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Abstract. Non-linear maximum a posteriori (MAP) esti-
mates of atmospheric profiles from the Tropospheric Emis-
sion Spectrometer (TES) contains a priori information that
may vary geographically, which is a confounding factor in
the analysis and physical interpretation of an ensemble of
profiles. One mitigation strategy is to transform profile es-
timates to a common prior using a linear operation thereby
facilitating the interpretation of profile variability. However,
this operation is dependent on the assumption of not worse
than moderate non-linearity near the solution of the non-
linear estimate. The robustness of this assumption is tested
by comparing atmospheric retrievals from the Tropospheric
Emission Spectrometer processed with a uniform prior with
those processed with a variable prior and converted to a uni-
form prior following the non-linear retrieval. Linearly con-
verting the prior following a non-linear retrieval is shown
to have a minor effect on the results as compared to a non-
linear retrieval using a uniform prior when compared to the
expected total error, with less than 10% of the change in the
prior ending up as unbiased fluctuations in the profile esti-
mate results.

1 Introduction

Optimal estimation is a powerful technique for performing
atmospheric retrievals because of its capability to character-
ize errors and sensitivity (Rodgers, 2000; Bowman et al.,
2006). This characterization allows data to be assimilated
into chemistry and transport models (Jones et al., 2003) com-
pared to other datasets (Rodgers and Connor, 2003; Worden
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et al., 2007), and prior vectors to be changed (Rodgers and
Connor, 2003). However, these approaches are based on the
assumption that the retrieved atmospheric state is spectrally
linear with respect to the “actual” atmospheric state, i.e. that
a linear expansion of the forward model is accurate between
the retrieved and true atmospheric states to significantly bet-
ter than predicted errors. We test the impact of this linearity
assumption on post facto linear operations on TES retrievals
such as “swapping” the a priori profile.

Using the most accurate prior will lead to the most ac-
curate results; however conversion to a uniform prior can
be useful for scientific analysis, such as highlighting sea-
sonal cycles, comparing observations from two different re-
gions that may have different priors, or comparing results
from different satellites. Recent papers which have used
TES data linearly converted to a uniform prior include Zhang
et al. (2006) who examined the global distribution of TES
ozone and carbon monoxide correlations in the middle tro-
posphere, Logan et al. (2008) who studied the effects of the
2006 El Nino on carbon monoxide, ozone, and water, and
Luo et al. (2007) who compared TES and the Measurements
of Pollution in the Troposphere (MOPITT) instrument car-
bon monoxide results and explores the influence of the a pri-
ori. MOPITT processing currently uses a uniform prior to
reduce artefacts arising from the prior and maximize the im-
pact of the satellite data (Deeter et al., 2003).

The Tropospheric Emission Spectrometer (TES), on the
Earth Observing System Aura (EOS-Aura) platform, obtains
high spectral resolution nadir infrared emission measure-
ments (650 cm−1 – 2260 cm−1, with spectral sampling dis-
tance of 0.06 cm−1 for nadir viewing mode) with about 3500
observations every other day (Beer, 2006). The TES data
provides profile retrievals for atmospheric temperature, wa-
ter (Shephard et al., 2008), HDO (J. Worden et al., 2007),
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Figure 1. 

(a) Variable Initial Guess / prior (b) Standard processing (SS) 

(c) Converted to uniform prior (SSC) (d) Retrieved w/ uniform prior (SU) 

Fig. 1. TES retrieved ozone at 681 hPa. Panel(a) shows the standard globally variable TES a priori and initial states, with observation
location shown with white +’s. Panel(b) shows the TES standard retrieval (SS). Panel(c) shows the TES standard retrieval converted to a
uniform prior (SSC). Panel(d) shows TES retrieved with a uniform prior (SU). Panels (c) and (d) should agree in the linear regime. The
circle in panel (a) shows the value of the uniform prior at this pressure which is 48 ppb. The color scale, which is the same for all plots, is
shown below all 4 plots.

