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Abstract. An inverse modeling method was developed and
tested for identifying possible biases in emission inventories
using satellite observations. The relationships between emis-
sion inputs and modeled ambient concentrations were esti-
mated using sensitivities calculated with the decoupled direct
method in three dimensions (DDM-3D) implemented within
the framework of the Community Multiscale Air Quality
(CMAQ) regional model. As a case study to test the ap-
proach, the method was applied to regional ground-level
NOx emissions in the southeastern United States as con-
strained by observations of NO2 column densities derived
from the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY) satellite instru-
ment. A controlled “pseudodata” scenario with a known so-
lution was used to establish that the methodology can achieve
the correct solution, and the approach was then applied to a
summer 2004 period where the satellite data are available.
The results indicate that emissions biases differ in urban and
rural areas of the southeast. The method suggested slight
downward (less than 10%) adjustment to urban emissions,
while rural region results were found to be highly sensitive to
NOx processes in the upper troposphere. As such, the bias in
the rural areas is likely not solely due to biases in the ground-
level emissions. It was found that CMAQ was unable to
predict the significant level of NO2 in the upper troposphere
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that was observed during the NASA Intercontinental Chemi-
cal Transport Experiment (INTEX) measurement campaign.
The best correlation between satellite observations and mod-
eled NO2 column densities, as well as comparison to ground-
level observations of NO2, was obtained by performing the
inverse while accounting for the significant presence of NO2
in the upper troposphere not captured by the regional model.

1 Introduction

Regional air quality modeling has been used to develop con-
trol strategies designed to reduce levels of pollutants such
as ozone and particulate matter. Models have been used to
assess our knowledge of atmospheric processes, including
chemical and physical transformations of air pollutants, and
to forecast air quality. More recently, results of regional mod-
els have been integrated into epidemiological studies that
aim to assess the health impacts of atmospheric pollutants
(Knowlton et al., 2004). All of these applications rely on
well quantified emission inputs. Emission inventories are tra-
ditionally developed using a “bottom-up” approach that first
estimates the levels of activity by various pollutant produc-
ing sources, such as fossil fuel combustion by automobiles
and the microbial activity in soils, and next, combines this
information with activity-specific emission factors. Emis-
sions of nitrogen oxides (NOx=NO+NO2) are of particular
importance to estimate correctly. These compounds regulate
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the levels of ozone in the troposphere, lead to formation of
nitric acid, which can be an important component of particu-
late matter, and have a substantial impact on the levels of the
hydroxyl radical that, in turn, determine the lifetime of many
pollutants and greenhouse gases. The uncertainty in the es-
timated emission levels of NOx has been proposed to be as
high as a factor of two (Hanna et al., 2001).

Inverse modeling offers a “top-down” approach to eval-
uating NOx emission inventories; where emission rates are
inferred by estimating possible changes that would result in
the best comparison between predicted concentrations and
observable indicators. While very few accurate surface ob-
servations are available for NOx, space-based observations
of NO2 columns offer a comparably rich dataset for inverse
modeling studies. Retrieval algorithms for NO2 column den-
sities have been developed for several satellite instruments
including Global Ozone Monitoring Experiment (GOME),
Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY), and more recently Ozone
Monitoring Instrument (OMI) (Martin et al., 2002; Richter
and Burrows, 2002; Beirle et al., 2003; Boersma et al., 2004;
Bucsela et al., 2006). These data, as well as ground-based
and other observations, have been used previously in in-
verse modeling of “top-down” inventories on the global scale
(Martin et al., 2003; M̈uller and Stavrakou, 2005), and more
recently on the regional scale (Blond et al., 2007; Jaeglé et
al., 2005; Kim et al., 2006; Qúelo et al., 2005; Konovalov et
al., 2006; Konovalov et al., 2008; Wang et al., 2007). In this
work, a method was developed for using NO2 column obser-
vations to check for biases in the current emission inventories
of NOx using Kalman filter inversion. Regional scale mod-
eling was performed using the Community Multiscale Air
Quality (CMAQ) model (Byun and Schere, 2006). The in-
verse was driven by direct sensitivities that provided the spa-
tial relationship between NOx emissions and NO2 concen-
trations. Direct sensitivities were calculated using the decou-
pled direct method in three dimensions (DDM-3D) (Yang et
al., 1997). It is critical to resolve the spatial relationship be-
tween emissions and concentrations in regional inverse mod-
eling. On finer grid resolutions, transport lifetime can be
shorter than chemical lifetime, as compared to coarser res-
olutions of global models. Therefore, DDM-3D was invalu-
able in this effort.

