). In order to account
for size-resolved mass not measured by the AMS, the esti-
mated EC distribution is considered to be externally-mixed
and entirely non-activating in this model.

In the size-resolved case, the smallest particles are almost
exclusively organic in nature, as shown in Fig. 3, whereas the
larger particles still maintain a large hygroscopic inorganic
component. However, unlike the results of Broekhuizen et
al. (2006), in which the use of size-resolved composition
from an AMS in a CCN model with a hydrophobic organic
fraction was shown to achieve closure on an urban dataset,
in this work the model still over-predicts the CCN concen-
tration by around a factor of 2 at the four largerS. However,
the correlation between the measurements and the model im-
proves from C1, withr2 values∼0.4, indicating that the
variation in size distribution alone is not capturing all the
dynamics of the diurnal cycle in the CCN, and that includ-
ing the size-resolved composition incorporates additional in-
formation that improves the predictions. Although the esti-
mated EC is treated as non-activating, it is likely that many
of the small diameter organics measured by the AMS are
fresh traffic emissions and thus also carbonaceous and truly
non-activating in nature. However, in this model they are
treated as slightly hygroscopic with aκ value of 0.01, sim-
ilar to oxidised POA and SOA (Petters and Kreidenweis,
2007). Importantly, the assumption of even small quanti-
ties of inorganic mass on the small diameter particles falsely
increases the number of CCN, which leads to the observed
over-prediction. It thus becomes necessary to use a more
complex treatment of the mixing state of the SMO particles.

Figure 8 shows the scatter plots between the CCN model
and measurements where all the SMO particles and esti-
mated EC are treated as externally-mixed and entirely non-
activating (Case 4, C4). It was shown in Fig. 3 that the
diurnal variation in the SMO was small and indeed, the
skill of the model is reduced with the addition of this
externally-mixed component which does not follow a clear
diurnal pattern similar to the CCN. However, the agreement
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Figure 4: Size-resolved mass (left) and number (right) distributions for a weekday average from 0600 to 794 
0700 hrs showing the different modal inputs used in the various model cases C1 to C5. 795 
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Fig. 5. Comparison of the predicted and measured CCN for the internal mixing case C1 atS=0.1, 0.3, 0.5, 0.7 and 0.9%; ther2 value (left)
and slope (with standard deviation in brackets) of a linear regression through the origin (right) are shown on each plot, and the regression
line is overlaid on the measurements. Treating the population as completely internally-mixed leads to the model significantly over-predicting
the CCN activation at allS.
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Fig. 6. Comparison of the predicted and measured CCN using the measured size resolved chemical composition where the distribution is
treated as an external mixture of either purely inorganic or non-activating particles (C2), atS=0.1, 0.3, 0.5, 0.7 and 0.9%. Ther2 value
(left) and slope (with standard deviation in brackets) of the regression line forced through the origin (right) are shown on each plot, and the
regression line is overlaid on the measurements.

is improved significantly with respect to C3 with over-
predictions ranging from zero to 49%.

Earlier work has shown that it is appropriate to treat
slightly-hygroscopic organic material as hydrophobic in
CCN model studies (Abbatt et al., 2005; Broekhuizen et al.,
2006; Ervens et al., 2007; Prenni et al., 2007). Although the
SMO mode estimated here is likely to contain both HOA and
OOA fractions, the latter of which are likely to be slightly
hygroscopic, it appears as though, for the CCN model, treat-
ing the small-mode slightly hygroscopic WSOC material as
hydrophobic and thus CCN inactive is also justified in this
location.