ozone (H. Worden et al., 2007; Nassar et al., 2008; Osterman
et al., 2008; Richards et al., 2008), carbon monoxide (Rins-
land, 2006; Luo et al., 2007a, b), and methane, as well as
surface temperature, emissivity, and cloud information (El-
dering et al. 2008). For details on the TES instrument, see
Beer et al., 2006, and for information on the retrieval pro-
cess see Bowman et al. (2006) and Kulawik et al. (2006a).
TES products and documentation are publicly available from
the Langley Atmospheric Science Data Center (ASDC),http:
//eosweb.larc.nasa.gov/PRODOCS/tes/tabletes.html

The TES retrieval strategy is briefly listed to give the
reader the context of the TES retrievals of ozone, carbon
monoxide, and methane for v003 data. (1) The first retrieval
step is a cloud detection step which compares the observed
and calculated brightness temperatures in the 11 um region
and sets the initial cloud optical depth, and an initial cloud
retrieval step is done if the estimated cloud optical depth is
large. (2) Atmospheric temperature, water, ozone, surface

temperature, cloud optical depths, cloud pressure, and emis-
sivity (if over land) are jointly retrieved. (3) Water and HDO
are jointly retrieved. (4) Carbon monoxide, surface tempera-
ture, emissivity (if land scene), and cloud optical depths are
retrieved. (5) Finally, methane, surface temperature, emis-
sivity (if land scene), and cloud optical depths are retrieved.
Note that cloud optical depths and emissivity are re-retrieved
for each new spectral region, as they vary by frequency. After
each step is completed, the retrieval is assessed as to whether
it has converged. Some of the quantities which are calcu-
lated and compared to thresholds are the radiance residual
and mean, changes in the retrieved surface temperature or
emissivity, the amount of signal remaining in the residual;
and other known issues (Osterman et al., 2006). A master
quality flag, speciesRetrievalQuality, combines the checks
into a single quality flag, and is written to the TES product
files.

Atmos. Chem. Phys., 8, 3081–3092, 2008 www.atmos-chem-phys.net/8/3081/2008/
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Figure 2. 

(a) Variable Initial Guess / prior (b) Standard processing (SS) 

(c) Converted to uniform prior (SSC) (d) Retrieved w/ uniform prior (SU) 

Fig. 2. TES retrieved carbon monoxide at 681 hPa. Panel(a) shows the variable TES a priori. Panel(b) shows the TES standard retrieval
(SS). Panel(c) shows the TES standard retrieval converted to a uniform prior (SSC). Panel(d) shows TES retrieved with a uniform prior
(SU). Panels (c) and (d) should agree in the linear regime. The circle in panel (a) shows the approximate value of the uniform prior at this
pressure (97 ppb).

 3

 

-120 -60 0 60 120

-120 -60 0 60 120

-6
0

-3
0

0
30

60

-60
-30

0
30

60

O3 VMR Fraction at 681 hPa 

 

-0.250

-0.125

0.000

0.125

0.250

      

 

-120 -60 0 60 120

-120 -60 0 60 120

-6
0

-3
0

0
30

60

-60
-30

0
30

60

CO VMR Fraction at 681 hPa 

  

 

 

Figure 3.  

Fig. 3. VMR fraction difference for SSC-SU for O3 (left) and CO (right) at 681 hPa. These plots show that the outliers occur predominately
in the tropics.
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Figure 4.  

(c) (d) 

(a) (b) 

Fig. 4. Statistical comparison between non-linear retrievals using a uniform prior (SU) vs. conversion to a uniform prior using Eq. (??)
(SSC). The black line shows the histogram of the Fractional difference of (SSC – SU) for 3 different pressure levels. The green dashed line
is the mean TES reported total error. The lower right plot is the standard deviation of the VMR fractional difference averaged over the entire
profile.

