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Abstract. The ability of secondary organic aerosol (SOA)
produced from the ozonolysis ofα-pinene and monoterpene
mixtures (α-pinene,β-pinene, limonene and 3-carene) to be-
come cloud droplets was investigated. A static CCN counter
and a Scanning Mobility CCN Analyser (a Scanning Mobil-
ity Particle Sizer coupled with a Continuous Flow counter)
were used for the CCN measurements. Consistent with pre-
vious studies monoterpene SOA is quite active and would
likely be a good source of cloud condensation nuclei (CCN)
in the atmosphere. A decrease in CCN activation diame-
ter for α-pinene SOA of approximately 3 nm hr−1 was ob-
served as the aerosol continued to react with oxidants. Hy-
droxyl radicals further oxidize the SOA particles thereby
enhancing the particle CCN activity with time. The ini-
tial concentrations of ozone and monoterpene precursor (for
concentrations lower than 40 ppb) do not appear to affect
the activity of the resulting SOA. K̈ohler Theory Analysis
(KTA) is used to infer the molar mass of the SOA sampled
online and offline from atomized filter samples. The esti-
mated average molar mass of online SOA was determined
to be 180±55 g mol−1 (consistent with existing SOA speci-
ation studies) assuming complete solubility. KTA suggests
that the aged aerosol (both fromα-pinene and the mixed
monoterpene oxidation) is primarily water-soluble (around
65%). CCN activity measurements of the SOA mixed with
(NH4)2SO4 suggest that the organic can depress surface ten-
sion by as much as 10 N m−1 (with respect to pure water).
The droplet growth kinetics of SOA samples are similar
to (NH4)2SO4, except at low supersaturation, where SOA
tends to grow more slowly. The CCN activation diameter
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of α-pinene and mixed monoterpene SOA can be modelled
to within 10–15% of experiments by a simple implementa-
tion of Köhler theory, assuming complete dissolution of the
particles, no dissociation into ions, a molecular weight of
180 g mol−1, a density of 1.5 g cm−3, and the surface tension
of water.

1 Introduction

Cloud-particle interactions are one of the major challenges
in understanding indirect climate forcing (Houghton et al.,
2001; IPCC, 2001). Particles in the atmosphere are com-
posed of complex mixtures of inorganic and organic species.
The subset of these atmospheric particles that activate and
grow into cloud droplets at a given supersaturation are called
Cloud Condensation Nuclei (CCN). Understanding CCN ac-
tivation is an important step towards understanding cloud for-
mation and properties. While we understand inorganic parti-
cles well (Köhler, 1936; Pruppacher and Klett, 1997; Sven-
ningsson et al., 2006), many questions still remain about the
influence of organic particulate material on CCN activity.

The most important organic aerosol component on a global
scale is considered to be monoterpene SOA (Chung and Se-
infeld, 2002). Monoterpenes represent a significant frac-
tion of the natural volatile organic compound (VOC) emis-
sions (Guenther et al., 1995) and can be oxidized in the at-
mosphere to form organic particulate matter (Seinfeld and
Pankow, 2003). Early laboratory studies found that organics
identified in secondary organic particles have the ability to
activate as cloud droplets (Cruz and Pandis, 1997; Corrigan
and Novakov, 1999). Further work highlighted the impor-
tance of small amounts of inorganic salts on organic behavior
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(Bilde and Svenningsson, 2004) and revealed that hydropho-
bic organic coatings on inorganic cores do not appear to pre-
vent particle activation in model aerosol systems (Cruz and
Pandis, 1998). While organic coatings do not appear to pre-
vent particle activation if sufficient time is available, they
may alter growth kinetics in droplets (Feingold and Chuang,
2002; Gill et al., 1983) and this change in growth kinetics
may be important in ambient aerosols (Ruehl et al., 2007).
The influence of surface active species on CCN activation
has been studied more recently. For example, Asa-Awuku et
al. (2007b) have shown that the presence of salts in biomass
burning aerosols depresses surface tension and, therefore, in-
creases CCN activity. Surface tension effects have also been
reported for tropospheric fine aerosol (Kiss et al., 2005).

Investigations of single component (Raymond and Pandis,
2002) and controlled mixture systems (Raymond and Pan-
dis, 2003) created the foundation for exploration of more
complex systems (Hegg et al., 2001; Broekhuizen et al.,
2004; Asa-Awuku et al., 2007a) including laboratory gen-
erated SOA. Much of the previous work studying the ac-
tivity of identified SOA components probed the applicabil-
ity of classical K̈ohler theory and its extensions (Raymond
and Pandis, 2002; Hori et al., 2003; Shulman et al., 1996).
Classical K̈ohler theory assumes that the particle is fully dis-
solved during the activation process. Slightly soluble com-
pounds require modifications to this theory (Shulman et al.,
1996). Wettability and solubility were shown to influence
particle activation (Raymond and Pandis, 2002; Padró et al.,
2007) and organics were found to slow droplet growth from
changes in the K̈ohler curve changing with droplet diameter
(Shantz et al., 2003; Kumar et al, 2003).

Recent work investigating the properties of monoterpene
SOA has found that particles generated fromα-pinene ox-
idation are good CCN (Huff Hartz et al., 2005; Prenni et
al., 2007; King et al., 2007). Huff Hartz et al. (2005) used
a static CCN counter to measure the activity of SOA pro-
duced from the ozonolysis of 4 monoterpenes (α-pinene,
β-pinene, limonene and 3-carene) and 3 sesquiterpenes
(β-caryophyllene,α-humulene, andα-cedrene). King et
al. (2007) studied the activation ofα-pinene SOA formed on
ammonium sulfate seeds with a DMT CCN counter and re-
ported activation at atmospherically relevant sizes and com-
positions. Prenni et al. (2007) studied 3 monoterpene precur-
sors (α-pinene,β-pinene, and 3-carene) and found that the
DMT CCN activation was attained at supersaturations rele-
vant to the atmosphere and that CCN activity was compa-
rable for all precursors. This work also placed the relevant
monoterpene work in a novel framework based on a single
fitted hygroscopicity parameter,κ (Petters et al., 2007).

