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Abstract. An inverse modeling method was developed andthat was observed during the NASA Intercontinental Chemi-
tested for identifying possible biases in emission inventoriescal Transport Experiment (INTEX) measurement campaign.
using satellite observations. The relationships between emisthe best correlation between satellite observations and mod-
sion inputs and modeled ambient concentrations were estieled NQ column densities, as well as comparison to ground-
mated using sensitivities calculated with the decoupled directevel observations of N& was obtained by performing the
method in three dimensions (DDM-3D) implemented within inverse while accounting for the significant presence ofNO
the framework of the Community Multiscale Air Quality in the upper troposphere not captured by the regional model.
(CMAQ) regional model. As a case study to test the ap-
proach, the method was applied to regional ground-level

NOy emissions in the southeastern United States as con-

strained by observations of NGolumn densities derived 1 Introduction

from the Scanning Imaging Absorption Spectrometer for

Atmospheric Chartography (SCIAMACHY) satellite instru- Regional air quality modeling has been used to develop con-
ment. A controlled “pseudodata” scenario with a known so-trol strategies designed to reduce levels of pollutants such
lution was used to establish that the methodology can achievaes ozone and particulate matter. Models have been used to
the correct solution, and the approach was then applied to assess our knowledge of atmospheric processes, including
summer 2004 period where the satellite data are availablechemical and physical transformations of air pollutants, and
The results indicate that emissions biases differ in urban andio forecast air quality. More recently, results of regional mod-
rural areas of the southeast. The method suggested sligiels have been integrated into epidemiological studies that
downward (less than 10%) adjustment to urban emissionsaim to assess the health impacts of atmospheric pollutants
while rural region results were found to be highly sensitive to (Knowlton et al., 2004). All of these applications rely on
NOy processes in the upper troposphere. As such, the bias iwell quantified emission inputs. Emission inventories are tra-
the rural areas is likely not solely due to biases in the groundditionally developed using a “bottom-up” approach that first
level emissions. It was found that CMAQ was unable to estimates the levels of activity by various pollutant produc-
predict the significant level of N©in the upper troposphere ing sources, such as fossil fuel combustion by automobiles
and the microbial activity in soils, and next, combines this
information with activity-specific emission factors. Emis-
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the levels of ozone in the troposphere, lead to formation of2 Method
nitric acid, which can be an important component of particu-
late matter, and have a substantial impact on the levels of thé.1 Regional model and satellite observations
hydroxyl radical that, in turn, determine the lifetime of many
pollutants and greenhouse gases. The uncertainty in the e&MAQ (Byun and Schere, 2006) was used to simulate the
timated emission levels of NChas been proposed to be as concentrations of N@as well as other pollutants in a domain
high as a factor of two (Hanna et al., 2001). centered on the southeastern United States. The 36 km hori-
Inverse modeling offers a “top-down” approach to eval- zontal resolution domain with 14 vertical layers (Fig. 1) was
uating NQ, emission inventories; where emission rates arenested within a larger domain covering the entire continental
inferred by estimating possible changes that would result inUS that provided the boundary conditions. Meteorological
the best comparison between predicted concentrations arféelds were developed using the fifth generation mesoscale
observable indicators. While very few accurate surface obmodel (MM5) version 3.6.3 (Grell et al., 1995), and the
servations are available for NQspace-based observations emissions inputs were the result of the Sparse Matrix Opera-
of NO, columns offer a comparably rich dataset for inverse tor Kernel Emissions (SMOKE) version 2.0 (US-EPA, 2004)
modeling studies. Retrieval algorithms for N€olumn den- ~ processing of the 2001 National Emissions Inventory (NEI)
sities have been developed for several satellite instrumentfor use with the Statewide Air Pollution Research Center
including Global Ozone Monitoring Experiment (GOME), (SAPRC99) gas-phase chemical mechanism (Carter, 2000).
Scanning Imaging Absorption Spectrometer for AtmosphericThe emissions included data from point sources equipped
Chartography (SCIAMACHY), and more recently Ozone With continuous emissions monitoring systems (CEMs) that
Monitoring Instrument (OMI) (Martin et al., 2002; Richter measure S@and NG emission rates and other parameters
and Burrows, 2002; Beirle et al., 2003; Boersma et al., 2004 daily, mobile emissions processed by the Mobile6 model,
Bucsela et al., 2006). These data, as well as ground-baseand meteorologically adjusted biogenic emissions from Bio-
and other observations, have been used previously in ingenic Emission Inventory System (BEIS) 3.13 all specific for
verse modeling of “top-down” inventories on the global scale the year 2004. A more detailed description of these emission
(Martin et al., 2003; Miller and Stavrakou, 2005), and more inputs is provided elsewhere (Gilliland et al., 2008).
recently on the regional scale (Blond et al., 2007; Jaeg! Satellite observed N columns were obtained from
al., 2005; Kim et al., 2006; G&lo et al., 2005; Konovalov et SCIAMACHY (Bovensmann et al., 1999) on board the Eu-
al., 2006; Konovalov et al., 2008; Wang et al., 2007). In this ropean Space Agency Environmental Satellite (ENVISAT).
work, a method was developed for using Nédlumn obser-  The data retrieval process is described in detail elsewhere
vations to check for biases in the current emission inventoriegMartin et al., 2006). The horizontal resolution of a SCIA-
of NOy using Kalman filter inversion. Regional scale mod- MACHY footprint is 60km by 30km and it provides ob-
eling was performed using the Community Multiscale Air servations at approximately 16:00 UTC in this domain. For
Quality (CMAQ) model (Byun and Schere, 2006). The in- comparison, satellite column observations and CMAQ grid
verse was driven by direct sensitivities that provided the spavalues were paired in time and space from 1 June to 31 Au-
tial relationship between NQemissions and N©concen-  gust 2004. The satellite column observations were mapped
trations. Direct sensitivities were calculated using the decouto the CMAQ grid resolution using area weighted averaging
pled direct method in three dimensions (DDM-3D) (Yang et (Fig. 2c and d). During this three month period, satellite ob-
al., 1997). It is critical to resolve the spatial relationship be- servations were available for five days on average (range of
tween emissions and concentrations in regional inverse modthree to ten days) over the modeling domain due to cloud
eling. On finer grid resolutions, transport lifetime can be events and satellite measurement schedule.
shorter than chemical lifetime, as compared to coarser res- The modeling domain was subdivided into ten source re-
olutions of global models. Therefore, DDM-3D was invalu- gions including six southeastern metropolitan areas of At-
able in this effort. lanta, Birmingham, Chattanooga, Macon, Memphis, and
The inverse method was tested using a pseudodata sc&ashville, as well as four larger rural areas approximately
nario to evaluate the performance for a system with a knowrcovering the states of Alabama, Georgia, Mississippi, and
solution. After satisfactory performance, it was then appliedTennessee (Fig. 1). The geographical extent of each
to a summer-time episode in the southeastern United Statemetropolitan area was defined based on emission patterns.
using SCIAMACHY satellite observations of NQolumn A CMAQ-DDM-3D simulation for the summer months of
densities. 2004 provided the base-case fields of N€ncentrations
and gridded sensitivities to NCemissions from each pre-
defined source region. The vertical layers were aggregated
to obtain column N@ values based on meteorological vari-
ables used to drive the simulation. Kalman filter was then ap-
plied using the results at 16:00 UTC to match with the time
of satellite overpass.
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Fig. 1. Modeling domain covering the southeastern United States.
Source region definitions are superimposed on a map of average sur* 1
face layer NQ emissions at 16:00 UTC during the summer months =+
(JJA) of 2004. Source regions include urban areas of Atlanta, Birm- _, |
ingham, Chattanooga, Macon, Memphis, and Nashville and rural