The inverse method was tested using a pseudodata sce-
nario to evaluate the performance for a system with a known
solution. After satisfactory performance, it was then applied
to a summer-time episode in the southeastern United States
using SCIAMACHY satellite observations of NO2 column
densities.

2 Method

2.1 Regional model and satellite observations

CMAQ (Byun and Schere, 2006) was used to simulate the
concentrations of NO2 as well as other pollutants in a domain
centered on the southeastern United States. The 36 km hori-
zontal resolution domain with 14 vertical layers (Fig. 1) was
nested within a larger domain covering the entire continental
US that provided the boundary conditions. Meteorological
fields were developed using the fifth generation mesoscale
model (MM5) version 3.6.3 (Grell et al., 1995), and the
emissions inputs were the result of the Sparse Matrix Opera-
tor Kernel Emissions (SMOKE) version 2.0 (US-EPA, 2004)
processing of the 2001 National Emissions Inventory (NEI)
for use with the Statewide Air Pollution Research Center
(SAPRC99) gas-phase chemical mechanism (Carter, 2000).
The emissions included data from point sources equipped
with continuous emissions monitoring systems (CEMs) that
measure SO2 and NOx emission rates and other parameters
daily, mobile emissions processed by the Mobile6 model,
and meteorologically adjusted biogenic emissions from Bio-
genic Emission Inventory System (BEIS) 3.13 all specific for
the year 2004. A more detailed description of these emission
inputs is provided elsewhere (Gilliland et al., 2008).

Satellite observed NO2 columns were obtained from
SCIAMACHY (Bovensmann et al., 1999) on board the Eu-
ropean Space Agency Environmental Satellite (ENVISAT).
The data retrieval process is described in detail elsewhere
(Martin et al., 2006). The horizontal resolution of a SCIA-
MACHY footprint is 60 km by 30 km and it provides ob-
servations at approximately 16:00 UTC in this domain. For
comparison, satellite column observations and CMAQ grid
values were paired in time and space from 1 June to 31 Au-
gust 2004. The satellite column observations were mapped
to the CMAQ grid resolution using area weighted averaging
(Fig. 2c and d). During this three month period, satellite ob-
servations were available for five days on average (range of
three to ten days) over the modeling domain due to cloud
events and satellite measurement schedule.

The modeling domain was subdivided into ten source re-
gions including six southeastern metropolitan areas of At-
lanta, Birmingham, Chattanooga, Macon, Memphis, and
Nashville, as well as four larger rural areas approximately
covering the states of Alabama, Georgia, Mississippi, and
Tennessee (Fig. 1). The geographical extent of each
metropolitan area was defined based on emission patterns.

A CMAQ-DDM-3D simulation for the summer months of
2004 provided the base-case fields of NO2 concentrations
and gridded sensitivities to NOx emissions from each pre-
defined source region. The vertical layers were aggregated
to obtain column NO2 values based on meteorological vari-
ables used to drive the simulation. Kalman filter was then ap-
plied using the results at 16:00 UTC to match with the time
of satellite overpass.
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Fig. 1. Modeling domain covering the southeastern United States.
Source region definitions are superimposed on a map of average sur-
face layer NOx emissions at 16:00 UTC during the summer months
(JJA) of 2004. Source regions include urban areas of Atlanta, Birm-
ingham, Chattanooga, Macon, Memphis, and Nashville and rural
areas centered over Alabama, Georgia, Mississippi, and Tennessee.
A four-cell wide border surrounds the source regions to minimize
influence from the boundaries.

2.2 Kalman filter

To date, several different inverse methods have been ap-
plied to adjust estimated emission rates of atmospheric pollu-
tants based on observed data. These have included Bayesian
based techniques (Deguillaume et al., 2007), data assimila-
tion (Mendoza-Dominguez and Russell, 2000), and full ma-
trix inversion such as the Kalman Filter (Hartley and Prinn,
1993; Gilliland and Abbitt, 2001), which was applied here.
Kalman Filter is an optimization technique used to estimate
discrete time series and states that are governed by sets of
linear differential equations (Rodgers, 2000). In cases where
the linearity assumptions are not always valid, such as atmo-
spheric transport and chemistry systems, the technique can
be applied iteratively. It has been tested previously for con-
straining a variety of regional emissions including those of
carbon monoxide (Mulholland and Seinfeld, 1995), ammo-
nia (Gilliland et al., 2003), and isoprene (Chang et al., 1996).
Kalman Filter is an attractive choice for this application be-
cause it allows for weighting the solution based on the un-
certainties of both observations and emission fields indepen-
dently.