A retrieved profile can be expressed as a first order expan-
sion in(x−xa) (Rodgers, 2000; Bowman et al., 2002):

x̂ = xa + A(x − xa) + ε (1)

wherexa , x̂, andx are the prior, retrieved, and true pro-
file state in log(volume mixing ratio (VMR)),A is the av-
eraging kernel matrix (Backus and Gilbert, 1970; Rodgers,
2000) which describes the sensitivity of the retrieval to the
true state, andε represents the error resulting from spec-
tral noise, spectroscopic errors, cross-state error, and inac-
curacies of non-retrieved species, as discussed in Worden et
al. (2004).

Adjustment to a new prior can be done using the following
equation (Rodgers and Connor, 2003):

x̂′
= x̂ + (A − I)(xa − x′

a) (2)

wherexa andx′
a are the original and new priors, respectively,

x̂ is the original retrieved value, and̂x′ is the retrieved value
with the new prior. Equation (2) shows that when averaging
kernel matrix,A, is unity then changes to the prior have no
effect on the retrieved value. Conversely when the averaging

kernel matrix is zero, Eq. (1) shows that the retrieved state
is equal to the prior. The averaging kernel is almost always
somewhere in between these two extremes for atmospheric
retrievals. In the case of TES, the retrieval vectorx̂ includes
not only the trace gas of interest, but also surface and cloud
properties, and for the ozone retrieval, also water and temper-
ature. Whenx′

a is modified for only the trace gas of interest,
Eq. (2) shows that the propagation tox̂′ for the trace gas of
interest is the same whether the full retrieval vector is con-
sidered or whether the matrices and vectors in Eq. (2) refers
to just the trace gas of interest.

Equation (1) assumes not worse than moderate non-
linearity between the retrieved state and the true state while
Eq. (2) assumes not worse than moderate non-linearity be-
tween the two retrieved states (Rodgers 2000). As a conse-
quence, the averaging kernel derived from a non-linear op-
timal retrieval with a priori,xa , should be sufficiently close
to an averaging kernel derived from a non-linear optimal re-
trieval with a priori,x′

a . This linearity assumption is tested
with a day’s worth of TES data. For non-linear optimal esti-
mates, the initial guess used in the minimization does not af-
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Table 1. Summary of the differences between the linear vs. non-linear application of a uniform prior for ozone.

(a) all good quality cases

Quantity 681 hPa 178 hPa 38 hPa Average

1-sigma % difference 2.0% 3.8% 1.3% 2.7%
w/in 5% difference 78% 69% 78% 64%
95% w/in range ±0.15 ±0.26 ±0.12 ±0.18
Slope (see Fig. 5) −0.04 0.00 −0.07 −0.02*

(b) screened by convergence which is indicated by the initial guess results

Quantity 681 hPa 178 hPa 38 hPa Average

1-sigma % difference 1.1% 1.6% 1.0% 0.7%
w/in 5% difference 95% 88% 94% 90%
95% w/in range ±0.06 ±0.12 ±0.05 ±0.06
slope 0.01 0.01 −0.02 −0.01*

∗ The slope is calculated for the mean difference of the profiles. The other average quantities are calculated for the rms difference.

Table 2. Summary of the differences between the linear vs. non-
linear application of a uniform prior for carbon monoxide.

Quantity 681 hPa 383 hPa Average

1-sigma 0.8% 2.0% 1.1%
w/in 5% difference 89% 87% 88%
95% w/in range ±0.09 ±0.10 ±0.22
Slope 0.02 0.07 0.02*

∗ The slope is calculated for the mean difference of the profiles. The
other average quantities are calculated for the rms difference.

fect the solution as long as that solution represents the global
minimum. On the other hand, if a local minimum is reached,
then neither Eq. (1) nor Eq. (2) may be valid and the esti-
mated profile will depend on the choice of the initial guess.
The dependency of the retrieval on the initial guess is tested
as well by also comparing standard retrievals to those that are
retrieved using a globally constant initial guess.

