
Atmos. Chem. Phys., 8, 3951–3961, 2008
www.atmos-chem-phys.net/8/3951/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Tracing biomass burning plumes from the Southern Hemisphere
during the AMMA 2006 wet season experiment

C. H. Mari 1, G. Cailley2, L. Corre1, M. Saunois1, J. L. Atti é1, V. Thouret1, and A. Stohl3
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Abstract. The Lagrangian particle dispersion model FLEX-
PART coupled with daily active fire products provided by
the MODIS instrument was used to forecast the intrusions
of the southern hemispheric fire plumes in the Northern
Hemisphere during the AMMA (African Monsoon Multidis-
ciplinary Analysis) fourth airborne campaign from 25 July
to 31 August 2006 (Special Operation Period SOP2a2).
The imprint of the biomass burning plumes over the Gulf
of Guinea showed a well marked intraseasonal variability
which is controlled by the position and strength of the south-
ern hemispheric African Easterly Jet (AEJ-S). Three differ-
ent periods were identified which correspond to active and
break phases of the AEJ-S: 25 July–2 August (active phase),
3 August–8 August (break phase) and 9 August–31 August
(active phase). During the AEJ-S active phases, the advec-
tion of the biomass burning plumes out over the Atlantic
ocean was efficient in the mid-troposphere. During the AEJ-
S break phases, pollutants emitted by fires were trapped over
the continent where they accumulated. The continental cir-
culation increased the possibility for the biomass burning
plumes to reach the convective regions located further north.
As a consequence, biomass burning plumes were found in the
upper troposphere over the Gulf of Guinea during the AEJ-S
break phase. Observational evidences from the ozonesound-
ing network at Cotonou and the carbon monoxide measured
by MOPITT confirmed the alternation of the AEJ-S phases
with low ozone and CO in the mid-troposphere over the Gulf
of Guinea during the break phase.
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1 Introduction

Biomass burning has long been recognized as a significant
source of reactive species such as CO, hydrocarbons and
NOx and aerosols, which play an important role in the chem-
istry and radiative budget of the troposphere (Crutzen and
Andreae, 1990; Marufu et al., 2000; Thompson et al., 2001;
Andreae and Merlet, 2001; Aghedo et al., 2007). The ra-
diative forcings of biomass burning emissions can be con-
trasted depending on the timescale considered. Reducing
biomass burning emissions can cause a short-term warming
but a long-term cooling from reducing CO2 (Jacobson, 2004;
Naik et al., 2007). Naik et al. (2007) also reported large
regional differences in the radiative response depending on
the biomass availability and meteorological conditions. In
Africa, human activities are the primary cause of biomass
burning, including forest clearance, savanna burning (Del-
mas et al., 1999), restoration and land management (Crutzen
and Andreae, 1990). It is known that the frequencies of
wildfires over Africa generally follow a clear seasonal cy-
cle. African biomass burnings occur during the dry seasons
- late November to early March in the Northern Hemisphere
and July to October in the Southern Hemisphere (Marenco et
al., 1990; Giglio et al., 2006; Palacios-Orueta et al., 2004; Ito
et al., 2007). However, the frequency and intensity of fires is
also dependent on meteorological and climatic conditions. In
tropical areas, temperature and length of the dry season can
vary from one year to the other with dramatic impact on the
fire characteristics (Palacios-Orueta et al., 2004).