Recent work has suggested that the HOA fraction of urban
aerosol has a significant influence on CCN activation (Quinn
et al., 2007). In Fig. 3, the diurnal cycle of the HOA mass
fraction was shown to broadly anti-correlate with the CCN
activation. Thus, a case is developed where only those or-
ganics deemed hydrocarbon-like in nature in the AMS are
considered non-activating in the model; the remainder are
left to be treated as a component with aκ value of 0.01 in
keeping with the previous model cases (Case 5, C5). The
quantification of the HOA in C5 and the assumption that it
has a source in local emissions and is carbonaceous in na-
ture are supported by single particle information from the

ATOFMS. When analysing those particles withdva<130 nm,
where the AMS indicates virtually all the particles observed
are in the small organic mode, several different externally-
mixed particles types are observed (Spencer et al., 2007)
with the ATOFMS. The mixing ratio of the different parti-
cle classes is found to follow a clear diurnal cycle during the
weekday period, with the fraction of those organic particles
that are exclusively carbonaceous with no hygroscopic mate-
rial, classed here as “fresh”, reaching a maximum at 06:00 h
of around 0.35. The fraction of these particles is observed to
decrease to around 0.15 at noon and remain constant through
the afternoon. All the remaining particle classes, collectively
grouped under the “partially aged” term here, contain oxy-
genated organic compounds and amines. The fraction of par-
ticle mass withdva<130 nm classed as hydrocarbon-like in
the AMS, and thus treated as non-activating in the model case
of Fig. 9, matches the number fractions from the ATOFMS
very closely, varying between 0.15 and 0.35 on the same di-
urnal cycle. As these carbonaceous particles are likely to
be extremely inactive with respect to CCN activation (Dusek
et al., 2006b; Ervens et al., 2007), their treatment as totally
non-activating in a simple model appears justified.
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plot, and the regression line is overlaid on the measurements. By assuming all the small mode organics are completely hydrophobic, the
model now reaches reasonable agreement with the measurements on CCN activation.

Figure 9 shows the scatter plot between the model and the
measurements for C5, where the model over-predicts by be-
tween 68 and 100%. This is a greater over-prediction than
observed for C4, suggesting that developing a parameterisa-
tion for the mixing state and hygroscopicity of not only the
HOA fraction, but also the SMO, is important for model-
ing CCN activation in this location. However, as a result of
integrating a non-activating component with a diurnal cycle
broadly anticorrelated with that of the CCN fraction, the skill
of the model is improved from C4, withr2 values around 0.4.
Nonetheless, the over-prediction in C5 suggests that the oxy-
genated organics observed in the AMS and ATOFMS for the
SMO are also largely CCN inactive in this dataset. Figure 10
shows the weekday diurnal cycles in both the aerosol number
from the condensation nucleus (CN) counter and activated
CCN atS=0.5%, together with the diurnal cycles in CCN at
S=0.5% predicted by the five different model cases. The vari-
ation in the size distribution allows C1, with limited compo-
sitional influence, to capture the general diurnal profile of the
activated CCN. By declaring as non-activating a component
broadly anti-correlated with CCN activation, C5 most accu-
rately captures the diurnal cycle in the CCN, while C2 and

C4 are closest to reaching agreement with the measurements.
However, all of the models over-predict most strongly during
the CN peak in the morning rush-hour period, where only a
subset of the emissions particles are activated (this is clearly
shown by the activated fraction traces in Fig. 3). Further sup-
pression of the CCN activation properties of the fresh traffic
emissions particles that dominate the number concentration
during this period would be required in the model in order to
reach agreement with the measurements. It is possible that
small, fractal, emissions particles which are classified by the
mobility analysis as larger than their true size (DeCarlo et al.,
2004) are then activated in the CCN model. In addition, re-
cent work has shown that kinetic limitations on cloud droplet
formation, which are not considered in this study, may signif-
icantly slow the activation of particles in polluted urban areas
(Ruehl et al., 2008). The temporal pattern of CCN number
concentration observed at Riverside, with the largest devia-
tion from the modeled values observed during the peak of
fresh urban emissions, can be at least qualitatively explained
through this effect.
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(left) and slope (with standard deviation in brackets) of the regression line forced through the origin (right) 833 
are shown on each plot, and the regression line is overlaid on the measurements.  834 
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Fig. 9. Comparison of the predicted and measured CCN using the measured size resolved chemical composition where the hydrocarbon-like
organic aerosol (HOA) and estimated elemental carbon (EC) are treated as externally-mixed and entirely non-activating, atS=0.1, 0.3, 0.5,
0.7 and 0.9% (C5). The r2 value (left) and slope (with standard deviation in brackets) of the regression line forced through the origin (right)
are shown on each plot, and the regression line is overlaid on the measurements.