Additionally, the reader should be aware that the choice of
prior will affect the predicted error in the retrieval through the
smoothing error component, which depends on the a priori
covariance matrix. The a priori covariance matrix is the ex-
pected covariance between the prior and the true state; if the
global mean is chosen as the prior, the variance between the
prior and the true state will increase as compared to choosing
a more accurate prior that depends on latitude and longitude.
It is apparent in Figs. 1 and 2 that the errors in the estimated
state are much larger for the globally uniform prior than for
the original prior, especially in the polar region where sen-
sitivity is less and the prior has changed a great deal. The
increased errors will be the same whether the profile was re-
trieved non-linearly or estimated using Eq. (2).

Table 3. Summary of the differences between the linear vs. non-
linear application of a uniform prior for methane.

Quantity 287 hPa Average

1-sigma 0.3% 0.3%
w/in 5% difference 100% 100%
95% w/in range ±0.01 ±0.02
slope −0.01 −0.01*

∗ The slope is calculated for the mean difference of the profiles. The
other average quantities are calculated for the rms difference.

2 Method

One day’s worth of data from the TES instrument, consisting
of 1152 globally distributed profiles taken 20–21 September
2004, was processed in three different ways with the dataset
designation shown in parentheses:

1. standard processing with variable initial guess and prior
(SS)

2. processing with variable initial guess and uniform prior
(SU)

3. processing with uniform initial guess and variable prior
(US)

4. standard processing converted linearly to a uniform
prior using Eq. (2) (SSC)

The data was processed with prototype software which
created products equivalent to the publicly available v003
product, with tightened convergence criteria which will be
included in v004 processing. For dataset SS, the initial guess

www.atmos-chem-phys.net/8/3081/2008/ Atmos. Chem. Phys., 8, 3081–3092, 2008
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 Figure 5.  

(a) (b) 

Fig. 5. Change in (SSC-SU) as a function of the change in the prior. The colors represent density of points using the same color progression
as used in Figs. 1 and 2, where red indicates the highest density of points. The calculated slope is shown as a red line. These results indicate
that less than 10% of the prior’s change will end up as unbiased fluctuations in the answer.
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Figure 6. 

(a) (b) 

Fig. 6. Statistical comparison between non-linear retrievals using a globally constant initial guess vs. variable initial guess. The black line
shows the histogram of the VMR fractional difference for SS-US for 2 different pressure levels (681 and 178 hPa).

and the prior are the same and vary by latitude and longitude
as described below. For dataset SSC, the standard process-
ing (SS) result is converted to a global uniform prior using
Eq. (2). Datasets SSC and SU should be equivalent; assum-
ing Eq. (2) is valid. Similarly, datasets SS and US should be
equivalent since, as seen in Eq. (1), the initial guess should
not impact the final answer, assuming convergence to the
global minimum is achieved. For the global uniform prior
or initial guess, the global average was created by taking a
linear average over all priors or initial guesses for the run.
The initial guess and prior for atmospheric temperature, sur-
face temperature, and water are taken from the Global Model
Assimilation Office (GMAO) (Rienecker et al., 2006). For
ozone, carbon monoxide, and methane, the prior/initial guess
are taken from a climatological MOZART-3 run (Brasseur et
al., 1998; Park et al., 2004) which has averages binned by
latitude and longitude bands (typically 10–30 degree latitude
bands and 60 degree longitude bands).

To compare datasets quantitatively, histograms were made
of the fractional differences defined as:

fractional difference= x̂1 − x̂2 (3)

Sincex̂ represents Log(VMR), a value of 0.10 for the frac-
tional difference indicates a 10% difference.

We also plot differences between (SSC-SU) versus the
amount of change in the prior, which shows whether there is
a breakdown in the accuracy of the results if changes to the
prior are too large, and shows whether changes in the prior
introduce biases in the result. Linear regression is used to
calculate the slope of differences between (SSC-SU) versus
the change in the prior.