In regions downwind of biomass burning emissions, high
ozone concentrations have been reported in the literature.
Several studies have discussed the biomass burning origin
of the ozone maximum observed over the remote South At-
lantic ocean during the Northern Hemisphere dry season
(Jonquìeres et al., 1998; Thompson et al., 2000; Martin
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et al., 2002; Edwards et al., 2003; Jourdain et al., 2007;
Sauvage et al., 2007a). The transport pathways taken by
these biomass burning plumes out over the adjacent Atlantic
ocean were further discussed by Chatfield et al. (2002), Ed-
wards et al. (2003) or Sinha et al. (2004) among others. On
the contrary little has been published on the ozone features
over the Northern Hemisphere during the southern hemi-
spheric dry season. Jenkins et al. (1997) evoked the possi-
bility for ozone production over the Atlantic ocean during
the Northern Hemisphere wet season (June–August). The
authors pointed out the transport of O3 and precursors by
south-southeasterly winds in the PBL toward the regions of
deep convection. A recent study by Sauvage et al. (2005)
connected the mid-tropospheric ozone maxima observed in
cities near the Gulf of Guinea to biomass burning plumes
originating from the opposite dry-season hemisphere. This
new finding was the major motivation for the present study
in the framework of the AMMA fourth airborne campaign
from 25 July to 31 August 2006 (Mari and Prospero, 2005;
Redelsperger et al., 2006). During this period, occurences
of biomass burning plumes over West Africa were observed
on board the aircrafts with elevated concentrations of ace-
tonitrile, ozone and NOx subsequently in the lower and up-
per troposphere (Real et al., 2007b; Reeves et al., 2007) and
by the ozonesounding network in Cotonou (Saunois et al.,
2007). These occurences showed a large temporal variability
(Reeves et al., 20081; Janicot et al., 20082 ). This paper thus
aims at providing the basic understanding of the variability
of the biomass burning plumes occurence over West Africa
and helps the interpretation of the data sampled during the
wet season 2006.

In this study, we use daily simulations of the transport
of biomass burning tracers over the Gulf of Guinea in or-
der to identify the pathways of pollution originating from
the Southern Hemisphere over timescales up to 10 days af-
ter their emission. The objective is to document the pathways
for the interhemispheric transport of biomass burning plumes
and relate them to the meteorological conditions. In Sect. 2,
we describe the meteorological features over West and Cen-
tral Africa. Next, in Sect. 3, we provide a description of the
Lagrangian model used. In Sect. 4 we use the Lagrangian
model to examine the intraseasonal variability of the biomass
burning plumes. In Sect. 5, observational evidences of sum-

1Reeves, C., Ancellet, G., Borbon, A., Cairo, F., Law, K., Mari,
C., Methven, J., Schlager, H., Thouret, V.: Chemical characterisa-
tion of the troposphere over West Africa during the monsoon period
as part of AMMA, in preparation, 2008.

2Janicot, S., Ali, A., Asencio, N., Berry, G., Bock, O., Bourles,
B., Caniaux, G., Chauvin, F., Deme, A., Kergoat, L., Lafore, J.-P.,
Lavaysse, C., Lebel, T., Marticorena, B., Mounier, F., Redelsperger,
J.-L., Ravegnani, F., Reeves, C., Roca, R., de Rosnay, P., Sultan,
P., Thorncroft, C., Tomasini, M., Ulanovsky, A., and ACMAD fore-
casters team: Large-scale overview of the summer monsoon over
West and Central Africa during the AMMA field experiment in
2006, Ann. Geophys., submitted, 2008.

mer wet-season fires plumes are presented from the MOPITT
and AMMA ozonesounding network. Finally, in Sect. 6, we
discuss the potential impact of the major transport pathways
and timescale of the biomass burning plumes on the tropo-
spheric ozone chemistry.

2 Meteorological features over West and Central Africa

The West African Monsoon (WAM) is characterised by the
migration of zonally banded rainfall from the Guinea coast
to the Sahel and back again, resulting in two rainy seasons
per year in the south and one in the north (see Hall and
Peyrillé (2006) for a complete review of the WAM dynam-
ics). The rainbelt is the loci of disturbances that are dy-
namically linked to the midlevel northern African Easterly
Jet (hereafter AEJ-N), a mid-tropospheric flow with peak
amplitude of around 10–20 ms−1 at an altitude of around
600–700 hPa and a latitude of around 15◦ N in August. The
AEJ-N is known to be in approximate thermal wind balance
with the thermodynamic contrasts from the Guinea coast to
the Sahara (Burpee, 1972; Parker et al., 2005). Its struc-
ture and strength are sensitive to the dust aerosol availability
over the Sahel and Sahara regions (Tompkins et al., 2005;
Chaboureau et al., 2007). Apart from its role and origin in
the balance of the WAM thermodynamic state, the AEJ-N
has a meteorological impact on the patterns of rainfall in the
Sahel. Its vertical shear is important for the growth of long-
lived mesoscale convective systems which provide most of
the observed rainfall in West Africa (Houze and Betts, 1981;
Redelsperger et al., 2002). Its potential vorticity and low-
level temperature contrasts are important for African Easterly
wave development.