5 Discussion

Although Fig. 8 shows a good degree of closure between the
model and the measurements when the SMO and EC par-
ticles are treated as non-activating (C4), the model is de-
pendent on the basic properties of the weakly-hygroscopic
OOA which is internally mixed with the inorganics in the
large mixed mode. Changing theκ value of the weakly-
hygroscopic OOA from 0.01 (c.f. oxidised POA (Petters et
al., 2006), Fig. 8) to 0.13 (c.f. chamber studies of SOA (Asa-
Awuku et al., 2007) for the organic fraction increases the
slope of the regression lines by between 14 and 30% over
the different supersaturation values, as shown forS=0.5% in
Fig. 11. Further increasing the large-mode organicκ value to
that of ammonium sulphate decreases the skill of the model
and further increases the degree of over-prediction in the
model. It is noted that decreasing theκ of the organics to
values approaching zero does not significantly decrease the
degree of over-prediction atS=0.5% in the model.

Unlike in our study, Broekhuizen et al. (2006) achieved
CCN closure on an urban dataset using a model case simi-
lar to C3, but treating the organics as hydrophobic in nature.
However, Fig. 12 shows that at Riverside, the size resolved
model case C3 is largely insensitive to the organic hygro-
scopicity, where applying aκ value as low as∼0.0004 does
not greatly decrease the level of over-prediction observed in
the model. In this methodology it is clear that the incorrect
assumption of internal mixing causes small quantities of in-
organic mass on the smaller particles to dominate the CCN
activation properties.

In summary, although the model is somewhat sensitive to
the assumptions used about the inherent properties of the
weakly-hygroscopic organics in the large mixed mode, it
is clear that well-correlated closure can only be achieved
using additional treatment of the mixing state beyond the
use of a size-resolved organic fraction. The large diameter
mixed mode is ubiquitously observed throughout the North-
ern Hemisphere and many field studies demonstrating this
are summarized in Canagaratna et al. (2007). The organic

 

 33

5300

0

M
od

el
le

d 
C

C
N

 [c
m

-3
]

53000

5700

0

57000

8200

4100

0

820041000

Measured CCN [cm-3
]

11400

5700

0

1140057000

11600

5800

0

1160058000

0.11; 4.06(0.22) 0.46; 2.00(0.04) 0.44; 1.85(0.03) 0.34; 1.91(0.04) 0.42; 1.68(0.02)

 829 
Figure 9: Comparison of the predicted and measured CCN using the measured size resolved chemical 830 
composition where the hydrocarbon-like organic aerosol (HOA) and estimated elemental carbon (EC) are 831 
treated as externally-mixed and entirely non-activating, at S = 0.1,0.3,0.5,0.7 and 0.9 % (C5). The r2 value 832 
(left) and slope (with standard deviation in brackets) of the regression line forced through the origin (right) 833 
are shown on each plot, and the regression line is overlaid on the measurements.  834 
 835 

 836 
Figure 10. Summary of the weekday diurnal cycles in CCN activation predicted by the five cases and 837 
measured by the CCN counter at S=0.5%, together with the weekday diurnal cycle observed in the total and 838 
> 100 nm aerosol condensation nucleus (CN) measurements. The standard deviation on the diurnal 839 
averages arising from daily variability in the number concentration ranges from 20-40 % of the average 840 

Fig. 10. Summary of the weekday diurnal cycles in CCN activa-
tion predicted by the five cases and measured by the CCN counter
at S=0.5%, together with the weekday diurnal cycle observed in
the total and>100 nm aerosol condensation nucleus (CN) measure-
ments. The standard deviation on the diurnal averages arising from
daily variability in the number concentration ranges from 20–40%
of the average value for both CN and CCN measurements. All the
cases over-predict the measured CCN during the morning rush-hour
period, where the top dashed line shows large CN exist but do not
efficiently activate as per the measurements.