VanReken at al. (2005) used a prototype Cylindrical
Continuous-Flow Streamwise Thermal Gradient (CFSTG)
counter (Roberts and Nenes, 2005) to study the CCN activity
of SOA produced from 4 monoterpene precursors (α-pinene,
β-pinene, limonene and13-carene. Their results, in contrast
to the above studies, showed a decrease in activity with time,

attributed to oligomerization of SOA due to aging, leading to
a far lower CCN activity than reported in other recent studies.
While oligomerization would make the SOA particles less
hygroscopic, second-generation SOA products can be further
oxidized by hydroxyl radicals (Zhang et al., 2006), which
could reduce the activation diameter of SOA with time. The
impact of this oxidation onα-pinene SOA CCN activity has
not been explicitly studied and this discrepancy of the Van-
Reken et al. (2005) study with the rest has not been resolved.

In this work, we investigate the CCN activity of fresh
and agedα-pinene and mixed monoterpene SOA in order
to add to the growing body of evidence of understanding
of monoterpene CCN activity. The applicability of single-
precursor SOA results to complicated monoterpene systems
is investigated as well as the potential change in CCN ac-
tivity with time. Two different CCN counters are used for
the measurements: a static diffusion chamber and a cylindri-
cal CFSTG counter operated in series with a scanning mo-
bility particle sizer. In addition to online measurements of
aerosol properties, filter SOA samples were collected and
subsequently analyzed offline in the laboratory, by measur-
ing the CCN activity of aerosol generated from the filter sam-
ples. Combination of these activation experimental data with
Köhler theory provides estimates of the molar volume and
surfactant characteristics of the SOA water-soluble organic
carbon (WSOC) fraction (Asa-Awuku et al., 2007a). These
offline samples are also mixed with ammonium sulfate to in-
fer the presence and surfactant characteristics of the WSOC
in the aged SOA. The droplet growth kinetics of the online
and offline samples are measured and compared against that
of ammonium sulfate. Finally, a simple parameterization of
CCN properties of this important class of SOA is introduced.

2 Experimental methods

2.1 Smog chamber reactor

Experiments in this study were conducted in the Carnegie
Mellon University smog chamber, a 12 m3 Teflon reac-
tor (Welch Fluorocarbon) suspended inside a temperature-
controlled room with a suite of sampling instrumentation.
Details of the smog chamber and its operation are reported
elsewhere (Presto et al., 2005a, b; Stanier et al., 2007). Prior
to each experiment the reactor was cleaned with dry, particle-
free air (created from compressed air passed through a HEPA
filter to remove particles), an activated carbon filter to re-
move organic vapors, and silica gel to remove moisture. All
experiments were conducted at low relative humidity (3–
8%) at approximately 22◦C. The particle concentration in
the beginning of each experiment was always below 10 par-
ticles cm−3.

A schematic of the experimental set-up is shown in Fig. 1.
The particle number size distribution inside the chamber was
monitored using a Scanning Mobility Particle Sizer (SMPS,
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TSI model 3080). The SMPS system used a Kr-85 neutral-
izer to apply a bipolar charge distribution to the aerosol par-
ticles. The SMPS was operated at a sheath flow rate of 5 lpm
and an aerosol flow rate of 1 lpm. A Vaisala HMP-233 sensor
was used to monitor the relative humidity inside the bag.

Ozone was created from oxygen gas via corona discharge
using an ozone generator (Azcozon) and the concentration
was measured with an ozone monitor (Dasibi, 1008-PC).
Ozone concentrations in the reactor ranged from 300 ppb to
1 ppm. The ozone injected into the reactor was allowed to
equilibrate for approximately 15 min before terpene injec-
tion. The chamber was considered to be well mixed when
the ozone concentration was stable for several minutes. Dur-
ing some of the experiments, 0.5 mL of 2-butanol (Sigma-
Aldrich, 99.5%) was injected into the smog chamber via a
gas dispersion tube in order to scavenge hydroxyl radicals
produced during terpene ozonolysis (Chew and Atkinson,
1996; Keywood et al, 2004). Two types of monoterpene pre-
cursors were used in these studies. The first wasα-pinene
(Sigma-Aldrich, 99+%) and the second involved a mixture
of four monoterpenes:β-pinene (Sigma-Aldrich, 99+%),
limonene (Fluka, 99+%), 3-carene (Sigma-Aldrich, 99%),
andα-pinene (Sigma-Aldrich, 99%). These monoterpenes
are estimated to make up the majority of global monoterpene
emissions (Griffin at al., 1999). The monoterpene mixture
was made before each experiment to avoid potential reac-
tions.

The monoterpene precursor was injected into the smog
chamber using a micro-liter gas-tight syringe through a sep-
tum. The reaction was conducted in the dark. A valve al-
lowed dry, particle-free air to pass over the terpene to va-
porize and transfer it to the smog chamber while some air
bypassed the terpene injection point to dilute the terpene,
thus reducing condensation and losses. The compressed air
was passed through the injection line for less than 5 min. A
proton-transfer reaction mass spectrometer (PTR-MS, Ioni-
con) was used to monitor the gas phase species in the reac-
tor. The PTR-MS is capable of on-line monitoring of volatile
organic compounds at concentrations as low as a few ppt
(Lindinger, 1998). The PTR-MS was operated at a drift tube
voltage of 500 V. The inlet and drift tube temperature were
at 80◦C. During the first 30 min after terpene injection the
signature of the monoterpene fragments decayed. After the
concentrations of these fragments stabilized, the reaction was
considered complete. Once the reaction was complete and
the reactor was well-mixed, the air circulation in the tem-
perature controlled room was turned off in order to reduce
particle losses to the walls of the Teflon reactor. The experi-
mental conditions are reported in Table 1. The reported error
for the static CCN counter activation diameter is two stan-
dard deviations from the mean as measured in experiments
conducted at identical supersaturations.
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Figure 1: Schematic of experimental set-up for monoterpene SOA formation and monitoring. 

  

Fig. 1. Schematic of experimental set-up for monoterpene SOA
formation and monitoring.