In contrast to the abundant literature on the West African
climate, only a few studies have been devoted to the equa-
torial Africa where the fires occur during the boreal wet
season. The understanding of meteorological processes in
this region is weak. For example, state-of-art satellite algo-
rithms overestimate rainfall in this region by a factor of 2 or
3 (Nicholson and Grist, 2003), suggesting a poor understand-
ing of rain processes in this region. Biomass burning aerosols
have also been suggested by Rosenfeld (1999) and Andreae
et al. (2004) to suppress convective rainfall. Burpee (1972)
first described the existence of a mid-tropospheric Southern
Hemisphere easterly jet (hereafter AEJ-S). The location and
strength of the AEJ-S was further confirmed by the recent
study of Nicholson and Grist (2003), based on NCEP reanal-
ysis and radiosonde data. The authors showed the persis-
tance of the northern and southern hemispheric jets during
most months. In contrast to West Africa, central Africa ex-
periences a strongly bimodal annual cycle, coincident with
both the northward and southward passage of the ITCZ. Peak
rainfall tends to be in the transition seasons. Figure 1 shows
the mean zonal winds for two sectors derived from ECMWF
reanalysis for 25 July to 31 August. The western sector
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Fig. 1. Latitudinal cross section of ECMWF mean zonal wind speed
(m s−1) (a) for 25 July to 31 August, averaged between 30◦ W and
10◦ E, (b) for 25 July to 31 August, averaged between 10 and 30◦ E.

Fig. 1. Latitudinal cross section of ECMWF mean zonal wind speed (m s−1) (a) for 25 July to 31 August, averaged between 30◦ W and
10◦ E, (b) for 25 July to 31 August, averaged between 10 and 30◦ E.

(30◦ W–10◦ E) includes both the continent and the Atlantic
ocean to the south, while the eastern (10–30◦ E) extends only
through the continent and includes equatorial Africa. Three
easterly jets are evident over West Africa, an upper tropo-
spheric easterly jet (the TEJ) around 200 mb and two midtro-
pospheric jets near 650 mb (the AEJ-N and AEJ-S). During
the Northern Hemisphere (NH) summer, the AEJ-N is lo-
cated around 15◦ N, with core speed higher than 10 ms−1.
The altitude of the core is around 600 mb. The AEJ-S is
more pronounced in the eastern (continental) sector. AEJ-S
core speed lies between 4–6 ms−1 over the continent. Hence,
it is weaker than the AEJ-N. Its position is around 5◦ S and
700 mb. The oceanic part of the AEJ-S has a less marked sig-
nature on a monthly mean basis. The existence of the AEJ-S
was also confirmed by Zhang et al. (2006) using sounding
data at Luanda (8◦ S). They found that the AEJ-S does not
extend far into the tropical Atlantic ocean at this latitude.
It has generally been accepted (Thorncroft and Blackburn,
1999) that the origin of the AEJ-N is basically the tempera-
ture gradient induced by the contrast between the Sahara and
the humid Guinea coast region to the south. Nicholson and
Grist (2003) showed that the origin of the AEJ-S is also re-
lated to the surface temperature gradient. In this case, the
temperature contrast is produced by semiarid regions of the
Southern Hemisphere compared to the subhumid, perenially
vegetated lands to the north.

Figure 2 resumes the dynamical features over West Africa
during the studied period, between 25 July and 31 August,
2006. Both the AEJ-N and AEJ-S are present. The AEJ-
S has a well defined core over the continent at 5◦ S. The
oceanic part of the AEJ-S is found around the equator. The
AEJ-N is stronger with core speed higher than 12 ms−1. It
is interesting to note that the region affected by convective
clouds was located roughly between the two AEJs, approx-
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Fig. 2. Accumulated convective precipitation (isolines), in m, and
mean wind speed at 700 mb (shaded contours), in m/s, from the
ECMWF re-analysis from 15 July to 31 August 2006. MODIS fires
with a confidence level equal to 100 are represented by the dots.

