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Abstract. The SIMPOL.1 group contribution method is de-
veloped for predicting the liquid vapor pressurepo

L (atm)
and enthalpy of vaporization1Hvap (kJ mol−1) of organic
compounds as functions of temperature (T ). For each com-
pound i, the method assumes log10po

L,i(T )=
∑

k νk,i bk(T )

whereνk,i is the number of groups of typek, and bk(T )

is the contribution to log10po
L,i(T ) by each group of type

k. A zeroeth group is included that usesb0(T ) with ν0,i=1
for all i. A total of 30 structural groups are considered:
molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl
ether, alkyl ring ether, aromatic ether, aldehyde, ketone,
carboxylic acid, ester, nitrate, nitro, alkyl amine (primary,
secondary, and tertiary), aromatic amine, amide (primary,
secondary, and tertiary), peroxide, hydroperoxide, peroxy
acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester,
aromatic rings, non-aromatic rings, C=C–C=O in a non-
aromatic ring, and carbon on the acid-side of an amide. The
T dependence in each of thebk(T ) is assumed to follow
b(T )=B1/T +B2+B3T +B4 ln T . Values of theB coeffi-
cients are fit using an initial basis set of 272 compounds for
which experimentally based functionspo

L,i=fi(T ) are avail-
able. The range of vapor pressure considered spans fourteen
orders of magnitude. The ability of the initially fittedB co-
efficients to predictpo

L values is examined using a test set
of 184 compounds and aT range that is as wide as 273.15 to
393.15 K for some compounds.σFIT is defined as the average
over all points of the absolute value of the difference between
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experimental and predicted values of log10po
L,i(T ). After

consideration ofσFIT for the test set, the initial basis set and
test set compounds are combined, and theB coefficients re-
optimized. For all compounds and temperatures,σFIT=0.34:
on average,po

L,i(T ) values are predicted to within a factor of
2. Becaused(log10po

L,i(T ))/d(1/T ) is related to the enthalpy
of vaporization1Hvap,i , the fittedB provide predictions of
1Hvap,i based on structure.

1 Introduction

For organic compoundi, knowledge of the liquid vapor pres-
surepo

L, i at the system temperature (T ) is required when-
ever phase equilibrium ofi between a liquid phase and the
gas phase is of interest. This type of partitioning arises fre-
quently in many disciplines, and so the need for reliablepo

L, i

values is considerable. And, since theT dependence ofpo
L, i

is determined by the compound-dependent enthalpy of va-
porization1Hvap,i , the same need extends to1Hvap,i val-
ues. In our case, the topic of interest is gas/particle partition-
ing in atmospheric and smoke aerosol systems (e.g., Pankow,
1994a, 1994b, 2001, 2003; Pankow et al., 2001, 2003, 2004;
Barsanti and Pankow, 2004, 2005, 2006).

Given the infinite structural variety possible with organic
compounds, laboratory measurements will never keep pace
with the need for newpo

L, i information. Consequently, there
is continuing interest in the development of reliable meth-
ods for predictingpo

L, i and 1Hvap,i values. In the case
of the behavior and formation of organic particulate mat-
ter (OPM) in the atmosphere, there is growing interest in a
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Table 1a.Non-oxygenated, hydroxyl, ketones, aldehydes, and carboxylic acid saturated compounds in the basis set for the initial fit.

Nonoxygenated alkanes Alkanoic ketones and aldehydes Alkanoic carboxylic acids
2,2-dimethyl pentane butanal ethanoic acid
1,1-dimethyl cyclohexane 2-methyl propanal propanoic acid
cis-1,2-dimethyl-cyclohexane cylopentanone 2-methyl-propanoic acid
2,2,4 trimethyl pentane cylohexanone butanoic acid

5-methyl-2-hexanone cyclobutanoic acid
Alkanoic hydroxyls octanal 3-methyl butanoic acid
cyclobutanol 2-octanone pentanoic acid
2-butanol 3-hydroxy-3-methyl-2-butanone cyclopentane carboxylic acid
2-methyl-1-propanol 4-hydroxy-2-pentanone hexanoic acid
1-butanol 2,4 hexanedione 2-ethyl-butanoic acid
1-pentanol 4-hydroxy-4-methyl-2-pentanone 4-methyl-pentanoic acid
2,2-dimethyl-1-propanol 3-hexanone cyclohexanecarboxylic acid
2-pentanol hexanal heptanoic acid
cyclohexanol heptanal octanoic acid
1-hexanol 2-heptanone nonanoic acid
2-methyl 2-pentanol 2-oxo-propanoic acid
2,3 dimethyl 2-butanol 2-hydroxy-propanoic acid
3-hexanol 4-oxo-pentanoic acid
1,2-propanediol butanedioic acid
1,4-butanediol pentanedioic acid
2,3-butanediol
1,3-butanediol
1,2-butanediol
1,5-pentanediol
2,3-pentanediol
1,2-pentanediol
2,4-dimethyl-cyclopentanol
cycloheptanol
2-methyl-cis-cyclohexanol

wide range of multi-functional oxygenated compounds and
nitrogen-containing compounds, e.g., hydroxy acids, diacids,
hydroxy diacids, hydroxy aldehydes, organic nitrates, nitro
aldehydes, etc.