component of this mode was shown by Ervens et al. (2007)
to be largely hydrophobic with respect to CCN activation at
a marine background location. Given that the best agreement
is reached for C4 when the organicκ value is small, this find-
ing is also supported here in an urban location, highlighting
common activation properties of the ubiquitous large mode
over different geographical settings.
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Fig. 12. Comparison of the predicted and measured CCN using
CCN model case 3 (of Fig. 7) atS=0.5%; the reference case from
Fig. 7 is shown on the left. The plot on the right uses the same
model where the organics have aκ value approaching zero. The
r2 value (left) and slope (with standard deviation in brackets) of
the regression line forced through the origin (right) are shown on
each plot, and the regression line is overlaid on the measurements.
Further decreasing the hygroscopicity of the organics in the model
does not significantly decrease the predicted CCN concentration.

Given that some previous studies have been able to
show closure without explicit treatment of externally-mixed
modes, we consider to what extent it is necessary to con-
sider externally-mixed SMO aerosol in CCN modeling over
the global atmosphere. It is clear that the background lo-
cation studies would not need treatment of a fresh emis-
sions component that is absent in such locations. Indeed,
C1, using the assumption of internal mixing, was success-
fully used to achieve closure on the measurements from the
background marine site at Chebogue Point, Nova Scotia (Er-
vens et al., 2007), but in that case the aged (≥2 day) pol-
lution and remote continental aerosol did appear internally-
mixed and soluble in nature and thus the inorganic material
was indeed observed to be spread across the whole particle
diameter range, indicating that the internal mixing assump-
tion is appropriate for this type of aged air mass. Many air
masses worldwide are likely to exhibit characteristics some-

where between the two opposite cases observed at Chebogue
Point and Riverside. It has been shown that urban emissions
are transformed by atmospheric processes such as coagula-
tion and condensation as they are diluted during advection
downwind from the emissions area (Riemer et al., 2004; Cu-
bison et al., 2006; de Gouw et al., 2005; Volkamer et al.,
2006; Zhang et al., 2007). The timescales for the primary
hydrophobic mass of these aerosols to be no longer a sig-
nificant component of the particle mass (mainly due to dilu-
tion with regional air and condensation of secondary species)
were found to be between 1 to 2 days. After this time pe-
riod, the less-hygroscopic mode is no longer visible in hygro-
scopicity measurements (Cubison et al., 2006) and it is thus
unlikely that explicit treatment of the non-activating number
fraction would be required beyond this timescale to achieve
CCN closure. It is clear that, with the expansion of urban
population and megacities worldwide, that there are signif-
icant areas of the atmosphere, both over these metropolitan
areas and immediately downwind, where such calculations
could benefit from inclusion of a simple treatment of the non-
activating particles such as that presented here.

6 Cloud droplet model

6.1 Model parameters

While the CCN calculations are performed for equilibrium
conditions using the K̈ohler equation, i.e. for a prescribed
supersaturation, in a parcel model the supersaturation in a
cloud is represented by (i) a dynamic term that represents
the source of supersaturation and (ii) the condensation term
that depends on the size and composition of the particles, and
the supply of water vapour. Thus it is not prudent to assume
that conclusions drawn about particle activation properties
from CCN counter studies can be used to infer the same for
cloud droplet formation under real atmospheric conditions.
The cloud droplet modelling study of Ervens et al. (2005)
showed that the greatest impact of chemical composition on

Atmos. Chem. Phys., 8, 5649–5667, 2008 www.atmos-chem-phys.net/8/5649/2008/
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Figure 13: Predicted CCN numbers and cloud droplet numbers (for two different updraft velocities) using 866 
the different model cases. The numbers in the upper right corner are the r2 and slopes of the regression 867 
lines. 868 
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Fig. 13. Predicted CCN numbers and cloud droplet numbers (for two different updraft velocities) using the different model cases. The
numbers in the upper right corner are the r2 and slopes of the regression lines.

cloud droplet concentrations occurs at low supersaturation
(i.e. low updraft and/or high aerosol concentrations), whereas
at higher updrafts/lower aerosol concentrations, the composi-
tion effects are reduced. Further to their approach, we expand
the CCN model results to consider the impact of the differ-
ent composition and mixing state cases (C1–C5) on cloud
droplet number concentrations.