2.2 Comparison of CCN instrumentation

The CCN activity of the SOA in the reactor was measured
using two CCN counters, which have fundamentally differ-
ent methods for supersaturation generation. The first, a DH
Associates, model M1 CCN counter, based on the “static dif-
fusion cloud chamber” design of Twomey (1963) relies upon
the nonlinear dependence of water vapor pressure upon tem-
perature to generate supersaturation (Nenes et al., 2001). A
differential mobility analyzer (DMA, TSI model 3081) was
used to select a stream of nearly monodisperse particles for
measurement in the static diffusion CCN counter. A conden-
sation particle counter (CPC, TSI model 3010) monitored the
total concentration of particles in the user-selected size. A
bypass stream and a 3 L min−1 critical orifice were used to
reduce disturbances due to the CCN counter pump filling the
chamber every 30 s. The DH Associates CCN counter mea-
sured the total number of particles that activated at a given su-
persaturation. The variability in activation diameter for this
instrument has been reported between 15% and 20% for su-
persaturations between 1.0% and 0.3% (Raymond and Pan-
dis, 2002). Two sampling strategies were used with the static
CCN counter. The first strategy was to develop an activation
curve at one supersaturation by changing the monodisperse
particle diameter throughout the experiment and measuring
the corresponding activated fraction. For experiments where
the activation diameter was changing too rapidly, the static
CCN counter was operated at one supersaturation and one
dry particle diameter and used to monitor the change in acti-
vated fraction over time.

The second CCN counter used in this study was a Droplet
Measurement Technologies (DMT) CFSTG CCN counter,
which generates supersaturation by exploiting the higher dif-
fusivity of water relative to heat (Roberts and Nenes, 2005;
Lance et al., 2006). The variability of the effective super-
saturation for this instrument has been measured to be as
low as±1% for laboratory experiments (Rose et al., 2008).
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Table 1. Conditions for SOA Experiments.

Experiment Static CCNC 2-Butanol Initial terpene Initial Ozone Static CCNC SMCA Terpene
Number Supersaturation Use (ppb) (ppb) Activation Diameter Data Mixture

(%) (nm)

1 0.3 no 16 300 104±6 no α-pinene
2 0.3 no 23 300 103±6 no α-pinene
3 0.3 yes 32 1000 98±6 yes α-pinene
4 0.6 no 16 300 50±14 no α-pinene
5 0.6 no 16 300 55±14 no α-pinene
6 0.6 no 16 300 63±14 no α-pinene
7 0.6 no 32 1000 65±14 yes α-pinene
8 1 no 16 300 38±3 no α-pinene
9 1 no 16 300 40±3 no α-pinene
10 – no 16+47a 1000 – yes α-pinene
11 – no 32 1000 – yes α-pinene
12 0.6 no 20 300 60± no equal partsc

13 0.6 no 20 300 58±2 no 2 parts carenec

14 0.6 no 30 300 b yes equal partsc

15 0.6 no 30 300 b yes 2 parts limonenec

16 – no 39 1000 – yes equal partsc

a Two separate injections. The concentration after the first injection was 16 ppb and after the second was 63 ppb.
b Static CCNC measured the CCN concentration of 100 nm particles at a fixed supersaturation. The static CCNC was not operated on all
experiments.
c All mixtures containα-pinene,β-pinene, limonene and 3-carene in varying ratios. Two parts indicates twice the concentration of the
indicated species in comparison to the other three monoterpenes in the mixture.

The fast time response of this instrument (1 Hz) allows it to
be coupled with a scanning mobility particle sizer (SMPS);
this technique, known as Scanning Mobility CCN Analysis
(SMCA; Nenes and Medina, in review1) provides fast mea-
surements of size-resolved CCN activity and droplet growth
kinetics. In our measurements, a TSI 3080 SMPS, com-
posed of a condensation particle counter (CPC, TSI 3010)
and a differential mobility analyzer (DMA, TSI 3081) clas-
sified and measured the dry particle size distribution. Dried
aerosol was charged using a Kr-85 neutralizer (TSI 3077A)
and introduced into the DMA during which particles were
classified by electrical mobility and counted by the CPC and
CCN counter as the voltages at the DMA was scanned. A
complete CCN “activation curve” (or ratio of CCN/CN over
a wide range of sizes and supersaturation) was then obtained
in each DMA upscan-downscan cycle. The downscan of the
DMA voltage is short, about 1/8 the time used for the voltage
upscan; this generates a peak response in both CPC and CCN
counters, which is then used to align the response timeseries
of both detectors. The activation curve is then obtained by
inverting the timeseries to obtain number and CCN size dis-
tributions. Multiple supersaturations were cycled through the
duration of each experiment in the DMT CCN counter. The

1Nenes, A. and Medina, J.: Scanning Mobility CCN Analysis:
a method for fast measurements of size-resolved CCN activity and
growth kinetics, Aeros. Sci. Tech., in review, 2008.

DMT CFSTG CCN counter has the capability to change su-
persaturations much faster than the static CCN counter due
to its control system and alternative method for generating
supersaturation (Roberts and Nenes, 2005). A change in su-
persaturation can be achieved in approximately 0.5–3.5 min
(Rose et al., 2008).

The activated fraction,fact, of SOA is calculated divid-
ing the CCN concentration by the total particle concentration
measured by the CPC. The concentration versusfact data is
then fit to a sigmoidal curve:

fact =
a

1 + exp(−(dp − D50)/b)
(1)

wheredp is the dry particle diameter,a is the fraction acti-
vated at large particle diameters,b is a size distribution width
parameter, andD50 is the activation diameter, which is cal-
culated as the particle diameter corresponding to 50% of the
height of the sigmoid.

The sigmoidal fit neglects the multiply charged particles,
which activate early and thus form a hump in the fraction
activated versus mobility diameter (Fig. 2). The impact of
the multiply charged particles was estimated using a method
similar to that described in Petters et al. (2007) using as ba-
sis the measured size distribution in the smog chamber. The
equivalent mobility diameters of the multiply charged par-
ticles associated with each diameter of interest were calcu-
lated. Special attention was paid to the calculated activation
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Figure 2: Activated fraction versus mobility diameter for ammonium sulfate at 0.6% 

supersaturation. Triangular symbols are for data from the DMT CCN counter and circular 

symbols are for the DH Associates CCN counter. Filled symbols are for the slow counting 

method typically used only for the static CCN counter. The open symbols are recorded for the 

DMT CCN counter coupled with an SMPS to operate as a SMCA. The dashed line indicates 

the fit to the static CCN counter data and the solid line indicates the fit to the DMT CCN 

counter data.  