Quantum-mechanical calculations are making steady
progress in the theater of predictingpo

L, i values for any struc-
ture of interest (Diedenhofen et al., 2007; Verevkin et al.,
2007; Banerjee et al., 2006; Tong et al., 2004). However,
prediction efforts for more complicated structures can now
only be based on either a complex consideration of the inter-
action forces between molecules (i.e., dispersion, induction,
dipole and H-bonding) as in the SPARC model discussed by
Hilal et al. (1994), or by empirical group-contribution means.

In the group contribution approach to prediction of molec-
ular properties, it is hypothesized that the value of a property
of interest for compoundi can be predicted based on em-
pirically determinable contributions from the structural frag-
ments that comprisei. As a function of temperatureT , the
result is often an equation of the type

log10Zi(T ) = b0(T ) +

∑
k
νk,i bk(T ) (1)

where: Zi(T )is the property of interest, e.g.,po
L, i(T ); the

parameterb0(T ) is aT -dependent constant;νk,i is the num-
ber of groups of typek in i; the indexk may take on the
values 1,2,3, etc.; andbk(T ) is the group contribution term
for groupk. Values forb0(T ) and the set ofbk(T ) are usu-
ally determined by fitting (i.e., optimizing) Eq. (1) using
laboratory-based measures ofZi(T ) for a large number of
compounds that contain the groups of interest. For exam-
ple, for both 2,3- and 2,4-dihydroxypentane it can be con-
sidered thatνOH, i= 2, νCH3, i=2, νCH2,i=1, andνCH,i=2. In
this approach, fourbk(T ) values are required, and Eq. (1)
will give the same prediction forZi(T ) for both isomers.
However, the vicinal nature of the two OH groups in 2,3-
dihydroxypentane allows greater intramolecular interaction
of the OH groups (and less intermolecular interaction) than
in the 2,4 isomer, causing differences in molecular proper-
ties. In the case of vapor pressure,po

L, i(T ) will be higher
for the 2,3 isomer than for the 2,4 isomer. Accounting
for such property differences among isomers can be ac-
complished by consideration of additional, “higher-order”
groups. Thus, for 2,3-dihydroxypentane a “second-order”
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Table 1b. Continued.

Nonoxygenated alkanes Nonoxygenated aromatics
2,3-dimethyl-2-butene (1,1-dimethyl-ethyl)-benzene

1,2-diphenyl-ethane
Alkenoic hydroxyls 2-phenyl-propane
3-buten-1-ol 2-methyl-4-penten-2-ol
3-buten-2-ol 3-cyclohexen-1-ol Phenyl alkanoic hydroxyls
2-methyl-2-buten-1-ol 3-methyl-3-penten-2-ol 1-phenyl-ethanol
2-penten-1-ol 4-methyl-3-penten-1-ol 2-phenyl-ethanol
3-methyl-3-buten-1-ol cyclohex-1-enyl-methanol
3-penten-1-ol 3-methyl-2-cyclohexen-1-ol Phenols
2,3-dimethyl-2-buten-1-ol cis-9-octadecen-1-ol phenol
2-methyl-1-penten-3-ol 2-hydroxy-1-methyl-benzene
Alkenoic ketones and aldehydes 3-hydroxy-1-methyl-benzene
2-butenal 4-methyl-3-penten-2-one 4-hydroxy-1-methyl-benzene
3-buten-2-one 4-methyl-4-penten-2-one 2-ethyl-phenol
2-methyl-2-butenal 5-hexen-2-one Aromatic ketones and aldehydes
3-penten-2-one 5-hexen-3-one benzaldehyde
2,3-dimethyl-2-butenal 1-cyclohex-1-enyl-ethanone 1-phenyl-ethanone
2,4-hexadienal 3-methyl-3-penten-2-one 2-methyl-benzaldehyde
5-(1-hydroxy-1-methyl-ethyl)-2-methyl-cyclohex-2-enone 2-phenyl-propanal

1-(2-methyl-phenyl)-ethanone
Alkenoic carboxylic acids 1-phenyl-2-propanone

propenoic-acid 3-hexenoic-acid Aromatic carboxylic acids
2-methyl-propenoic-acid 4-hexenoic-acid 3-methyl-benzoic acid
3-butenoic-acid 2-cyclohexene carboxylic acid 4-methyl-benzoic acid
2-ethyl-propenoic-acid 9,12-octadecadienoic acid 2-phenyl-ethanoic acid
2-pentenoic-acid 9,12,15-octadecatrienoic acid 2-phenyl-propanoic acid
2-cyclopentene-carboxylic-acid trans-3-phenyl-2-propenoic acid

group CH(OH)-CH(OH) (=“vicinal-OH”) can be invoked
with νvicinal−OH,i=1. Kolsḱa et al. (2005) describe a third-
order method for prediction of1Hvap,i and the entropy of
vaporization1Svap,i values at 298.15 K.

In the most general application of a group contribution
model, the fitting takes place over a broad range of compound
types, e.g., simple alkanes, functionalized alkanes, aromat-
ics, functionalized aromatics, etc. In that case,b0(T ) serves
as a general fitting constant. Alternatively, the fitting can
take place within a particular class of compounds, as in the
study by Lee et al. (2000) of substituted benzene compounds
wherein for predictingpo

L, i(298.15) the value ofb0(298.15)
was not obtained from the fitting process. Rather, it was de-
fined thatb0(298.15)= log10po

L, benzene(298.15). A second-
order group contribution model was then fit to

log10po
L, i(298.15)= log10po

L, benzene(298.15)+∑
k
νk,i bk(298.15) (2)

The summation accounts for how the presence of the vari-
ous first- and second-order groups causepo

L, i(298.15) to dif-
fer frompo

L, benzene(298.15).