areas centered over Alabama, Georgia, Mississippi, and Tennesse(
A four-cell wide border surrounds the source regions to minimize
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2.2 Kalman filter Fig. 2. Total vertical NG column as(a) and (b) simulated by

CMAQ, (c) and (d) observed by SCIAMACHY, ande) and (f)
To date, several different inverse methods have been apsimulated by CMAQ with upper-layer INTEX correction. The cor-
plied to adjust estimated emission rates of atmospheric pollurection is a uniform increase of 1.220'° molecules cm? based
tants based on observed data. These have included Bayesign the discrepancy between model predictions and measurements
based techniques (Deguillaume et al., 2007), data assimilgduring the INTEX campaign of the upper troposphere. All show
tion (Mendoza-Dominguez and Russell, 2000), and full ma-summer 2004_ averages of days and_ Iocatl_ons with SCIAMACHY
trix inversion such as the Kalman Filter (Hartley and Prinn, coverage. Wh'.te areas represent regions with no SCIAMACHY ob-
1993; Gilliland and Abbitt, 2001), which was applied here. S€"Vatons during the simulation period.
Kalman Filter is an optimization technique used to estimate
discrete time series and states that are governed by sets ghservationsy©PS and modeled valueg ™ (the usual time

Iineqr diffgrential equ.ations (Rodgers, 2000). In cases Wher%ubscripts are dropped for convenience, because only one
the linearity assumptions are not always valid, such as atmogme-step is considered in this application). The gain matrix
spheric transport and chemistry systems, the technique cag defined in terms of the partial derivatives of the change in
be applied iteratively. It has been tested previously for con--oncentration with respect to emissioRsthe covariance of

straining a variety of regional emissions including those of ihe error in the emissions fiel@,, and the noise (including
carbon monoxide (Mulholland and Seinfeld, 1995), ammo-pservation and model uncertaintiels),such that:

nia (Gilliland et al., 2003), and isoprene (Chang et al., 1996). L
Kalman Filter is an attractive choice for this application be- Gx=CiP" (PCtP" +N)~ 2
cause it allows for weighting the solution based on the un- . . .

