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Abstract. Ground-based total ozone and surface UV irra-
diance measurements have been collected since 1992 using
Brewer spectrophotometer at Rome station. Erythemal Dose
Rates (EDRs) have been also determined by a broad-band ra-
diometer (model YES UVB-1) operational since 2000. The
methodology to retrieve the EDR and the Erythemal Daily
Dose (EDD) from the radiometer observations is described.
Ground-based measurements were compared with satellite-
derived total ozone and UV data from the Ozone Monitor-
ing Instrument (OMI). OMI, onboard the NASA EOS Aura
spacecraft, is a nadir viewing spectrometer that provides to-
tal ozone and surface UV retrievals. The results of the vali-
dation exercise showed satisfactory agreement between OMI
and Brewer total ozone data, for both OMI-TOMS and OMI-
DOAS ozone algorithms (biases of−1.8% and−0.7%, re-
spectively). Regarding UV data, OMI data overestimate
ground based erythemally weighted UV irradiances retrieved
from both Brewer and YES Radiometer (biases about 20%).
The effect of aerosols on UV comparisons was investigated
in terms of Aerosol Optical Depth (AOD), showing medium-
large correlation at SZA larger than 55◦. Further sources of
uncertainty, such as the difference in the atmospheric con-
ditions between local noon and OMI overpass time and the
OMI spatial resolution, were also discussed.

1 Introduction

The amount of solar ultraviolet (UV) radiation (200–400 nm)
reaching the Earth’s surface is affected mainly by atmo-
spheric ozone absorption, cloudiness and aerosols. Changes
in UV radiation at surface may strongly affect the human
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health and the terrestrial and aquatic ecosystems (UNEP,
2007).

Erythemal Dose Rate (EDR) is defined as the incoming so-
lar radiation on a horizontal surface convolved with the ery-
thema action spectrum (Diffey and McKinlay, 1987) over the
whole UV range. The Erythemal Dose can be obtained inte-
grating the EDR values over a given time interval and it pro-
vides the degree of effectiveness of UV radiation in produc-
ing the reddening of the skin. Both broadband radiometers
and spectroradiometers can provide measurements of erythe-
mal UV quantities.

Although the availability of UV measurements of high
quality from ground-based instruments is growing up in the
last decades, the surface UV monitoring station network al-
lows low spatial and time coverage. Satellite-based instru-
ments offer a better geograical distribution but continuous
validations with ground-based measurements are required to
assess the accuracy of satellite data.

Surface UV radiation estimates have been provided from
the Ozone Monitoring Instrument (OMI), flying on the
NASA EOS Aura spacecraft since 15 July 2004. OMI is
a spectrometer designed to monitor ozone and other atmo-
spheric species (Levelt et al., 2006). Two algorithms, OMI-
TOMS and OMI-DOAS (Differential Optical Absorption
Spectroscopy), are used to produce OMI daily total ozone
datasets. OMI UV products are local solar noon irradiances
at 305, 310, 324, and 380 nm, as well as EDRs and Erythe-
mal Daily Doses (EDDs).

OMI continues the Total Ozone Monitoring System
(TOMS) record of total ozone, aerosol, and UV measure-
ments. Satellite ozone and UV data derived from TOMS
were exhaustively validated by means of ground-based ozone
and UV data (Brogniez et al., 2005; Fioletov et al., 2002;
Arola et al., 2005; Kazantzidis et al., 2006).

Brogniez et al.(2005) found a reasonably good agree-
ment between satellite ozone data and ground-based mea-
surements retrieved in six European sites: generally the
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ground-based ozone seems to be slightly higher than TOMS
ozone (less than 3%). Regarding UV data,Fioletov et
al. (2002) found that erythemal UV estimates from TOMS
demonstrate better agreement with ground-based measure-
ments in case of low level of pollution.Arola et al.(2005)
compared TOMS overpass retrievals against Brewer mea-
surements at Ispra (Italy) and Thessaloniki (Greece), obtain-
ing large positive biases in both cases (on average about 19%
for Ispra and 30% for Thessaloniki). They found that these
discrepancies can be mainly explained by the aerosol effect.
Kazantzidis et al.(2006) confirmed that TOMS UV data
overestimate ground-based measurements by almost 20%
under high aerosol load.