In a generalization (though first order) of the Lee et
al. (2000) approach, Capouet and Müller (2006) allowed that
a range of parent structures would be of interest, and so ex-
istingpo

L,i(T ) data for a range of compounds were fit to

log10po
L,i(T ) = log10po

L,hc−i(T ) +

∑
k
νk,i τk(T ) (3)

wherepo
L,hc−i(T ) is the known vapor pressure for the non-

functionalized hydrocarbon (hc) compound that possesses
the skeletal structure underlying compoundi, and theτk(T )

are conceptually equivalent to thebk(T ). Application of
Eq. (3) to a particulari requires knowledge (or an in-
dependent prediction) ofpo

L,hc−i(T ); the summation ac-
counts for how the substituents ini causepo

L,i(T ) to differ
from po

L,hc−i(T ). In the fitting carried out by Capouet and
Müller (2006), multiple different hc-i structures were consid-
ered; the correspondingpo

L,hc−i(T ) andpo
L,i(T ) were taken

as the inputs, and the output was a set ofτk(T ) encompassing
10 groups: OH (as bonded to a primary, secondary, and ter-
tiary carbon); C=O (aldehyde or ketone); COOH; hydroper-
oxy; nitrate (primary, secondary, and tertiary); and peroxy-
acetylnitrate (PAN).
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Table 1c.Amides, amines, ethers, and nitrate-group containing compounds in the basis set for the initial fit.

Amides Ethers
formamide dimethyl-propionamide 1,2-epoxy-3-isopropoxy-propane 1,3-dioxacyclooctane
acetamide diethyl-formamide 1-butoxy-2-ethoxyethane 1,4-dioxane
methyl-formamide butyl-acetamide 2,6-dimethoxybenzoic acid 1,3-dioxane
dimethyl-formamide propanamide 1-(2-methoxyethoxy)-butane 1,1-dimethoxyethene
methyl-acetamide butyramide 3,4-dimethoxybenzoic acid 1,2-dipropoxyethane
ethyl-formamide pentanamide 4-methoxy-benzaldehyde 1,3-diethoxypropane
dimethyl-acetamide hexanamide 2-(2-methylpropoxy)-ethanol 1,1-dimethoxybutane

3,5-dimethoxybenzoic acid levoglucosan
Amines 3-(2-methoxyphenyl)-propionic acid 2-n-butoxy-1-ethanol
2-propylamine 4-amino-3-methylbenzoic acid 3-(3,4-dimethoxyphenyl)-propionic acid methoxyethane
1-propylamine n-methyl-n-phenyl-amine 5,5-dimethyl-1,3-dioxane 4-methoxy-phenol
phenylamine dimethyl-hydroxylamine 4,4-dimethyl-1,3-dioxane 1,1-dimethoxy-2-butene
1-pentylamine 1,2,-ethane-diamine 2-methoxy-tetrahydropyran
4-amino-toluene 3-amino-4-methylbenzoic 3-(4-methoxyphenyl)-propionic acid
3-amino-toluene 2-methyl-propylamine cis-2,4-dimethyl-1,3-dioxane
2-amino-toluene 1-methyl-propylamine
dimethylamine 1-(dimethylamino)-2-propanoneNitrates
2-butylamine (1-methyl-ethyl)-methylamine 3-methylbutyl nitrate
methylamine n-methyl-phenylamine 2-methylpropyl nitrate
ethylamine n-methyl-1-butanamine butyl nitrate
trimethylamine n,n-dimethyl-n-phenyl-amine ethyl nitrate
diethylamine triethylamine propylnitrate
1-butylamine 1-methylethyl nitrate

1,2,3-propanetrinitrate
cyclopentyl nitrate

Table 1d. Esters and nitro-group containing compounds in the basis set for the initial fit.

Esters Nitro-containing
2-methyl-propyl ethanoate ethyl 2-butoxy-ethanoate 6-methyl-2,4-dinitrophenol 3-nitro-2-pentanol
methyl 3-methyl-butanoate ethyl 2-propoxy-ethanoate 3-nitro-2-butanol 2-methyl-3-nitrobenzoic
methyl pentanoate diethyl hexandioanate 1-nitrobutane 3-methyl-2-nitrophenol
ethyl 2-methyl-propanoate ethyl butanoate 2-nitrobutane 4-methyl-2-nitrophenol
ethyl hexanoate phenyl-methyl ethanoate ethyl 2-nitropropionate 5-methyl-2-nitrophenol
hexyl ethanoate diethyl ethanedioate methyl 4-nitrobutanoate 4-methoxy-2-nitrophenol
2-methyl-propyl butanoate methyl cyclopropanoate 1-nitromethyl-1-cyclohexanol 2-nitro-ethanol
methyl heptanoate ethyl cyclopropanoate 4-(1-methylpropyl)-2-nitrophenol 4-formyl-2-nitrophenol
dibutanoate ethane propyl pentanoate 2-nitro-1-propanol 4-methyl-3-nitrobenzoic
1-methyl-propyl butanoate methyl cyclobutanoate 3-nitro-1-propanol 5-methyl-2-nitrobenzoic
propyl 3-methyl-butanoate ethyl cyclobutanoate 3-methoxy-2-nitrobenzoic 3-nitro-2-butanone
1-methyl-ethyl pentanoate ethyl cyclopentanoate 4-methoxy-3-nitrobenzoic ethyl nitroacetate
diethyl cyclopropane-1,1-dicarboxylate dimethyl 1,2-benzenedicarboxylate 3-methoxy-4-nitrobenzoic methyl nitroacetate
ethyl 4-methyl-pentanoate dimethyl 1,3-benzenedicarboxylate methyl-2-nitropropionate 2-nitrobenzoic acid
2-methyl-propyl 2-methyl-propanoate dimethylcis-1,3-cyclohexanedicarboxylate 2,4,6-trinitrotoluene 3-nitrobenzoic acid