Fig. 2. Activated fraction versus mobility diameter for ammonium
sulfate at 0.6% supersaturation. Triangular symbols are for data
from the DMT CCN counter and circular symbols are for the DH
Associates CCN counter. Filled symbols are for the slow counting
method typically used only for the static CCN counter. The open
symbols are recorded for the DMT CCN counter coupled with an
SMPS to operate as a SMCA. The dashed line indicates the fit to
the static CCN counter data and the solid line indicates the fit to the
DMT CCN counter data.

diameters. Using charging theory the fraction of particles at
a given size bin with +1, +2 and +3 charges was determined,
which was then multiplied by the number of particles at the
associated diameters. The sum of the multiply charged par-
ticles divided by the total number of charged particles gives
the approximate fractional error at the investigated diameter.
Based upon this fractional error at the activation diameter or
for the entire range of CCN data points a multiple-charge
corrected activation diameter was estimated by shifting the
activation curve and alternatively by refitting the CCN acti-
vation curve to the revised activities. The estimated error was
less than 15% for all experiments and is included in the es-
timated uncertainty of our measurements discussed in a sub-
sequent section. Therefore, no correction was made for mul-
tiply charged particles entering the DMA for the static CCN
counter as the adjustment in the fit due to multiply charged
particles is within the reported uncertainty of the instrument
(Raymond and Pandis, 2002). The shape of the aerosol size
distribution after the completion of the reactions remains rel-
atively constant and therefore the error due to the multiple
charging also remains practically constant.

The static CCN counter can measure onefact every
7.5 min. To measure an activation curve spanning the diame-
ters of interest requires several hours of data collection. Due
to long equilibration times required to change supersatura-
tions in the cloud chamber and the continuous loss of par-
ticles to the walls of the smog chamber over the course of

Table 2. σ values inferred at the point of activation.

Sample σ ±1σ

(mN m−1) (mN m−1)

α−pinene SOA with 61.7 1.9
90% (NH4)2SO4

α−pinene SOA with 65.8 3.0
95% (NH4)2SO4

Mixed Monoterpene 66.5 1.5
SOA with
95% (NH4)2SO4

5–10 h of measurement the instrument can reliably obtain
one CCN activation curve at one supersaturation during one
chamber experiment.

For instrument comparison, the two CCN counters were
both operated with the 7.5 min per diameter sampling strat-
egy typically used for the static CCN counter. The sam-
ple flow from the DMA was split between the static CCN
counter, the CFSTG CCN counter and the CPC. Since the
CFSTG CCN counter is able to discern small changes in
activation diameter an average over the experiment is cal-
culated and the error bars reported are two standard devi-
ations from the mean. The instruments compared well in
their measurements of model aerosol systems. Comparison
studies of ammonium sulfate particles showed that both in-
struments measured within 2 nm of classical Köhler theory
predictions assuming complete solubility, surface tension of
water, a molecular weight of 132 g mol−1, and a dry density
of 1.77 g mol−1 at 0.6% supersaturation (Fig. 2). The static
CCN counter was measuring a slightly higher activation di-
ameter than predicted, while the CFSTG CCN counter was
measuring slightly below the prediction.

After the consistency of the two instruments was estab-
lished with ammonium sulfate, the instruments were used to
monitor SOA particles generated in the smog chamber. The
static CCN counter activation diameters for eachα-pinene
and mixed monoterpene experiment are reported in Table 1.
SMCA was used to monitor the evolution of the SOA acti-
vation diameter in experiments 3, 7, 10, 11, 14, 15 and 17
(Table 1).

2.3 Filter sample extraction and analysis

For experiments 11 and 16 (Table 1), SOA fromα-pinene and
mixed monoterpene precursors was collected upon Teflon fil-
ters. Similarly to Asa-Awuku et al. (2007a) and Sullivan and
Weber (2006), the SOA filter samples were subsequently ex-
tracted in water during a 1.25 h sonication process with heat
(water bath temperature is approximately 60◦C). The WSOC
concentration was then measured with a Sievers 900 Portable
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Figure 3: Activation diameter versus time from reaction initiation for experiment 3 with 

hydroxyl radical scavenger as measured with SMCA.  The theory lines correspond to classical 

Köhler theory with molecular weight of 180 g mol
-1
, particle density of 1.5 g cm

-3
, no 

dissociation, and the surface tension of water. 

 

Fig. 3. Activation diameter versus time from reaction initiation
for experiment 3 with hydroxyl radical scavenger as measured with
SMCA. The theory lines correspond to classical Köhler theory with
molecular weight of 180 g mol−1, particle density of 1.5 g cm−3, no
dissociation, and the surface tension of water.

Total Organic Carbon (TOC) Turbo analyzer and found to be
12 mgC L−1 in both extracts (for a total of around 200µg of
WSOC per filter). The experimental set-up used to measure
CCN activity of WSOC extracted from the filter samples is
identical to those used in Padró et al. (2007) and Asa-Awuku
et. al. (2007a; 2007b). 3–5 ml of extracted sample was atom-
ized in a collision type atomizer, dried with two diffusional
driers and subsequently characterized with SMCA. The clas-
sified aerosol was then activated into droplets using the DMT
CCN Counter.

3 Results

3.1 Aging of SOA particles

Oneα-pinene experiment, experiment 3, used 2-butanol as a
hydroxyl radical scavenger during SOA generation. Figure 3
shows the change in activation diameter versus time from in-
jection for that experiment for 0.33 and 0.58% supersatura-
tion for up to nine hours. The theory lines show calculations
from “classical” Köhler theory with the assumptions of a
molecular weight of 180 g mol−1, the surface tension of wa-
ter and a density of 1.5 g mol−1. These predictions are quite
close to the average diameters for the experiment, which are
66 nm for 0.58% supersaturation and 93 nm for 0.33% su-
persaturation. Measurements taken during the first 30 min
of experiment 3, which is during the ozonolysis reaction,
indicate slightly higher activation diameters than later mea-
surements. This period of the experiment is also marked by
higher uncertainties due to the condensing gases and devel-
oping size distribution. After the first 30 min there is no sta-
tistically significant change, at the 95% confidence level, in
activation diameter for the supersaturations measured (0.33
and 0.58%). During the first 30 min the activation diame-
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Figure 4: Activation diameter versus time from reaction initiation for experiment 7 without 

hydroxyl radical scavenger as measured with SMCA.  The theory lines correspond to classical 

Köhler theory with molecular weight of 180 g mol
-1
, particle density of 1.5 g cm

-3
, no 

dissociation, and the surface tension of water. 