Fig. 2. Accumulated convective precipitation (isolines), in m, and
mean wind speed at 700 mb (shaded contours), in m/s, from the
ECMWF re-analysis from 15 July to 31 August 2006. MODIS fires
with a confidence level equal to 100 are represented by the dots.

imately between the coast and 15◦ N. Continental convec-
tion reaches southern hemispheric latitudes during this pe-
riod. The dynamics during the studied period is consistent
with the August WAM climatology described by Nicholson
and Grist (2003).

3 Model description

The model around which the GIRAFE-FLEXPART (re-
GIonal ReAl time Fire plumes) tool has been built is the La-
grangian particle dispersion model FLEXPART (Stohl et al.,
1998a; Stohl et al., 1998b; Stohl et al., 2005). FLEXPART
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Fig. 3. Time-latitude evolution of mean wind speed in m/s at
700 mb, averaged between 30◦ W and 10◦ E from the ECMWF re-
analysis from 25 July to 31 August 2006. Solid lines indicate the
active AEJ-S phases.

Fig. 3. Time-latitude evolution of mean wind speed in m/s at
700 mb, averaged between 30◦ W and 10◦ E from the ECMWF re-
analysis from 25 July to 31 August 2006. Solid lines indicate the
active AEJ-S phases.

simulates the transport and dispersion of linear tracers by
calculating the trajectories of a multitude of particles. The
model treats advection and turbulent diffusion by calculating
the trajectories of a multitude of particles. Stochastic fluc-
tuations, obtained by solving Langevin equations (Stohl and
Thompson, 1999) are superimposed on the grid-scale winds
from the ECMWF dataset to represent transport by turbu-
lent eddies, which are not resolved. To account for sub-
grid scale convective processes, FLEXPART was equipped
with the convection scheme developped by Emmanuel and
Zivkovı̀c-Rothman (1999).

In the framework of the AMMA program, FLEX-
PART was coupled with daily emissions of passive trac-
ers by fires. Ten-day forecasts were provided opera-
tionally on the AMMA Operation Center websitehttp://aoc.
amma-international.org/. For the identification of the areas
that are affected by biomass burning, we use the Moderate
Resolution Imaging Spectroradiometer (MODIS) daily ac-
tive fire product (Justice et al., 2002; Giglio et al., 2003). The
fires are identified based on the temperature at wavelength
4µm compared to that at 11µm. The active fire product in-
cludes a confidence index. Only the hot spots with a 100%
confidence level were retained for the emission distribution.

The configuration of the GIRAFE-FLEXPART model was
determined by the forecasting constraints during AMMA.
Once identified, the hot spots are mapped on the ECMWF
model grid (50 km×50 km). An inert passive tracer in each
grid cell containing at least one hot spot is represented by
1000 particles. This approach allows to save computational
time by considering only one tracer per grid point of the dy-
namical model. However, single detections which are often
wrong detections (e.g. hot spots due to gas flares, etc.) will be
considered equally to grid cells with many detections. This
hypothesis thus restrains the discussion on the concentration

levels of the passive tracer. Particles were released during
48 h at a constant unity rate (1 kg/48 h) from the surface to
3 km above ground and then carried over 10 days. The choice
of the injection height was later confirmed by Labonne et
al. (2007). These authors estimated the range of top height
of the aerosol layers from the CALIPSO spaceborne lidar
between 3 and 4.5 km during July and August 2006 over
South Africa. New simulations were started every day during
AMMA and the passive tracer was reinitialized to zero for
each new simulation. It is important to note that the model
set up is different from the previous works using FLEXPART
to track biomass burning plumes. Wiedinmyer et al. (2006)
or Stohl et al. (2007) for example followed a more formal ap-
proach in which they considered an area burned per hot spot
and the use of appropriate emissions factors to get carbon
monoxide concentrations. In the following, only the trans-
port of the smoke plumes is discussed as the emissions were
arbitrary chosen to unity. The particles represent a conserva-
tive tracer that behaves purely passively; that is, no chemical
processes and no deposition are simulated. Figure 2 shows
the position of the fires detected by MODIS with the maxi-
mum confidence level between 15 July and 31 August. Dur-
ing this period, the fires occured constantly in the same re-
gion, roughly between 30◦ S and the equator and between 10
and 40◦ E. Fires were limited to the north by the convective
clouds associated with the ITCZ. From 15 July to 21 August,
the satellite overpassed the region approximately between
07:30 and 13:30 UTC and between 19:30 and 01:00 UTC.
According to Giglio et al. (2007), the fire activity over West
Central Africa peaks around 14:00 UTC. Consequently, the
number of fire detections may be underestimated and it may
be that the model misses source grid points. However, be-
cause of the regridding procedure, the impact on the plume
trajectories should remain limited.

