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Abstract. The representation of data, whether geophysi-
cal observations, numerical model output or laboratory re-
sults, by a best fit straight line is a routine practice in the
geosciences and other fields. While the literature is full of
detailed analyses of procedures for fitting straight lines to
values with uncertainties, a surprising number of scientists
blindly use the standard least-squares method, such as found
on calculators and in spreadsheet programs, that assumes no
uncertainties in thex values. Here, the available procedures
for estimating the best fit straight line to data, including those
applicable to situations for uncertainties present in both the
x andy variables, are reviewed. Representative methods that
are presented in the literature for bivariate weighted fits are
compared using several sample data sets, and guidance is
presented as to when the somewhat more involved iterative
methods are required, or when the standard least-squares pro-
cedure would be expected to be satisfactory. A spreadsheet-
based template is made available that employs one method
for bivariate fitting.

1 Introduction

Representation of the relationship betweenx (independent)
andy (dependent) variables by a straight line (or other func-
tion) is a routine process in scientific and other disciplines.
Often the parameters (slope andy-intercept) of such a fitted
line can be related to fundamental physical quantities. It is
therefore very important that the parameters accurately rep-
resent the data collected, and that uncertainties in the param-
eters are estimated and applied correctly or the results of the
fitting process and thus the scientific study could be misin-
terpreted.
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The approaches to fitting straight lines to collections of
x−y data pairs can be broadly grouped into two categories:
the “standard” least-squares methods in which the distances
between the fitted line and the data in they-direction are min-
imized, and the “bivariate” least-squares methods in which
the perpendicular distances between the fitted line and the
data are minimized. A third method, similar to the second
but less commonly employed, involves minimization of the
areas of the right triangles formed by the data point and the
line. In all of these methods, weights may be also applied to
the data to account for the differing uncertainties in the indi-
vidual points. In “standard” least-squares, the weighting per-
tains to they-variables only, whereas in “bivariate” methods,
weights can be assigned for thex- andy-variables indepen-
dently. There is widely varying terminology for these proce-
dures in the literature that can be confusing to the non-expert.
Authors have used terms such as major axis regression, re-
duced major axis regression, ordinary least-squares, maxi-
mum likelihood, errors in variables, rigorous least-squares,
orthogonal regression and total least-squares. Herein, the
terms “standard” and “bivariate” will be used to denote these
two categories of fitting methods. This paper does, however,
present a detailed reference list of available methods and ap-
plications presented in the literature.

For demonstration and testing purposes, two data sets from
the literature were employed. First, the well-known data of
Pearson (1901) with weights suggested by York (1966) were
used (see Table 1 and Fig. 1). The data values are similar to
those that might be encountered in a laboratory study or ac-
quired in atmospheric measurements, but with rather extreme
weights that range 3 orders of magnitude as the data ranges
about a factor of five. This data set has the advantage that
the exact results of the bivariate fit are known and reported
in the literature, and one that is frequently used as a test for
new fitting methods.
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Figure 1. 

Fig. 1. Linear fits to the data of Pearson [1901] with weights sug-
gested by York [1966] (“Pearson-York” data set, shown in Table 1).
The weights have been plotted asσ values (wi=1/σ2

i
). Fit parame-

ters are shown in Table 2.

Table 1. Example data “Pearson’s data with York’s weights” for
comparison of fitting procedures described in the text.

x wx y wy

1 0.0 1000.0 5.9 1.0
2 0.9 1000.0 5.4 1.8
3 1.8 500.0 4.4 4.0
4 2.6 800.0 4.6 8.0
5 3.3 200.0 3.5 20.0
6 4.4 80.0 3.7 20.0
7 5.2 60.0 2.8 70.0
8 6.1 20.0 2.8 70.0
9 6.5 1.8 2.4 100.0
10 7.4 1.0 1.5 500.0

A second data set was created by selecting random num-
bers from Gaussian distributions and adding them to base
values, which were numbers 1 through 100 (see Fig. 2). Ini-
tially, the Gaussian distributions were set with means of zero,
and standard deviations of 10 units plus 30% of the base
value, but other tests were performed with different amounts
of constant and proportional uncertainty. These data were
meant to represent those that would result from an inter-
comparison of two instruments measuring the same quantity,
which have baseline noise of 10 units (1 sigma), measure-
ment uncertainties that are well above the baseline of 30%
(1 sigma), and nominal “true” values from 1 to 100 units.
This data set has the characteristic that in the absence of
noise, or if the noise is properly dealt with, the best fit line
should have a slope of one, and an intercept of zero.
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Figure 2. 

 
Fig. 2. Linear fits to data generated by sampling a Gaussian function
with standard deviation of 10 units plus 30%, and adding the noise
to the numbers 1 through 100. Fit parameters are shown in Table 3.

Next, the methods were applied to two examples of au-
thentic data to demonstrate specifically the value of bivariate
methods, and to point out how and when they should be ap-
plied.