The first results of OMI ozone validation are shown by
Balis et al.(2006). The comparison between ground-based
Brewer and Dobson data and OMI satellite ozone data
showed an agreement of better than 1% for OMI-TOMS and
2% for OMI-DOAS ozone retrievals. A first validation of
OMI UV retrievals is given byTanskanen et al.(2007): they
compared the daily doses from OMI with those derived from
several ground-based instruments located at different sites in
Europe, Canada, Japan, USA and Antarctic. The validation
results showed that OMI data are in general suitable to mon-
itor solar UV radiation levels but it was noticed a positive
bias of the satellite-derived UV in urban sites, due to the ef-
fect of pollution. The aim of this work was to investigate on
the applicability of OMI data for total ozone and surface UV
monitoring in an urban site, such as Rome, and on the pos-
sible sources of uncertainty. EDRs at local noon, EDDs and
total ozone column from ground-based instruments (Brewer
#067 and broad-band radiometer YES UVB-1) at Rome sta-
tion were compared with OMI data.

2 Data and methodology

2.1 Ground-based datasets

The Solar Radiometry Observatory of Sapienza University of
Rome (41.9◦ N, 12.5◦ E, 75 m a.s.l.) is located on the roof of
a building of the University Campus (centre of Rome, clas-
sified as urban site according toMeloni et al.(2000)). Total
ozone and solar UV spectral irradiance have been measured
by Brewer spectrophotometer #067 operational since 1992
while EDR values have been provided by the broadband UV
radiometer (model YES UVB-1) operational since 2000.

Brewer spectrophotometer #067 is an MKIV type with a
single-monochromator and it performs scans in the spectral
range from 290 to 325 nm with a stepwidth of 0.5 nm and
a full bandwidth at half maximum of 0.6 nm (Casale et al.,
2000). Total column values of ozone are determined from the
Brewer direct sun measurements; for each DS procedure, di-
rect solar radiances are measured at six wavelengths (303.2,
306.3, 310.1, 313.5, 316.8 and 320.1 nm). The first wave-
length is used for spectral calibration, while combinations

of the natural logarithm of the radiances at the four longest
wavelengths are used to compute the total ozone.

Aerosol Optical Depth (AOD) retrievals from Brewer
spectrophotometer were obtained using the Langley plot
method as described inSellitto et al. (2006). AODs at
320.1 nm determined at noon during cloudless days from
September 2004 to July 2006, will be used to analyse the
causes of the difference between OMI and ground-based UV
data.

Periodic checks and tests (monthly, weekly and daily) are
carried out in order to guarantee the accuracy and quality
of the observations. The absolute calibration was made by
the IOS inc. (International Ozone Service) almost every
year. Furthermore, UV measurements were intercompared
in May 2006 with the travelling reference UV spectrora-
diometer QASUME (Gröbner et al., 2005) which is man-
tained at the PMOD/WRC (Physikalisch-Meteorologisches
Observatorium Davos, World Radiation Center, seehttp:
//www.pmodwrc.ch/euvc/euvc.html). It was found that the
deviation in the angular response from the ideal cosine re-
sponse in the Brewer #067 has been leading UV irradiance
to be underestimated on average by 9%. In this study all UV
irradiances for the period 1992–2006 were corrected for co-
sine and temperature effect.

The EDRs were obtained from Brewer measurements by
weighting surface UV irradiance with the standard erythe-
mal action spectrum (Diffey and McKinlay, 1987) and by
integrating over the wavelength range 290–400 nm. The ir-
radiances from 325.5 to 400 nm are extrapolated from the
measured irradiance at 325 nm.

EDR measurements (time sampling of 1 min) are also pro-
vided by the YES UVB-1 broad band radiometer which has
a spectral response similar to that of skin erythema and it is
suitable to determine erythemally weighted irradiances. The
radiometer was calibrated at the European Reference Cen-
tre for Ultraviolet Radiation Measurements (Joint Research
Centre, Ispra, Italy) in 2004 and it participated in the broad-
band radiometer inter-comparison at PMOD/WRC at Davos
(Switzerland) in August 2006 (Gröbner et al., 2006).

An algorithm was developed to compute the EDRs
(Wm−2) from the radiometer signal, according to the follow-
ing formula (Webb et al., 2006):

EDR=UCfn(θ; T O3)Coscor(θ) (1)

whereU is the raw signal of the instrument (V); C is the
calibration coefficient (C=0.1104 Wm−2 V−1); fn(θ, T O3)

is a function of the solar zenith angleθ and the total column
ozoneT O3; Coscor(θ) is the cosine correction function.

The calibration factorC and fn(θ, T O3) were obtained
during the broadband radiometer inter-comparison at Davos
(Webb et al., 2006) and all YES data were then reprocessed.
The values offn were obtained taking into account the daily
mean total ozone from Brewer #067. Total ozone data from
satellite instruments are also used to derivefn, obtaining re-
sults similar to those obtained from ground-based ozone data
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(difference lower than 0.5%). Then, EDDs (kJ m−2) were
computed integrating the EDR measurements over the whole
day.