4 Intraseasonal variability of summer wet-season fire
plumes

Figure 3 shows the time-latitude evolution of the wind speed
derived from the ECMWF re-analysis and averaged between
30◦ W and 10◦ E. These longitudes cross the continent over
West Africa and the Gulf of Guinea in the Southern Hemi-
sphere. The AEJ-N is clearly visible around 15◦ N during
all the period. In contrast, the position and strength of the
AEJ-S show high intraseasonal variability with successive
active and break phases. During a first period (25 July–2 Au-
gust), the AEJ-S is strong and present over the whole Gulf
of Guinea. Maximum wind speed reaches 10 m s−1 over the
sea. High wind speeds are found up to 15◦ S in the South-
ern Hemisphere whereas both jets confound in the North-
ern Hemisphere. From 3 August to 9 August, there is no
signature of the AEJ-S in the northern and Southern Hemi-
spheres. From 10 August, the AEJ-S regains strength and a
well-defined core of strong wind speed is located from the
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equator to 10◦ S. Over the continent (not shown), the jet in-
tensifies until the end of August. The oceanic part of the
AEJ-S weakens after 20 August and reintensifies after 26
August. By the end of August, the AEJ-S is well defined
over the Southern Hemisphere Central East Africa and At-
lantic regions. During the first active phase described above
(25 July–30 July), fire plumes are simulated over the Gulf of
Guinea with a latitudinal extent up to 2000 km (Fig. 4). It
is worth noting that the discontinuities in the model outputs
in Fig. 4 are due to the reinitialization of the tracer. For one
given day, only the plume started from 5 to 10 days before is
shown. Figure 4 shows the sum of these contributions for ev-
ery given days. From 31 July, mixing ratios of the fire tracer
decrease and the Gulf of Guinea remains free of fire pollution
until 10 August when the AEJ-S strengthens. After 12 Au-
gust, the outflow of fire plumes persists until the end of the
month in phase with the AEJ-S activity. From Fig. 4, it can
be concluded that, except during the AEJ-S break phase, fire
pollution is present continuously between 10◦ S and 5◦ N. To
the south, the fire plumes can be advected up to 20◦ S. Four
episodes of that type were predicted during July and Au-
gust 2006. The southern latitudinal extension of the plume
is governed by the position of the subtropical anticyclone in
the middle troposphere (between 10 and 20◦ S). If the axis
of the subtropical anticyclone in the middle troposphere is
above the coasts of the Gabon, Congo or Democratic repub-
lic of Congo, easterly and southeasterly winds occur north
of the axis. These enhanced winds are located above or near
the source regions and favor the shift in the advection of the
plumes toward the southern latitudes.

5 Observational evidences of summer wet-season fires
plumes

The first evidences of southern hemispheric fire intrusions
were described by Sauvage et al. (2005) based on the
MOZAIC profiles over Africa. These authors showed that
elevated concentrations of ozone observed between 600–
700 mb over West Africa during the wet season originated
from fires in the Southern Hemisphere. In the framework
of the AMMA campaign, regular ozonesoundings were per-
formed at Cotonou, Benin (Fig. 5). Cotonou is located near
the Gulf of Guinea and therefore can be influenced by the
pollution from the southern hemispheric fires. A complete
description of the ozonesoundings and the characterization of
the origins of the ozone maxima will be described in a com-
panion paper (Thouret et al., 20083). Figure 5 shows three
ozone profiles measured during the AMMA experiment. The
marking point is the strong variation of the ozone profile be-

3Thouret, V., Saunois, M., Mari, C., Corre, L., Picart, J.,
Mariscal, A., Nedelec, P., Minga, A., Solete, A., and Agbangla, D.:
Characterisation of air masses over Cotonou during the wet season:
influence of biomass burning and local pollution, in preparation,
2008.
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Fig. 4. Time-latitude evolution of fire passive tracer (ng/m3) at
3000 m, averaged between 30◦ W and 10◦ E from the GIRAFE-
FLEXPART 5 to 10 days simulations from 25 July to 31 August
2006. Solid lines indicate the active AEJ-S phases (see also Fig. 3).