2-nitrophenol 4-nitrobenzoic acid

The use ofpo
L,hc−i(T ) in Eq. (3) carries accuracy advan-

tages for predictingpo
L,i(T ) values because each prediction

utilizes important specific knowledge of the vapor pressure
of the compound with the underlying hc-i structure. It is
not surprising, then, that Capouet and Müller (2006) re-
port generally better prediction accuracies for the Eq. (3)

method than with the more general UNIFAC-po
L method of

Asher et al. (2002), though the fitting constants in Asher et
al. (2002) have been superseded by those given in Asher and
Pankow (2006). In any case, as a practical matter, requir-
ing knowledge ofpo

L,hc−i(T ) can be a significant disadvan-
tage relative to a more general method that can be executed
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Table 1e.Peroxide, hydroperoxide, and carbonylperoxynitrate-group containing compounds in the basis set for the initial fit.

Peroxides Carbonylperoxynitrates
di-n-butyl peroxide peroxyacetylnitrate
di-(1,1-dimethylethyl)-peroxide
diethyl-peroxide

Hydroperoxides Peroxyacids
1-methyl-1-phenyl-ethyl-hydroperoxide 1-oxo-ethyl-hydroperoxide
methyl-hydroperoxide 1-oxo-propyl-hydroperoxide
ethyl-hydroperoxide 1-oxo-butyl-hydroperoxide
(1,1-dimethylethyl)-hydroperoxide

Table 2. Average standard errors for the initial fit for all compounds in the basis set, and by compound class.

number of compounds average absolute error average signed error
Compound class Nc σFIT log(atm) σSGN log(atm)

All compounds 272 0.29 –1.4x10−3

Alkenes 40 0.27 –7.0x10−3

Amides 14 0.30 3.6x10−3

Amines 27 0.24 –1.8x10−2

Aromatics 21 0.22 6.2x10−2

Carbonylperoxynitrates 1 0.21 –1.2x10−2

Esters 30 0.24 3.0×10−2

Ethers 27 0.21 –7.1×10−2

Hydroperoxides 4 0.20 1.7×10−3

Nitrates 8 0.14 3.2×10−2

Nitro-containing 32 0.41 6.7×10−2

Peroxides 3 0.50 2.8×10−2

Peroxyacids 3 0.18 –1.1×10−3

Saturated 62 0.38 –4.0×10−2

using fitting constants alone, e.g. the method of Asher and
Pankow (2006) or that of Makar (2001). Moreover, for the
compounds that actually form OPM in the atmosphere, good
knowledge of the underlying structures is lacking, the avail-
able information being limited to a general idea of structural
characteristics such as the number of carbons, the likely num-
ber and types of functional groups, and whether any aromatic
or non-aromatic rings are likely to be present. The goal of
this work was to develop a simplepo

L,i(T ) group contribu-
tion method for which that level of information would be
sufficient.

2 Simplified po
L prediction method (SIMPOL.1)

2.1 General

The groups of interest considered include a range of first-
order group functionalities important for organic compounds
involved in OPM formation, and several second order

groups. Nevertheless, the total number of groupsNG was
kept as small as possible while still affording good accuracy
of the overall fit: SIMPOL.1 is not intended as a method that
employs many second- and third-order groups.

The SIMPOL.1 method is based on

log10po
L,i(T )=b0(T )+

∑
k
νk,ibk(T ) k=1, 2, 3, ... (4)

wherein the role ofb0(T ) is the same as in Eq. (1), and the
indexk may take on the values 1,2,3, etc. The units carried
by po

L,i(T ) are atm. The form of Eq. (4) is equivalent to

log10po
L,i(T )=ν0,ib0(T )+

∑
k
νk,i bk(T ) k=1, 2, 3... (5)

so thatb0(T ) can be viewed as pertaining to group “zero”,
with ν0,i≡ 1 for all i. Thus, Eqs. (4) and (5) are equivalent to

log10po
L,i(T ) =

∑
k
νk,i bk(T ) k= 0, 1, 2, 3... (6)

whereink may take on the values 0,1,2,3, etc., and fork=0,
ν0,i≡1 for all i.
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Fig. 1. Predicted vs. experimentally derivedpo
L,i

atT =333.15 K for
compounds in the initial basis set.

Fig. 2. σFIT,i at 333.15 K for the initial basis set compounds calcu-
lated as defined in Eq. (13) plotted vs. the experimentally derived
log10po

L,i
(333.15).