- : o . The covariance of error matrix also evolves with subsequent
certainties of both observations and emission fields indepen:, ; . i
dently. iterations according to:

Full description of the Kalman Filter method is found C;,;=C;—G;PC; (3)
elsewhere (Haas-Laursen et al., 1996; Gilliland and Abbitt,
2001). Briefly, it evolves an emissions vect#y, 1, accord-
ing to the following:

A variety of approaches have been used to estimate the
initial covariance of error matrixC;—g, depending on appli-
cation of the technique. In this applicatid@y—o was related
Fk+1sz+Gk(7°bs—7m°d). (1) to the estimate of the normalized uncertainty in the emission,

. . . . Ug, according to the following:
At iterationk+1, the emissions vector is altered based on the E g g

gain matrix,Gy, and the difference between the vectors of C,,,,,l:(UE,,,,-E,,,)2 4)
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_ Uem+Ugn EntEy, efficient for calculating direct sensitivities over the entire do-
Cmn,m;én— 0.1 . s (5) . . .
2 2 main for a large number of input parameters simultaneously.
. _ _ Sensitivity coefficients are defined as a change in pollutant
for each subscripted{or n) element in the covariance of er- concentrationg; (x, t) of species, in spacex and timer,
ror matrixC. The off-diagonal elements of the covariance of with respect to a perturbation in an input parametgi, 1),

error matrix are difficult to estimate, and in this application which relates to the unperturbed or nominal valugix, 1)
were set to be a fraction (10%) of the average of the correaccording to:

sponding diagonals (Eq. 5).

Similarly, the noise matrixN, (Eq. 2) was initialized % - D=(1+Aej)A;(x. )=¢;A;(x. 1), ®)
based on the estimated normalized uncertainties in the obwheree; is the applied scaling factor. To separate the de-
servations{/ops according to: pendence of the sensitivity coefficients on the magnitude of

) a;(x,t) and to allow better opportunity for comparison, they
N, =Max [0.5-1015molecules-cm_2, (Uobsm'X,onbs)] (6) are normalized by ;(x, t). The resulting first-order semi-
normalized (with units identical t6; (x, ¢)) sensitivity coef-
Ny mn=0.0 @) ficient S;; (x, r) can then be described by:

ac,-(x,t)_A_( 9 IC;(x, 1) 9Ci(x,1) ©)
The value of Ugps, in this application, was set to 0.3 dajx.) e A ) de;
based on reported uncertainties in SCIAMACHY measure- Tpe decoupled direct method has been implemented and

ments (Martin et al, 2006). The minimum error value of eyajyated for several regional air quality models including
0.5x 10 molecules cm? is consistent with previous satel- CAMx (Dunker et al., 2002; Koo et al., 2007) and CMAQ
lite error estimates for N@retrieval (Boersma et al., 2004) (Cohan et al., 2005; ,Napel’enok et aI.,’ 2006) and has been
and was imposed to prevent numerical instability. - In this shown to accurately produce sensitivities of gaseous and par-
application, the noise matrix did not include an estimatejjcyjate species to input parameters that include emission
of model uncertainties. An evaluation of model results re-ate injtial/boundary conditions, and chemical reaction rates.
vealed a clear systematic bias in NGolumn predictions | this work, DDM-3D was used to spatially resolve the

overwhelming any Gaussian type errors that would be in-gependencies of pollutant concentration on emissions from
cluded in the noise matrix. Possible sources of this bias angach of the predefined source regions.

the approach of addressing it are presented later in Sect. 4.
A detailed analysis of the dependence of the inverse on th@.4 Integrated iterative inverse system
assumption ot/r andU,ps appears further.