Fig. 4. Time-latitude evolution of fire passive tracer (ng/m3) at
3000 m, averaged between 30◦ W and 10◦ E from the GIRAFE-
FLEXPART 5 to 10 days simulations from 25 July to 31 August
2006. Solid lines indicate the active AEJ-S phases (see also Fig. 3).

tween 2 and 4 km. The ozone peaks on 25 July and on 17
August correspond to the active phases of the AEJ-S when
the Gulf of Guinea is under the influence of the fire plumes.
On the contrary, the low values of ozone observed on 3 Au-
gust coincide with the AEJ-S break phase, when the Gulf
of Guinea is free of biomass burning pollution. During the
actives phases, the ozone mixing ratios are more than dou-
bled (80–90 ppbv) compared to the background values (30–
40 ppbv).

Satellites also provide interesting information on the
biomass burning emissions fate. MOPITT measurements are
performed in eight nadir-viewing spectral channels using the
gas correlation technique. Detailed description of the instru-
ment and measurement technique can be found in Drum-
mond and Mand (1996), Pan et al. (1998) and Edwards et
al. (1999). The MOPITT CO data consist of total column
and vertical profiles of volume mixing ratio that are retrieved
at seven pressure levels (surface, 850, 700, 500, 350, 250 and
150 hPa), with a horizontal resolution of 22×22 km2. Global
coverage is accomplished in 3 to 4 days and data are avail-
able from March 2000 to present. In this work, we focus on
the CO mixing ratio profiles from data Version 3 at 700 mb.
Figure 6 shows the CO mixing ratios at 700 mb as a func-
tion of latitude and time. White areas on these plots indi-
cate the locations of missing data mostly representative of
persistent clouds over the days sampled. The intraseasonal
variability of the biomass burning plume export is clearly
visible in Fig. 6. During the first and second active peri-
ods, the MOPITT instrument observed large plumes of CO
over the gulf of Guinea. On the contrary, the second period
shows a minimum of CO mixing ratios in agreement with the
ECMWF wind speed and GIRAFE-FLEXPART intraseason-
nal changes.
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Fig. 5. Fire passive tracer (ng/m3) with predominant pathways at
3000 m from the GIRAFE-FLEXPART 5 to 10 days simulations
averaged from (left) 25 July to 02 August 2006, (middle) 03 August
to 08 August 2006 and (right) 09 August to 31 August 2006

Fig. 5. Fire passive tracer (ng/m3) with predominant pathways at 3000 m from the GIRAFE-FLEXPART 5 to 10 days simulations averaged
from (left) 25 July to 02 August 2006, (middle) 03 August to 08 August 2006 and (right) 09 August to 31 August 2006
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Fig. 6. Ozone mixing ratios measured at Cotonou (6.21◦ N,
2.23◦ E) in ppmv on 25 July (solid line), 3 August (dashed line)
and 17 August (dotted line).

Fig. 6. Ozone mixing ratios measured at Cotonou (6.21◦ N,
2.23◦ E) in ppmv on 25 July (solid line), 3 August (dashed line)
and 17 August (dotted line).

6 Discussion

The difference in the observed ozone peaks between 25 July
and 17 August can be explained by the enrichment of the
air masses during the break phase. From 3 to 9 August,
the westward propagation is suppressed. Fire plumes re-
circulate and accumulate pollutants over the continent. The
sudden shift of AEJ-S activity around 10–11 August leads
to the westward transport of these airmasses. It is interest-
ing to note that the AEJ-S break phase prevents the west-
ward advection of fire pollutants but favors the injection at
higher altitudes. Figure 7 shows several events of injection
in the upper troposphere (12 km altitude). The upper tro-
pospheric intrusions are particularly well marked during the
AEJ-S break phase. During the break phase, airmasses are
retained over the continent and the probability for these air-
masses to reach the regions affected by continental deep con-
vection increases (see Fig. 2). The coincidence of biomass
burning and cloud convection was proposed as a key mech-