This review and recommendation does not attempt to be
mathematically nor statistically rigorous. The reader is re-
ferred to the referenced literature for such details. The pur-
pose here is to provide operational information for the scien-
tific user of these routines, and to provide guidance for the
choice of routine to be utilized.

Note that there is not universal agreement in the uses of
symbols for the measuredx andy values and the calculated
slope and intercept that appear in the literature. The reader is
cautioned in this regard. In this paper,xi andyi (lower case
italics) refer to the measuredx andy values,m refers to the
slope of the best fit line, andb is they-axis intercept. Other
symbols are defined throughout the paper.

2 Standard least-squares

The equations for a line that best describesx−y data pairs
when all of the measurement error may be assumed to re-
side in they-variable (i.e. thex values are exact or nearly
so) is readily available and easily derived (e.g. Bevington,
1969). The fitted line then becomes a “predicted” value fory

given a value forx. The usual method involves minimizing
the sum of squares of the differences between the fitted line
and the data points in they-direction (although minimiza-
tion of other quantities has been used). The slope,m, and
y-intercept,b, of this best-fit line can be represented in terms
of summations of computations performed on then measured
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Table 2. Comparison of fit parameters using various weighting and fitting procedures for Pearson’s data with York’s weights (reproduced in
Table 1).

Reference order Slope Std err Slope % diff Intercept Std err Intcpt % diff

Std Least-Squares
y−x –0.53958 0.0421 12.3 5.7612 0.189 5.1
x−y –0.56589 0.0442 17.8 5.8617 0.216 7.0

Std Lst-Sqrs w/wgts
y−x –0.61081 – 27.1 6.1001 – 11.3
x−y –0.66171 – 37.7 6.4411 – 17.5

Williamson-York
y−x –0.48053 0.0706 0 5.4799 0.359 0
x−y –0.48053 0.0706 0 5.4799 0.359 0

Neri et al.
y−x –0.48053 – 0 5.4799 – 0
x−y –0.48053 – 0 5.4799 – 0

Reed
y−x –0.48053 0.0706 1×10−7 5.4799 0.359 6×10−8

x−y –0.48053 – 3×10−7 5.4799 – 1×10−7

Macdonald
y−x –0.48053 – 5×10−6 5.4799 – 2×10−6

x−y –0.48053 – 5×10−5 5.4799 – 8×10−6

Lybanon
y−x –0.48053 – 2×10−6 5.4799 – 5×10−7

x−y – – – – – –

Krane and Schecter
y−x –0.46345 – 3.6 5.3960 – 1.5
x−y –0.55049 – 14.6 5.8163 – 6.1

data pairs,x1, y1, x2, y2, . . . ,xn, yn.

m =
n
∑

xiyi −
∑

xi

∑
yi

n
∑

x2
i −

(∑
xi

)2
b =

∑
x2
i

∑
yi −

∑
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n
∑

x2
i −

(∑
xi

)2 (1)

The6 symbols refer to the summation of the quantity over
all n values, and the subscript,i, denotes the individual mea-
suredx andy values. The uncertainties in the slope and in-
tercept can also be calculated.
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√∑
y2
i −b

∑
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∑
xiyi
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Another useful quantity is the correlation coefficient (also
called the Pearson Correlation Coefficient), which provides
an index of the degree of correlation between thex andy

data.
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n
∑
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∑
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∑
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)2) (
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It is usually the case that not all the data points have the same
uncertainty. Thus, it is desired that data with least uncertainty
have the greatest influence on the slope and intercept of the
fitted line. This is accomplished by weighting each of the
points with a factor,wi , which is often assumed (and demon-
strated mathematically to yield the best unbiased linear fit
parameters, if set) equal to the inverse of the variance of the

y-values (σ 2
yi). It could include estimates of all sources of

uncertainty in they-values. Other weighting procedures are
also possible. The formulas for the slope and intercept are
modified as shown to include data weights.

m =

∑
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∑
wixiyi −

∑
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∑
wiyi∑
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∑
wix

2
i −
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wixi
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∑
wixiyi∑
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2
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(∑
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)2 (4)

These formulas are readily programmed, or exist as available
spreadsheet or calculator functions, and can be routinely ap-
plied to fitting of straight lines tox−y data sets.

The standard least-squares method was applied with and
without weights, using Eqs. (1) and (4), to the two test data
sets (“Pearson-York” and “synthetic data”) for comparison
with the bivariate methods (see Tables 2 and 3). Note that
when there are significantx andy errors, that standard least-
squares yields erroneous slopes. For the “synthetic data”, the
slope was usually too small, whereas for the “Pearson-York”
data, the slope was too large (compared to the Williamson-
York and Neri et al. methods, discussed below).

3 Methods when bothx and y have errors

The application of fitting procedures that account for uncer-
tainties in both thex- and y- variables is somewhat more
complex. This is because minimization of the distance be-
tween data points and a fitted line in thex- andy-directions
has not yielded to analytical solutions. Iterative approaches
are therefore required. Several equation forms have been
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Table 3. Comparison of fit parameters using various weighting and fitting procedures for synthetic data with random errors (see text).

