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Abstract. We measured the number concentrations of cloud
condensation nuclei (CCN) and the size distributions of
CCN/CN (CN: condensation nuclei) ratios at supersatura-
tions (SSs) of 0.097, 0.27, 0.58, and 0.97% at Jeju Island,
Korea during March-April 2005. We made simultaneous
measurements of aerosol inorganic ions, water-soluble or-
ganic carbon (WSOC), organic carbon (OC), and elemental
carbon (EC) in PM2.5. The CCN/CN ratios increased with in-
creasing particle diameter, and the diameter at CCN/CN=0.5
was defined asD50. D50 represents the activation dry diame-
ter of atmospheric particles. The averageD50 atSS=0.097%
and 0.97% was 136±17 nm and 31±3 nm, respectively. The
temporal variation ofD50 at SS=0.097% was correlated
with the mass fraction of water-soluble components (inor-
ganic ions + WSOC), indicating that the temporal variation
of CCN activity was mainly controlled by changes in the
water-soluble components fraction. The critical dry diam-
eter (Dcrit), which is the threshold dry diameter for CCN
activation, was calculated from the observed aerosol chemi-
cal compositions by K̈ohler theory for comparison withD50.
The D50 at SS=0.097% was correlated (r2=0.48) with cal-
culatedDcrit, althoughDcrit was larger thanD50 by 20–29%
on average. The systematic difference betweenD50 andDcrit
could be caused by the size dependence of the aerosol chem-
ical compositions or surface tension lowering caused by the
mixing of water-soluble organic compounds. This difference
corresponds to a 27±14% uncertainty in the CCN number
concentration estimated from the observed particle number
size distribution.
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1 Introduction

A subset of atmospheric particles acts as cloud condensation
nuclei (CCN). An increase in CCN number concentration
causes an increase in cloud droplet concentration and a de-
crease in droplet size, which in turn impacts cloud albedo and
precipitation. Consequently, CCN can significantly influence
climate through cloud processes (Twomey, 1974; Lohmann
and Feichter, 2005, and references therein).

The number concentration of CCN is determined by the
number concentration of aerosol particles and the fraction of
CCN active particles. This fraction is often denoted as the
CCN/CN ratio because condensation nuclei (CN) counters
have been used for total particle number concentration mea-
surements (Seinfeld and Pandis, 2006). CCN/CN strongly
depends on the size and chemical composition of aerosols.
The influence of aerosol chemical composition and number
size distribution on the bulk (size-unresolved) CCN/CN can
be separated by measuring CCN/CN for size-selected par-
ticles. In particular, when aerosol particles are internally
mixed, we can determine the threshold diameter from the
measurements (Dusek et al., 2006). The threshold diame-
ter can also be calculated by Köhler theory. Many laboratory
studies have measured CCN/CN ratios of size-selected parti-
cles for comparison with theoretical calculations (e.g. Corri-
gan and Novakov, 1999; Raymond and Pandis, 2002). These
experiments have shown that size-resolved CCN/CN ratios
of laboratory-generated particles can be explained by Köhler
theory. However, only a few studies have employed this mea-
surement method for atmospheric observations (e.g. Dusek et
al., 2006), leading to an insufficient understanding of control-
ling factors for the CCN activation of atmospheric particles.
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Figure 1 
 

Fig. 1. CCN observation system used for this study. The three-way
valve placed upstream of the CCN counter was used to select the
sampling mode (see text for detailed explanation).

CCN concentrations are often influenced by anthro-
pogenic particles (Twomey, 1974; Hudson and Yum, 2002).
In recent years, anthropogenic emission of aerosol precur-
sors (e.g. SO2 and NOx) from Asia has increased signifi-
cantly (Streets et al., 2000; Akimoto et al., 2003; Richter
et al., 2005). Remote sensing studies have indicated that the
aerosol particles derived from anthropogenic pollutants from
Asia have changed cloud radiative properties such as opti-
cal depth in this region (Chameides et al., 2002; Kawamoto
et al., 2006). Thus, it is important to study CCN activity
in this region for a more accurate assessment of the impact
of anthropogenic aerosol on climate. However, only a few
CCN studies have been performed in this region (e.g. Mat-
sumoto et al., 1997; Yum et al., 2005), and the size-resolved
CCN/CN ratios have not been measured so far.

In this study, we have measured size-resolved CCN/CN
ratios and CCN number concentrations at Gosan, Jeju Is-
land, Korea, in March and April 2005 during the United
Nations Environmental Programme (UNEP) Atmospheric
Brown Cloud – East Asian Regional Experiment 2005
(ABC-EAREX2005) campaign. In addition to the CCN
measurements, aerosol chemical composition was simulta-
neously observed. Observed threshold diameters for CCN
activation are compared with the mass fractions of aerosol
chemical compositions. Threshold diameters for activation
(Dcrit) are calculated and compared with the observed thresh-
old diameter to investigate the controlling factors ofDcrit.

2 Theory

The equilibrium water vapor pressure (S) of an aerosol par-
ticle can be calculated by K̈ohler theory. According to the
theory,S is described as follows (e.g. Roberts et al., 2002;
Mochida et al., 2006):

ln S =
A

dwet
−

Bd3
dry

(d3
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dry)
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ρi
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(1)

whereddry is the dry diameter of a particle anddwet is the di-
ameter of a droplet under equilibrium conditions. The suffix
i denotes the properties of thei-th solute compound.Mw is
the molecular weight of water;Mi is the molecular weight of
solute;ρw is the density of water;ρi is density of solute;σ

is the surface tension;R is the gas constant;T is the temper-
ature;νi is the stoichiometric number of ions and molecule;
φi is the osmotic coefficient;εi is the degree of dissolution;
andmi is the mass mixing ratio of thei-th solute. The first
term on the right-hand side represents an increase in the equi-
librium vapor pressure of water due to surface tension (the
Kelvin effect). The second term on the right-hand side de-
notes the decrease in the equilibrium vapor pressure of water
because of solute mixing (Raoult’s effect). When we con-
siderS for an aerosol particle, it has a maximum value at a
certaindwet (critical droplet diameter). The supersaturation
(SS: SS=S−1) that corresponds to thisS is called the criti-
cal supersaturation (SSc). Particles can be activated to cloud
droplets if theSS of the environment is higher than theirSSc.