Fig. 4. Activation diameter versus time from reaction initiation for
experiment 7 without hydroxyl radical scavenger as measured with
SMCA. The theory lines correspond to classical Köhler theory with
molecular weight of 180 g mol−1, particle density of 1.5 g cm−3, no
dissociation, and the surface tension of water.

ter is likely changing due to the condensation of species with
different activation properties and not necessarily particle ag-
ing.

For experiment 7 identical conditions to experiment 3
were used, but without the hydroxyl radical scavenger; re-
sults are shown in Fig. 4. In experiment 7, fresh particles
appear less CCN active than those produced in the absence
of OH in experiment 3. The activation diameter decreased at
approximately 3 nm h−1 for 0.33% and 0.58% supersatura-
tion for the first few hours. After four hours of reaction, the
activation diameter approached that of experiment 3 (66 nm
for 0.58% supersaturation and 93 nm for 0.33% supersatura-
tion). The classical K̈ohler theory lines are shown for refer-
ence.

A potential explanation for the reduced CCN activity is
that the reaction ofα-pinene with hydroxyl radicals produces
a higher fraction of pinonaldehyde in the reaction products
than the ozonolysis ofα-pinene (Nozìere et al., 1999; Jang
and Kamens, 1999). The reduced fraction of carboxylic
acids as compared to aldehydes could decrease the amount
of water-soluble material available and therefore may be the
cause of the reduced activity in the presence of the competing
hydroxyl radical reaction with the monoterpenes.

The ozone concentrations in the reactor ranged from 300–
1000 ppb. Assuming an average atmospheric concentration
of 40 ppb ozone this would correspond to an ozone exposure
equivalence of approximately 2 days of atmospheric aging.
A rough estimate of hydroxyl radical concentrations based
on the decay of 2-butanol as measured by the PTR-MS was
2×106 molecules cm−3. This is roughly equivalent to day-
time hydroxyl radical concentrations in the troposphere.

The effect of the hydroxyl radicals on particle aging and
CCN activity is not limited toα-pinene SOA, but was also
observed in the mixed monoterpene ozonolysis experiments.

Atmos. Chem. Phys., 8, 3937–3949, 2008 www.atmos-chem-phys.net/8/3937/2008/
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Figure 5: Aging of 55 nm mixed monoterpene (equal parts α-pinene, β-pinene, limonene and 

3-carene) SOA particles at 0.6% supersaturation (experiment 14) measured with the static 

CCN counter.  

  

Fig. 5. Aging of 55 nm mixed monoterpene (equal partsα-pinene,
β-pinene, limonene and 3-carene) SOA particles at 0.6% supersat-
uration (experiment 14) measured with the static CCN counter. 
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Figure 6: Evolution of activation diameter (obtained with SMCA) with time from injection at 

0.74% supersaturation for an equal parts mixture of α-pinene, β-pinene, limonene, and 3-

carene (experiment 14). 

  

 

 

 

 

Fig. 6. Evolution of activation diameter (obtained with SMCA)
with time from injection at 0.74% supersaturation for an equal parts
mixture ofα-pinene,β-pinene, limonene, and 3-carene (experiment
14).

The static CCN counter is able to observe changes in activa-
tion diameter due to aging if it is operated at a constant super-
saturation and supplied with a stream of monodisperse parti-
cles of constant diameter. Figure 5 shows the change in acti-
vated fraction for 55 nm dry diameter particles in the mixed
monoterpene SOA produced in experiment 14 as measured
by the static CCN counter. Due to the inherent challenge
of particle loss to the walls in chamber studies the uncer-
tainty increases later in the experiment and, therefore, the ac-
tivated fraction (Fig. 5) becomes more variable. Experiment
14 did not include 2-butanol to scavenge hydroxyl radicals
produced in the ozonolysis. The fraction of 55 nm particles
that were CCN active increased at an initial rate of 0.1 h−1.
This effect can also be seen in the activation diameter; Fig. 6
shows the evolution ofD50 (measured with SMCA) at 0.74%
supersaturation for the mixed monoterpene SOA produced in
experiment 14. The activation diameter is decreasing, on av-
erage, at a rate of 1.6 nm h−1. After 4.5 h, the data in Figs. 3
and 5 are consistent with a zero slope, which would indicate
that the particle aging stopped or was reduced to a negligible
rate. This leveling off of activation diameter is highlighted
by the final data point in Fig. 6, which was recorded at ap-
proximately 10 h; the SOA had roughly the same CCN acti-
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Figure 7: Critical supersaturation versus measured activation diameter of α-pinene and mixed 

monoterpene SOA for SMCA (circles) and the static CCN counter (triangles). Köhler theory 

predictions are shown as a black line for classical theory with molecular weight of  

180 g mol
-1
, particle density of 1.5 g cm

-3
, no dissociation, and the surface tension of water. 

The error bars reflect two standard deviations from the mean. The dashed lines are shown as 

bounds for CCN activation diameter of ammonium sulfate (lower bound) and insoluble, 

wettable particles (upper bound). 

 

 

 

 

 

Fig. 7. Critical supersaturation versus measured activation diameter
of α-pinene and mixed monoterpene SOA for SMCA (circles) and
the static CCN counter (triangles). Köhler theory predictions are
shown as a black line for classical theory with molecular weight
of 180 g mol−1, particle density of 1.5 g cm−3, no dissociation, and
the surface tension of water. The error bars reflect two standard
deviations from the mean. The dashed lines are shown as bounds
for CCN activation diameter of ammonium sulfate (lower bound)
and insoluble, wettable particles (upper bound).

vation as particles measured 2.5 h previously. Even though
these changes in activation diameter are clearly observable,
they are modest compared to the differences in activation di-
ameter for different SOA precursors (Huff-Hartz et al., 2005;
Asa-Awuku et al., 2008). For example, at 1% supersatura-
tion, the reported averageD50 is equal to 120 nm and 48 nm
for sesquiterpene and monoterpene aerosol, respectively.