Sij(x,)=Aj(x,1)

Sensitivities of NQ column concentrations were calculated
2.3 Direct sensitivity analysis to emissions of NQfrom each source region and integrated

into the Kalman Filter formulation according the following
To determine the relationship between emission rates fronftime subscripts are, again, dropped for convenience):
different source regions and resulting concentratidhsn( Snos . ()
Eq. 2), several methods have been used in the past. The sinf(j, x)=——=—2"" (10)
plest and the most widely used approach is the finite differ- E;
ence method, where sensitivities are determined through ahere matrixP (Eqg. 2) is dimensioned by the number of
“brute force” difference in the pollutant concentration fields source regions, all, and the number of horizontal grid cells
resulting from simulations of manually perturbed input pa- contained in any source region, all The sensitivity coeffi-
rameters. While the finite difference method is intuitive and cient is the response of N@o emission reductions in each of
straightforward to implement, it comes with a few disadvan- the source regiong, normalized by the total emission rate in
tages. It is often prone to numerical noise, dependent orthat source regionf ;. Each model grid cell contained by a
the magnitude of the perturbation due to the nonlinear nadefined source region was paired with the spatially matched
ture of pollutant responses to atmospheric processing, andveraged satellite observation to devejop*? andx°PSvec-
cumbersome to implement for more than a few perturbationstors in the inverse. In order to overcome the linearity as-
Other methods for calculating sensitivities focus on comput-sumptions in both the Kalman filter and the direct sensitiv-
ing local derivatives about the nominal value of the sensitiv-ity calculations, the inverse was calculated iteratively. The
ity parameter. These include the Green’s function methodemissions field was adjusted according to the results of the
(Dougherty et al., 1979; Cho et al., 1987), the decoupled diinverse and the process was repeated until the ratié;of
rect method (Dunker, 1981, 1984), and the adjoint methodand E; was different from 1.0 only by a predetermined er-
(Koda and Seinfeld, 1982; Sandu et al., 2003). The advanror factor (0.001 in this application) (Fig. 3). The emissions
tages of each of these depend largely on specific applicationyithin each source region were assumed to respond homoge-
but the decoupled direct method in three dimensions (DDM-neously to the applied scaling factors resulting from inverse
3D) (Yang et al., 1997) is often the most computationally modeling.
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Table 1. Regional Emission Adjustment for the pseudodata sce-
Emissions nario. This arbitrary factor was applied to hourly emission rates in
Inventory (E,) .
[ each region.
Eni=E+¢
Final Emissions YES NO
Inventory (E,)
l ' P | cwmacoman ‘ Source Regioh  Pseudodata Test Adjustment Factor
Atlanta, GA 0.3
Adjusted _ Post Birmingham, AL 1.8
Inventory (E,,,) k=tk+1 Processing Macon. GA 05

Memphis, TN 0.6

L _ ' Nashville, TN 1.0
K version. Chattanooga, TN 1.4

Mississippi 1.6

Alabama 0.7

\ Saelite Georgia 2.0
Observations Tennessee 0.4

* Urban area emissions are not included in the larger encompassing

Fig. 3. Outline of the presented inverse method. The itera- regions.

tive process is used to overcome nonlinearities in the relation-
ship between NQ emissions and N®concentrations. The con- o )
vergence criteria Ky, 1=Ej-+¢) can vary with application, but @ priori emissions estimates during the first iteration. The
0.001<|(Ey4+1—Ex)/Ex| was used here. details on the sensitivity of this assumption are discussed
later. Similarly, the noise matrix was based on the estimated
uncertainties in the observatiorigy,s according to Eq. (6).
Theoretically, the noise matri®yl, can account for both er-
3 Pseudodata analysis rors in observations, as it does here, and also errors in the
modeling system. However, in the case of the pseudodata
In order to evaluate the inverse method, a controlled pseutest and the subsequent applications to satellite data, model
dodata experiment was designed for the modeling domainuncertainties are assumed to be systematic and should have
for 1 day — 1 August 2004. The goal was to determine per-little bearing on the conclusions drawn from the application
formance of the inverse in a scenario where the solution isof the inverse. For the pseudodata test, uncertainty in “ob-
known. NQ, ground level emissions in each source region servations” does not exist, because the system is perfectly
between the hours 00:00 and 16:00 UTC were aggregated toontrolled. Thus, the diagonals of the noise matixwere
approximate emissions that would contribute to concentraset at the minimum value of 0.5 (10molecules cm?)2. An
tions of NO, observed by the satellite overpass at approx-important assumption in the development of this method is
imately 16:00UTC. During the summer in the southeast,the fact that the disagreement between satellite observations
NOy has a relatively short lifetime, therefore, this time in- and model outputs comes primarily from the emissions in-
terval captures the majority of emissions that would impactventory. While the noise matrix allows the introduction of
concentrations during the time of the satellite measurementother errors (model errors, assumptions in satellite date re-
The aggregated emissions were arbitrarily adjusted by factrieval, etc.), it ultimately only limits how close to the ob-
tors ranging between 0.3 and 2.0. The resulting emissionservations the iterative solution approaches. The pseudodata
vector became the a priori estimate for the inverse methodexercise avoids all other uncertainties and investigates the ro-
NO> column concentrations from the simulation using thesebustness of the method when this assumption is strictly cor-
adjustments¥™°% were compared to N§column concen-  rect. In the pseudodata test, the discrepancies between “ob-
trations in the base-case, which acted as pseudo observatioservations” and model results come only from the artificially
(°9. The Kalman filter method was then applied iteratively introduced errors in the emissions inventory.
to recreate the base-case emissions. In application of the inverse method to the pseudodata sce-
As previously mentioned, Kalman filter requires an esti- nario, the base case N@missions in each region were re-
mate of the initial covariance of the error in the integrated produced within a few iterations. Particularly encouraging is
emissions estimate§, o. In the pseudodata experiment, this the fact that both large increases (“Georgia™: 2.0) and large
guantity was based on an estimate of the uncertainty in thelecreases (“Atlanta”: 0.3) in emissions were corrected effi-
emissionsUg, according to Egs. (4) and (5). The normal- ciently. Consequently, the corresponding N&lumn con-
ized uncertainty in emissiong/z ; was assumed to be 2.0 centrations were also reproduced well (Fig. 4).
for all source regiong allowing for large departures from Sensitivity to inverse model assumptions of Uobs and UE
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Fig. 5. Sensitivity to inverse model assumptionsi®f,s andUg
calculated as the adjustment factor to the emissiéins,/Ey, in
the “Atlanta” source region resulting from varyiigg and Ugps
. e X 2 _ assumptions fok=0 in the pseudodata scenario. Larger uncertain-
and (b) inverse corrected emissions scenario (after six iterations)yjeg jn emissions and smaller uncertainties in observations allow for