If we assume thatA andB are constants anddwet is much
larger thanddry, SSc can be expressed as follows:

ln(1 + SSc)=

√√√√ 4A3

27Bd3
dry

. (2)

This equation shows thatSSc decreases with particle di-
ameter. Thus, at a certainSS, there exists a threshold value
of ddry above which all aerosol particles act as CCN. We de-
note this diameter as the critical dry diameter (Dcrit).

3 Experiment

3.1 CCN measurement

Figure 1 shows the CCN observation system used for this
study. In this system, the relative humidity of the sample
flow was reduced using two diffusion dryers in series (TSI
Model 3062). Silica gel was replaced periodically (about 1
time in 10 days), and no systematic change in size-resolved
CCN spectra was observed before or after the replacement.
Then, particles were charged with a241Am bipolar neutral-
izer and introduced to a differential mobility analyzer (DMA:
TSI Model 3081). The DMA classified particles by their
electrical mobility. The voltage applied to the DMA was
scanned stepwise to change the diameter of the classified par-
ticle (Table 1). The sheath to-sample flow ratio of the DMA
was set to 10:1. Classified particles were introduced to a
condensation particle counter (CPC: TSI Model 3022) and
a cloud condensation nuclei counter (CCNC: Droplet Mea-
surement Technologies, Inc.) (Roberts and Nenes, 2005).
The CPC monitored the number concentrations of conden-
sation nuclei (CN), and the CCNC measured number con-
centrations of CCN. The sample flow rate of the CCNC
was set to 0.045 l/min, and the sheath flow rate was set to
0.455 l/min. The temperature gradient (1T ) of the thermal
gradient chamber in the CCNC was changed periodically to
alter theSS in the chamber. Four1T s (3.08, 4.62, 9.24,
and 15.4 K) were used in this study.SSs corresponding to
these1Ts were calibrated with ammonium sulfate particles
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Table 1. Calibration results and operating conditions of the CCN measurement system shown in Fig. 1.SS was calculated at 300 K and
72 mN/m by the ideal solution approximation. The values in parentheses showSS calculated using the osmotic coefficient of Clegg et
al. (1996).

1T (K) Activation dry diameter of (NH4)2SO4(nm) SS (%) Particle diameters classified by the DMA(nm)

3.08 125±3 0.097(0.10) 80, 100, 110, 120, 130, 140, 160, 180, 200, 240, 290
4.62 63±2 0.27(0.30) 60, 65, 70, 75, 80, 85, 90, 100, 130, 160, 200, 240, 290
9.24 38±1 0.58(0.65) 35, 40, 45, 50, 60, 70, 80, 100, 130, 160, 200, 240, 290
15.4 27±1 0.97(1.1) 25, 30, 35, 40, 50, 60, 80, 100, 130, 160, 200, 240, 290

as described by Kuwata et al. (2007). The calibration was
performed at the observation site before and after the cam-
paign. There are several different methods for the calculation
of the water activity of ammonium sulfate particles (Krei-
denweis et al., 2005, and references therein). We chose the
ideal solution approximation (φ=1) in calculating theDcrit
of atmospheric particles (Sect. 5). Therefore we used this
approximation for the interpretation of the calibration results
to ensure consistency, althoughSSs calculated using the os-
motic coefficient of Clegg et al. (1996) are likely to be more
plausible than the ideal solution approximation, as it is based
on precise experimental data. We also showSSs calculated
using the osmotic coefficients by Clegg et al. (1996) for ref-
erence in parentheses in Table 1. The Debye – Hückel con-
stant is needed to calculate the osmotic coefficient of Clegg et
al. (1996) because it is based on the Pitzer model. The Debye
– Hückel constant at 300 K was calculated by the equation
given by Clegg et al. (1994).

Multiply charged particles were included in the classified
particles, therefore an inverse analysis was performed for
CCN and CN size distribution data for multiple-charge cor-
rection. The STWOM algorithm (Markowski, 1987) was
used to obtain size distributions of CN and CCN. In this
calculation, the equilibrium charge distribution (Wieden-
sohler, 1988) and the DMA transfer function derived by
Knutson and Whitby (1975) were included in the kernel
function. The raw data for CN and CCN were linearly inter-
polated so that the interval of each bin was1 logdp=0.015.
Size-resolved CCN/CN ratios were calculated using the data
after the inverse analysis.

The three-way valve in Fig. 1 was switched once every
30 min for the direct measurement of the CCN number con-
centration in ambient air. It took 30 min for the measurement
at eachSS, and 2 h were required for the entire measurement
cycle.

3.2 Measurements of aerosol composition, size distribution

Inorganic components (NH+4 , Na+, K+, Ca2+, Mg2+, NO−

3 ,
SO2−

4 , Cl−) were measured by a particle-into-liquid sampler
combined with ion chromatography (PILS-IC) (Orsini et al.,
2003; Takegawa et al., 2005). The concentration of water-

soluble organic carbon (WSOC) was measured by PILS com-
bined with a total organic carbon analyzer (PILS-WSOC)
(Sullivan et al., 2004; Miyazaki et al., 2006, 2007). El-
emental carbon (EC) and organic carbon (OC) were mea-
sured by a semi-continuous thermal-optical carbon aerosol
analyzer (Sunset Laboratory, Inc.) (Bae et al., 2004; Kondo
et al., 2006; Miyazaki et al., 2006). PM2.5 cyclones were
used for these instruments. The detection limits of the
PILS-IC, PILS-WSOC, OC, and EC were estimated to be
0.01µg/m3, 0.1µg/m3, 1.0µg/m3, and 0.2µg/m3, respec-
tively (Takegawa et al., 2005; Kondo et al., 2006; Miyazaki
et al., 2006).

Aerosol number size distribution (10–300 nm) was mea-
sured with a scanning mobility particle sizer (SMPS 3936,
TSI). The SMPS used in this study comprised a DMA (TSI
Model 3081) and a CPC (TSI Model 3010). In addition, the
number concentration of particles larger than 10 nm (CN)
was measured by another CPC (TSI Model 3010) (Yum et
al., 2007). The concentration of carbon monoxide (CO) was
measured using a non-dispersive infrared analyzer (Horiba
APMA-360 model) (Tanimoto et al., 2007).