anism for the export of biomass burning emissions far away
from the source regions (Krishnamurti et al., 1993; Chatfield
et al., 1996; Pickering et al., 1996; Folkins et al., 1997; Jenk-
ins et al., 1997; Trentmann et al., 2006; Sauvage et al., 2007a;
Sauvage et al., 2007b) with potential intrusions into the up-
per troposphere and stratosphere (Fromm and Servranckx,
2003; Jost et al., 2004). Other mechanisms have been pro-
posed for the vertical transport of biomass burning emis-
sions: convergence between the baroclinic low-level circula-
tions associated with the AEJ-S and the equatorward branch
of the Hadley cell (Sauvage et al., 2007c) and the vertical tur-
bulent mixing favored by the intertropical interoceanic front
(Chatfield et al., 1996; Bachmeier and Fuelberg, 1996; Del-
mas et al., 1999). Labonne et al. (2007) have shown that the
biomass burning products vertical extent is generally capped
by boundary layer inversion height and that direct injection
of fire pollutants to the free troposphere are unlikely. From
this study, we can conclude that the vertical transport associ-
ated with deep convection is favored during and shortly after
the AEJ-S break phases. During periods of active AEJ-S, a
lower vertical transport may occur preferentially in the con-
vergence zones although this can not be deduced from the
present study for which an injection height is prescribed, in-
dependently from the boundary layer properties. Matichuk
et al. (2003) tested the sensitivity of their model result to
the injection height. The base model with emissions below
the planetary boundary layer height and subsequent mixing
within the PBL gives the best results. If smoke is emitted
above the PBL, the model may maintain an artificial smoke
layer. So it is possible that when GIRAFE-FLEXPART emits
fire pollutants above the boundary layer height, the model
creates fake layers in the middle troposphere.

In this work, we do not consider the diurnal cycle of the
fires. Eck et al. (2003) observed large average diurnal varia-
tions of aerosol optical thickness over southern Africa which
they attribute to large diurnal trends in fire counts that peak
in midafternoon. However for all sites located downwind
from the fire regions there was little average diurnal trend
observed as the aerosol transport is not strongly influenced
by diurnal cycles. Recently, Giglio et al. (2007) proposed a
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Fig. 7. CO mixing ratios, in ppbv, at 700 mb from the TERRA-
MOPITT instrument as a function of latitude and time and averaged
between −30◦ W and 10◦ E.

Fig. 7. CO mixing ratios, in ppbv, at 700 mb from the TERRA-
MOPITT instrument as a function of latitude and time and averaged
between−30◦ W and 10◦ E.

characterization of the tropical diurnal fire cycle using satel-
lite information. The authors show that fires over Central
Africa experience a great diurnal cycle with peak activity
around 15:00 UTC and suppressed nighttime fire activity.
Matichuk et al. (2007) found low sensitivity of the vertical
extension profiles simulated by their model to the diurnal cy-
cle of the fires. The emissions can stay near the surface at
night but are quickly mixed throughout the boundary layer
during the day.

It is not straightforward to assess the potential impact of
these fire plumes on the ozone production from the present
study which only treats the transport of a non reactive tracer.
We would expect different ozone production rates from the
different scenarii described above, depending of the AEJ-S
phases. During the TRACE-A experiment over Brazil and
South Africa in October, Pickering et al. (1996) calculated
an ozone postconvective formation rate around 7–8 ppbv/day
in a biomass burning perturbed region. Chatfield et al. (1996)
found no net production of ozone in their simulations of
southern Africa advected fire plumes. They even found a
slow decrease of ozone (1 ppbv/day) in the low altitudes
whereas Jacob et al. (1996) found an ozone production at
higher levels in the upper troposphere which they explain by
additional NOx from lightning. It is expected that the trans-
port of the smoke by convective clouds is accompanied by
fast significant changes in smoke chemistry. The large in-
fluence of OVOC demonstrated by Mason et al. (2001) for
example will be strongly altered if the OVOC concentrations
are changed by cloud processing. During TRACE-A, con-
vective clouds were often close to the biomass burning re-
gions which was less frequent during the AMMA summer
experiment. Jenkins et al. (1997) have discussed the poten-
tial ozone production associated with the fires over Africa for
different periods. The authors stated that the impact on O3
production over the ocean would be limited during the June–
July–August period because O3 and its precursors may be
destroyed by photolysis, surface deposition and other chemi-
cal reactions because of the thousands of kilometers between
the fires and the regions of deep convection. On the contrary,