Assuming adiabatic conditions for an ascending air par-
cel until a maximum liquid water content (0.3 g m−3, typical
for stratocumulus clouds) is reached, we compare the cloud
properties that are predicted for model cases C2, C3, C4 and
C5 to those predicted for the internally-mixed case C1. We
somewhat arbitrarily define the total drop number concentra-
tion Nd as the population of all particles (drops)>2µm in
diameter, unlike in CCN studies where we consider the num-
ber of activated particles according to Köhler theory.

6.2 Predicted cloud droplet number concentrationsNd

In Fig. 13, we compare the CCN concentrations predicted for
the internally-mixed cloud model case C1 to those predicted
for C2, C3, C4 and C5, forS=0.5%. The slopes were ob-
served to be mostly independent of the value of S and thus
results are only shown for one supersaturation. The only
difference in this trend is represented by C4, as a signifi-
cant fraction of particles are externally-mixed from the large
mode and thus the number of activated particles increases
more in C1 than C4 with increasing supersaturation, as in C4
the critical diameter moves into the region where many SMO
particles are considered non-activating.

Superimposed on the same plot are predictions ofNd that
result from two different updraft velocities (w=50 cm s−1 and
w=300 cm s−1). It should be noted that the maximum super-
saturations reached in the modelled air parcels differ from the
single supersaturation value used in the comparisons detailed
above (S3∼0.5%) as they depend onw, aerosol composition
and size distributions: Atw=50 cm s−1, the calculated max-
imum supersaturations are∼0.1–0.4% whereas those at the
higher updraft (w=300 cm s−1) are in the range of 0.4–1%.
Both the comparisons for C3 and C5 vs.NCCN (C1) exhibit
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Fig. 14.Comparison of dispersion of cloud droplet size distribution
at liquid water content 0.3 g m−3 (w=50 cm s−1) for model cases 2,
3, 4, and 5 vs. C1 (see text).

very similar slopes. C3 and C5 only differ by the proper-
ties of the small particles (<∼200 nm diameter) which are
assumed to be an externally-mixed non-activating mode in
C5 while they are hygroscopic and internally-mixed in case
C3. Such small particles are mainly just above the typical
critical activation diameter and, in the unlimited water sup-
ply in the Köhler CCN model, will activate. However, in the
cloud model, under competition for water vapour, they may
not grow to the 2µm cut-point before the maximum liquid
water content is reached.

In all casesNd is much smaller thanNCCN for low updraft
velocity because (i) less particles are activated and grow to
drop sizes in an ascending cloud parcel due to limited growth
time and limited supply of water vapour due to competition
for available vapour and (ii) we apply different definitions for
NCCN (= particles that exceed their critical size according to
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Figure 15: Comparison of cloud susceptibility (Eq.-2) at liquid water content 0.3 g m-3 (w = 50 cm s-1) for 874 
model cases 2, 3, 4, and 5 vs. C1 (see text) 875 
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Fig. 15. Comparison of cloud susceptibility (Eq.-2) at liquid water
content 0.3 g m−3 (w=50 cm s−1) for model cases 2, 3, 4, and 5 vs.
C1 (see text).

Köhler theory) andNd (particles that exceed the diameter of
2µm), respectively.