3.3 Measurement site

The observations were performed between 18 March and 5
April 2005 at Gosan (33.2◦ N, 126.1◦ E) on Jeju Island, Ko-
rea, as part of the Atmospheric Brown Cloud – East Asian
Regional Experiment 2005 campaign. The location of Gosan
is shown in Fig. 2. The instruments were placed in a con-
tainer located about 10 m back from the edge of a cliff. The
sampling inlets were made of stainless steel tubes with an in-
ner diameter of 7 mm. The top of the inlets was located about
4 m a.g.l.

The meteorological parameters at the Gosan site were
observed by the Korean Meteorological Administration
(KMA). During the observation period, the dominant winds
were northerlies and north-northwesterlies (more than 50%
of the observation period) associated with the Siberian high-
pressure system. This led to the frequent transport of anthro-
pogenic pollutants from the Korean Peninsula and China to
Gosan. Sawa et al. (2007) attributed the high concentrations
of CO at Gosan to the emissions from these regions based
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Figure 2 
 
 

Fig. 2. Map of Gosan and surrounding region.

on tagged CO-tracer simulations. More detailed descriptions
of the meteorological conditions and the transport of anthro-
pogenic pollutants can be found elsewhere (Sawa et al., 2007;
Miyazaki et al., 2007). Previous studies have also shown
that air masses observed at Gosan are heavily influenced by
anthropogenic emissions from East Asia (Carmichael et al.,
1997; Lee et al., 2006).

4 Results

4.1 CCN/CN size distributions

Figure 3 shows the average size-resolved CCN/CN ratio at
SS=0.097%, together with the data on specific days. The
CCN/CN size distribution of ammonium sulfate obtained
during calibration at the observation site (closed circles)
is also shown in this figure for comparison. In general,
CCN/CN increases with increasing diameter. At 02:00–
02:30 on 26 March, the CCN/CN size distribution of ambient
particles was very similar to that of ammonium sulfate. On
the other hand, on 28 March, the CCN/CN size distribution
shifted to a larger diameter, and the rate of increase was lower
than ammonium sulfate. In addition, the spectrum is signifi-
cantly different from a sigmoid function. This shift indicates
that the bulk aerosol chemical composition on 28 March was
significantly different from ammonium sulfate. The slower
rate of increase indicates the co-existence of different types
of aerosol particles with different activation curves. A con-
volution of sigmoid functions is not necessarily a sigmoid
function. Thus, the non-sigmoid shape of the spectrum can
be interpreted as a result of the co-existence of different types
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Figure 3 
Fig. 3. Size distributions of CCN/CN ratios of ammonium sulfate
and atmospheric particles atSS=0.097%. The average, standard de-
viation (gray area), and two examples of CCN/CN during the obser-
vation period are shown. The solid circles denote the experimental
data for ammonium sulfate under the observation conditions and the
solid line shows the fitting results of the experimental data.

of aerosol particles. The different width of the DMA trans-
fer function atD50 in diameter space (∼25%: estimated by a
Knutson-type DMA transfer function) is not large enough to
explain the lower increase rate, as the widths of the activation
curves are different by about a factor of 2.

We defined the threshold diameter for CCN activation to
compare it with the mass fraction of chemical compounds
and theoretically calculatedDcrit. In this study, the thresh-
old diameter was defined as the diameter corresponding to
CCN/CN=0.5(D50) because it represents the bulk chemical
composition. If aerosol particles were not fully activated,
D50 would not necessarily correspond to the threshold diam-
eter. In all cases shown in Fig. 3, the CCN/CN ratios ex-
ceeded 0.85 at 250 nm. In addition, no multi-step activation
was observed. These results suggest the appropriateness of
the definition of the unique activation diameter (D50). Previ-
ous studies on CCN activity of laboratory-generated particles
have shown thatD50 can be quantitatively compared with
the theoretically calculated activation diameters (e.g. Corri-
gan and Novakov, 1999; Raymond and Pandis, 2002).

4.2 Temporal variation of CCN and particle number size
distribution

4.2.1 CCN number concentration

Figure 4a shows the time series of the CCN number con-
centration. In general, the variation in the CCN number
concentration was correlated with that of CO concentration
(Fig. 4d). In particular, this correlation is clearly observed
at SS=0.097% (r2=0.74). Sawa et al. (2007) have reported
high CO concentration between 22–24 March and 30 March–
2 April due to transport of CO from the Korean Peninsula
and China. During these periods, CCN concentration also
increased (Fig. 4a and d). CO is emitted mainly by the in-
complete combustion of fossil fuels and biomass, and it is a
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Figure 4 
 

Fig. 4. Time series of(a) CCN number concentration,(b) aerosol size distribution,D50, (c) CN concentration, CCN (SS=0.97%) concen-
tration, and(d) CO concentration. The dashed lines in (b) shows theDcrit of ammonium sulfate at eachSS.

good indicator of emissions from combustion sources. Pri-
mary aerosols and aerosol precursors such as SO2 and NOx
are co-emitted with CO. Thus, these high CCN concentra-
tions were likely caused by the enhanced concentrations of
anthropogenic aerosols transported from these regions. The
average values and standard deviations of CCN number con-
centration are shown in Table 2. The average CCN number
concentration atSS=0.097% and 0.97% was 1200 cm−3 and
4000 cm−3, respectively. These concentrations are higher
than those of other remote areas of the world such as the
Island of Tasmania in Australia and Mace Head in Ireland by
about an order of magnitude (Covert et al., 1998; Reade et al.,
2006). CCN concentrations measured at Gosan during this
observation period were extensively compared with those ob-
tained in other regions by Yum et al. (2007). The CCN con-

centrations observed in this study are close to those of An-
myeon (Korea: see Fig. 2) in springtime of 2004 (SS=1%)
(Yum et al., 2005).

4.2.2 D50

Figure 4b shows the time series of the number size distribu-
tion of aerosol particles andD50. The Dcrit of ammonium
sulfate at eachSS is also shown as dashed lines in this fig-
ure. The average values ofD50 at SS=0.097% and 0.97%
were 136 nm and 31 nm, respectively (Table 2). In general,
theD50 is almost equal to or slightly larger (by∼25%) than
the Dcrit of ammonium sulfate (125 nm and 27 nm, respec-
tively). This means that theDcrit of ammonium sulfate is the
smallestDcrit of the atmospheric particles during the obser-
vation period.
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Table 2. Average values and standard deviations of the CCN number concentration,D50, andB. The surface tension of water was assumed
for the calculation ofB.