Perhaps the most important chemical group in SIMPOL.1
is molecular carbon, for whichk=1. Thus,ν1, i denotes the
number of carbon atoms ini, and b1(T ) denotes the per-
carbon group contribution to log10po

L,i(T ). At ambient tem-
peratures,b1(T )≈−0.5 (see Table 6 below) and so within
any given compound class,po

L,i(T ) drops by about 1/3 of

Fig. 3. σSGN,i at 333.15 K for the initial basis set compounds cal-
culated as defined in Eq. (14) plotted vs. experimentally derived
log10po

L,i
(333.15).

Fig. 4. Predicted vs. experimentally derivedpo
L,i

at T =333.15 K
for compounds in the test set. Predicted values are based on the
optimization using the initial basis set compounds.

an order of magnitude for every unit increase in the carbon
number.

By way of comparison with prior work from our group,
Asher and Pankow (2006) follow Jensen et al. (1981) and

Atmos. Chem. Phys., 8, 2773–2796, 2008 www.atmos-chem-phys.net/8/2773/2008/
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Fig. 5. σFIT,i at 333.15 K for the test set compounds calcu-
lated as defined in Eq. (13) plotted vs. experimentally derived
log10po

L,i
(333.15). Predictedpo

L,i
values used in calculating the

σFIT,i are based on the optimization using the initial basis set com-
pounds.

begin with

log10po
L,i(T )=

∑
k
νk,i

[
log10(0k,i)+

1gk(T )

2.303RT

]
(7)

where: each log10(0k,i) is a UNIFAC “residual term” that ac-
counts for the intramolecule and intermolecular group-group
interactions involving groupk; R is the gas constant; and
1gk(T )is the difference between the molar free energy of
groupk in the pure liquid state and in the perfect gas at 1
atm. After using tabulated values of UNIFAC group inter-
actions parameters compiled in Hansen et al. (1991) to com-
pute

∑
k νk,i log10(0k,i) for the compounds in their basis set,

Asher and Pankow (2006) fitpo
L,i(T ) data values to Eq. (7)

to obtain expressions for1gk(T ); a total of 24 groups were
considered. Adoption of Eq. (6) in place of Eq. (7) amounts
to assuming that eachbk(T ) can be fit as a lumped equivalent
of [log10(0k,i) + 1gk(T )/2.303RT ].

In SIMPOL.1, theT dependence in each of thebk(T ) is fit
to its own set ofB1,k to B4,k according to

bk(T ) =
B1,k

T
+ B2,k + B3,kT + B4,k ln T (8)

which is the form of theT dependence utilized for the 17
coefficients in the UNIFAC model of Jensen et al. (1981).
The goal of this work is to usepo

L,i(T ) data for a wide range
of compounds to obtain best-fit functional representations of
thebk(T ).

Fig. 6. σSGN,i at 333.15 K for the test set compounds calcu-
lated as defined in Eq. (14) plotted vs. experimentally derived
log10po

L,i
(333.15). Predictedpo

L,i
values used in calculating the

σSGN,i are based on the optimization using the initial basis set com-
pounds.

The temperature dependence of log10po
L,i(T ) may be used

to estimate1Hvap,i(T ) according to

d log10po
L,i(T )

d(1/T )
= −

1Hvap,i(T )

2.303R
(9)

Thus, by Eq. (6)

1Hvap,i(T ) = −2.303R
∑

k
υk,i

d bk(T )

d(1/T )
(10)

Eq. (10) may be viewed as a group contribution ex-
pression for1Hvap,i(T ) based on the SIMPOL.1 frame-
work where the group contribution to1Hvap,i(T ), defined
as 1hvap,i(T ), is given by each term in the summation in
Eq. (10). Eq. (10) may also be used to derive the predicted
change in1Hvap,i(T ) as a function ofT in the SIMPOL.1
framework. Substitution of the functional form forbk given
in Eq. (8) into Eq. (10) and taking the derivative with respect
to T results in

d1Hvap,i(T )

dT
=

∑
k
υk,i

[
2.303R

(
2B3,kT +B4,k

)]
(11)

where the SIMPOL.1 group contribution to
d1Hvap,i(T )/dT is defined asd1hvap,i(T )/dT .

For any real compoundi in the liquid state,
1Hvap,i(T )>0, but d1Hvap,i(T )/dT <0 because1Hvap,i
decreases monotonically to zero asT approaches the
compound’s critical temperatureTc,i (Reid et al., 1986). (As

www.atmos-chem-phys.net/8/2773/2008/ Atmos. Chem. Phys., 8, 2773–2796, 2008
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Table 3a.
Non-oxygenated, hydroxyl, phenolic, aldehyde, ketone, and carboxylic acid compounds in the test set for the initial fit.