Reference order Slope Std err Slope % diff Intercept Std err Intcpt % diff

Std Least-Squares
y−x 0.64455 0.0802 37.7 15.5840 5.068 526
x−y 1.62395 0.2022 57.0 –33.2653 10.818 810

Std Lst-Sqrs w/wgts
y−x 0.51688 – 50.0 3.12330 – 185
x−y 1.45084 – 40.3 –25.7369 – 604

Williamson-York
y−x 1.03409 0.1004 0 –3.65745 3.369 0
x−y 1.03409 0.1004 0 –3.65745 3.369 0

Neri et al.
y−x 1.03409 – 0 –3.65745 – 0
x−y 1.03409 – 0 –3.65745 – 0

Reed
y−x 1.03409 – 0 –3.65745 – 0
x−y 1.03409 – 0 –3.65745 – 1×10−9

Krane and Schecter
y−x 0.63716 – 38.4 3.73640 – 202
x−y 1.69288 – 63.7 –16.2079 – 343

proposed and discussed (Barker and Diana, 1974; Borcherds
and Sheth, 1995; Brauers and Finlayson-Pitts, 1997; Bruz-
zone and Moreno, 1998; Chong, 1991, 1994; Christian and
Tucker, 1984; Christian et al., 1986; Gonzalez et al., 1992;
Irwin and Quickenden, 1983; Jones, 1979; Kalantar, 1990,
1991; Krane and Schecter, 1982; Leduc, 1987; Lybanon,
1984ab, 1985; Macdonald and Thompson, 1992; MacTag-
gart and Farwell, 1992; Markovsky and Van Huffel, 2007;
Moreno, 1996; Neri et al., 1990, 1991; Orear, 1982; Pasa-
choff, 1980; Pearson, 1901; Press et al., 1992a,b; Reed,
1990; Riu and Rius, 1995; Squire et al., 1990; Williamson,
1968; York, 1966, 1969; York et al., 2004). This list is large
to provide a comprehensive reference for the reader. While
these approaches are not as convenient as the straightforward
equations applicable to standard least-squares, they can eas-
ily be programmed using standard languages or spreadsheet
program routines.

In assessing the impacts of errors on linear fits, normal
(Gaussian) distributions of the errors are assumed. This is a
reasonable assumption for most real-world situations, but it
should be recognized that formulations for error estimates of
the slope and intercept of the fits will be different for other
error distributions.

Some representative examples of exact and approximate
procedures (discussed below) from the literature were ap-
plied to the sample data sets, and the results of the fits are
shown in Tables 2 and 3. In each case, slopes and intercepts
were derived by fittingy on x, and by exchanging thex and
y variables, thus fittingx ony. The slopes and intercepts for
the latter case were made comparable to those of the former
case by calculating the equivalent values fory=mx+b (since
x=y/m−b/m, thenm′=1/m andb′

= − b/m). For methods
that properly account for errors in both variables, the fit pa-
rameters by these two approaches should be identical (i.e.m′

from fitting x on y should equalm from fitting y on x, and
similarly for b′ andb). This is termed invariance to exchange

of x and y. Proper fitting methods should also be invari-
ant to change of scale (i.e. fit parameters do not depend on
the choice of units forx andy). Several numerical digits are
shown in Tables 2 and 3, not all significant, so that the results
from the various methods can be accurately compared.

The method described by York (1966; 1968) and York
et al. (2004) was applied to the sample data sets. This in-
volves iteratively solving the following equations (Eq. 5).
This method allows for correlation between thex andy er-
rors, indicated byri (different than therxy in Eq. 3), which
is set to zero in the present case (i.e. errors are assumed to be
uncorrelated).

b = y − m x m=
∑

WiβiVi∑
WiβiUi

x =
∑

Wixi

/∑
Wi y=

∑
Wiyi

/∑
Wi

Ui = xi − x Vi=yi−y Wi=
wxiwyi

wxi+m2wyi−2mriαi

βi = Wi

[
Ui

wyi
+

mVi

wxi
− (mUi + Vi)

ri
αi

]
αi =

√
wxiwyi

(5)

The procedure is to assume a starting value form, calcu-
lateWi, Ui, Vi , αi , andβi , and then calculate a revised value
for m. This process is repeated untilm changes by some
small increment according to the accuracy desired. This is a
simpler implementation of an earlier method of York (1966),
which was described in York (1969) and York et al. (2004),
and is the same as the method of Williamson (1968), if the
x andy errors are uncorrelated (i.e.ri=0). The method of
Williamson (1968) has been praised in the literature (Mac-
Taggert and Farwell, 1992; Kalantar, 1990) as being effi-
ciently able to converge to the correct answer. Other ap-
proaches (including the earlier York method), may not al-
ways converge or may be slow to do so, depending on the
specific data set. As with standard least-squares, one can per-
form bivariate fits without weighting. This is done by making
all the weights the same (e.g. 1).