15 2
both compared to base case values ("]_‘ Tooleculescm®), and 15461 adjustments in this and other source regions. The “Atlanta”
(c) the convergence toward base emissions from the perturbed starki, ce region requires an adjustment factor of 3.33 to return to the
ing point. Results are shown for 1 August 2004.

Fig. 4. Performance of the pseudodata analysis showing bt
umn concentrations fofa) arbitrary adjusted emissions scenario

pre-perturbed inventory (to overcome a 0.3 perturbation).

calculated as the adjustment factor to the emissions, Ek +1 4nd lower uncertainties in observations allow for larger ad-
Ek , in the Atlanta source region resulting from varying UE justments to the emission fields in the case of the Atlanta
and Uobs assumptions for k=0 in the pseudodata scenariGource region (Fig. 5) and elsewhere. At the extreme biigh
Larger uncertainties in emissions and smaller uncertaintiesind extreme low/,ps the adjustment is frequently overesti-
in observations allow for larger adjustments in this and othermated. In Atlanta, the emissions field required an adjustment
source regions. The Atlanta source region requires an adjustactor of 3.3 to arrive back at the base emissions from the
ment factor of 3.33 to return to the pre-perturbed inventorypseudodata perturbations (Table 1). However, factors higher
(to overcome a 0.3 perturbation). than 4.0 were possible at extreme values of uncertainty as-
The pseudodata analysis also offers the opportunity to tessumptions. Further testing revealed that these overestima-
the response of the inverse to the assumptions in its parantions were corrected in subsequent iterations of the Kalman
eters. Assumptions where made for two important paramfilter inverse.
eters,Ug andUgps (EQs. 4 and 6). For the pseudodata test, The pseudodata case was also used to test the influence
the uncertainty in observations was set to the minimum valueof the boundaries on the solution of the inverse. Since the
(Eq. 6), while the uncertainty in the emissions was set to bedomain is fairly small, influence from emissions outside the
2.0. To test how the system behaves for a full range of theselefined source regions, including boundary conditions, can
values would be computationally prohibitive. However, it be potentially problematic. Therefore, the source regions
is possible to test the response for just the first iteration ofwere “padded” with a border region (Fig. 1). Emissions from
the Kalman Filter inverse with little requirement for CPU re- the border regions were assumed to not influence the defined
sources. It was already observed that the system converge®urce regions significantly. This assumption, as well as the
on the correct solution in only a few iterations from starting ability of the border region to provide substantial enough dis-
with widely perturbed initial emission fields. The proxim- tance to negate boundary condition influences, was tested
ity to the solution after one iteration should be indicative of using DDM-3D sensitivities. Sensitivities of NGcolumn
the overall response to the assumptions. Thus, the first iterdensities to boundary conditions of IN@nd to emissions of
ation of the inverse was tested at a range of values for bottNOy from the border region were calculated and compared
Ur andUgps As expected, larger uncertainties in emissionsto the spatial distribution of sensitivities to emissions from
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Fig. 6. Fraction of total sensitivity of N@ column densities t¢a)
NOx emissions from the “border” regiditr) NOx boundary condi-
tions. NG sensitivities to emission of NOfrom (c) “Atlanta”, (d)
“GA’, (e)“Birmingham”, and(f) “AL” source regions are shown