The Fig. 1 shows the comparison between Brewer and
YES EDRs at local noon under clear sky (light blue circle)
and under all sky (black circle) conditions. Taking into ac-
count the clear sky days the correlation coefficientr is 0.97
and the mean relative difference (defined as1

n

∑
(YES −

Brewer)/Brewer wheren is the number of days included in
the comparison) is−2% . The value of r decreases to 0.95
and the relative difference becomes−3% when all conditions
were considered. The absolute value of the mean of rela-
tive difference is lower than the estimated accuracy of the
Brewer #067 UV irradiance (about 5%). Both Brewer and
YES datasets were used for OMI validation exercise.

2.2 OMI products

The Ozone Monitoring Instrument (OMI) onboard the NASA
EOS Aura spacecraft (on flight from 14 July 2004) is a
nadir viewing spectrometer that measures solar reflected and
backscattered light in a selected range of the UV and visible
spectrum. The Aura satellite describes a sun-synchronous
polar orbit, crossing the equator at 13:45 local time. The
width of the instrument’s viewing swath is 2600 km and it
is large enough to provide global daily coverage with a spa-
tial resolution of 13×24 km2 in nadir. OMI measurements
of ozone columns and profiles, aerosols, clouds, surface UV
irradiance and the trace gases (NO2, SO2, HCHO, BrO, and
OClO) are available (Levelt et al., 2006).

Total ozone amounts are derived as two overpass prod-
ucts: OMI-TOMS ozone data are based on TOMS V8 algo-
rithm (Bhartia et al., 2002) while OMI-DOAS ozone prod-
uct (Veefkind et al., 2006) is based on a DOAS (Differen-
tial Optical Absorption Spectroscopy) technique developed
by Koninklijk Nederlands Meteorologisch Instituut (KNMI).

The OMI TOMS-like algorithm uses 2 wavelengths (317.5
and 331.2 nm under most conditions, and 331.2 and 360.0 nm
for high ozone and high solar zenith angle conditions). The
longer of the two wavelengths is used to derive the surface
reflectivity (or cloud fraction); then, the shorter wavelength,
which is heavily absorbed by ozone, is used to derive total
ozone.

In the DOAS algorithm the ozone vertical column is de-
termined in three steps. In the first step, the so-called slant
column density (the amount of ozone along an average pho-
ton path from the Sun to the satellite) is obtained. In the sec-
ond step, the air mass factor is determined, which is needed
to convert the slant column density into a vertical column.
Finally, a cloud correction is performed.

OMI surface UV retrievals are determined by means of an
extension of the TOMS UV algorithm developed by NASA
Goddard Space Flight Center (GSFC) (Tanskanen et al.,
2006). Firstly, the algorithm estimates the surface irradiance
under clear-sky conditions by using as inputs OMI satellite

Fig. 1. YES radiometer vs Brewer noontime EDR scatterplot in all
sky conditions. The light blue dots indicate the clear sky days. The
solid black line is the linear fit (all sky days) while the red dashed
line is the bisectrix.

ozone data and climatological surface albedo. Afterwards
the clear-sky irradiance is corrected by multiplying it with
a cloud modification factor derived from OMI data that ac-
count for the attenuation of UV radiation by clouds and non-
absorbing aerosols. Krotkov et al. (1998) showed that ab-
sorbing aerosols can lead to an overestimation in the satellite-
derived UV flux ranging from a few percent to 50%; Arola
et al. (2005) found that the positive bias between TOMS and
Brewer UV irradiances can be reduced by more than 15%, if
an absorbing aerosol correction is applied. The current OMI
surface UV algorithm does not include absorbing aerosols,
therefore OMI UV data are expected to show an overesti-
mation for regions affected by absorbing aerosols (i.e. urban
site). OMI UV products include EDD, EDR and spectral ir-
radiances at 305.1, 310.1, 324.1 and 380.1 nm at local solar
noon, derived from overpass data at 13:45 local time.

2.3 Validation methodology

Ground-based Brewer daily mean total ozone measurements
were compared with both OMI-TOMS and OMI-DOAS
ozone data. Brewer EDRs at local noon were compared with
OMI EDRs, under clear sky and all sky conditions. Further-
more, EDRs at noon and EDDs from YES radiometer were
compared with OMI satellite-derived data, in both clear sky
and all sky conditions.

In order to quantify the agreement between OMI (yi)
and ground-based (xi) data, the bias values were computed
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Fig. 2. OMI-TOMS vs Brewer daily total ozone scatterplot at
Rome. The solid black line is the linear fit while the red dashed
line is the bisectrix.