The uncertainties in the slope and intercept can also be cal-
culated. Among various methods discussed in the literature
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(Cecchi, 1991; Kalantar, 1992; Kalantar et al., 1995; Moreno
and Bruzzone, 1993; Reed, 1990, 1992; Sheth et al., 1996;
Williamson, 1968; York et al., 2004), the following forms
appear to lead to correct estimates of the fit parameter uncer-
tainties (after York et al. (2004) with some algebraic manip-
ulation).

σ 2
b =

1∑
Wi

+
(
x + β

)2
σ 2

m σ 2
m =

1∑
Wi

(
βi−β

)2
std errb=

√
σ 2

b

√
S

n−2 std errm=
√

σ 2
m

√
S

n−2

β =
∑

Wiβi

/∑
Wi

S =
∑

[yi − (mxi + b)]2

(6)

The quantity
√

S
/
(n − 2) is a “goodness of fit” parameter.

Its expected value is unity. Its deviation from unity can be
used to adjust the weighting factors (in a global sense), but
the bivariate slope and intercept will not be affected.

Another straightforward method is that of Neri et
al. (1989). This involves minimization of the shortest dis-
tance between the fitted line and that data points, and as-
sumes thex andy errors are uncorrelated. The following
equations are utilized.∑

Wixi(mxi + b − yi) −
∑ W2

i m(mxi+b−yi )
2

wxi
= 0

b =
∑

Wi (yi − mxi)
/∑

Wi

Wi =
wxiwyi

wxi+m2wyi

(7)

In this method, an initialm is guessed (such as from stan-
dard least-squares or by inspection),b is calculated (second
equation in Eq. 7), and thenm is adjusted to minimize the
left hand side of the first equation in Eq. (7). The process is
repeated until the left side of the first equation in Eq. (7) is
satisfactorily close to zero. The Williamson-York and Neri et
al. methods give identical results for the slope and intercept
of the two test data sets.

Four other methods give results that are reasonably close
to the above results, but are not exactly the same, and do
not always give the same slope on exchange of thex andy

variables. These approximate methods may be satisfactory
for many applications.

Reed (1992) suggests finding roots of the following
quadratic expression.

g(m) = Am2
+ Bm + C = 0

A =

∑ W2
i UiVi

wxi

B =
∑

W2
i

(
U2

i

wyi

−
V 2

i

wxi

)
C =−

∑ W2
i UiVi

wyi

(8)

This equation is solved form by the quadratic formula,

m =

(
−B ±

√
B2 − 4AC

)/
2A, where the choice of roots

is refined by comparison with standard least-squares or by
inspection.

Macdonald and Thompson (1992) describe a number of
cases for which their method is applicable. They have made
available a FORTRAN program that applies their procedures,
which provides nearly exact results for the Pearson-York data
set. Similarly, Lybanon (1984) presents a detailed method
that also yields results very close to those of the “exact”
methods. Krane and Schecter (1982) put forward a method
proposed by Barker and Diana (1974) and discussed by oth-
ers (Irwin and Quickenden, 1983; Orear, 1984; Lybanon,
1984b) that is called “effective variance”. One begins with
Eq. (4), but the weights,wi , are adjusted to the following
form.

wi =
wxiwyi

wxi + m2wyi

(9)

This is same as York’sWi value with uncorrelated errors.
Sincem appears in the formula for the weight, an iterative
process is required, in which an initialm value is guessed,
wi is calculated, followed by calculation of a revisedm. The
result differs from the “exact” methods for the Pearson-York
data set by a few percent, but it is more accurate than the
standard least-squares. This method does not retrieve the
same slope and intercept when thex- and y-variables are
exchanged. The errors are larger with the “synthetic” data
set.

Press et al. (1992a,b) present a method called “maximum
likelihood estimation” and include a routine written in C or
FORTRAN for its implementation. This is also discussed by
Titterington and Halliday (1979). York et al. (2004) demon-
strate that their method and “maximum likelihood estima-
tion” are mathematically identical. Brauers and Finlayson-
Pitts (1997) applied the Press et al. method to analysis of
kinetic data.

The methods of Williamson (1968), York (1969), York et
al. (2004) and Neri et al. (1989) all agree and appear to pro-
vide the exact answer to the best fit for the Pearson-York data
set. The approaches of Reed (1992), Macdonald and Thomp-
son (1992), and Lybanon (1984) provide results very close to
the exact ones. The “effective variance” method performs
reasonably well for the Pearson-York data set, but poorer for
the synthetic data. Because of this variability in performance,
it should be used with caution.

4 Comparing the methods

A more detailed examination of the behavior of bivariate
and standard least-squares as a function of the random noise
added in the “synthetic data” was performed. The purpose
here is to advise the reader when the more involved bivariate
methods should be used or when the standard least-squares
are expected to provide satisfactory values for the fit parame-
ters. A series of calculations was performed in which random
noise was sampled from Gaussian distributions with varying
constant and proportional standard deviations (like the sec-
ond test data set used above). Standard least-squares (without

www.atmos-chem-phys.net/8/5477/2008/ Atmos. Chem. Phys., 8, 5477–5487, 2008
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Figure 3. 