Fig. 7. Vertical distribution of NQ concentrations observed by
NASA INTEX DC-8 flights over the eastern United States com-
pared to model predictions matched in space and time. Error bars
. . . - denote 99% confidence interval of the mean, assuming that obser-
for comparison. The fraction for each grid cell as the ratio of _.. o .

vations are drawn from a normally distributed population. For more

the sensitivity from_the source of interest and thg tota}l sensitivity measurement details, see Bertram et al. (2007), Supporting Online
from all source regions and the boundary conditions is eXpresse%aterial Fig. S6

) 10 ~1
as:SN 0, ENOy,- Q=1 SNO2, E(NOy), TSN 02, BC(NO))

the defined source regions. It was found that both the borde2004. The same emission source regions were used as in the
region and the boundary conditions had minimal influences?seudodata analysis (Fig. 1) and the emissions were again ag-
(Fig. 6). The border region had the highest impact in thegregated between the hours of 0:00 and 16:00. As was men-
“MS” region where it accounted for under 25% of the to- tioned previously, the 60 km by 30 km SCIAMACHY foot-

tal sensitivity. In this same region, the boundary conditionsPrints were averaged down to the 36 km by 36 km CMAQ
also had the largest influence where they accounted for up tgid. To assure full coverage of the modeling domain by the
30% of the total sensitivity in the southern portion of the re- infrequentand spatially varying observations, SCIAMACHY
gion. Overall, the border region provided reasonable separaobservations and modeling results sampled at the times and
tion to neglect any impacts from the boundaries, mainly duelocations of available observations were averaged over the
to stagnant meteorological conditions common in southeastthree summer months in the inverse. One of the major

ern summers and the consequently short chemical lifetime odded complications in moving from a synthetic data test
NOy relative to transport processes. to an application with an independent dataset is the much

greater impact on results from uncertainty stemming from
the model’s ability to accurately reproduce natural condi-
4 Case study: surface NQ emissions in the southeast tions in the atmosphere. Regional transport models tend to
United States under-predict N@ concentrations in the upper troposphere
(Singh et al., 2007) due to, in part, a lack of well quanti-
After encouraging results of the pseudodata analysis, the infied emissions there from sources that include lightning NO
verse method was applied to the southeastern domain usin@ooper et al., 2006; Hudman et al., 2007) and possibly
SCIAMACHY observations for June, July, and August of incorrect estimates of the NCchemical lifetime at higher
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Table 2. Emission rates for each source region during the summer ) b)
months (JJA) of 2004.

Atlanta ful

Source Regioh apriori aposteriori  posteriori — T
INTEX

(tons/day)  (tons/day)  (tons/day) i
Atlanta, GA 513 482 435 sbutmor 08
Birmingham, AL 202 182 138 H
Macon, GA 154 68 73 ) o o
Memphis, TN 129 118 106 - e
Nashville, TN 112 113 80 ! 2 e \Ofm_ . - s 6 ey O O
Chattanooga, TN 55 101 89
Mississippi 572 859 212
Alabama 852 1718 782 Fig. 8. Results of the inverse analysis showif@ regionally av-
Georgia 574 1171 364 eraged comparison of NOcolumn densities observed by SCIA-
Tennessee 1425 2533 1389 MACHY and modeled by CMAQ with and without the INTEX cor-

rection, as well as the comparison at four ground-based SEARCH

* Urban area emissions are not included in the larger encompassingteS: Atlanta (JST), Birmingham (BHM), suburban GA (YRK),
regions. and rural AL (CTR).