3.2 Potential of SOA as CCN

The initial concentration ofα-pinene, the monoterpene mix-
tures, and ozone do not appear to affect the activation di-
ameter of the resulting SOA (within the 10–40 ppb range).
For example, experiments 1 and 3 were conducted at 16 and
32 ppbα-pinene and 300 and 1000 ppb ozone, respectively.
The static CCN counter activation diameters for these two
experiments differ by less than 7%. Previous work with
this static CCN counter reports 17% uncertainty for exper-
iments performed at 1% supersaturation and 20% for ex-
periments performed at 0.3% supersaturation (Raymond and
Pandis, 2002). Hence, any small changes due to initial con-
centrations of ozone or terpene are within experimental er-
ror. Therefore, all activation diameters measured at a given
supersaturation are averaged, regardless of precursor concen-
tration.
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The average activation diameters versus supersaturation
for α-pinene and mixed monoterpenes are shown in Fig. 7.
The data reported are an average of all experiments con-
ducted at 0.3, 0.33, 0.52, 0.58, 0.6, 0.74, 1.0, and 1.09%
supersaturation. The measurements of SOA CCN activity
for both instruments were consistent within experimental er-
ror. Also, the CCN activity data fromα-pinene SOA is virtu-
ally indistinguishable from SOA produced from a mixture of
monoterpenes. The particles are reasonably active as CCN
when contrasted against ammonium sulfate and insoluble,
wettable particles. The error bars indicate two standard devi-
ations from the mean CCN activation diameter. These error
bars reflect standard experimental uncertainties as well as the
modest shift in activation diameter observed in the presence
of hydroxyl radicals.

3.3 Köhler theory analysis of SOA

Köhler theory (K̈ohler, 1936) is used to link the observed
CCN activity with SOA composition and size; thermody-
namic arguments are used to describe the balance of two ef-
fects on the water vapor pressure over a wet particle. The
Kelvin, or curvature, effect tends to increase the equilibrium
vapor pressure above a droplet relative to a flat surface be-
cause fewer intermolecular forces hold an individual water
molecule in the droplet. Conversely, the Raoult, or solute,
effect tends to decrease the vapor pressure relative to a flat
surface from dissolved compounds.

Köhler Theory Analysis (KTA) (Asa-Awuku et al., 2007a,
b; Padŕo et al., 2007) is derived from K̈ohler theory and
utilizes CCN measurements to infer average molar volume
(molecular weight,M, over densityρ) of the water-soluble
organic fraction of the SOA. KTA (method b1, Padŕo et
al., 2007) employs measurements of the activation diameter,
D50, versus critical supersaturation,sc; these quantities are
then fit to the expression,

sc=ωD50
−3/2 (2)

to obtain the Fitted CCN Activation (FCA) parameter,ω. If
all parameters, including surface tension, are known,ω can
be used to obtainM

ρ
,

M

ρ
=

ευ

256
27

(
Mw

ρw

)2 (
1

RT

)3
σ 3ω−2

(3)

whereρ is density of the SOA,M is the average molecular
weight of the SOA,Mw is the molecular weight of water,
ρw is the water density,σ is the air-drop surface tension,ε

is the WSOC volume fraction,ν is the effective van’t Hoff
factor,T is the ambient temperature, andR is the universal
gas constant.

Often, like in this work, the concentration of WSOC ex-
tracted from filters is low (less than 100 ppm) so direct mea-
surements of surface tension are not representative of (or

cannot be reliably extrapolated to) the conditions at activa-
tion. To address this the surface tension depression method
of Asa-Awuku et al. (2007a) is used. The method involves:

i) measuring the CCN activity of atomized aerosol gener-
ated from a mixture of the extracted WSOC and ammo-
nium sulfate, and,

ii) using Köhler theory, and the known composition (am-
monium sulfate versus WSOC) of the aerosol samples
to infer the surface tension required to reproduce the
CCN activity of the samples.

The inferred surface tension is calculated as follows (Asa-
Awuku et al., 2007a)

σ=σw

(
sc

sc∗

)2/3

(4)

wheresc is an experimental value of critical supersaturation,
sc∗ is the critical supersaturation predicted using Köhler the-
ory assuming the value of water surface tension,σw, andσ is
the air-water surface tension of the CCN at the critical point.
The mass of organic carbon, necessary to inferσ , in the ex-
tracted sample is determined by multiplying the measured
WSOC carbon concentration by an organic mass-to-carbon
ratio of 2 (Asa-Awuku et al., 2007a). Since both the molecu-
lar weight of the SOA and the surface tension of the droplets
are unknown, Eqs. (2) and (3) are solved simultaneously to
find the optimum value forM andσ . In this work the opti-
mum value ofMwas found to be 180 g mol−1.

In applying KTA for the WSOC extracts, we assume com-
plete solubility,ε=1 and an effective organic van’t Hoff fac-
tor,v=1. Molecular weights are estimated assuming an aver-
age organic density of 1.5 g cm−3 (Kostenidou et al., 2007).
The uncertainty in inferred molar volume can be computed
as

1

(
M

ρ

)
=

√ ∑
for all x

(8x1x)2,

where1x is the uncertainty in of each of the measured pa-

rametersx,(i.e., σ , ω, andυ) and8x=
∂
∂x

(
M
ρ

)
is the sen-

sitivity of molar volume tox. Formulae for molar volume
sensitivity calculations are reported elsewhere (Asa-Awuku
et al, 2007a, Asa-Awuku et al., 2007b; Padró et al., 2007).

For our studies, we employ KTA to estimate molecular
weight of SOA from the online measurements assuming all
of the aerosol is soluble (Fig. 8). KTA suggests that the
molecular weight of the SOA drops significantly within the
first hour of the experiment. However, significant changes in
composition are not observed in the AMS data (not presented
here). These large changes from KTA estimates may also re-
flect changes in solubility rather than changes in molar mass.
Consequently the results of Fig. 8 suggest that
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Figure 8: Apparent α-pinene SOA molecular weight versus time obtained with KTA 

assuming ε=1. Square symbols are for experiment 3, and circular symbols are for experiment 

7, α-pinene precursor with and without hydroxyl radical scavenger. Molecular weight is 

estimated using σ = 72 mN m
-1
.  

 

 

 

 

 

 

 

 

Fig. 8. Apparentα-pinene SOA molecular weight versus time ob-
tained with KTA assumingε=1. Square symbols are for experiment
3, and circular symbols are for experiment 7,α-pinene precursor
with and without hydroxyl radical scavenger. Molecular weight is
estimated usingσ=72 mN m−1.