Fig. 3. Ratio of fitted to expected slopes (mfit/mexpected) from stan-
dard least-squares and the Williamson-York bivariate method versus
r-values from Eq. (3). Errors in both thex andy variables lead to
systematic errors in the slope from standard least-squares. Slopes
from the bivariate method show no such systematic variation with
r.

weights) were applied to the data sets, as was the method of
Williamson-York. The values ofr (Eq. 3) were also calcu-
lated. This test has the advantage that the “correct” slope and
intercept are known (1 and 0, respectively). Note that the er-
rors are normally distributed, which may not necessarily be
the case in “real” data sets.

Figure 3 showsmfit/mexpectedversusr of the best fit lines
using standard least-squares when proportional uncertainties
of zero to 50% and/or constant uncertainties of up to 50
units were applied to thex-data, they-data, or both. Stan-
dard least-squares performs well by retrieving slopes close to
unity (the expected value) when errors are applied to they-
data only. However, when errors are added to thex-variable
either alone or with errors added to they-variable, the slopes
of the best fit lines from standard least-squares are signifi-
cantly less than unity. The ratio of the fitted slope to that ex-
pected is approximately equal to|r|. This is true even when
r values are very small. The normal interpretation of these
small r values is that the data are uncorrelated and cannot
be represented by a linear relationship. In this case, how-
ever, we know that there is a linear relationship betweenx

andy because of the way the data were constructed. TheF

statistics for the standard fits indicate that they are statisti-
cally significant at the 95% confidence level for all but those
corresponding to the 3 smallestr values.

Applying the Williamson-York bivariate method to the
same data sets, leads to slopes within about 20% of the ex-
pected value of unity. Note that this is the case even when
the data are very noisy and thus correlation coefficients are
small. Values much closer to the expected value are retrieved
when the data is less noisy (see inset in Fig. 3). These fits

were performed with 100 data points. If the sizes of the data
sets are increased, the error (scatter) in the slope decreases
accordingly. As an example, for a constant error of 28 units,
the average error in the slope (5 repetitions) decreases from
19% to 6% to less than 1% as the number of data points goes
from 100 to 1000 to 10 000 (an approximate

√
n relation-

ship).
Knowing that the bivariate methods are an improvement

over standard least-squares when there are errors in thex-
variable is a start, but can the information gathered be used
to indicate when the extra trouble of the bivariate fit is called
for, versus when standard least-squares will suffice. Figure 3
shows that there is a rather robust relationship between the
systematic error in the slope from standard least-squares and
the absolute value of the correlation coefficient (as expected,
comparing Eqs. 1 and 3). For errors in both variables, the
fractional error in the standard least-squares slope is approx-
imately 1–|r|. Thus, a quick calculation of the correlation
coefficient can give a rough indication of the error in the de-
rived standard least-squares slope for data with comparable
errors in both variables. If this error in the slope is outside
the needs of the task at hand, then a bivariate approach should
be employed. For unusual weighting situations (such as the
Pearson-York data), it is probably best to always use robust
bivariate methods, since the impact of such weights on the fit
parameters is not intuitive (although in this specific case, the
standard least-squares slope is only in error by 12%). When
the error in they-variable is much greater than the error in
x-variable, then standard least-squares performs better than
indicated by the calculatedr value.

5 Application to actual observations

Two authentic sets of data from the TRACE-P campaign
(TRansport And Chemistry Experiment – Pacific) were se-
lected for application of these fitting procedures. TRACE-P
involved two aircraft (the NASA DC-8 and P3-B) as plat-
forms for observations primarily in the western Pacific Ocean
basic. The observations used here are gas-phase formalde-
hyde (CH2O) concentrations collected by Alan Fried and col-
leagues aboard the NASA DC-8 aircraft (Fried et al., 2003),
and peroxy radical concentrations (HO2+RO2) collected by
the author and colleagues aboard the NASA P-3B aircraft
(Cantrell et al., 2003). These data represent very typical sit-
uations that might require the fitting procedures discussed
here.

The details of the measurement techniques and the model-
ing approaches can be found in the references cited above.
Briefly, CH2O was measured in the NASA DC-8 aircraft
in a low-pressure cell with multi-pass optics (100 m path
total optical path) using a tunable lead salt diode infrared
laser as the source. A spectral line near 2831.6 cm−1 was
scanned and the second harmonic spectrum (after subtraction
of the background) was related to the ambient concentration
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through addition of known mixtures of CH2O in zero air to
the instrument inlet. The measurements were corrected for a
small interference from methanol. The estimated uncertainty
of the measurements was 15%, and detection limits typically
ranged from 50 to 80 pptv (parts per trillion by volume). One
minute average retrieved concentrations ranged from –47 to
10 665 pptv. Concentrations measured below the detection
limit were used as observed in the fits described here.