Finally, averaging kernels at the result state are compared
between the SSC and SU datasets to see if the reported de-
grees of freedom are consistent when the prior is swapped.
This gives an indication of the relative sensitivities of the
signal to the trace gas profile amounts, and whether the er-
ror analysis is cross-applicable.

Atmos. Chem. Phys., 8, 3081–3092, 2008 www.atmos-chem-phys.net/8/3081/2008/
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Figure 7.  

(a) (b) 

Fig. 7. The effects of removing outliers on the prior comparison. Cases which are outliers from swapping the initial guess are removed from
the prior comparison. The remaining cases show better characteristics compared to Figs. 4 and 5.

3 Results

A TES global survey consisting of 1152 globally distributed
nadir observations from 20–21 September 2004 was run for
three different configurations for the prior and initial guess,
as described in the methods section. Following the non-linear
retrievals, the standard retrieval dataset (SS) was converted to
the fixed prior dataset (SSC) using Eq. (2).

Figures 1 and 2 show the initial and retrieved values at
681 hPa for ozone and carbon monoxide, respectively, for
datasets SS, SU, and SSC. The TES nadir observation lo-
cations are shown with white +’s and interpolation is done
between the TES observation locations. The TES standard
prior for both figures (panel a) is taken from a climatological
run of the MOZART-3 model binned by 60 degrees longi-
tude, and 10 degrees latitude. For the ozone prior, shown in
Fig. 1, panel (a), enhancements are seen in the Northern lat-
itudes (>60 N) and an enhanced band from South America
through southern Africa to Australia (the biomass burning
region (discussed in Bowman et al., 2008)), and a minimum
is seen north of Australia. The standard retrieval shown in
Fig. 1b represents these same patterns with a marked en-
hancement in the biomass burning region. The constant
prior cases (panels c and d) agree remarkably well with each
other indicating that the linearly converting the prior is valid
throughout most of the data. The features in panels c and d
can be confidently attributed to the TES data without precon-
ceptions introduced by the prior; however large differences
between panels (b) and (c) or (d) indicate a dependence on
the prior rather than the data. The absence or presence of par-
ticular points passing quality flags can cause minor changes
in the three different results. Most of ozone enhancements
between 60 S–60 N remain between the standard processing
and the converted prior (Fig. 1b and c) indicating that TES re-
trievals are sensitive at this pressure level over those regions.
Poleward of 60 N, patterns seen in the original prior and the
standard retrieval are absent, indicating that TES retrievals
are insensitive in those regions.

Figure 2 show the same plots as in Fig. 1, for carbon
monoxide. The carbon monoxide prior (Fig. 2a) indicates
enhancement over South America and southern Africa (in
the biomass burning region), north of 40 N, and over India
and southeast Asia. The standard retrieval Fig. 2b displays
marked enhancement over the prior in eastern South Amer-
ica and western sub-Sahara Africa, and in eastern Asia. The
uniform prior results, panels (c) and (d), show good agree-
ment with each other. The East Asia enhancement is present
but muted and the pattern and values in the biomass burn-
ing region are very similar between panels (b), (c), and (d),
however the CO enhancement poleward of 40 N is markedly
reduced in (c) and (d) indicating that TES retrievals have less
sensitivity in those regions.

Figure 3 shows global maps of the VMR fractional differ-
ence (using Eq. 3) for O3 and CO at 681 hPa for the SSC
and SU datasets. The plots show that outliers occur predom-
inately in the tropics, and to a lesser extent, Antarctica. The
pattern may suggest two cloud layers, which occur frequently
in the tropics (Zipser, 1969), could contribute to the retrieval
variation since TES assumes one cloud layer (Kulawik et al.,
2006b), however determining correlations between outliers
and atmospheric conditions was not explored further in this
paper.