Fig. 3. OMI-DOAS vs Brewer daily total ozone scatterplot at Rome.
The solid black line is the linear fit while the red dashed line is the
bisectrix.

as follows:

bias=
1

n

n∑
i=1

(yi−xi)

xi

∗ 100. (2)

wheren is the number of days taken into account in the com-
parison. The values of(yi−xi)/xi were analysed as a func-

Table 1. Summary of OMI validation results. The bias is defined
in the Eq. (2);r is the correlation coefficient;n is the number of
days included in the comparison. The results of UV comparisons
are shown for clear sky (cs) and all sky (as) days.

bias(%) r n

OMI-TOMS/Brewer O3 −1.8 0.97 574
OMI-DOAS/Brewer O3 −0.7 0.96 363

cs as cs as cs as
OMI/Brewer EDR 28 33 0.99 0.96 140 386
OMI/YES EDR 23 30 0.99 0.91 129 395
OMI/YES EDD 21 23 0.99 0.97 122 375

tion of the AOD at 320.1 nm at different Solar Zenith Angles
(SZA).

3 Results and discussion

The validation results are summarized in Table1 in terms of
bias and correlation coefficient (r).

The daily means of Brewer total ozone measurements
were compared with OMI-TOMS ozone (Fig.2) from
September 2004 to December 2006 and OMI-DOAS ozone
(Fig. 3) from October 2005 to December 2006, for all sky
days. OMI ozone slightly underestimates ground-based
ozone with a negative bias around−1.8% for OMI-TOMS
and−0.7% for OMI-DOAS. Balis et al. (2006) showed that
OMI-DOAS comparisons exhibit a solar zenith angle depen-
dence; in this study, no significant dependence on SZA was
observed.

Figure 4 (upper panel) shows the comparison between
Brewer and OMI EDRs at local noon taking into account
all sky (black circle) and clear sky (light blue circle) con-
ditions from September 2004 to July 2006. It can be no-
ticed a positive bias larger in case of all sky conditions (33%)
than in cloudless conditions (28%). The correlation coeffi-
cient (r) of 0.96 in all sky conditions, increases to 0.99 when
clear sky days were selected. The comparison with OMI us-
ing EDRs at local noon from YES radiometer (Fig.5 upper
panel) shows a bias of 30% andr=0.91 under all sky con-
ditions (black circle). When the analysis was restricted to
cloudless skies the bias becomes 23% andr=0.99 (light blue
circle).

The OMI overestimation of ground-based UV measure-
ments may be partly explained with the fact that satellite in-
struments do not probe well the lower atmospheric layers of
urban sites where aerosols play an important role (Krotkov et
al., 1998; Kazantzidis et al., 2006). Because of this, the OMI
UV retrievals were compared to ground-based data looking
at the aerosol effect. Figures4 and5 (lower panels) show
the relative difference between ground UV data (Brewer and
YES EDRs, respectively) and OMI EDRs as a function of
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Fig. 4. OMI vs. Brewer noontime EDR scatterplot (upper panel).
The light blue dots indicate the clear sky days, the solid black line is
the linear fit (all sky days) while the red dashed line is the bisectrix.
The relative differences as a function of AOD at 320.1 nm (lower
panel) are plotted for clear sky days and SZA> 55◦ with the linear
fit (light blue line).

AOD at 320.1 nm for clear sky days. Only data at large SZA
(> 55◦) showed a moderate (r=0.44 for Brewer) or large
(r=0.57 for YES radiometer) correlations, according toCo-
hen et al.(1988). Looking at EDDs for all selected days
(Fig. 6 black circle) the bias was 23% andr=0.97; a small
reduction in the bias value (21%) under cloudless conditions
was observed (Fig.6 light blue circle).

The results of the comparison are summarized in Table1:
the positive values of bias show that OMI data overestimate
ground-based measurements. Although for YES UV data the
bias values are slightly smaller with respect to Brewer UV
data, the difference between OMI and ground-based UV data
is still large (bias>20%).

Fig. 5. OMI vs. YES radiometer noontime EDR scatterplot (upper
panel). The light blue dots indicate the clear sky days, the solid
black line is the linear fit (all sky days) while the red dashed line
is the bisectrix. The relative differences as a function of AOD at
320.1 nm (lower panel) are plotted for clear sky days and SZA> 55◦

with the linear fit (light blue line).