SS (%) CCN number concentration (cm−3) D50 (nm) B

0.097 1194±746 136±17 0.61±0.17
0.27 2543±1277 71±6 0.55±0.12
0.58 3496±1510 44±3 0.50±0.09
0.97 3996±1686 31±3 0.55±0.13

The temporal variation ofD50 at differentSSs did not al-
ways correlate. As shown in Eq. (2), the threshold diameter
for CCN activation depends onA andB, which are deter-
mined by the aerosol chemical composition. Thus, this dif-
ference in the temporal variations ofD50 at eachSS indicates
the difference in temporal variation of chemical composition
in different size ranges.

Using Eq. (2), we calculatedB assuming the surface ten-
sion of water. This parameter gives information on the chem-
ical composition (approximate number of solute ions and
molecules included in a unit volume) atD50 for eachSS.
The results are summarized in Table 2. The average values
of B did not depend onSS significantly, indicating that the
chemical composition averaged over the observation period
was rather uniform in the diameter range considered (30 to
160 nm).

4.2.3 Number size distribution

New particle formation events can have a significant impact
on CCN number concentration (e.g. O’Dowd et al., 2002;
Laaksonen et al., 2005). In Fig. 4b, new particle forma-
tion is clearly identified on 19, 25, 29, 30 and 31 March.
It can be seen more clearly in Fig .4c, which shows the parti-
cle number concentration measured by CPC and CCN num-
ber concentration (SS=0.97%). The concentration of CCN
(SS=0.97%) is a good indicator of particle number concen-
trations larger than 30 nm, as the average value ofD50 at
SS=0.97% is 31±3 nm (Table 2). Thus, the difference of
the number concentrations (CN-CCN (SS=0.97%)) repre-
sents the number concentration of particles between 10 and
30 nm. During the periods of new particle formation events
described above, an enhancement of the number concentra-
tion of small (10–30 nm) particles was observed, as indicated
by the large gap between CN and CCN concentrations. In
particular, the events occurring on 29 and 30 March were
important in that newly formed particles influenced the CCN
number concentration as a consequence of particle growth
beyondD50. Figure 5a and b shows the CCN number con-
centrations, particle size distributions, andD50 during this
event. The peak diameter of the size distribution obtained by
bimodal lognormal fitting is shown as red lines in Fig. 5b.

At 14:00 local time (LT) on 29 March, small (<20-nm)
particles appeared and began to grow. The peak diameter
grew to 25 nm by 18:00 LT, and some particles grew larger
than theD50 at SS=0.97% (28 nm). At this time, the CCN
number concentration (SS=0.97%) began to increase. The
peak diameter andD50 (SS=0.97%) were equal at 21:00 LT
(blue dashed vertical line in Fig. 5b). At this time, the
majority of newly formed particles began to act as CCN
at SS=0.97%. In the case ofSS=0.58%, the peak diam-
eter equaledD50 at 2:00 LT on 30 March , and the CCN
number concentration increased from 1700 cm−3 (01:30 LT)
to 5800 cm−3 (11:30̇LT). At 03:00 LT, some portion of the
particles grew large enough to act as CCN atSS=0.27%.
Then, CCN number concentration atSS=0.27% increased
from 1000 to 4700 cm−3 with the increase in the peak diam-
eter. For thisSS, the peak diameter reachedD50 at 10:00 LT.
At the same time, another new particle formation event oc-
curred, and this event also clearly affected the CCN num-
ber concentration atSS=0.97% and 0.58%. At 12:00 LT,
some fraction of the particles grew larger than theD50 at
SS=0.097%, and they affected the CCN number concentra-
tion at thisSS. A similar phenomenon was also observed on
25 March (Fig. 4a and b). These results clearly show that
the newly formed particles significantly increased the CCN
number concentration.

Buzorius et al. (2004) have shown that the deliques-
cence relative humidity and the hygroscopic growth of newly
formed particles at Gosan during the ACE-Asia campaign
were similar to those of ammonium sulfate. This suggests
that newly formed particles were mainly composed of in-
organic compounds because no organic compounds in the
atmosphere are known to be as hygroscopic as ammonium
sulfate. In addition, according to Buzorius et al. (2004), glu-
taric acid is the only organic compound that is known to have
a deliquescence relative humidity similar to ammonium sul-
fate. However, the hygroscopic growth of glutaric acid is
less than ammonium sulfate. For instance, Cruz and Pan-
dis (2000) measured the hygroscopic growth factors of glu-
taric acid and ammonium sulfate particles to be 1.1 and 1.5 at
a relative humidity of 85%, respectively. This also supports
the conclusion of their study that newly formed particles
were mainly composed of ammonium sulfate at Gosan. In
the present study, the observedD50 of newly formed particles
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Figure 5 
 

Fig. 5. Close-up of Fig. 4 during the new particle formation events from 29–31 March. The(a) time series of CCN number concentration and
(b) the number size distribution andD50 (line with filled circles) are shown. The red solid lines in (b) denote the peak diameters obtained by
bimodal lognormal fitting. The vertical dashed lines show the time at which the peak diameter andD50 were equal.

was also similar to ammonium sulfate. For instance, theD50
for SS=0.97% was 27 nm at 21:00 LT, 29 March, and for
SS=0.27% it was 66 nm at 10:00 LT, 30 March. TheDcrit of
ammonium sulfate was 27 nm and 63 nm, respectively (Ta-
ble 1).

Previous studies have suggested that new particle forma-
tion has an impact on the CCN number concentration from
the measurements of number size distributions (e.g. O’Dowd
et al., 2002; Laaksonen et al., 2005) and modeling (e.g.
Arnold, 2006; Sotiropoulou et al., 2006). The present ob-
servations clearly demonstrate that new particle formation is
one of the important processes of CCN formation at Gosan.