 

 34 

 

 

 

Figure 9:  CCN Activity of water soluble SOA generated from α-pinene and mixed 

monoterpene ozonolysis.  Water soluble α-Pinene SOA is represented by circles and mixed 

monoterpene SOA by triangles.  Köhler Theory is used to predict the CCN activity of the 

offline components based on reported average online molecular weight values, 180 g mol
-1
, 

and the surface tension of water. Online measurements of α-pinene SOA and (NH4)2SO4 are 

shown for comparison. 

Fig. 9. CCN Activity of water soluble SOA generated fromα-
pinene and mixed monoterpene ozonolysis. Water solubleα-Pinene
SOA is represented by circles and mixed monoterpene SOA by
triangles. K̈ohler Theory is used to predict the CCN activity of
the offline components based on reported average online molecu-
lar weight values, 180 g mol−1, and the surface tension of water.
Online measurements ofα-pinene SOA and (NH4)2SO4 are shown
for comparison.

a) the aerosol is composed of insoluble and soluble frac-
tions which after the first hour transitions into the
“asymptotic composition”, or

b) the aerosol is semi-volatile and requires half an hour
to become “thermally stable” in the CFSTG instrument
(operated at∼35◦C).

The first hypothesis can be investigated by comparing the
CCN activity of the extracted samples versus the online SOA.
The second hypothesis is unlikely, as the AMS spectra do
not show compositional changes throughout the duration of
the experiment. As with online measurements, the offlineα-

 

 35 

 

 

Figure 10: CCN activity of WSOC generated from ozonolysis of mixed monoterpenes filter 

samples. Results are shown for pure water soluble mixed monoterpene SOA and mixtures of 

(NH4)2SO4 and water soluble mixed monoterpene SOA.  

 

Fig. 10. CCN activity of WSOC generated from ozonolysis of
mixed monoterpenes filter samples. Results are shown for pure wa-
ter soluble mixed monoterpene SOA and mixtures of (NH4)2SO4
and water soluble mixed monoterpene SOA.
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Figure 11: CCN activity of WSOC generated from ozonolysis of α-pinene filter samples. 

Results are shown for pure WSOC and mixtures of (NH4)2SO4.   

Fig. 11. CCN activity of WSOC generated from ozonolysis ofα-
pinene filter samples. Results are shown for pure WSOC and mix-
tures of (NH4)2SO4.

pinene and mixed monoterpene filter SOA have similar ac-
tivity (Fig. 9). A comparison of the online smog chamber
samples (Fig. 9) to water soluble SOA filter samples reveals
the offline samples are much more CCN active SOA than
their online counterparts. This suggests that only a fraction
of the SOA in these experiments dissolves in water. Subse-
quently (NH4)2SO4 was added to the water-soluble compo-
nents of theα-pinene and mixed monoterpene SOA (Figs. 10
and 11). The increase in soluble material enhances the CCN
activity; from these measurementsσ can be inferred (Eq. 2)
and are reported in Table 2. Other KTA properties for the
WSOC are given in Table 3. The greatest surface tension de-
pression observed is for samples containing 10% water sol-
ubleα-pinene SOA and 90% ammonium sulfate. Measure-
ments have indicated thatα-pinene and mixed monoterpene
SOA have similar water-soluble organic components (Fig. 9)
and hence it is also inferred that the greatest surface tension
depression for theα-pinene and mixed monoterpene species
is 61.7±1.9 mN m−1. Assuming that the surface tension of
the water-soluble component can be applied to the soluble
component of the online aerosol, the soluble fraction at the
“asymptotic composition” is estimated to be∼65% (Fig. 12).
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Figure 12:  Soluble Fraction of α-pinene SOA inferred from offline measurements.  

  
Fig. 12. Soluble fraction ofα-pinene SOA inferred from offline
measurements.

3.4 Droplet growth kinetics

In addition to CCN measurements, the optical particle
counter of the DMT CFSTG CCN counter measures droplet
sizes and therefore can be used to explore the impact of or-
ganics on droplet growth kinetics. When exposed to the same
supersaturation profile, an activated CCN will grow to cloud
droplets of similar wet diameter,Dp, provided that the mass
transfer coefficient of water vapor to the growing droplet and
the critical supersaturation is the same. The impact of organ-
ics on CCN growth kinetics for our samples is assessed by
comparing the wet diameter,Dp, of activated SOA particles
with activated (NH4)2SO4 particles at given instrument su-
persaturations. The ammonium sulfate particles represent a
well-studied inorganic system for comparison. The dry par-
ticles used in the comparison had a critical supersaturation
equal to the instrument supersaturation,s, which means that
the dry diameter was equal to the activation diameter. The
flow rates in these measurements are maintained constant, as
changes would affect the residence time (and resultingDp)

in the instrument.
The droplet diameters of activated SOA obtained online

do not significantly change over time for mixed monoter-
pene andα-pinene SOA. Wet diameters measured of SOA
from the filter samples are consistent with values obtained
from online measurements except for the lowest supersatu-
ration where online aerosol grows more slowly than offline
(Fig. 13). The agreement of online and offline SOA mea-
surements with ammonium sulfate particle growth (with the
exception of low supersaturations measured online) indicates
that organics in theα-pinene and mixed monoterpene SOA
do not further impact the droplet growth kinetics. For all
salted and non-salted SOA filter samples, the droplet growth
is similar to (NH4)2SO4 (Fig. 13).
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Figure 13:  Growth kinetics of SOA and (NH4)2SO4. Dark grey symbols are for α-pinene 

SOA and open symbols are for mixed monoterpene SOA. Mixtures are SOA of the stated 

percentage with the balance of ammonium sulfate. 

 

 

 

 

 

 

 

 

Fig. 13. Growth kinetics of SOA and (NH4)2SO4. Dark grey
symbols are forα-pinene SOA and open symbols are for mixed
monoterpene SOA. Mixtures are SOA of the stated percentage with
the balance of ammonium sulfate.

4 Parameterization using “classical” Köhler theory

Köhler Theory Analysis is a powerful tool to elucidate de-
tailed information from experimental results and thus in-
creases our understanding of the interactions of SOA with
water. However, KTA requires more information than is of-
ten available for ambient systems and thus for large-scale
chemical transport models.