Similar results were found byWeihs et al.(2006) with UV
measurements performed at Villeneuve d’Ascq (France) sta-
tion (near urban site). Furthermore,Bais et al.(2007) con-
firmed that OMI-derived EDDs overestimate ground-based
data by between 20% and 30% at three sites in Greece. Due
to the lack of OMI UV data at the overpass time (13:45 Local
Time) the comparison at noon can be affected by actual atmo-
spheric conditions at the overpass time. AOD values during
the time interval between solar noon and the OMI overpass
time were taken into account in order to analyse the mag-
nitude of changes in atmospheric transmittance. The mean
relative difference between AOD at overpass time and AOD
at local noon is ranging from−48% to 52% (−4% on av-
erage). This result shows that the difference in atmospheric
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Fig. 6. OMI vs. YES radiometer EDD scatterplot in all sky con-
ditions. The light blue dots indicate the clear sky days. The solid
black line is the linear fit (all sky days) while the red dashed line is
the bisectrix.

conditions between local noon and OMI overpass time can
affect the comparison between OMI and ground-based UV
data.

Furthermore, a difference between ground-based (GB) and
satellite UV irradiances is that ground-based instruments
measure the irradiance at a single point while satellite prod-
ucts are an average over a given area (satellite pixel). Be-
cause of this, in addition to aerosols, variations of cloudiness,
of altitude and of surface albedo within the pixel area can
lead to a significant difference between ground-based and
OMI UV data. The OMI pixel covers an area of 13×24 km2

and the distance between the centre of the pixel and the sta-
tion can vary from 1.7 km to 61.6 km; thus, the atmospheric
conditions in an urban site as Rome may not be representa-
tive of the pixel area.

Finally, the OMI bias can also be due to the fact that OMI
surface UV algorithm does not account for the effect of ab-
sorbing aerosols in the boundary layer, where the absorption
by the aerosols can be important, mainly in an urban site
(Krotkov et al., 1998; Arola et al., 2005).

4 Conclusions

The results of OMI total ozone and erythemal UV data vali-
dation by using ground-based high quality measurements at
Rome site were shown for all sky conditions.

The comparison of OMI retrieved ozone data with the
daily mean ozone values from Brewer spectrophotome-

ter #067 showed a good agreement for both OMI-TOMS
(bias=−1.8%) and OMI-DOAS (bias=−0.7%) algorithms.
In both cases, comparisons do not show any significant de-
pendence on SZA. EDRs at local noon and EDDs retrieved
from YES UVB-1 radiometer were derived from 2000 to
2006 at Rome site in all sky conditions. Noontime EDR re-
trievals from YES radiometer and Brewer #067 were com-
pared showing a good agreement (the mean relative differ-
ences are−2% for clear skies and−3% for all skies).

The comparisons between OMI and ground-based UV
data (both Brewer and YES radiometer data) showed that, on
average, OMI UV products exceed ground-based UV mea-
surements by more than 20%. The comparison between OMI
and Brewer EDRs at local noon showed a positive bias, larger
in case of all sky conditions (33%) than in cloudless condi-
tions (28%). Concerning YES radiometer EDRs, the bias is
30% under all sky conditions and 23% for clear sky days; a
small reduction in the bias can be observed taking into ac-
count EDD data from YES radiometer (23% and 21% for all
sky and clear sky days, respectively).

This discrepancy may be partly attributed to the fact that
the satellite instrument does not effectively probe the extinc-
tion by the aerosols which can be important in the bound-
ary layer, mainly in an urban site as Rome. It was observed
that the correlation between the relative difference between
ground-based and OMI EDRs and AOD at 320.1 nm taking
into account data at SZA larger than 55◦ is moderate (r=0.44
for Brewer) or large (r=0.57 for YES radiometer).

The difference between OMI and ground-based instru-
ments could also be due to the different atmospheric con-
ditions between solar noon and overpass time. In this regard,
the magnitude of changes in atmospheric transmittance was
estimated to range from−48% to 52%. In addition, the OMI
spatial resolution (the distance pixel centre-GB station rang-
ing from 1.7 to 61.6 km) may be insufficient to fully charac-
terize the urban area of Rome.

Further investigations on satellite-derived OMI spectral
UV data are required to give hints about the possible sources
of uncertainty. Furthermore, EDRs at actual satellite over-
pass time will be compared with ground-based measure-
ments, in order to decrease the uncertainty of satellite UV
retrievals. Finally, the role of absorbing aerosols on OMI
UV estimates is under investigation by means of the absorb-
ing aerosol optical depth retrievals derived from Brewer UV
irradiances and radiative transfer modelling.
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Gröbner, J., Schreder, J., Kazadzis, S., Bais, A. F., Blumthaler, M.,
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