Hydroxyls Aldehydes and Ketones Carboxylic Acids (cont.)
2-methyl, 2,4 pentanediol 2-acetyl-cyclopentanone pinic acid
1,6 hexanediol 2-hydroxy-2-methyl-3-hexanone norpinic acid
2,3 dimethyl 2,3 butanediol pinonaldehyde 15-hydroxy-pentadecanoic acid
1,7-heptanediol caronaldehyde 16-hydroxy-hexadecanoic acid
1,2,3-trihydroxy-propane 5-hexenal 12-hydroxy-octadecanoic acid
4-methyl-4-penten-2-ol 2-cyclohexen-1-one 2-oxo-pentanedioic acid
2-methyl-cyclohex-1-enyl-methanol 5-methyl-5-hexen-2-one 3-oxo-pentanedioic acid
cis-2-butene-1,4-diol 2-ethyl-hex-2-enal 2-oxohexanedioic acid
oct-2-en-4-ol 3,4-dimethyl-hex-3-en-2-one 3-oxohexanedioic acid
3,7-dimethyl-oct-6-en-1-ol 6-methyl-hept-3-en-2-one 5-oxo-nonanedioic acid
5-decen-1-ol 6-methyl-hept-5-en-2-one 5-hexenoic acid
9-decen-1-ol 5-methyl-hept-4-en-3-one 2-octenoic acid
2-phenyl-1-propanol oct-2-enal 3,7-dimethyl-oct-6-enoic
3-phenyl-1-butanol 3-octen-2-one 2-decenoic acid
1-phenyl-ethanol 2-allyl-2-methyl-cyclopentane-1,3-dione 9-undecenoic acid
1-phenyl-1-propanol 1-phenyl-2-butanone octadeca-9-enoic acid
1-phenyl-2-propanol 3-phenyl-1-butanal benzoic acid
3-phenyl-1-propanol 1-(3-methyl-phenyl)-ethanone 2-methyl-benzoic acid
3-phenyl-2-propen-1-ol 1-(4-methyl-phenyl)-ethanone 3-phenyl-propanoic acid
Phenols 1-(2,4-dimethylphenyl)-ethanone 4-phenyl-butanoic acid
3-ethyl-phenol 1-(2-ethyl-phenyl)-ethanone 5-phenyl-pentanoic acid
p-hydroxybiphenyl 1-phenyl-1-propanone 2,3-dimethyl benzoic acid
o-hydroxybiphenyl 1-phenyl-1-butanone 2,4-dimethyl benzoic acid
4-(phenylmethyl)-phenol 4-phenyl-2-butanone 2,5-dimethyl benzoic acid
p-(1,1-dimethylethyl)-phenol 2,4-dimethyl-benzaldehyde 2,6-dimethyl benzoic acid
2-(1,1-dimethylethyl)-4-methylphenol 4-(1-methylethyl)-benzaldehyde 3,4-dimethyl benzoic acid
2-methyl-4-(1,1-dimethylethyl)-phenol 2-hydroxy-benzaldehyde 3,5-dimethyl benzoic acid
5-methyl-2-(1,1-dimethylethyl)-phenol 4-hydroxy-benzaldehyde 2,3,4-trimethyl benzoic acid
2,4,6-tri-(1,1-dimethylethyl)-phenol Carboxylic Acids 2,3,5-trimethyl benzoic acid
1-(4-hydroxyphenyl)-ethanone 2-ethyl-hexanoic acid 2,3,6-trimethyl benzoic acid
1-napthol propanedioic acid 2,4,5-trimethyl benzoic acid
2-napthol hexanedioic acid 2,4,6-trimethyl benzoic acid
2-propyl phenol heptanedioic acid 3,4,5-trimethyl benzoic acid
4-propyl phenol octanedioic acid 2-(1-methylethyl) benzoic acid
2-(1-methyl-ethyl)-phenol nonanedioic acid 3-(1-methylethyl) benzoic acid
3-(1-methyl-ethyl)-phenol decanedioic acid 4-(1-methylethyl) benzoic acid
Saturated Non-oxygenated undecanedioic acid 2,3,4,5-tetramethyl benzoic acid
cyclohexane dodecanedioic acid 2,3,4,6-tetramethyl benzoic acid
1,1-dimethyl cyclopentane 3-methyl-hexanedioic acid 2,3,5,6-tetramethyl benzoic acid
trans-1,3-dimethyl cyclopentane 2,2-dimethyl-butanedioic acid 2-(1,1-dimethylethyl) benzoic acid
2,3,4-trimethyl pentane 2-methyl-butanedioic acid 3-(1,1-dimethylethyl) benzoic acid
2,2,3,3-tetramethyl butane 2-methyl-pentanedioic acid 4-(1,1-dimethylethyl) benzoic acid

2,2-dimethyl-pentanedioic acid pentamethyl benzoic acid

T →Tc,i , the liquid and gas states fori become increasingly
similar, and less and less thermal energy is required for the
phase transition.) It is desirable, then, that the values of the
fitted parameters used in Eq. (10) yieldd1Hvap,i(T )/dT <0
with Eq. (11). The extent to which this is observed depends
upon the reliability of thepo

L,i(T ) data set used in the fitting
(including adequate coverage by the data of suitably wide
temperature ranges for a mix of compounds that contains all
the groups of interest) and the ability of the chosen groups
to represent the physical properties ofi.

2.2 Fitting the SIMPOL.1 coefficients

All B1,k −B4,k sets were determined by an optimization pro-
cess using a set of compounds with measuredpo

L(T ) values.
See Asher et al. (2002) and Asher and Pankow (2006) for
descriptions of this type of process. The optimization used
nonlinear regression to minimize a least-squares goodness-
of-fit criterion defined as

Atmos. Chem. Phys., 8, 2773–2796, 2008 www.atmos-chem-phys.net/8/2773/2008/



J. F. Pankow and W. E. Asher: Vapor pressure prediction – simple group contribution method 2781

Table 3b. Amide, amine, ester, ether, nitrate, nitro-containing, and peroxide compounds in the test set for the initial fit.