Full description of the Kalman Filter method is found
elsewhere (Haas-Laursen et al., 1996; Gilliland and Abbitt,
2001). Briefly, it evolves an emissions vector,Ek+1, accord-
ing to the following:

Ek+1=Ek+Gk(χ
obs

−χmod). (1)

At iterationk+1, the emissions vector is altered based on the
gain matrix,Gk, and the difference between the vectors of

Fig. 2. Total vertical NO2 column as(a) and (b) simulated by
CMAQ, (c) and (d) observed by SCIAMACHY, and(e) and (f)
simulated by CMAQ with upper-layer INTEX correction. The cor-
rection is a uniform increase of 1.07×1015molecules cm−2 based
on the discrepancy between model predictions and measurements
during the INTEX campaign of the upper troposphere. All show
summer 2004 averages of days and locations with SCIAMACHY
coverage. White areas represent regions with no SCIAMACHY ob-
servations during the simulation period.

observations,χobs, and modeled values,χmod (the usual time
subscripts are dropped for convenience, because only one
time-step is considered in this application). The gain matrix
is defined in terms of the partial derivatives of the change in
concentration with respect to emissions,P, the covariance of
the error in the emissions field,Ck, and the noise (including
observation and model uncertainties),N, such that:

Gk=CkPT (PCkPT
+N)−1 (2)

The covariance of error matrix also evolves with subsequent
iterations according to:

Ck+1=Ck−GkPCk (3)

A variety of approaches have been used to estimate the
initial covariance of error matrix,Ck=0, depending on appli-
cation of the technique. In this application,Ck=0 was related
to the estimate of the normalized uncertainty in the emission,
UE , according to the following:

Cmm=(UE,m·Em)2 (4)
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Cmn,m6=n=

(
0.1·

UE,m+UE,n

2
·
Em+En

2

)2

, (5)

for each subscripted (m or n) element in the covariance of er-
ror matrixC. The off-diagonal elements of the covariance of
error matrix are difficult to estimate, and in this application
were set to be a fraction (10%) of the average of the corre-
sponding diagonals (Eq. 5).

Similarly, the noise matrix,Nt (Eq. 2) was initialized
based on the estimated normalized uncertainties in the ob-
servations,Uobs according to:

Nmm=Max
[
0.5·1015molecules·cm−2, (Uobs,m·χobs

m )
]2

(6)

Nmn,m6=n=0.0 (7)

The value of Uobs, in this application, was set to 0.3
based on reported uncertainties in SCIAMACHY measure-
ments (Martin et al, 2006). The minimum error value of
0.5×1015 molecules cm−2 is consistent with previous satel-
lite error estimates for NO2 retrieval (Boersma et al., 2004)
and was imposed to prevent numerical instability. In this
application, the noise matrix did not include an estimate
of model uncertainties. An evaluation of model results re-
vealed a clear systematic bias in NO2 column predictions
overwhelming any Gaussian type errors that would be in-
cluded in the noise matrix. Possible sources of this bias and
the approach of addressing it are presented later in Sect. 4.
A detailed analysis of the dependence of the inverse on the
assumption ofUE andUobs appears further.

2.3 Direct sensitivity analysis

To determine the relationship between emission rates from
different source regions and resulting concentrations (P in
Eq. 2), several methods have been used in the past. The sim-
plest and the most widely used approach is the finite differ-
ence method, where sensitivities are determined through a
“brute force” difference in the pollutant concentration fields
resulting from simulations of manually perturbed input pa-
rameters. While the finite difference method is intuitive and
straightforward to implement, it comes with a few disadvan-
tages. It is often prone to numerical noise, dependent on
the magnitude of the perturbation due to the nonlinear na-
ture of pollutant responses to atmospheric processing, and
cumbersome to implement for more than a few perturbations.
Other methods for calculating sensitivities focus on comput-
ing local derivatives about the nominal value of the sensitiv-
ity parameter. These include the Green’s function method
(Dougherty et al., 1979; Cho et al., 1987), the decoupled di-
rect method (Dunker, 1981, 1984), and the adjoint method
(Koda and Seinfeld, 1982; Sandu et al., 2003). The advan-
tages of each of these depend largely on specific application,
but the decoupled direct method in three dimensions (DDM-
3D) (Yang et al., 1997) is often the most computationally

efficient for calculating direct sensitivities over the entire do-
main for a large number of input parameters simultaneously.