In general, all regression lines forNd in Fig. 13 show the
same trend as predicted forNCCN but have higher slopes.
This reiterates the point that composition effects on CCN are
not the same as composition effects onNd (Ervens et al.,
2005), and that differences are reduced when considering ef-
fects onNd . The differences in the slope forw=50 cm s−1

andw=300 cm s−1 are different from the results of Ervens
et al. (2005) where it was found that at higher updraft ve-
locities composition effects are reduced (and, thus, should
exhibit slopes closer to the 1:1 line). In our case the oppo-
site is observed. However, the latter study considered only a
pure internally mixed aerosol (c.f. C1 in this study) and no
change in soluble fraction and/or mixing state with size. In
the current data set, smaller particles are less hygroscopic (or
even completely non-activating) and with increasing updraft,
for these cases, fewer particles can be activated compared to
the more hygroscopic aerosol population assumed in C1.

7 Dispersion of cloud droplet size distributions

At constant liquid water content (LWC), an increase in
aerosol number leads to an increase in cloud drop num-
ber, and decrease in droplet size at constant LWC (Twomey,
1977). Twomey’s theoretical calculations assume that the
shape of the drop size distribution is constant. However,
observations in polluted areas have shown that an increase
in drop number concentration associated with an increase in
anthropogenic emissions usually leads to an increase in the

relative dispersion,D, defined as the ratio of the standard
deviation to the mean radius, of the drop size distribution at
the small-drop end (Liu and Daum, 2002). This effect results
from the fact that condensational growth tends to narrow the
size distribution. In polluted conditions, the increased com-
petition for water vapour results in less growth per droplet,
and therefore less spectral narrowing due to the condensa-
tion process.

In Fig. 14 we compareD of the resulting cloud droplet
size distributions for the five different cases atw=50 cm s−1.
We only show results forw=50 cm−1, where the supersatu-
ration is small and the relative importance of the condensa-
tion (composition) term is higher in the case of an internally
mixed aerosol population (Ervens et al., 2005). Again, we
compare the results of model cases C2 to C5 to those of the
pure internal mixture (C1). Figure 14 shows similarD for
C1, C3 and C5 even though C1 exhibits larger drop num-
ber concentrations, which is a function of the mixing state
and composition assumptions applied in the different cases.
For the large particles, a small hygroscopic fraction is suf-
ficient to initiate efficient growth and, thus, the largest drop
diameters do not differ much for cases C1, C3 and C5. How-
ever, for smaller size particles, differences in hygroscopicity
change the growth rates of individual particles, and, thus, the
shape (breadth) of the resulting drop size distribution. This
effect is even more pronounced since the most significant dif-
ferences in hygroscopicity are in the size range of∼100 nm
which is about the size of the smallest activated particles.
Therefore the case where the SMO particles are considered
externally-mixed and totally non-activating (C4) leads to a
narrower size distribution because fewer drops are activated
(many of the particles are not hygroscopic) and there is more
condensation growth per drop. The presence of a large num-
ber of externally mixed hydrophobic particles does not influ-
ence cloud properties and indeed this case resembles a some-
what clean case with smaller CCN and drop number concen-
trations.

7.1 Cloud susceptibility Ssc

Cloud susceptibilitySsc is defined as the change in cloud
albedoA for a change in drop number concentrationNd un-
der conditions of constant cloud liquid water path (LWP),
and fixed drop size distribution shape (Twomey, 1991):

Ssc=

∣∣∣∣ ∂ ln A

∂ ln Nd

∣∣∣∣
LWP,shape

=
A(1−A)

3Nd

(2)

where albedo is calculated based on the expression by
Bohren (1987) for a plane-parallel cloud:

A=
(1−g)τ

2+(1−g)τ
(3)

with g=asymmetry factor for cloud droplets (≈0.84) and
τ=cloud optical depth. The liquid water path is∼80 g/m2

for the cloud-top liquid water content of 0.3 g m−3 and
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the assumed cloud base temperature (288 K) and pressure
(919 mbar).