3.1 Statistical analysis

To quantify differences, statistical analysis was done on the
681 observations which have good quality flags for all three
runs (SS (and by extension SSC), SU, and US). The master
quality flag is set to screen out about 80% of the bad cases,
but will also screen out perhaps 20% of good cases as well
(Osterman et al., 2006).

A histogram of the fractional difference between the SSC
and SU datasets shows the overall accuracy of changing the
prior using Eq. (2) vs. using a uniform prior in the non-linear
retrieval. From this histogram several relevant quantities can
be calculated: (1) the fraction of the observations that are
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within 5% of each other, (2) the fractional difference that
encompasses 95% of the observations, and (3) the standard
deviation of the fractional difference.

3.1.1 Results for ozone

In Fig. 4, a histogram of the VMR fractional difference, us-
ing Eq. (3), is shown comparing dataset SSC (the standard
retrieval converted to a uniform prior using Eq. (2) to SU
(the non-linear retrieval using a uniform prior) at 681, 178,
38 hPa, and over the entire profile. Figure 4 shows that for
ozone, 70–80% of the SSC and SU results are within 5% dif-
ference. It is not surprising that histogram for the 177.8 hPa
pressure level has the widest spread among the 3 pressure
levels chosen because ozone at that pressure level has an
order of magnitude variability due to the variations in the
tropopause height; a globally constant value for ozone be-
tween 100–300 hPa is very challenging to the retrieval. Note
that the errors introduced by changing the prior are small
when compared to the TES reported total error (green dashed
line in Fig. 4). In comparison, the VMR fractional difference
of the prior had a 1-sigma value of 0.41, 1.08 (i.e. 108%), and
0.16 at 681, 178, and 38 hPa, respectively, indicating signifi-
cantly more spread in the prior than in the resulting retrieval.
The 1-sigma values for the results are shown in Table 1.

The histograms in Fig. 4 all show sharp peaks centered
near zero but also show more outliers than would be expected
from a Gaussian distribution. To determine if the outlying
points are a result of a breakdown in the linear transform
in Eq. (2) that occurs when the a priori change is too large,
the difference (SSC-SU) is plotted versus the change in the
prior, averaged over the profile, in Fig. 5. Figure 5 shows no
obvious difference between small and large prior changes.
In Fig. 5, panel (a) shows the rms of (SSC-SU), and panel
(b) shows the mean difference, both averaged over the entire
profile. For the rms difference, the slope tells whether, on av-
erage, larger differences in the prior lead to larger differences
in the results. This slope was 0.10. For the mean difference,
the slope indicates if changes in the prior are correlated with
the error in Eq. (2) predictions. If a positive slope is found,
it would indicate that sensitivity is significantly increased at
the new convergence location compared to the old location
when the change in the prior is positive. The slope of the
mean difference was found to be−0.02. Together these re-
sults mean that the error in the answer will be less than 10%
of the prior’s change, and will be unbiased with respect to
the prior’s direction of change. The lack of bias suggests that
the differences are not a function of the choice of the uniform
prior; further testing with a globally uniform initial guess in
the next section strengthens this conclusion.

To check whether the outliers in Fig. 4 are a result of con-
verging to a different local minimum, a run was done with a
globally uniform initial guess (dataset US). The initial guess
is the starting location for the retrieval, which iterates un-
til convergence is reached. Since the initial guess is not in-

cluded in the cost function, which determines the final solu-
tion, it should not affect the retrieval assuming the retrieval
gets to the global minimum. However, an initial guess far
from true can lead the retrieval to a non-global minimum, and
systematic errors in the forward model or observed radiance
can roughen the error landscape and introduce local minima.
A more complete description of TES retrievals is discussed
in Bowman et al. (2006). Theoretically, the initial guess does
not influence the results (as seen also in Eq. 1) and dataset US
should converge to the same answer as the standard retrieval
(dataset SS). Differences in these datasets indicate conver-
gence to different local minima, but we do not know whether
either has reached a global minimum. The histograms from
this run for ozone are shown in Fig. 6. In general, histograms
of SS vs. US show a sharper peak and more outliers than
the histograms from Fig. 4. For O3 at 681 hPa, for example,
17% of observations change greater than the TES reported
error compared to 2% for results shown in Fig. 4.