Köhler theory can be used to calculate the activation di-
ameter (i.e. the dry particle diameter that has a given critical
supersaturation) once values for molecular weight, surface
tension, van’t Hoff factor and solubility are assumed. KTA
gives a comprehensive picture of these thermodynamic prop-
erties, but different combinations (even if inherently incor-
rect) of parameters may give the same CCN activity. The
later is what we term “classical” K̈ohler theory parameteri-
zation of the SOA. For this, the air-drop surface tension is
assumed to be that of pure water and the SOA material is
assumed to be completely soluble in water at the activation
point with no dissociation. The particle density is assumed
to be 1.5 g cm−3 based on the measurements of Kostenidou
et al. (2007) for these systems. Two approaches can be
taken for constraining the average molecular weight,x, of
the monoterpene:

i) using the weighted average (175 g mol−1) of the speci-
ated compounds from chemical analysis of SOA (Huff-
Hartz et al., 2005), or

ii) Köhler Theory Analysis (KTA) (Asa-Awuku et al.,
2007a, b; Padró et al., 2007).

Since both methods, within error, are in agreement the
value from KTA will be used. The experimental measure-
ments of the CCN activity ofα-pinene SOA are similar to
activation diameters estimated from classical Köhler theory.
Figure 14 shows the comparison of activation diameters mea-
sured with the static CCN counter and SMCA versus activa-
tion diameters predicted from K̈ohler theory (assuming an
aged SOA composition) for all experiments of pinene and
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Table 3. Köhler theory analysis properties and molar volume results
for filter samples.

Property (units) α−pinene Mixed Monoterpenes

FCA, ω (m1.5) 5.61×10−14 5.55×10−14

σ (N m−1)d 61.7×10−2 61.7×10−2(
M
ρ

)
(m3 mol−1)d 8.18×10−5 8.36×10−5

M(g mol−1)e 122d (77)f 125d (79)f

d inferred from activation experiments assumingα-pinene and the
mixed monoterpenes have similar organic surface active compo-
nents and surface tension depression at droplet activation.
e Assuming the density of the solute is 1500 kg m−3 (Kostenidou et
al., 2007).
f KTA results based onσ=σwater (72 N m−1).

mixed monoterpene SOA. Within uncertainty, all of the data
points fall on the 1:1 line demonstrating that the behavior of
α-pinene and mixed monoterpene SOA can be modeled with
classical K̈ohler theory, assuming a common composition.
An important outcome is that apparent closure with observed
CCN activity, however good it may be, may not necessarily
imply understanding of CCN properties.

One limitation of this classical K̈ohler theory parameteri-
zation is that its explicit statement of all variables makes in-
tercomparison between studies somewhat cumbersome with
details. Petters and Kreidenweis (2006) introducedκ, a pa-
rameter to quantitatively compare CCN activity, which al-
lows for a quick comparison of similar studies. The measure-
ments in this study are generally consistent with the measure-
ments of Prenni et al. (2007). Prenni et at. (2007) reported
κ values of 0.1±0.04 forα-pinene,β-pinene, and 3-carene
SOA. In this study we foundκ values ranging between 0.14
and 0.23 for the static CCN counter and 0.11 and 0.14 for
the DMT CCN counter forα-pinene and mixed monoter-
pene SOA. The larger range inκ values is expected for the
static CCN counter due to larger uncertainty in the measure-
ments. The observations of Huff Hartz et al. (2005) at 0.3%
and 1.0% supersaturation are also generally consistent with
κ values ranging between 0.04 and 0.12 and 0.09 and 0.24,
respectively. The measurements of VanReken et al. (2005)
and Huff Hartz et al. (2005) both show a higherκ value than
observed in this study.

5 Conclusions

The CCN activity of SOA generated by the ozonolysis ofα-
pinene and mixed monoterpenes has been measured using a
static CCN counter and a Scanning Mobility CCN Analyzer
(SMCA). We do not see a statistically significant decrease
in particle activation diameter ofα-pinene SOA if hydroxyl
radicals are scavenged from the experimental system by 2-
butanol. In the presence of hydroxyl radicals, theα-pinene
SOA is initially less CCN active than expected for aged SOA,
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Figure 14: Comparison of experimental activation diameter to calculated activation diameter 

for the static CCN counter (triangles) and for SMCA (circles). Solid markers are used for α-

pinene SOA and open markers for mixed monoterpene SOA. Measured activation diameter 

error bars reflect two standard deviations in the measurements and predicted activation 

diameter error bars reflect a 15% uncertainty in the Köhler theory prediction. The solid line is 

the 1:1 line. 

 

 

 

 

 

Fig. 14. Comparison of experimental activation diameter to calcu-
lated activation diameter for the static CCN counter (triangles) and
for SMCA (circles). Solid markers are used forα-pinene SOA and
open markers for mixed monoterpene SOA. Measured activation
diameter error bars reflect two standard deviations in the measure-
ments and predicted activation diameter error bars reflect a 15%
uncertainty in the K̈ohler theory prediction. The solid line is the 1:1
line.

but experiences a decrease in activation diameter of approxi-
mately 3 nm h−1 throughout the course of the experiment. A
similar increase in CCN activity in the presence of hydroxyl
radicals is observed in mixed monoterpene SOA measure-
ments conducted by both instruments, with SMCA measur-
ing an initial decrease in activation diameter of 1.6 nm h−1.

The two CCN instruments were in good agreement in
terms of measured CCN activity of ammonium sulfate and
of SOA generated during these experiments. Surface active
organics are likely in SOA aerosol. We estimate that the or-
ganics in aged monoterpene aerosols depress surface tension
by about 10 mN m−1. Using KTA, the molecular weight of
the SOA was estimated to be 180 g mol−1 with a soluble frac-
tion of approximately 65%.

The monoterpene SOA is quite active as CCN, average
κ=0.15±0.08, and would likely be a good source of CCN
in the atmosphere. The CCN behavior of agedα-pinene and
mixed monoterpenes is the same and is generally consistent
the growing body of literature examining the CCN activity
of lab-generated secondary organic aerosol. This strongly
suggests that a simplified, common treatment of CCN activ-
ity for this type of SOA is possible in aerosol-cloud interac-
tion studies. While KTA allows a much more detailed under-
standing of SOA CCN, roughly the same CCN activity can be
predicted with a simplified (albeit less realistic) description
of the aerosol, (complete solubility, surface tension of water)
to within 15% of the diameters measured with the static CCN
counter. Assuming that the SOA is completely soluble and
neglecting the surface tension effects results in agreement
with experiments to within 10% for the static CCN counter
and within 5% for the DMT CFSTG CCN counter.
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