Amides Ethers
heptanamide 4-methyl-1,3-dioxane
octanamide 1,3-dioxepan
methyl-butyramide 1,3-dioxolan
diethyl-butanamide dimethoxy methane
dimethyl-cyclohexanecarboxamide trans-2,2,4,6-tetramethyl-1,3-dioxane
1-methyl-piperidin-2-one 2-(2-methoxyethoxy)-tetrahydropyran

(phenoxymethyl)-oxirane
Amines 2-phenyl-1,3-dioxolane
1-amino-2,6-dimethylbenzene 2,3-dimethoxybenzoic acid
n-ethyl-n-phenylamine 2,4-dimethoxybenzoic acid
1-amino-2,4-dimethylbenzene
1-amino-4-ethylbenzene Nitrates
triethanolamine cyclohexane nitrate
dibutylamine phenylmethyl nitrate
hexylamine 2,2’-oxybis-ethanol dinitrate
n-propyl-1-propanamine, 2-nitro-2-[(nitrooxy)methyl]-1,3-propanediol dinitrate
n-(1-methylethyl)-2-propanamine
1-(diethylamino)-2-propanone Nitros
2-amino-3-methylbenzoic 2,4-dinitrophenol
2-amino-5-methylbenzoic 2,5-dinitrophenol
2-amino-6-methylbenzoic 3-nitrophenol
3-amino-2-methylbenzoic 4-nitrophenol

2-methyl-6-nitrobenzoic acid
Esters 3-methyl-2-nitrobenzoic acid
dimethyl 1,4-benzenedicarboxylate 3-methyl-4-nitrobenzoic acid
methyl dimethoxyethanoate
diethyl 1,1-cyclopentanedicarboxylatePeroxides
dimethyl propanedioate di-(1-methyl-propyl) peroxide
1,2-ethanediol diacetate
methyl benzoate
phenyl acetate
ethyl benzoate
diethyl 1,1-cyclobutanedicarboxylate
n-propyl benzoate
2-methyl-propyl benzoate
n-butyl benzoate

χ2
=

Nc∑
i=1

NT,i∑
j=1

(
log10

(
po

L,i(Tj,i)
)
E

−

[
b0

(
Tj,i

)
+

NG∑
k=1

νk,ibk

(
Tj,i

)])2

(12)

where: Nc is the number of compounds (=272 for the
initial basis set);NG is the total number of groups con-
sidered; and each(po

L,i(Tj,i))E is the vapor pressure of
i at temperatureT as evaluated using apo

L,i=fi(T ) ex-
pression (e.g., an Antoine-type equation) fitted to experi-
mentally derivedpo

L,i data. Thefi(T ) expressions used
and the associated references are provided in the supple-
mentary online materialshttp://www.atmos-chem-phys.net/

8/2773/2008/acp-8-2773-2008-supplement.pdf. The opti-
mizations were performed usingTj,i that could take on the
discrete values of 273.15, 293.15, . . . 393.15 K with allpo

L,i

calculated in units of atmospheres. For compounds for which
fi(T ) had been fit over that entire range,NT,i=7; for others,
NT,i<7. With the initial basis set compounds, the total num-
ber of points considered in the optimization wasN=1844.

2.3 Groups and initial basis set compounds

In addition to the zeroeth group, 30 structural groups are con-
sidered, giving the total number of groupsNG=31. In ad-
dition to molecular carbon (for whichk=1), the first-order
groups considered are: alkyl hydroxyl, aromatic hydroxyl
(e.g., phenol), alkyl ether, alkyl ring ether (e.g, dioxane), aro-
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Table 4. Average standard errors in vapor pressures for the test set compounds as estimated by SIMPOL.1 based on the initial basis set
compounds in Table 1 and allTj,i for which the experimentally basedpo

L,i
=fi(T ) expressions extended.

number of compounds average absolute error average signed error
Compounds Nc σFIT log(atm) σSGN log(atm)

All compounds 184 0.45 7.1×10−2

Alkenes 24 0.29 2.8×10−2

Amides 6 0.41 7.1×10−2

Amines 14 0.39 –1.3×10−1

Aromatics 68 0.39 2.0×10−1

Carbonylperoxynitrates 0 n.a.a n.a.a

Esters 12 0.36 5.7×10−2

Ethers 10 0.42 –2.5×10−1

Hydroperoxides 0 n.a.a n.a.a

Nitrates 4 0.29 –1.1×10−1

Nitro-containing 7 1.0 3.8×10−1

Peroxides 1 0.23 2.4×10−2

Peroxyacids 0 n.a.a n.a.a

Saturated 38 0.66 2.5×10−3

a n.a.=not available

Fig. 7. (a) Predicted vs. experimentally derivedpo
L,i

at T =333.15 K for all compounds based on the final optimization using all of the
compounds.
(b) Predicted vs. experimentally derivedpo

L,i
at all seven temperatures for all compounds based on the final optimization using all of the

compounds to show the complete data range.