Sensitivity coefficients are defined as a change in pollutant
concentrationsCi(x, t) of speciesi, in spacex and timet ,
with respect to a perturbation in an input parameteraj (x, t),
which relates to the unperturbed or nominal valueAj (x, t)
according to:

aj (x, t)=(1+1εj )Aj (x, t)=εjAj (x, t), (8)

whereεj is the applied scaling factor. To separate the de-
pendence of the sensitivity coefficients on the magnitude of
aj (x, t) and to allow better opportunity for comparison, they
are normalized byAj (x, t). The resulting first-order semi-
normalized (with units identical toCi(x, t)) sensitivity coef-
ficientSij (x, t) can then be described by:

Sij (x, t)=Aj (x, t)
∂Ci(x, t)

∂aj (x, t)
=Aj (x, t)

∂Ci(x, t)

∂(εjAj (x, t))
=

∂Ci(x, t)

∂εj

(9)

The decoupled direct method has been implemented and
evaluated for several regional air quality models including
CAMx (Dunker et al., 2002; Koo et al., 2007) and CMAQ
(Cohan et al., 2005; Napelenok et al., 2006) and has been
shown to accurately produce sensitivities of gaseous and par-
ticulate species to input parameters that include emission
rate, initial/boundary conditions, and chemical reaction rates.
In this work, DDM-3D was used to spatially resolve the
dependencies of pollutant concentration on emissions from
each of the predefined source regions.

2.4 Integrated iterative inverse system

Sensitivities of NO2 column concentrations were calculated
to emissions of NOx from each source region and integrated
into the Kalman Filter formulation according the following
(time subscripts are, again, dropped for convenience):

P(j, x)=
SNO2,Ej

(x)

Ej

, (10)

where matrixP (Eq. 2) is dimensioned by the number of
source regions, allj , and the number of horizontal grid cells
contained in any source region, allx. The sensitivity coeffi-
cient is the response of NO2 to emission reductions in each of
the source regions,j , normalized by the total emission rate in
that source region,Ej . Each model grid cell contained by a
defined source region was paired with the spatially matched
averaged satellite observation to developχmod andχobsvec-
tors in the inverse. In order to overcome the linearity as-
sumptions in both the Kalman filter and the direct sensitiv-
ity calculations, the inverse was calculated iteratively. The
emissions field was adjusted according to the results of the
inverse and the process was repeated until the ratio ofEk+1
andEk was different from 1.0 only by a predetermined er-
ror factor (0.001 in this application) (Fig. 3). The emissions
within each source region were assumed to respond homoge-
neously to the applied scaling factors resulting from inverse
modeling.
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Fig. 3. Outline of the presented inverse method. The itera-
tive process is used to overcome nonlinearities in the relation-
ship between NOx emissions and NO2 concentrations. The con-
vergence criteria (Ek+1=Ek+ε) can vary with application, but
0.001<|(Ek+1−Ek)/Ek | was used here.

3 Pseudodata analysis

In order to evaluate the inverse method, a controlled pseu-
dodata experiment was designed for the modeling domain
for 1 day – 1 August 2004. The goal was to determine per-
formance of the inverse in a scenario where the solution is
known. NOx ground level emissions in each source region
between the hours 00:00 and 16:00 UTC were aggregated to
approximate emissions that would contribute to concentra-
tions of NO2 observed by the satellite overpass at approx-
imately 16:00 UTC. During the summer in the southeast,
NOx has a relatively short lifetime, therefore, this time in-
terval captures the majority of emissions that would impact
concentrations during the time of the satellite measurement.
The aggregated emissions were arbitrarily adjusted by fac-
tors ranging between 0.3 and 2.0. The resulting emissions
vector became the a priori estimate for the inverse method.
NO2 column concentrations from the simulation using these
adjustments (χmod) were compared to NO2 column concen-
trations in the base-case, which acted as pseudo observations
(χobs). The Kalman filter method was then applied iteratively
to recreate the base-case emissions.

As previously mentioned, Kalman filter requires an esti-
mate of the initial covariance of the error in the integrated
emissions estimates,Ct,0. In the pseudodata experiment, this
quantity was based on an estimate of the uncertainty in the
emissions,UE , according to Eqs. (4) and (5). The normal-
ized uncertainty in emissions,UE,j was assumed to be 2.0
for all source regionsj allowing for large departures from

Table 1. Regional Emission Adjustment for the pseudodata sce-
nario. This arbitrary factor was applied to hourly emission rates in
each region.