Figure 6 shows the number size distribution of all parti-
cles and CCN averaged over the whole observation period.
Average CCN/CN ratios were multiplied by the number size
distribution measured by the SMPS averaged over the ob-
servation period to obtain a rough estimate of the CCN size
distribution. The peak diameter of the average CCN size
distribution was about 150 nm atSS=0.097% and shifted to
about 80 nm atSS=0.97%. Detailed discussion of the num-
ber size distribution of particles during the observation pe-
riod has been given by Yum et al. (2007).
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Figure 6 
 

Fig. 6. Number size distribution of particles and CCN. CCN size
distributions were estimated by multiplying CCN/CN ratios by the
number size distribution. The data were averaged over the whole
observation period. The data range of CCN size distributions was
limited by the scanning range of the DMA.
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Figure 7 
 

Fig. 7. Ion balance between ammonium, sulfate, and nitrate ions.

4.3 Ion balance of inorganic components

The average concentrations of the inorganic components
measured by PILS-IC are summarized in Table 3. NH+

4 was
the most abundant cation (56%), and Ca2+ was the second
(15%). SO2−

4 was the most abundant anion (67%). Top-
ping et al. (2004) measured inorganic components using a
Berner impactor at Gosan during the ACE-Asia campaign.
They showed that the concentration of NH+

4 was the high-
est at the 0.2–0.5µm stage, and Ca2+ was the highest at the
1.5–5.5µm stage. In this study, theD50 values were in the
sub-micrometer range (Fig. 4). Thus, Ca2+ was ignored in
the following discussion of CCN activity. Na+, Mg2+, and
Cl− were also ignored for the same reason.

Figure 7 shows the ion balance of NH+

4 , NO−

3 , and SO2−

4 .
The cation and anions balance very well (slope=0.94). This
result shows that sulfate and nitrate in PM2.5 were neutral-
ized by ammonium at Gosan. The addition of K+ to the ion
balance causes the balance to deviate from the 1:1 line. This
suggests that neither NO−3 nor SO2−

4 were the counter ions of
K+. In addition, because the molar concentration of K+ was
only 8% of NH+

4 , we ignored K+. In the following discus-
sion, we assume that the inorganic component of sub-micron
particles was composed only of ammonium sulfate and am-
monium nitrate.

5 Discussion

5.1 Temporal variation of D50 and aerosol composition

Figure 8 shows the temporal variation ofD50 (SS=0.097%)
and the mass fraction of the aerosol components. In this fig-
ure, the aerosol components were divided into four groups:
inorganic (NH+

4 + SO2−

4 + NO−

3 ), WSOC, water-insoluble
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Figure 8 
 

Fig. 8. Temporal variation of the mass fraction of aerosol compo-
nents andD50 at SS=0.097%. Here, “inorganic” denotes the sum
of ammonium sulfate and ammonium nitrate.

organic carbon (WIOC = OC – WSOC), and EC. Inorganic
components and WSOC are soluble in water, while WIOC
and EC are insoluble in water. Note that the masses of
WSOC and WIOC are the masses of carbon in organic com-
pounds and do not include the masses of other elements (e.g.
oxygen and hydrogen) (Kondo et al., 2007). The temporal
variation ofD50 and the water-soluble fraction (inorganic +
WSOC) are correlated. With an increase in the water-soluble
fraction,D50 decreases. This is consistent with Köhler the-
ory because the value ofB in Eq. (2) increases with an in-
crease in the water-soluble fraction. In this case, the vari-
ation in D50 was as small as about 40 nm. Thus,D50 is
correlated with the water-soluble fraction almost linearly, al-
though the relationship is not always linear, as anticipated
from Eqs. (1) and (2). This good correlation indicates that
the variation ofD50 was not significantly influenced by the
variation in the chemical composition of the water-soluble
component (e.g change of inorganic/WSOC ratio). Kim et
al. (2006) have shown that the hygroscopicity of aerosol par-
ticles at Gosan was correlated with the mass fraction of sul-
fate. This indicates thatB is mainly determined by inorganic
components because hygroscopicity is mainly determined by
B (e.g. Kreidenweis et al., 2005; Mochida et al., 2006). This
is consistent with the present observations because the mass
fraction of inorganic compounds was significantly larger than
that of WSOC during this period (Fig. 8).

TheD50 at SS=0.097% did not necessarily correlate with
those of higherSSs (Fig. 4b), as discussed in Sect. 4.2.2.
Correlation ofD50 at SS=0.097% with those at higherSSs
decreased with the increase inSS (r2=0.25 and 0.00 for
SS=0.27% and 0.97%, respectively). This indicates that
the temporal variation of the mass fraction of PM2.5 was
reflected in that ofD50 at SS=0.097% (100–200 nm) but
was not reflected inD50 at higherSSs (<100 nm). This is
because the contribution to the PM2.5 mass concentration
of particles with diameters smaller than 100 nm was much
smaller than that of 100–200 nm.
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Table 3. Average concentration of inorganic components during the observation period.

NH+

4 Na+ K+ Ca2+ Mg2+ NO−

3 SO2−

4 Cl−

1.57 (µg/m3) 0.38 0.26 0.43 0.18 1.44 3.96 0.49

5.2 Comparison ofD50 and calculatedDcrit

In this section, we compare the observedD50 and theDcrit
calculated from the simultaneously measured chemical com-
position. We first discuss the assumptions used to calculate
A andB in Köhler theory (Sect. 2). The surface tension of
water (72 mN/m) was assumed for the calculation of A. The
calculation was performed atT =300 K. For the calculation
of B, the ideal solution approximation (φ=1) was used. We
used the simultaneously measured aerosol chemical compo-
sition (PM2.5) assuming that chemical composition was not
size-dependent. Assumptions regarding the chemical com-
position and chemical properties of organic compounds (e.g.
molecular weight (MW), elemental ratio, density) are also
required for the calculation ofB. Kawamura et al. (2003)
and Mochida et al. (2003) measured dicarboxylic acids and
other water-soluble organic compounds over the Sea of Japan
and Yellow Sea during the ACE-Asia campaign. The con-
centration of oxalic acid was higher than that of other com-
pounds by an order of magnitude. Simoneit et al. (2004) also
measured dicarboxylic acids at Gosan during the ACE-Asia
campaign. Adipic acid was the largest-MW linear molecule
among the dicarboxylic acids they measured. Oxalic acid has
one of the smallest molecular weights among atmospheric
aerosol organic compounds. Therefore, if we assume that
all carbon atoms in WSOC originated from oxalic acid, we
will estimate a maximum Raoult’s effect. In this study, this
assumption is called as “oxalic acid assumption”. As an ex-
treme case, we calculatedDcrit using this assumption. The
average molecular weight of WSOC should be higher than
that of oxalic acid because dicarboxylic acids and saccha-
rides with larger molecular weights were also observed at
Gosan (Simoneit et al., 2004). In fact, Miyazaki et al. (2007)
indicated that a significant portion of WSOC measured dur-
ing the ABC-EAREX2005 campaign could be attributed to
organic compounds having a MW larger than oxalic acid.
To test the sensitivity ofDcrit to the assumed WSOC com-
position, we also calculatedDcrit assuming that the aver-
age properties (MW, elemental composition, and density) of
water-soluble organic compounds are equal to those of adipic
acid. In this study, this assumption is called the “adipic acid
assumption”, although this does not mean that all WSOC
originated from adipic acid. In addition, recent studies
have shown that significant fractions (20–60%) of WSOC
are high-molecular weight compounds such as humic-like
substances (HULIS) (Graber and Rudich, 2006, and refer-
ences therein). CalculatingDcrit under the assumption that
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Figure 9 
 