Fig. 8. Same as Fig. 4 but at 12 000 m.

this study shows that the AEJ-S can efficiently transport fresh
biomass burning plumes out over the ocean, thus providing
a scenario favorable to ozone production over the Atlantic
ocean during the wet season. Real et al. (2007a) found an
ozone increase in a boreal forest fire plume observed in the
middle latitudes by 17 ppbv over 5 days. Assuming that the
observed profile on 3 August gives the background mixing
ratios of ozone in the middle troposphere (25 ppbv) and as-
suming that the airmass age is 10 days, the increase of ozone
is about 35 ppbv for 25 July and 55 ppbv for 17 August. The
values are of the same order of magnitude or higher than
those derived from Real et al. (2007a). The complexity of
the chemical reactions inside biomass burning plumes as ob-
served with new techniques (Yokelson et al., 2003) would
require a complete study which is out of the scope of this
paper. Lagrangian or box model approaches like the ones de-
velopped by Jost et al. (2003) or Real et al. (2007a) are now
required to assess the ozone budget in the african fire plumes
in the light of the different scenarii proposed here.

7 Conclusions

This paper describes a forecasting tool that has been devel-
opped to predict the intrusions of the southern hemispheric
fire plumes in the Northern Hemisphere during the AMMA
fourth airborne campaign (Special Operation Period 2a2).
The model system is based on the Lagrangian particle disper-
sion model FLEXPART and daily active fire products pro-
vided by the MODIS instrument. The paper presents re-
sults of simulations of passive tracer transport from 25 July
to 31 August 2006. Biomass burning tracers were emitted
mainly over Central Africa during the studied period. The
print of the biomass burning plumes over the Gulf of Guinea
showed a well marked intraseasonal variability. The latitudi-
nal progression of the biomass burning plumes to the north
was limited by the northern hemispheric African Easterly Jet.

www.atmos-chem-phys.net/8/3951/2008/ Atmos. Chem. Phys., 8, 3951–3961, 2008



3958 C. H. Mari et al.: Biomass burning plumes during the AMMA wet season experiment

Several episodes of intrusions up to 20◦ S were favored by the
continental position of the subtropical anticyclone in the mid-
troposphere. The export of the biomass burning plumes out
over the Atlantic ocean was controlled by the existence and
strength of the southern hemispheric AEJ. This jet is located
around 5◦ S and 700 mb. The origin of the AEJ-S was shown
by Nicholson and Grist (2003) to be the surface temperature
gradient between the semiarid regions of the Southern Hemi-
sphere and the subhumid vegetated lands to the north. The
AEJ-S is weaker than the AEJ-N and, contrary to the persis-
tent AEJ-N, shows a strong intraseasonal variability. Three
different periods were identified which correspond to active
and break phases of the AEJ-S: 25 July–2 August (active
phase), 3 August–9 August (break phase) and 10 August–31
August (active phase). During the AEJ-S active phases, the
advection of the biomass burning plumes was efficient in the
mid-troposphere. During the AEJ-S break phases, pollutants
emitted by fires are trapped over the continent where they ac-
cumulate. The continental recirculation increases the possi-
bility for the biomass burning plumes to reach the convective
regions located further north. As a consequence, simulated
biomass burning plumes are found in the upper troposphere
over the Gulf of Guinea during the AEJ-S break phase. This
study clearly emphasizes the role of the AEJ-S in the trans-
port of the southern hemispheric biomass burning plumes
during the summer wet-season. The origins of the intrasea-
sonal variability of the AEJ-S is an open question that de-
serves a comprehensive study over a larger period. The quan-
titative assessment of the ozone formation in these biomass
burning plumes needs to be further investigated with mod-
els which include the complexity of the chemical reactions
in a smoke environment. The ozone production should vary
dramatically depending of the meteorological conditions as-
sociated with the active and break phases of the AEJ-S.
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