Source Region∗ Pseudodata Test Adjustment Factor

Atlanta, GA 0.3
Birmingham, AL 1.8
Macon, GA 0.5
Memphis, TN 0.6
Nashville, TN 1.0
Chattanooga, TN 1.4
Mississippi 1.6
Alabama 0.7
Georgia 2.0
Tennessee 0.4

∗ Urban area emissions are not included in the larger encompassing
regions.

a priori emissions estimates during the first iteration. The
details on the sensitivity of this assumption are discussed
later. Similarly, the noise matrix was based on the estimated
uncertainties in the observations,Uobs according to Eq. (6).
Theoretically, the noise matrix,N, can account for both er-
rors in observations, as it does here, and also errors in the
modeling system. However, in the case of the pseudodata
test and the subsequent applications to satellite data, model
uncertainties are assumed to be systematic and should have
little bearing on the conclusions drawn from the application
of the inverse. For the pseudodata test, uncertainty in “ob-
servations” does not exist, because the system is perfectly
controlled. Thus, the diagonals of the noise matrix,N, were
set at the minimum value of 0.5 (1015 molecules cm−2)2. An
important assumption in the development of this method is
the fact that the disagreement between satellite observations
and model outputs comes primarily from the emissions in-
ventory. While the noise matrix allows the introduction of
other errors (model errors, assumptions in satellite date re-
trieval, etc.), it ultimately only limits how close to the ob-
servations the iterative solution approaches. The pseudodata
exercise avoids all other uncertainties and investigates the ro-
bustness of the method when this assumption is strictly cor-
rect. In the pseudodata test, the discrepancies between “ob-
servations” and model results come only from the artificially
introduced errors in the emissions inventory.

In application of the inverse method to the pseudodata sce-
nario, the base case NOx emissions in each region were re-
produced within a few iterations. Particularly encouraging is
the fact that both large increases (“Georgia”: 2.0) and large
decreases (“Atlanta”: 0.3) in emissions were corrected effi-
ciently. Consequently, the corresponding NO2 column con-
centrations were also reproduced well (Fig. 4).

Sensitivity to inverse model assumptions of Uobs and UE
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Fig. 4. Performance of the pseudodata analysis showing NO2 col-
umn concentrations for(a) arbitrary adjusted emissions scenario
and (b) inverse corrected emissions scenario (after six iterations),
both compared to base case values (in 1015molecules cm−2), and
(c) the convergence toward base emissions from the perturbed start-
ing point. Results are shown for 1 August 2004.

calculated as the adjustment factor to the emissions, Ek +1 /
Ek , in the Atlanta source region resulting from varying UE
and Uobs assumptions for k=0 in the pseudodata scenario.
Larger uncertainties in emissions and smaller uncertainties
in observations allow for larger adjustments in this and other
source regions. The Atlanta source region requires an adjust-
ment factor of 3.33 to return to the pre-perturbed inventory
(to overcome a 0.3 perturbation).

The pseudodata analysis also offers the opportunity to test
the response of the inverse to the assumptions in its param-
eters. Assumptions where made for two important param-
eters,UE andUobs (Eqs. 4 and 6). For the pseudodata test,
the uncertainty in observations was set to the minimum value
(Eq. 6), while the uncertainty in the emissions was set to be
2.0. To test how the system behaves for a full range of these
values would be computationally prohibitive. However, it
is possible to test the response for just the first iteration of
the Kalman Filter inverse with little requirement for CPU re-
sources. It was already observed that the system converges
on the correct solution in only a few iterations from starting
with widely perturbed initial emission fields. The proxim-
ity to the solution after one iteration should be indicative of
the overall response to the assumptions. Thus, the first iter-
ation of the inverse was tested at a range of values for both
UE andUobs. As expected, larger uncertainties in emissions

Fig. 5. Sensitivity to inverse model assumptions ofUobs andUE

calculated as the adjustment factor to the emissions,Ek+1/Ek , in
the “Atlanta” source region resulting from varyingUE and Uobs
assumptions fork=0 in the pseudodata scenario. Larger uncertain-
ties in emissions and smaller uncertainties in observations allow for
larger adjustments in this and other source regions. The “Atlanta”
source region requires an adjustment factor of 3.33 to return to the
pre-perturbed inventory (to overcome a 0.3 perturbation).

and lower uncertainties in observations allow for larger ad-
justments to the emission fields in the case of the Atlanta
source region (Fig. 5) and elsewhere. At the extreme highUE

and extreme lowUobs the adjustment is frequently overesti-
mated. In Atlanta, the emissions field required an adjustment
factor of 3.3 to arrive back at the base emissions from the
pseudodata perturbations (Table 1). However, factors higher
than 4.0 were possible at extreme values of uncertainty as-
sumptions. Further testing revealed that these overestima-
tions were corrected in subsequent iterations of the Kalman
filter inverse.