We have used the effects of aerosol on cloud albedo, as
represented by Eq. (3) as a measure of the aerosol indirect
effect and calculatedSsc, shown in Fig. 15 (for an updraft
velocity of w=50 cm s−1) for C1 to C5. At higher aerosol
concentrations the response of cloud optical properties to the
increase in aerosol number is smaller, i.e., the cloud suscepti-
bility is lower. This is the case for C1, C3 and C5. In the ex-
ternal mixture of C4, the drop number concentration is lowest
and thus C4 exhibits the highest values ofSsc. The tendency
to narrower size distributions in C4 decreases this effect to a
small extent (Feingold et al., 1997), but the influence due to
Nd is strongest.

This finding reinforces the importance of the mixing state
of particles, as mediated byNd , on cloud optical properties
(e.g. Broekhuizen et al., 2006; Medina et al., 2007). The
small influence onNd from changes in the hygroscopicity of
internally-mixed particles containing very hygroscopic ma-
terial translates to a small influence on the optical properties.

8 Conclusions

A number of different model cases are presented for attempt-
ing CCN closure between measurements of the physical and
chemical properties of urban aerosol at Riverside, CA, USA,
and their CCN activation. A CCN model is used to consider
both internally- and externally-mixed aerosol populations,
and it is shown that treatment of externally-mixed compo-
nents is necessary to approach closure in a highly polluted
urban area in the presence of freshly emitted particles. How-
ever, the over-prediction observed in all the models during
the morning rush-hour indicates that there are additional ef-
fects influencing the CCN activation, such as further com-
plexity in the mixing state, over-sizing of fractal particles by
the SMPS, kinetic limitations to CCN activation or possible
bias in the measurements.

Size-resolved chemical composition is required to dif-
ferentiate between the hygroscopic organic and inorganic
aerosol components. In order to achieve good clo-
sure with significant correlation in this urban location us-
ing atmospherically-relevant assumptions for the internally-
mixed hygroscopic organics in the model, and taking into
account mass not measured by the AMS, it is necessary to
treat non-activating urban emissions particles, here observed
as EC and SMO, as externally-mixed with respect to the re-
mainder of the aerosol population. In addition, it is found
that the organic component of the accumulation mode ex-
hibits CCN activation properties similar to those found in
a coastal location (Ervens et al., 2007), behaving as effec-
tively hydrophobic mass in the CCN model. Closure studies
using the same model at further locations would help deter-
mine if the observed hydrophobicity of the SMO in Ervens
et al. (2007) and this work is applicable for the hygroscopic

large mixed mode which has been observed ubiquitously in
Northern Hemisphere locations (Alfarra et al., 2004; Cana-
garatna et al., 2007).

In addition, we explored the extent to which such differ-
ences in composition and mixing state translate into differ-
ences in predicted cloud microphysical and optical proper-
ties. The cloud model considers the role of supersaturation
sources and sinks in an adiabatic air parcel that more closely
reflects conditions in natural clouds than does the static su-
persaturation in a CCN counter where all the particles are
given enough residence time to reach equilibrium conditions.
As shown in previous model studies, in an adiabatically ris-
ing air parcel the maximum supersaturation is determined by
both the updraft, and the size distribution/composition of the
particles. The negative feedback between the vapour source
and sink terms results in a reduced influence of composition
on drop activation than for assumed equilibrium conditions,
consistent with previous results of Ervens et al. (2005). The
size-resolved hygroscopicity of an internally mixed aerosol
population influences both cloud drop number concentration
and the shape of the cloud drop size distribution, and we have
shown that these effects may enhance or counter one another
in the calculation of the cloud susceptibility. However, sig-
nificant decrease in the cloud drop number concentration as
caused by a large fraction of externally-mixed non-activating
particles overwhelms shape effects on cloud albedo and sus-
ceptibility. The only distinct composition differences occur if
external vs. internal mixtures are compared, since the poten-
tial number of activated particles changes significantly. Thus,
the mixing state of particles with sizes larger than critical di-
ameters, and significant differences in the hygroscopic prop-
erties of separate modes have to be known in order to give a
reliable estimate of aerosol influences on cloud microphysi-
cal and optical properties.
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