HO2+RO2 concentrations were measured on the NASA P-
3B aircraft and were determined by conversion to gas-phase
sulfuric acid through the addition of reagent gases NO and
SO2 to the instrument inlet. The sulfuric acid product was
ionized by reaction with negatively charged nitrate ions. The
product and reagent ions were quantified by quadrupole mass
spectrometry. Calibrations were performed using quantita-
tive photolysis of water vapor at 184.9 nm. The estimated
uncertainty for these data was 17% and the detection lim-
its were 2–5 pptv. Concentrations below the detection limit
were used as observed in the fits described here.

CH2O and HO2+RO2 concentrations were estimated by a
photochemical box model with inputs of key parameters con-
strained by the observations (Crawford et al., 1999; Olson et
al., 2004). The time-dependent model is run for several days
to diurnal steady state. Monte Carlo calculations yielded un-
certainty estimates of 20% for modeled CH2O and 30% for
HO2+RO2.

Figure 4 shows the measured CH2O concentrations ver-
sus those estimated by the constrained box model on lin-
ear scales (4466 data pairs). The inset plots show the high
range of concentrations (>500 pptv, lower right) and the data
plotted on logarithmic scales (upper left). The lines repre-
sent different methods of fitting the data. The solid line is
a weighted bivariate fit to all of the data with the measure-
ments weighted using a variance of the square of 15% of
the concentration plus 50 pptv, and the model results using
a variance of the square of 20% of the concentration. The
slope is near unity (1.054, standard error=0.0144) and the
y-intercept is small (1.283, standard error=2.046), in agree-
ment with assessments by Fried et al. (2003) and Olson et
al. (2004). The correlation coefficient squared,r2 is 0.856.
The long dashed line is a standard unweighted least-squares
fit which yields a slope of 1.462 (standard error=0.0090) and
a y-intercept of –44.6 (standard error 3.16). It appears that
the line is being unduly weighted by the handful of points
at high concentrations in which the model systematically un-
derestimates the observations, leading to a larger slope than
the bivariate method. The medium dashed line is a weighted
least-squares fit (Eq. 4), with weights calculated using the
“effective variance” method (Eq. 9). Its slope is 0.873 and
the y-intercept is 20.1. Finally, the short dashed line is a
weighted least-squares fit (equation 4) with weights in the y-
direction only (i.e.wi=wyi). The slope for this fit is 0.811
(std err=0.012) and they-intercept is 22.4 (std err=2.14).
These fits mostly have slopes of unity within the combined
measurement-model uncertainties (0.25, 1σ), with the ex-
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Figure 4. 

Fig. 4. Comparison of measured formaldehyde concentrations with
those estimated from a constrained box model during the TRACE-
P campaign (after Fried et al., 2003; Olson et al., 2004). The data
points are divided into two groups: those corresponding to measure-
ments below 500 pptv (small points), and those for measurements
above 500 pptv (large points). The main window (on linear scales)
shows results of linear fits using four approaches: solid line, bivari-
ate weighted fit to all data; long dash, standard unweighted least-
squares fit; medium dash, fit using weighted standard least-squares
(Eq. 4) with weights calculated using effective variance; and short
dash, fit using weighted standard least-squares with weights in the
y-direction only. The lower right inset shows the fit lines and data
on expandedx- andy-scales (linear). The upper left inset shows the
full range of data on logarithmic scales. See text for fit parameters
and discussion.

ception of the standard unweighted least-squares fit. The
intercepts are all within the detection limit of the measure-
ments (around 50 pptv). The large slope retrieved with the
standard unweighted approach could lead one to make the
assessment that there are missing processes in the model,
errors in the measurements, or both. While it does appear
that there are statistically significant differences between the
measurements and the model at high concentrations, the
small number of outliers should not significantly change the
fit of the entire data set. Eliminating data pairs with mea-
surements greater than 4000 pptv, results in bivariate fit slope
and y-intercept values of 1.041 and 2.476, respectively. The
weighted standard fits change by small amounts as well. The
unweighted standard fit, though, yields slope and y-intercept
values of 1.248 and –5.744, respectively. This is a signif-
icant change and shows how susceptible the standard fit is
to a small number of outliers (the term outlier is used here
to mean data that are not described well by the bivariate fit
line).

The impact of outliers on the various fit methods is demon-
strated further. To the full data set are added numbers of data
pairs (up to 1000) for whichx is 50 and y is 5000. A second
trial added data pairs withx values of 5000x andy values
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Figure 5. 