The pseudodata case was also used to test the influence
of the boundaries on the solution of the inverse. Since the
domain is fairly small, influence from emissions outside the
defined source regions, including boundary conditions, can
be potentially problematic. Therefore, the source regions
were “padded” with a border region (Fig. 1). Emissions from
the border regions were assumed to not influence the defined
source regions significantly. This assumption, as well as the
ability of the border region to provide substantial enough dis-
tance to negate boundary condition influences, was tested
using DDM-3D sensitivities. Sensitivities of NO2 column
densities to boundary conditions of NOx and to emissions of
NOx from the border region were calculated and compared
to the spatial distribution of sensitivities to emissions from
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Fig. 6. Fraction of total sensitivity of NO2 column densities to(a)
NOx emissions from the “border” region(b) NOx boundary condi-
tions. NO2 sensitivities to emission of NOx from (c) “Atlanta”, (d)
“GA”, (e) “Birmingham”, and(f) “AL” source regions are shown
for comparison. The fraction for each grid cell as the ratio of
the sensitivity from the source of interest and the total sensitivity
from all source regions and the boundary conditions is expressed
as:SNO2,ENOx r ·

(
∑10

r=1 SNO2,E(NOx )r +SNO2,BC(NOx ))
−1.

the defined source regions. It was found that both the border
region and the boundary conditions had minimal influences
(Fig. 6). The border region had the highest impact in the
“MS” region where it accounted for under 25% of the to-
tal sensitivity. In this same region, the boundary conditions
also had the largest influence where they accounted for up to
30% of the total sensitivity in the southern portion of the re-
gion. Overall, the border region provided reasonable separa-
tion to neglect any impacts from the boundaries, mainly due
to stagnant meteorological conditions common in southeast-
ern summers and the consequently short chemical lifetime of
NOx relative to transport processes.

4 Case study: surface NOx emissions in the southeast
United States

After encouraging results of the pseudodata analysis, the in-
verse method was applied to the southeastern domain using
SCIAMACHY observations for June, July, and August of

Fig. 7. Vertical distribution of NO2 concentrations observed by
NASA INTEX DC-8 flights over the eastern United States com-
pared to model predictions matched in space and time. Error bars
denote 99% confidence interval of the mean, assuming that obser-
vations are drawn from a normally distributed population. For more
measurement details, see Bertram et al. (2007), Supporting Online
Material, Fig. S6.

2004. The same emission source regions were used as in the
pseudodata analysis (Fig. 1) and the emissions were again ag-
gregated between the hours of 0:00 and 16:00. As was men-
tioned previously, the 60 km by 30 km SCIAMACHY foot-
prints were averaged down to the 36 km by 36 km CMAQ
grid. To assure full coverage of the modeling domain by the
infrequent and spatially varying observations, SCIAMACHY
observations and modeling results sampled at the times and
locations of available observations were averaged over the
three summer months in the inverse. One of the major
added complications in moving from a synthetic data test
to an application with an independent dataset is the much
greater impact on results from uncertainty stemming from
the model’s ability to accurately reproduce natural condi-
tions in the atmosphere. Regional transport models tend to
under-predict NO2 concentrations in the upper troposphere
(Singh et al., 2007) due to, in part, a lack of well quanti-
fied emissions there from sources that include lightning NO
(Cooper et al., 2006; Hudman et al., 2007) and possibly
incorrect estimates of the NO2 chemical lifetime at higher
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Table 2. Emission rates for each source region during the summer
months (JJA) of 2004.

Source Region∗ a priori a posteriori posteriori –
INTEX

(tons/day) (tons/day) (tons/day)

Atlanta, GA 513 482 435
Birmingham, AL 202 182 138
Macon, GA 154 68 73
Memphis, TN 129 118 106
Nashville, TN 112 113 80
Chattanooga, TN 55 101 89
Mississippi 572 859 212
Alabama 852 1718 782
Georgia 574 1171 364
Tennessee 1425 2533 1389

∗ Urban area emissions are not included in the larger encompassing
regions.