altitudes. The under-prediction is easily visible from a com- CMAQ predicts values that are too low in the rural regions
parison of model predictions with vertical N@rofiles ob-  while values in the urban centers are too high compared to
tained by aircraft measurements (Fig. 7). When comparedSCIAMACHY observations. Accordingly, the inverse solu-
with the average N@vertical concentration profile estimated tion was to dramatically increase emissions in the rural ar-
from aircraft measurements taken during the NASA Inter-eas and to slightly decrease emissions in the urban areas (Ta-
continental Chemical Transport Experiment (INTEX) (Singh ble 2). As a result of these adjustments, the correlation for the
et al., 2006; Bertram et al., 2007) over the eastern Uniteccomparison between regional averaged observed and mod-
States in the summer of 2004, our simulations under-prediceled NG columns improved fronR?=0.68 for the a priori
by 1.07x 10" molecules cm? NO; in terms of column den-  case toR?=0.89 (Fig. 8a). The inverse using INTEX ad-
sity (Fig. 7). This deficiency is of similar magnitude that justed modeling results indicated that adding to the upper
has been reported by Konovalov et al. (2006), who proposedevel background forced the emissions in most source regions
that the systematic negative bias of B0'*cm~2 between lower (Table 2). Only the “Chattanooga” region required
satellite observation and their model simulation over Eu-higher than base NQOemissions, because parts of north-
rope was largely due to upper tropospheric NOTo un-  ern Georgia are highly sensitive to emissions there and still
derstand the sensitivity of the inverse solution to the upperequired upward adjustments. Furthermore, adding upper
layer NG concentration uncertainty, the inverse method us-level NO, substantially reduced the bias in the comparison
ing SCIAMACHY observations was performed for two dif- and slightly increased the degree of correlati®?<0.93)
ferent modeling realizations: a case where the model wagFig. 8a). Compared to areas of high surface emission den-
used directly (Fig. 2a and b), and a case where the modelsity, the inverse solution at rural areas is significantly more
ing NO, column results were increased by spatially uniform sensitive to upper layer NQconcentrations. At rural loca-
1.07x 10 molecules cm? based on INTEX observations of  tions, a large fraction of the column concentration is due to
the upper troposphere N@oncentrations during this time aloft emissions and long-range transport and less is due to
period (Fig. 2e and f). For each case, the normalized uncersurface emissions.
tainty in the a priori emissiong/g, was set 2.0, which allows  As the pseudo-data test and this case study demonstrate,
for large adjustments and follows the estimates of Hanna ethe method developed here can improve the agreement be-
al. (2001) for possible errors in NGemissions. The uncer- tween modeled and observed piéblumn densities. While it
tainty in observationl/ops, was set to 0.3 according to the es- is important to accurately simulate the N€olumn density,
timates of Martin et al. (2006) of mean monthly uncertainty we are most interested in using this technique for improv-
for SCIAMACHY observations of polluted regions. ing our simulation of surface air quality. However, the dis-
As with the pseudodata analysis, only four iterations werecrepancy in model and observed concentrations can be due to
necessary to obtain a solution. The inverse results using thprocesses other than errors in emissions. Despite only pro-
base model confirm what is evident from a cursory exam-viding a column NQ density observed at a specific time, can
ination of the comparison between observed and modelethe SCIAMACHY data and this inverse-technique improve
vertical columns of N@ (Fig. 2a and b). In the southeast, the day-time surface NfOconcentration? This comparison
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is useful as an independent check on the results and to de- During the application to the southeastern United States
termine the extent to which the results can be generalized ta stable solution to the inverse was obtained for both cases:
phenomena relevant to air quality. base model and INTEX adjusted model. The comparison of
NO, concentrations at four Southeastern Aerosol Re-the results between the two cases suggests a much greater
search and Characterization Study (SEARCH) sites (HanseHnpact on upper layer processes in rural areas wherg NO
et al., 2003) located in the domain were compared to botreoncentrations aloft compose a larger fraction of the total
a posteriori modeling simulations averaged over the daytimecolumn. In both cases, the results suggest very drastic ad-
concentrations for 1 June to 31 August 2004 (Fig. 8b). Thesdustments to the emissions inventory in some source regions,
sites measure N£by photolytic conversion to NO followed ~ for example “Macon” and “GA’. While these results satisfy
by chemiluminescence (Ryerson et al., 2000). The SEARCHhe mathematical model, which aims to minimize the dif-
network is designed to provide observations that are repreterences between satellite derived observations and the re-
sentative of either urban or regional conditions. gional model, their uncertainties should be explored further.
The INTEX corrected a posteriori emission estimates im-Generally, in the rural areas, correct simulation of the upper
proved the simulated Nsurface concentration at all four roposphere N@concentration is essential, because ground
surface monitoring sites. At the rural and suburban locationsSources of N@are minimal. For urban areas, as ground level
the a posteriori emissions without the INTEX correction de- NOx emissions increase, the importance of aloft processes
graded the quality of the simulation and caused an overestidecreases, and, in a relative sense, approaches the error in
mate of the surface Nconcentration. This finding further the satellite product. However, in both low and high ground
emphasizes the need for an accurate upper-troposphere Ndgevel source regions, the adjusted emissions improved ground

simulation when applying this method to locations with low €vel concentrations of N§ as confirmed by the indepen-
surface emission rates. dent SEARCH observations. This comparison to an indepen-