Fig. 5. Impacts of added data outliers to the formaldehyde dataset
presented in Fig. 4. Shown are slopes (top panel), intercepts (middle
panel), and correlation coefficients (bottom panel) of various fits as
impacted by adding extra points, in amounts indicated on thex-axis,
to the dataset that are clearly outliers. Eight collections of fit param-
eters are shown for 1, 10, 100, and 1000 outliers added. Four collec-
tions had outliers equal tox=50,y=5000 (dark gray); the other four
had outliers equal tox=5000,y=50 (light gray). The circles in the
top two panels represent parameters derived from weighted bivari-
ate fits; the downward pointing triangles represent parameters de-
rived from Eq. (4) using effective variance; the squares represent pa-
rameters derived from Eq. (4) with weights in the y-direction only;
and the diamonds represent parameters derived from unweighted
standard least-squares. The values on they-axis (corresponding to
x=0.8) are those derived from the original formaldehyde data with
no added outliers.

of 50. These results are summarized in Fig. 5. It can be
seen that outliers above the fit line have little impact on the
bivariate and the other weighted fit slopes, even when the
number of outliers approaches 20% of the data. The stan-
dard unweighted least-squares fit is affected moderately by
outliers above the fit line. Outliers below the fit line impact
all of the fits greatly except the bivariate. In fact, as shown
before, the bivariate fit procedure continues to perform well
even when ther2 parameter indicates that thex andy data
are completely uncorrelated. While there have been vari-
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Figure 6. 

Fig. 6. Fits of HO2+RO2 measurements versus constrained box
model estimates. The lines are four different fit approaches: solid
line, bivariate weighted fit to all data; long dash, standard un-
weighted least-squares fit; medium dash, fit using weighted stan-
dard least-squares (Eq. 4) with weights calculated using effective
variance; and short dash, fit using weighted standard least-squares
with weights in they-direction only.

ous techniques put forward to eliminate outliers (e.g. theQ-
test, Dean and Dixon, 1951) that can applied, these exercises
show that the bivariate fit method is relatively insensitive to
outliers.

As mentioned earlier, and discussed by Fried et al. (2003),
there appears to be a change in the ratio of measurement to
model values from near unity at lower concentrations to well
above unity at higher concentrations. As one approach, the
data were separated into two groups for measured values be-
low and above 500 pptv, and each group was fit separately.
The bivariate slope of the low concentration group is 0.789,
while the bivariate slope of the high concentration group is
1.403. An alternate method is to fit the ratio of measure-
ment to model ([CH2O]meas/[CH2O]model) versus measure-
ment value. Separating into two groups as before leads to
a bivariate slope of 0.00607 for the low concentration group
(i.e. moderate dependence of the ratio on the concentration)
and an intercept of 0.797 (the ratio at the limit of zero con-
centration). The slope for the high concentration group is
0.000679 and the intercept is 1.290. It seems that there could
be atmospheric processes missing from the model or instru-
mental issues affecting the measurements in the high concen-
tration regime that need to be addressed (in agreement with
Fried et al., 2003).

Fits of measured versus modeled HO2+RO2 are shown
along with the data in Fig. 6. The solid line is a bivari-
ate fit weighted using variances for the measurements that
are the square of 20% of the concentration plus 5, and us-
ing variances for the model results that are the square of
30% of model values. Its slope is 0.961 (std err=0.015) and
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the intercept is –2.96 (std err=0.35). The correlation coef-
ficient squared,r2, is 0.437. The other methods (effective
variance, y-weighting only, and no weighting) yield smaller
slopes (0.63 to .71). There are some noticeable outliers in
which the measured concentrations are systematically higher
than the modeled ones at low modeled concentrations. Elim-
ination of these data does not greatly affect the bivariate fit.
A fit of the measured to model ratios versus measured val-
ues yields a moderate slope (–0.00864) and an intercept near
unity (1.053).

It has been reported (Faloona et al., 2000) that measured
peroxy radical concentrations are systematically greater than
model values at high NOx concentrations. This is observed
for TRACE-P HO2+RO2 data as well. For NO concentra-
tions less than 500 pptv, the measured to modeled ratios are
close to unity with no significant dependence on NO con-
centration. The bivariate fit yields a slope of –0.00145 and
a y-intercept of 0.77. For NO concentrations greater than
500 pptv, there is a systematic dependence of the measured-
modeled ratio on the NO concentration. The bivariate fit
slope is 0.00317 and they-intercept is –0.785. It has been
suggested (Olson et al., 2006) that this phenomenon could
be the result of short term large spikes in the NO concentra-
tion that impact the average NO concentration, but have little
impact on the average peroxy radical concentration. Without
high rate NO and peroxy radical data, we cannot rule out such
an explanation. Alternatively, there could be unknown pho-
tochemical processes or instrumental issues that occur in the
presence of high NO concentrations. The measurement and
modeling communities continue to search for satisfactory ex-
planations of these observations under high NO conditions.

Does the quality of fits obtained with the bivariate
methods depend strongly on the selection of weights?
This was examined using the CH2O measurements and
model results. The best estimate for the variance of
the measurements is (0.15×[CH2O]meas+50)2, and for the
model values is (0.20×[CH2O]model)

2. Varying the mea-
sured variance values from (0.10×[CH2O]meas+50)2 to
(0.30×[CH2O]meas+200)2 results in bivariate fitted slopes
ranging from 0.88 to 1.15. Thus, while there is some impact
on the fit parameters by the choice of weights, the depen-
dence is not strong. Obviously, every effort should be made
to correctly estimate the weights, but small errors in these
parameters are not likely to invalidate the fit results.