altitudes. The under-prediction is easily visible from a com-
parison of model predictions with vertical NO2 profiles ob-
tained by aircraft measurements (Fig. 7). When compared
with the average NO2 vertical concentration profile estimated
from aircraft measurements taken during the NASA Inter-
continental Chemical Transport Experiment (INTEX) (Singh
et al., 2006; Bertram et al., 2007) over the eastern United
States in the summer of 2004, our simulations under-predict
by 1.07×1015 molecules cm−2 NO2 in terms of column den-
sity (Fig. 7). This deficiency is of similar magnitude that
has been reported by Konovalov et al. (2006), who proposed
that the systematic negative bias of 8×1014 cm−2 between
satellite observation and their model simulation over Eu-
rope was largely due to upper tropospheric NO2. To un-
derstand the sensitivity of the inverse solution to the upper
layer NO2 concentration uncertainty, the inverse method us-
ing SCIAMACHY observations was performed for two dif-
ferent modeling realizations: a case where the model was
used directly (Fig. 2a and b), and a case where the model-
ing NO2 column results were increased by spatially uniform
1.07×1015 molecules cm−2 based on INTEX observations of
the upper troposphere NO2 concentrations during this time
period (Fig. 2e and f). For each case, the normalized uncer-
tainty in the a priori emissions,UE , was set 2.0, which allows
for large adjustments and follows the estimates of Hanna et
al. (2001) for possible errors in NOx emissions. The uncer-
tainty in observation,Uobs, was set to 0.3 according to the es-
timates of Martin et al. (2006) of mean monthly uncertainty
for SCIAMACHY observations of polluted regions.

As with the pseudodata analysis, only four iterations were
necessary to obtain a solution. The inverse results using the
base model confirm what is evident from a cursory exam-
ination of the comparison between observed and modeled
vertical columns of NO2 (Fig. 2a and b). In the southeast,

Fig. 8. Results of the inverse analysis showing(a) regionally av-
eraged comparison of NO2 column densities observed by SCIA-
MACHY and modeled by CMAQ with and without the INTEX cor-
rection, as well as the comparison at four ground-based SEARCH
sites: Atlanta (JST), Birmingham (BHM), suburban GA (YRK),
and rural AL (CTR).

CMAQ predicts values that are too low in the rural regions
while values in the urban centers are too high compared to
SCIAMACHY observations. Accordingly, the inverse solu-
tion was to dramatically increase emissions in the rural ar-
eas and to slightly decrease emissions in the urban areas (Ta-
ble 2). As a result of these adjustments, the correlation for the
comparison between regional averaged observed and mod-
eled NO2 columns improved fromR2=0.68 for the a priori
case toR2=0.89 (Fig. 8a). The inverse using INTEX ad-
justed modeling results indicated that adding to the upper
level background forced the emissions in most source regions
lower (Table 2). Only the “Chattanooga” region required
higher than base NOx emissions, because parts of north-
ern Georgia are highly sensitive to emissions there and still
required upward adjustments. Furthermore, adding upper
level NO2 substantially reduced the bias in the comparison
and slightly increased the degree of correlation (R2=0.93)
(Fig. 8a). Compared to areas of high surface emission den-
sity, the inverse solution at rural areas is significantly more
sensitive to upper layer NO2 concentrations. At rural loca-
tions, a large fraction of the column concentration is due to
aloft emissions and long-range transport and less is due to
surface emissions.

As the pseudo-data test and this case study demonstrate,
the method developed here can improve the agreement be-
tween modeled and observed NO2 column densities. While it
is important to accurately simulate the NO2 column density,
we are most interested in using this technique for improv-
ing our simulation of surface air quality. However, the dis-
crepancy in model and observed concentrations can be due to
processes other than errors in emissions. Despite only pro-
viding a column NO2 density observed at a specific time, can
the SCIAMACHY data and this inverse-technique improve
the day-time surface NO2 concentration? This comparison
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is useful as an independent check on the results and to de-
termine the extent to which the results can be generalized to
phenomena relevant to air quality.

NO2 concentrations at four Southeastern Aerosol Re-
search and Characterization Study (SEARCH) sites (Hansen
et al., 2003) located in the domain were compared to both
a posteriori modeling simulations averaged over the daytime
concentrations for 1 June to 31 August 2004 (Fig. 8b). These
sites measure NO2 by photolytic conversion to NO followed
by chemiluminescence (Ryerson et al., 2000). The SEARCH
network is designed to provide observations that are repre-
sentative of either urban or regional conditions.

The INTEX corrected a posteriori emission estimates im-
proved the simulated NO2 surface concentration at all four
surface monitoring sites. At the rural and suburban locations,
the a posteriori emissions without the INTEX correction de-
graded the quality of the simulation and caused an overesti-
mate of the surface NO2 concentration. This finding further
emphasizes the need for an accurate upper-troposphere NO2
simulation when applying this method to locations with low
surface emission rates.

5 Conclusions and discussion

The Kalman filter inversion approach outlined here is a
promising methodology for applying the increasingly rich
dataset obtained by space-based measurements to regional
air quality modeling. In the pseudodata analysis, the method
algorithms and key assumptions were tested under ideal con-
ditions. Problems with uncertain observations, spatial cover-
age, and uncertain modeling results were largely eliminated.
Under such conditions, the method performed extremely well
and reproduced correct emission fields and corresponding
NO2 concentrations in a few iterations. This suggests that
the method is theoretically sound.