Fig. 9. Comparison of observedD50 and calculatedDcrit at
SS=0.097%. The upper and lower blue lines were calculated us-
ing the “HULIS assumption” and “oxalic acid assumption”, respec-
tively. See text for details of the calculations.

all WSOC originated from HULIS (HULIS assumption) cor-
responds to the lowest estimate of Raoult’s effect. As in
other cases, we need the chemical properties of HULIS for
the calculation, although chemical properties of HULIS vary
depending on the samples used (Graber and Rudich, 2006).
For this calculation, we assumed an elemental composition
of HULIS of C: H: O=1: 1.16: 0.63 (Dinar et al., 2006a),
a density of 1.5 g/cm3 (Dinar et al., 2006b; Hoffer et al.,
2006), and an average molecular weight of 700 Da (Dinar
et al., 2006a). In these calculations, water-soluble organic
compounds were assumed to be completely dissolved in wa-
ter (ε=1).

The chemical properties of WIOC are also required for
the calculation ofB. Simoneit et al. (2004) have measured
alkanes, fatty acids, and polycyclic aromatic hydrocarbons
(PAHs) at Gosan. Among these compounds, the mass frac-
tions of PAHs were very limited. Most of the carbon atoms
of alkanes and fatty acids are in methylene groups(−CH2−).
Therefore, we assumed that all carbon atoms in WIOC orig-
inated from methylene groups. The density of WIOC was
assumed to be 0.8 g/cm3 because the densities of hydrocar-
bons and fatty acids are typically 0.7–0.9 g/cm3 (Pang et
al., 2006). The properties of EC were assumed to be equal
to those of graphite. The values used for the calculation are
summarized in Table 4.

The observedD50 and calculatedDcrit at SS=0.097% are
compared in Fig. 9. This figure shows three calculated re-
sults based on the oxalic acid, adipic acid, and HULIS as-
sumptions. In all cases, the temporal variations of the cal-
culatedDcrit correlate with the observedD50. However, the
calculatedDcrit values are systematically larger than the ob-
servations by 20–29%.

The correlations ofD50 and the calculatedDcrit (adipic
acid assumption) are shown in Fig. 10. At allSSs, the
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Table 4. Values used for the calculation ofDcrit. υ for WIOC and EC are not shown here because they are insoluble in water.

Assumed composition Molecular weight(MW) υ ρ(g/cm3)

Ammonium sulfate (NH4)2SO4 132.14 3 1.77
Ammonium nitrate NH4NO3 80.04 2 1.72
WSOC (oxalic acid) (COOH)2 90.04 1 1.9
WSOC (adipic acid) HOOC(CH2)4COOH 146.14 1 1.36
WSOC (HULIS) CH1.16O0.63 700 1 1.5
WIOC (–CH2–) 14/carbon atom N/A 0.8
EC C (graphite) 12/carbon atom N/A 2.0
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Figure 10 

Fig. 10. Scatter plot ofD50 (observed) and calculatedDcrit (cal-
culated). The adipic acid assumption was used for the calculation
shown in this figure.

calculated diameters are larger than the observations. The
differences between the calculatedDcrit and the observed
D50 (calc–obs) are summarized in Table 5. In all cases,Dcrit
was overestimated by 16–29%.

The r2 values decrease with increasingSS (diminishing
D50). This is likely due to the size dependence of the tem-
poral variation of the aerosol chemical composition, as dis-
cussed in Sect. 4.2.2.

5.3 Possible causes of the discrepancy

In this section, we discuss the possible causes of the differ-
ence betweenD50 andDcrit and identify critical assumptions
for the calculation ofDcrit.

In calculatingB, we assumed the composition and chem-
ical properties of each component. The average chemi-

cal properties of water-soluble organic compounds were as-
sumed to be identical to those of oxalic acid, adipic acid, or
HULIS. Nevertheless, theDcrit values were larger thanD50
even in the case of the oxalic acid assumption (the maximum
estimation ofB). Therefore, the assumption of the chemical
composition of WSOC is not the main cause of this discrep-
ancy.

We assumed a density of 0.8 g/cm3 for water-insoluble
organic compounds. If the actual density were larger than
this value, this would lead to the overestimation ofDcrit be-
cause of the underestimation ofB (Eq. 1). However, a sen-
sitivity study of the density of WIOC (up to 1.2 g/cm3) un-
der the oxalic acid assumption showed that calculatedDcrit
still overestimated the observations (Dcrit–D50=20±12 nm at
SS=0.097%).

The assumption of complete dissolution corresponds to the
upper limit in estimatedB, and therefore the lower limit of
Dcrit. For instance, Huff Hartz et al. (2006) showed that the
Dcrit of slightly soluble organic compounds calculated us-
ing the complete dissolution assumption is smaller thanDcrit
calculated assuming limited solubility. We used the ideal so-
lution approximation in the calculation. If the discrepancy
is due to this effect, the osmotic coefficient at the critical
droplet diameters needs to be increased by a factor of about
2, considering the magnitude of the discrepancy (Table 5)
and Eq. (2). Nevertheless, such a large change in the osmotic
coefficient is unlikely, as the solution was very dilute at the
critical droplet diameters.