dent data source builds confidence in a posteriori emission
estimates and is a necessary check of the method, because
Kalman Filter inversion attributes the difference between es-
5 Conclusions and discussion timates by the regional air quality model and satellite ob-
servations solely to uncertainties in the emission inventories.
The Kalman filter inversion approach outlined here is aThe uncertainty in a posteriori emission estimates is mathe-
promising methodology for applying the increasingly rich matically reduced if the system converges on a stable solu-
dataset obtained by space-based measurements to regionin, but the solution must be verified by other means.
air quality modeling. In the pseudodata analysis, the method Other factors besides aloft sources influence the inverse
algorithms and key assumptions were tested under ideal cortesults. In the “Macon” and “Mississippi” source regions,
ditions. Problems with uncertain observations, spatial coveradjustments to the inventory are outside the specified uncer-
age, and uncertain modeling results were largely eliminatedtainty of the emissions inventory (factor of two). There, the
Under such conditions, the method performed extremely wellgifferences between satellite observations and model results
and reproduced correct emission fields and correspondingre likely to be a factor of other uncertainties besides those
NO; concentrations in a few iterations. This suggests thalin the emissions inventory. These include insufficient spa-
the method is theoretically sound. tial resolution, biases in the retrieval, and the representation
One major obstacle of this and other inverse modeling ef-of NOy chemistry in CMAQ. In particular, the assumptions
forts is the fact that the system is often mathematically ill- used in the satellite retrieval algorithm for N©olumns can
posed or is not constrained sufficiently to provide a uniqueimpact the results of the inverse. The air mass factor cal-
and stable solution. However, this method offers some adeulation in the retrieval used here relied on relative vertical
vantages over other similar inverse modeling approachedNO, profiles from a global model (GEOS-Chem) which op-
The use of direct sensitivities provides spatial and temporakrates on a much coarser resolutiofl (& 2.5) than the
resolution of the contributions to concentrations at any recepregional model. This inconsistency could introduce errors
tor in the domain from any and all source regions. Pollutantin the inversion. However, a better representation of free-
transport across source regions has been previously difficultropospheric N@ concentrations in CMAQ is needed be-
to account for without direct sensitivities and often has beenfore CMAQ NGO, profiles can be used for the AMF calcu-
assumed to be negligible. This assumption is not unreasoration. These issues will be explored further in the future
able at the global scale with large source regions, but failsapplications of this method.
when finer spatial resolutions are introduced, because the Summer-time sources of NQOin southeastern United
transport lifetime of NQ is often shorter than the chemical States are usually distinguishable making it easier to track
lifetime at the resolution of regional models. Similarly, sensi- contributions from various regions. However, the robust-
tivity analysis also provides the opportunity to determine theness of this method in other regions and time periods is
degree of influence on concentrations from transport outsidéacilitated by the fact that DDM-3D sensitivities are used to
the defined source regions and from boundary conditions. track source contributions. DDM-3D performs equally well
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in regions with more densely located pollutant sources anBoersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis
for varied pollutant lifetimes. for tropospheric NG-2 retrieval from space. J. Geophys. Res.-

Finally, the results of the inverse application need to be Atmos., 109, D04311, doi:10.1029/2003JD003962, 2004
interpreted in the context of the emissions scenario. OnlyBovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel,
ground-level NQ emission fields were considered in this S., Rozanov, V. V,, Chance, K. V., and Goede, A. P. H.: SCIA-
study, under the assumption that elevated,N©me pri- MACHY: Mission objectives and measurement modes. J. Atmos.
marily from point sources equipped with continuous emis-  Sci., 56(2), 127-150, 1999.
sion monitoring (CEM) devices and much more certainty. Bucsela, E. J., Celarier, E. A., Wenig, M. O., Gleason, J. F,
Sources of ground-level NOvary by region. For instance, Veefkind, J. P., Boersma, K. F., and Brinksma, E. J.: Algorithm
the majority of biogenic NQ is emitted outside of the de- for NO2 vertical column retrieval from the ozone monitoring in-
fined urban regions as NO from soil, while in the urban cen- strument. IEEE T. Geosci. Remote, 44(5), 1245-1258, 2006.
ters, mobile emissions are more important. The analysis proByun, D. W. and Schere, K. L.: Review of the governing equations,
vided here does not provide the breakdown of how each sec- computational algorithms, and other components of the Models-
tor's emissions should be adjusted; instead, the inverse was 3 Community Multiscale Air Quality (CMAQ) modeling system,
performed on the total. Sector specific adjustments are pos- Applied Mechanics Reviews, 59, 5177, 2006.
sible to obtain and will be explored in the future. Another Carter, W. P. L.: Documentation of the SAPRC99 Chemical Mech-
complication from using this approach of assigning emission anism for VOC Reactivity Assessment, Air Pollution Research
guantities to source regions is the assumption that the daily Center and College of Engineering, Center for Environmental
emission profile is correct. Temporal dependencies are pos- Research and Technology, University of California, Riverside,

sible with DDM-3D, and will be explored further. CA, 2000.
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