One major obstacle of this and other inverse modeling ef-
forts is the fact that the system is often mathematically ill-
posed or is not constrained sufficiently to provide a unique
and stable solution. However, this method offers some ad-
vantages over other similar inverse modeling approaches.
The use of direct sensitivities provides spatial and temporal
resolution of the contributions to concentrations at any recep-
tor in the domain from any and all source regions. Pollutant
transport across source regions has been previously difficult
to account for without direct sensitivities and often has been
assumed to be negligible. This assumption is not unreason-
able at the global scale with large source regions, but fails
when finer spatial resolutions are introduced, because the
transport lifetime of NOx is often shorter than the chemical
lifetime at the resolution of regional models. Similarly, sensi-
tivity analysis also provides the opportunity to determine the
degree of influence on concentrations from transport outside
the defined source regions and from boundary conditions.

During the application to the southeastern United States
a stable solution to the inverse was obtained for both cases:
base model and INTEX adjusted model. The comparison of
the results between the two cases suggests a much greater
impact on upper layer processes in rural areas where NO2
concentrations aloft compose a larger fraction of the total
column. In both cases, the results suggest very drastic ad-
justments to the emissions inventory in some source regions,
for example “Macon” and “GA”. While these results satisfy
the mathematical model, which aims to minimize the dif-
ferences between satellite derived observations and the re-
gional model, their uncertainties should be explored further.
Generally, in the rural areas, correct simulation of the upper
troposphere NO2 concentration is essential, because ground
sources of NO2 are minimal. For urban areas, as ground level
NOx emissions increase, the importance of aloft processes
decreases, and, in a relative sense, approaches the error in
the satellite product. However, in both low and high ground
level source regions, the adjusted emissions improved ground
level concentrations of NO2, as confirmed by the indepen-
dent SEARCH observations. This comparison to an indepen-
dent data source builds confidence in a posteriori emission
estimates and is a necessary check of the method, because
Kalman Filter inversion attributes the difference between es-
timates by the regional air quality model and satellite ob-
servations solely to uncertainties in the emission inventories.
The uncertainty in a posteriori emission estimates is mathe-
matically reduced if the system converges on a stable solu-
tion, but the solution must be verified by other means.

Other factors besides aloft sources influence the inverse
results. In the “Macon” and “Mississippi” source regions,
adjustments to the inventory are outside the specified uncer-
tainty of the emissions inventory (factor of two). There, the
differences between satellite observations and model results
are likely to be a factor of other uncertainties besides those
in the emissions inventory. These include insufficient spa-
tial resolution, biases in the retrieval, and the representation
of NOy chemistry in CMAQ. In particular, the assumptions
used in the satellite retrieval algorithm for NO2 columns can
impact the results of the inverse. The air mass factor cal-
culation in the retrieval used here relied on relative vertical
NO2 profiles from a global model (GEOS-Chem) which op-
erates on a much coarser resolution (2◦ by 2.5◦) than the
regional model. This inconsistency could introduce errors
in the inversion. However, a better representation of free-
tropospheric NO2 concentrations in CMAQ is needed be-
fore CMAQ NO2 profiles can be used for the AMF calcu-
lation. These issues will be explored further in the future
applications of this method.

Summer-time sources of NOx in southeastern United
States are usually distinguishable making it easier to track
contributions from various regions. However, the robust-
ness of this method in other regions and time periods is
facilitated by the fact that DDM-3D sensitivities are used to
track source contributions. DDM-3D performs equally well
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in regions with more densely located pollutant sources and
for varied pollutant lifetimes.

Finally, the results of the inverse application need to be
interpreted in the context of the emissions scenario. Only
ground-level NOx emission fields were considered in this
study, under the assumption that elevated NOx come pri-
marily from point sources equipped with continuous emis-
sion monitoring (CEM) devices and much more certainty.
Sources of ground-level NOx vary by region. For instance,
the majority of biogenic NOx is emitted outside of the de-
fined urban regions as NO from soil, while in the urban cen-
ters, mobile emissions are more important. The analysis pro-
vided here does not provide the breakdown of how each sec-
tor’s emissions should be adjusted; instead, the inverse was
performed on the total. Sector specific adjustments are pos-
sible to obtain and will be explored in the future. Another
complication from using this approach of assigning emission
quantities to source regions is the assumption that the daily
emission profile is correct. Temporal dependencies are pos-
sible with DDM-3D, and will be explored further.
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