In this study, the aerosol chemical composition was mea-
sured at PM2.5. If the chemical compositions of PM2.5 do
not represent those atD50 (<200 nm), it causes an error in
the calculation ofDcrit. We discuss this point in detail in
Sect. 5.3.1.

The surface tension of water was assumed for the calcula-
tion of A in Eq. (2). If the decrease in surface tension due
to WSOC was significant, it may affect theDcrit (Facchini et
al., 1999). This point is discussed in Sect. 5.3.2.
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Table 5. Differences betweenD50 (observed) and calculatedDcrit (Dcrit–D50). The values in parentheses show the magnitude of the
difference in %. “Oxalic acid”, “adipic acid”, and “HULIS” show the oxalic acid, adipic acid, and HULIS assumptions, respectively.

SS=0.097% 0.27% 0.58% 0.97%

Oxalic acid 27±18(nm) 13±10 7± 7 6±6
(20±12%) (18±13%) (16±15%) (21±19%)

Adipic acid 34±19 17±11 9±8 8±6
(26±13%) (24±15%) (22±17%) (27±22%)

HULIS 39±20 17±12 10±8 8±7
(29±14%) (25±16%) (23±18%) (26±23%)

5.3.1 Size dependence of chemical composition

Some studies have used size-resolved aerosol chemical com-
position for CCN closure studies (e.g. Cantrell et al., 2001;
Roberts et al., 2002). These studies have shown the size-
dependence of aerosol chemical composition. In addition,
Medina et al. (2007) have shown that the use of size-resolved
chemical composition can decrease the error in the closure
of the CCN number concentration. Topping et al. (2004)
measured size-resolved chemical composition at Gosan dur-
ing the ACE-Asia campaign using a Berner impactor. They
reported the size distribution of mass fractions of inorganic
compounds and WSOC, and the results clearly showed the
size-dependence. However, it is difficult to use their results
to estimate the effect of size dependent chemical composi-
tion because they did not measure water-insoluble compo-
nents of the impactor samples. Mochida et al. (2007) mea-
sured aerosol chemical compounds sampled with a Micro-
Orifice Uniform Deposit Impactor (MOUDI) over the East
China Sea and the Sea of Japan during the ACE-Asia cam-
paign. They found that the submicron mode was enriched
by non-sea salt (nss)-SO2−

4 ([OC]/[nss-SO2−

4 ]≈0.2 at 0.18–
0.56µm), whereas the supermicron mode was enriched by
organic compounds ([OC]/[nss-SO2−

4 ]≈1 at 1.8–5.6µm).
The median value of [OC]/[SO2−

4 ] in the present study is 1.0,
suggesting that PM2.5 chemical composition was affected
by super-micron particles by comparison with the ratio of
Mochida et al. (2007).

The Dcrit for eachSS was calculated using the chemical
composition of the sub-micron mode particle given in Table 2
in Mochida et al. (2007) assuming that OC was entirely com-
posed of WIOC, because the fraction of WSOC was much
smaller than that of WIOC (Fig. 8), and WSOC concentra-
tion was not reported. The major difference of this calcu-
lation is the higher sulfate fraction ([OC]/[nss-SO2−

4 ]≈0.2).
At SS=0.097%, the observedD50 was 136±17 nm, and the
calculatedDcrit using the data of Mochida et al. (2007) was
142 nm, as summarized in Fig. 11. In the case of otherSSs,
Dcrit also agrees with the average value ofD50. This result
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Figure 11 

Fig. 11. Comparison of measuredD50 andDcrit calculated using
the chemical composition of Mochida et al. (2007). See the text for
detailed explanation.

shows possible effects of the size-dependent chemical com-
position on CCN activation.

The size dependence of aerosol chemical composition is
clearer for the period of new particle formation. TheD50
values of newly formed particles were very close to that
of ammonium sulfate, indicating that particles were pre-
dominantly composed of inorganic compounds at the time
(Sect. 4.2.3.). In particular, newly formed particles grew
larger thanD50 atSS=0.097% on 31 March (Fig. 4), andD50
values were nearly equal to theDcrit of ammonium sulfate on
that day (Fig. 9). However, the mass fraction of carbonaceous
aerosols (WSOC+WIOC+EC) at PM2.5 was about 30% at
this time (Fig. 8), and this led to the overestimation ofDcrit
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Figure 12 
 
 

Fig. 12.Decrease of surface tension calculated using the parameters
for Jeju cloud water and Po Valley fog by McFiggans et al. (2006).
The colored area in the figure corresponds to the values at the criti-
calSSs.

(Fig. 9). The decrease ofD50 associated with new/secondary
particle formation was also observed on 25 March. In this
case, the mass fraction of water-insoluble compounds was
also 30–40%, and this caused the overestimation ofDcrit.
These results suggest that the PM2.5 mass concentration was
biased by large (>200-nm) particles, at least during these pe-
riods.

5.3.2 Decrease of surface tension by organic compounds

As described above, the surface tension of water was as-
sumed for the calculation in this study. Nevertheless, if the
decrease in surface tension due to organic compounds was
significant, it may affect the criticalSS of the particles (Fac-
chini et al. 1999). Surface tension lowering effects have been
observed in various regions of the world such as Po Valley
in Italy (Facchini et al. 1999), Mace Head in Ireland (Cavalli
et al. 1999), and the Great Hungarian Plain (Kiss et al. 2005.
In particular, Decesari et al. (2005) measured the surface ten-
sion lowering effect of aerosol, cloud water, and wet deposi-
tion samples at Jeju Island during the ACE-Asia campaign.
They showed that the decrease of the surface tension due to
aerosol was relatively small, whereas the surface tension de-
crease of cloud water and wet-deposition samples was signif-
icant. McFiggans et al. (2006) compared these results, and
they showed that the magnitude of the effect for cloud water
at Jeju Island was the most significant, and the effects for Po
Valley and Mace Head samples were not as large as that of
cloud water at Jeju (the red and blue lines in Fig. 12).