Figure 7 has all “initial guess outliers” removed, and com-
pares remaining observations for datasets SSC and SU. “Ini-
tial guess outliers” are set to be those where the average rms
difference over the profile between SS and US were more
than 5%, and represent observations that show a tendency to
converge to different minima. Results are shown in Fig. 7
for 681 hPa, and correlations shown for the profile standard
deviation. In this case, there are significantly fewer outliers
(compared to Figs. 4 and 5). The right plot in Fig. 7 shows
that the spread in the prior is still about the same, but that the
spread in the result is markedly less. This means that the out-
liers in Figs. 4 and 5 likely result from retrievals converging
to different local minima. Table 1 summarizes the results for
Figs. 4, 5, and 7 for ozone.

As discussed following Eq. (2), when a retrieval is not sen-
sitive, it will converge to the prior and exchanging the prior
will move the retrieval to the new prior, as seen for retrievals
poleward of 60 N in Fig. 1. The effects of changing the prior
on the most sensitive points is of interest, so statistics were
calculated for only those points with a corresponding aver-
aging kernel diagonal value of 0.04 or greater (retaining only
the most sensitive half of the data). For 681 hPa, the num-
ber of samples dropped from 648 to 290; the bias increased
from 0.01 to 0.02, the 1-sigma value increased from 2.0%
to 2.7%, the 3-sigma value increased from 15% to 17%, and
the fraction within 5% error dropped from 78% to 65%. For
177.8 hPa and 38.3 hPa, the changes are smaller, for exam-
ple for 38.3 hPa the fraction within 5% error dropped from
78% to 72%. However the result that the error is unbiased
and smaller than the reported total error still holds true for
the most sensitive points.

3.1.2 Results for carbon monoxide

For TES retrievals, carbon monoxide is retrieved follow-
ing the retrieval of temperature/water/ozone steps. Conse-
quently, changes to the temperature, surface temperature,
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Figure 8.  

(c) (d) 
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Fig. 8. Statistical comparison for carbon monoxide between non-linear retrievals using a uniform prior vs. conversion to a uniform prior
using Eq. (2). The black line shows the histogram of the VMR fractional difference of SSC and SU using Eq. (3) for 2 different pressure
levels for carbon monoxide. The lower right panel shows the mean change in the result vs. the mean change in the prior.

or cloud parameters resulting from the uniform ozone prior
will propagate into differences in the carbon monoxide step.
Swapping only the carbon monoxide, rather than all the
species together, may improve on the results shown in this
study. Figure 8 shows the histogram of the fractional VMR
change for CO at 383 and 681 hPa (note Figs. 8 and 9 do not
have initial guess outliers removed). Additionally results are
shown for averages over the entire profile. Carbon monox-
ide shows fewer outliers beyond 10% than found with ozone.
Results for CO are summarized in Table 2. In comparison,
the VMR fractional difference of the prior had a 1-sigma
value of 0.30 and 0.17 at 681 and 381 hPa, respectively, in-
dicating significantly more spread in the prior change than in
the resulting retrieval.

3.1.3 Results for methane

Methane is also retrieved following the tempera-
ture/water/ozone steps, and changes to the temperature,
surface temperature, or cloud parameters resulting from the
uniform ozone prior will propagate into differences in the
methane step. The results seen in this study are likely to be

worse than the results from swapping only the methane. Fig-
ure 9 shows results at 287 hPa and for the whole profile, and
shows that changing to a uniform prior results in less than
a 1% difference in methane for 95% of the cases. Results
for methane are summarized in Table 3. In comparison, the
VMR fractional difference of the prior had a 1-sigma value
of 0.06 at 287 hPa indicating significantly more spread in the
prior change than in the resulting retrieval.