6 Summary

Scientists need to use care in applying fitting programs to
derive parameters that summarize their observations. In the
case of linear fits, significant errors in slopes and intercepts
can result using standard least-squares methods if there are
uncertainties in thex-values (as cautioned many times in the
literature). If thex- andy-variable errors are comparable,
1–|r| may give an indication of the fractional error of the

derived standard least-squares slope. If a more accurate slope
is desired, then bivariate methods such as those reported by
Williamson et al., York et al., or Neri et al. are recommended.
For these methods, the accuracy of the slope improves with
the number of data points (not so with the standard least-
squares with significant errors in thex-variable).

7 Supplemental material

The Williamson-York method has been incorporated into
a Microsoft Excel® spreadsheet available as supplemen-
tal material.http://www.atmos-chem-phys.net/8/5477/2008/
acp-8-5477-2008-supplement.zip
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Y., Koike, M., Chatfield, R., Pueschel, R., Ferry, G., Sachse, G.,
Vay, S., Anderson, B., Hannon, J., and Fuelberg, H.: Observa-
tions of HOx and its relationship with NOx in the upper tropo-
sphere during SONEX, J. Geophys. Res., 105(D3), 3771–3783,
2000.

Fried, A., Crawford, J., Olson, J., Walega, J., Potter, W., Wert, B.,
Jordan, C., Anderson, B., Shetter, R., Lefer, B., Blake, D., Blake,
N., Meinardi, S., Heikes, B., O’Sullivan, D., Snow, J., Fuelberg,
H., Kiley, C. M., Sandholm, S., Tan, D., Sachse, G., Singh,
H., Faloona, I., Harward, C. N., and Carmichael, G. R.: Air-
borne tunable diode laser measurements of formaldehyde during
TRACE-P: Distributions and box model comparisons, J. Geo-
phys. Res., 108(D20), 8798, doi:10/1029/2003JD003451, 2003.

Gonzalez, A. G., Marquez, A., and Fernandez Sanz, J.: An iter-
ative algorithm for consistent and unbiased estimation of linear
regression parameters when there are errors in both thex andy

variables, Computers Chem., 16(1), 25–27, 1992.
Irwin, J. A. and Quickenden, T. I.: Linear least squares treatement

when there are errors in bothx andy, J. Chem. Ed., 60(5), 711–
712, 1983.

Jones, T. A.: Fitting straight lines when both variables are subject to
error. I. Maximum likelihood and least-squares estimation, Math.
Geo., 11(1), 1–25, 1979.

Kalantar, A. H.: Weighted least squares evaluation of slope from
data having errors in both axes, Trends in Anal. Chem., 9(1),
149–151, 1990.

Kalantar, A. H.: Kerrich’s method fory=αx data when bothy and
x are uncertain, J. Chem Ed., 68(1), 368–370, 1991.

Kalantar, A. H.: Straight-line parameters’ errors propagated from
the errors in both coordinates, Meas. Sci. Technol., 3, 1113–
1113, 1992.

Kalantar, A. H., Gelb, R. I., and Alper, J. S.: Biases in summary
statistics of slopes and intercepts in linear regression with errors
in both variables, Talanta, 42(4), 597–603, 1995.

Krane, K. S. and Schecter, L.: Regression line analysis, Am. J.
Phys., 50(1), 82–84, 1982.

Leduc, D. J.: A comparative analysis of the reduced major axis
technique of fitting lines to bivariate data, Can. J. For. Res., 17,
654–659, 1987.

Lybanon, M.: A better least-squares method when both variables
have uncertainties, Am. J. Phys., 52(1), 22–26, 1984a.

Lybanon, M.: Comment on “Least squares when both variables
have uncertainties”, Am. J. Phys., 52(3), 276–278, 1984b.

Lybanon, M.: A simple generalized least-squares algorithm, Comp.

Geosci., 11, 501–508, 1985.
Macdonald, J. R. and Thompson, W. J.: Least-squares fitting when

both variables contain errors: Pitfalls and possibilities, Am. J.
Phys., 60(1), 66–73, 1992.

MacTaggart, D. L. and Farwell, S. O.: Analytical use of linear re-
gression, Part II: Statistical error in both variables, J. AOAC Intl.,
75(4), 608–614, 1992.

Markovsky, I. and Van Huffel, S.: Overview of total least-squares
methods, Sig. Proc., 87, 2283–2302, 2007.

Moreno, C., and Bruzzone, H.: Parameters’ variances of a least-
squares determined straight line with errors in both coordinates,
Meas. Sci. Technol., 4, 635–636, 1993.

Moreno, C.: A least-squares-based method for determining the ratio
between two measured quantities, Meas. Sci. Technol., 7, 137–
141,1996.

Neri, F., G. Saitta, and S. Chiofalo: An accurate and straightforward
approach to line regression analysis of error-affected experimen-
tal data, J. Phys. E: Sci. Inst., 22, 215–217, 1989.
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