They summarized the fitted parameters of the
Szyszkowski-Langmuir Eq. (3) obtained for these ob-
servation results,

σ = σ0 − bT ln(1 + aC) (3)
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Fig. 13. Comparison ofDcrit/D50 calculated using several surface
tension parameters. The calculation was performed using the adipic
acid approximation.

whereσ0 is the surface tension of pure water,C is the WSOC
concentration of the solution, anda andb are the empirical
parameters obtained by fitting the observational results. In
order to investigate the sensitivity ofDcrit to surface tension,
we calculatedDcrit at eachSS using the parameters given by
McFiggans et al. (2006). In this calculation, the adipic acid
assumption was used, and the values for Jeju cloud water and
Po Valley fog were employed. Substitutingσ in Eq. (1) by
that expressed by Eq. (3), theDcrit values were obtained by
numerical calculation. The results are summarized in Fig. 13.
In the case of Jeju cloud water, the calculated diameters for
all SSs are smaller than the observedD50 by 10–47%, and
the use of the equation for Po Valley decreased the differ-
ences betweenDcrit andD50 (7 to −13%). This indicates
that the decrease of surface tension can potentially explain
the discrepancy. The surface tension at the criticalSS was
about 46–56 mN/m (Jeju cloud water) and 51–62 mN/m (Po
Valley), respectively (Fig. 12).

The discussion in this section and Sect. 5.3.1 shows that
the size- dependence of chemical composition and the de-
crease in surface tension are the critical parameters in esti-
mating Dcrit. For a more quantitative assessment of these
effects, we need simultaneous measurements of these param-
eters andD50.

5.4 Impact ofDcrit on CCN number concentration

The main purpose of the calculation ofDcrit is the precise
estimation of CCN number concentration from the particle
size distribution. We estimated the difference in CCN num-
ber concentration due to the difference inD50 and calculated
Dcrit. The following equation was used for the assessment of
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the difference:

1NCCN

NCCN
= −

log(Dcrit)∫
fN (logDp)d logDp

log(D50)

NCCN
(4)

whereNCCN is the number concentration of CCN measured
by the CCN counter,1NCCN is the difference of the CCN
number concentration caused by the error in the estimation
of Dcrit, andfN (logDp) is the number size distribution mea-
sured by the SMPS. Therefore,1NCCN/NCCN is the ratio
of the difference of the CCN number concentration due to
the difference inDcrit and the observed CCN number con-
centration.1NCCN/NCCN depends on the number size dis-
tribution (fN (logDp)) and the uncertainty of the chemical
composition (Dcrit–D50). For this calculation, the calculated
Dcrit (adipic acid assumption, surface tension of water) was
used. In addition to the adipic acid assumption, we also cal-
culated1NCCN/NCCN using the ammonium sulfate assump-
tion (Dcrit=Dcrit of ammonium sulfate) because this assump-
tion has frequently been used in previous CCN studies (e.g.
VanReken et al., 2003), including those for Gosan (Yum et
al., 2007). The results are summarized in Fig. 14. In general,
the adipic acid approximation underestimates the CCN num-
ber concentration due to the overestimation ofDcrit, whereas
the ammonium sulfate approximation overestimates the CCN
number concentration because of the underestimation of the
Dcrit. At SS=0.097%,1NCCN/NCCN was−0.27±0.14 and
0.16±0.18 for the adipic acid and ammonium sulfate approx-
imations, respectively. These values give a measure of the
uncertainty associated with the CCN prediction based on the
results of this study. The absolute value of1NCCN/NCCN
increased with decreasingSS. During the observation pe-
riod, the average values ofB did not show a significant de-
pendence on the value ofSS as discussed in Sect. 4.2.2, and
the magnitude of the error associated with the estimation of
Dcritdid not depend onSS significantly. Thus, this trend was
not mainly due to the size dependence of the chemical com-
position. Dcrit decreased with increasingSS. The particle
number concentration betweenD50 andDcrit was smaller at
higherSS in comparison with the CCN number concentra-
tion because at higherSS a larger fraction of CCN is in the
size range larger thanD50, as can be seen from Fig. 6. These
results show that the effect of chemical composition onNCCN
was more important at lowerSS, and the aerosol number size
distribution was important at higherSS.

6 Summary

We measured the CCN number concentration (NCCN) and
the size-resolved CCN/CN ratios atSS=0.097, 0.27, 0.58,
and 0.97% on Jeju Island, Korea, during 18 March–5 April
2005. The average CCN number concentrations for the
whole observational period were as high as 1194±746 cm−3
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Fig. 14.Average values and standard deviations of1NCCN/NCCN.

(SS=0.097%) and 3966±1686 cm−3 (SS=0.97%). The
CCN/CN ratios monotonically increased with increasing par-
ticle diameter, and the diameter at CCN/CN=0.5 was de-
fined asD50. The averageD50 values atSS=0.097% and
0.97 % were 136 nm and 31 nm, respectively. These values
were slightly larger than those of ammonium sulfate parti-
cles (125 and 27 nm atSS=0.097% and 0.97%, respectively).
In particular,D50 diameters of newly formed particles and
those of ammonium sulfate particles were almost identical
for SS=0.97, 0.58 and 0.27%, indicating that these particles
were mainly composed of ammonium sulfate. The peak di-
ameter of the CCN size distribution averaged for the whole
observational period was about 150 nm atSS=0.097% and
shifted to about 80 nm atSS=0.97%.

The temporal variation ofD50 at SS=0.097% was nega-
tively correlated with the variation of the water-soluble frac-
tion (inorganics + WSOC) of the aerosol components. For
quantitative comparison, the threshold diameters for CCN
activation (Dcrit) were calculated by K̈ohler theory assum-
ing the surface tension of water and PM2.5 aerosol chemi-
cal composition. The calculatedDcrit values were correlated
with D50 at SS=0.097% (r2=0.48). However,Dcrit was sys-
tematically larger thanD50 by about 16–29%. Sensitivity
studies have shown that this discrepancy can be explained
by possible differences in aerosol chemical composition be-
tween the sub-micron and super-micron size ranges. In addi-
tion, a decrease of the surface tension due to the existence of
WSOC can also significantly decreaseDcrit.

The particle number concentrations in the size range be-
tweenD50 andDcrit(1NCCN) were calculated using the ob-
served size distribution. The ratios of1NCCN to NCCN
(1NCCN/NCCN) were estimated to be−0.27±0.14 and
−0.10±0.13 atSS=0.097% and 0.97%, respectively, assum-
ing that water-soluble organic compounds are represented by
adipic acid. The1NCCN/NCCN ratio gives a measure of the
uncertainty in estimating CCN number concentrations using
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particle number size distributions and PM2.5 chemical com-
positions in the East Asia region.
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