3.1.4 Error analysis differences when changing the prior

When one changes to a different prior following the nonlin-
ear retrieval, the error analysis available is the one calculated
at the original retrieval. This section determines whether this
error analysis is accurate by looking the change in the aver-
aging kernel between runs SS and SU. Using the total and
individual level degrees of freedom for signal from the av-
eraging kernel diagonal, we compare the mean and the frac-
tional differences for the degrees of freedom. Note that the
fractional differences for individual levels are calculated for
values greater than 0.001 so as to only compare pressure lev-
els which have sensitivity.
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Figure 9.  
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Fig. 9. Statistical comparison for methane between non-linear retrievals using a uniform prior vs. conversion to a uniform prior using Eq. (2).
The black line shows the histogram of the Fractional difference using Eq. (3) of SSC-SU for 287 hPa. The red line shows the histogram of
the differences in the priors, which show significantly more spread. The upper right panel shows the histogram of the average error for all
pressures. The lower right panel shows the difference in the retrieval result vs. the difference in the prior for 287 hPa, and the lower right is
the same for the mean difference over the whole profile.

For ozone, the mean degrees of freedom for signal (DOF)
is 3.80. The mean DOF changes 0.01 between the two runs.
The rms difference of the DOF is 0.04, which is about 1%.
The mean value of the averaging kernel diagonal between the
surface and 10 hPa is 0.069. The mean difference between
the two runs is 8×10−5, and the rms fractional difference of
the averaging kernel diagonals are 15%.

For retrievals in Log(VMR), sensitivity is positively cor-
related to the VMR (Deeter et al., 2007). Retrievals with
a 10% increase in the retrieved ozone column density also
have about a 0.15 increase in the degrees of freedom, a 4%
increase. Since the uniform prior is set to the global mean,
this does not cause a biased change between the two runs for
this test.

For carbon monoxide, the mean DOF is 1.09, with a mean
difference of 0.004 between the two runs. The rms difference
is 0.02, or 2%. The mean value of the averaging kernel di-
agonal between the surface and 10 hPa is 0.039. The mean
difference between the two runs is 0.0006, and the rms frac-
tional difference of the averaging kernel diagonals are 22%.

For methane, the mean DOF is 1.27, with a mean differ-
ence of 8×10−6 between the two runs. The rms difference
is 0.04, or 3%. The mean value of the averaging kernel di-
agonal between the surface and 10 hPa is 0.024. The mean
difference between the two runs is 0.00003, and the rms frac-
tional difference of the averaging kernel diagonals are 12%.

For all three species, the total DOF varies by less than
3% when the prior is changed, and the individual averaging
kernel diagonal values vary by about 20%. This indicates
that the error bars and sensitivities may have about a 20%
unbiased change for any particular level when the prior is
changed, however the total DOF remains fairly impervious
to changes in the prior.

4 Conclusions

Linearly converting the prior following a non-linear retrieval
is shown to have a minor effect on the TES trace gas re-
trievals as compared to a non-linear retrieval using a uniform
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prior, when compared to the expected total error. Histograms
of differences between these two methods show a sharp peak
centered near zero with some outliers, especially for ozone.
Further analysis of the characteristics of the outliers, and
comparisons to retrievals with a uniform initial guess indi-
cates that the many of the outliers result from convergence
to a local minimum rather than breakdown of the linear con-
version in Eq. (2). For ozone, the 1-sigma difference is less
than 4% for each of three pressure levels studied, and the
mean change for all levels is 2.7%. For methane, the 1-sigma
change is 0.3% at 287 hPa and 0.3% for the profile aver-
age, and for carbon monoxide the 1-sigma change is about
2%. The degrees of freedom comparison between shows a
1-sigma difference of less than 3% for all the species, and
shows changes of the averaging kernel diagonal are on the
order of 20% for individual levels.
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