matic ether (e.g., methoxybenzene), aldehyde, ketone, car-
boxylic acid, ester, nitrate, nitro, alkyl amine (primary, sec-
ondary, and tertiary), aromatic amine (e.g., aniline), amide
(primary, secondary, and tertiary), peroxide, hydroperoxide,
peroxy acid, C=C, and carbonylperoxynitrate. The second-

order groups considered are: carbon on the acid-side of an
amide for whichk=2 (e.g., forn-propyl-butyramide,ν1=7
andν2 = 4); nitro-phenol (as in 2-nitro-phenol), nitro-ester
(as in methyl nitroacetate), aromatic rings, non-aromatic
rings (as in cyclohexane), and C=C–C=O in a non-aromatic
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Table 5. Chemical groups used in SIMPOL.1 and theB values obtained by least-squares optimization using the final fitting set (all com-
pounds in Tables 1 and 3) and givingχ2=728. Coefficient set predictspo

L,i
in atmospheres.

groups k coefficient footnote comment Bk,1 Bk,2 Bk,3 Bk,4

zeroeth group 0 b0
a –4.26938E+02 2.89223E-01 4.42057E-03 2.92846E-01

(constant term)
carbon number 1 b1

b –4.11248E+02 8.96919E-01 –2.48607E-03 1.40312E-01
carbon number on the 2 b2

c –1.46442E+02 1.54528E+00 1.71021E-03 –2.78291E-01
acid-side of an amide (asa)
aromatic ring 3 b3

d 3.50262E+01 –9.20839E-01 2.24399E-03 –9.36300E-02
non-aromatic ring 4 b4

e –8.72770E+01 1.78059E+00 –3.07187E-03 –1.04341E-01
C=C (non-aromatic) 5 b5

f 5.73335E+00 1.69764E-02 –6.28957E-04 7.55434E-03
C=C–C=O in 6 b6

g –2.61268E+02 –7.63282E-01 –1.68213E-03 2.89038E-01
non-aromatic ring
hydroxyl (alkyl) 7 b7

h –7.25373E+02 8.26326E-01 2.50957E-03 –2.32304E-01
aldehyde 8 b8

i –7.29501E+02 9.86017E-01 –2.92664E-03 1.78077E-01
ketone 9 b9

j –1.37456E+01 5.23486E-01 5.50298E-04 –2.76950E-01
carboxylic acid 10 b10

k –7.98796E+02 –1.09436E+00 5.24132E-03 –2.28040E-01
ester 11 b11

L –3.93345E+02 –9.51778E-01 –2.19071E-03 3.05843E-01
ether 12 b12

m –1.44334E+02 –1.85617E+00 –2.37491E-05 2.88290E-01
ether (alicyclic) 13 b13

m 4.05265E+01 –2.43780E+00 3.60133E-03 9.86422E-02
ether, aromatic 14 b14

m –7.07406E+01 –1.06674E+00 3.73104E-03 –1.44003E-01
nitrate 15 b15

n –7.83648E+02 –1.03439E+00 –1.07148E-03 3.15535E-01
nitro 16 b16

o –5.63872E+02 –7.18416E-01 2.63016E-03 –4.99470E-02
aromatic hydroxyl 17 b17

p –4.53961E+02 –3.26105E-01 –1.39780E-04 –3.93916E-02
(e.g., phenol)
amine, primary 18 b18

q 3.71375E+01 –2.66753E+00 1.01483E-03 2.14233E-01
amine, secondary 19 b19

q –5.03710E+02 1.04092E+00 –4.12746E-03 1.82790E-01
amine, tertiary 20 b20

q –3.59763E+01 –4.08458E-01 1.67264E-03 –9.98919E-02
amine, aromatic 21 b21

q –6.09432E+02 1.50436E+00 –9.09024E-04 –1.35495E-01
amide, primary 22 b22

c –1.02367E+02 –7.16253E-01 –2.90670E-04 –5.88556E-01
amide, secondary 23 b23

c –1.93802E+03 6.48262E-01 1.73245E-03 3.47940E-02
amide, tertiary 24 b24

c –5.26919E+00 3.06435E-01 3.25397E-03 –6.81506E-01
carbonylperoxynitrate 25 b25

r –2.84042E+02 –6.25424E-01 –8.22474E-04 –8.80549E-02
peroxide 26 b26

r 1.50093E+02 2.39875E-02 –3.37969E-03 1.52789E-02
hydroperoxide 27 b27

r –2.03387E+01 –5.48718E+00 8.39075E-03 1.07884E-01
carbonylperoxyacid 28 b28

r –8.38064E+02 –1.09600E+00 –4.24385E-04 2.81812E-01
nitrophenol 29 b29

p –5.27934E+01 –4.63689E-01 –5.11647E-03 3.84965E-01
nitroester 30 b30

L –1.61520E+03 9.01669E-01 1.44536E-03 2.66889E-01

a Use for all compoundsi with υ0,i=1.
b Use for all compoundsi with υ1,i=total number of carbons in the molecule.
c If the compound is an amide, use bothb1 andb2. Examples: for acetamide, useb0, b1, b2, andb22, for methyl acetamide, useb0, b1, b2, andb23, for methyl ethyl acetamide, use
b0, b1, b2, andb24.
d Use with total number of aromatic rings in a molecule. Examples: for biphenyl, useb0, b1, andb3 with b3=2; for anthracene, useb0, b1, andb3 with b3=3.
e Use with total number of non-aromatic rings in a molecule. Examples: for cyclohexane, useb0, b1, andb4 with b4=1.
f Use with total number of non-aromatic C=C bonds. Example: for 1-hexene, useb0, b1, andb5 with b5=1.
g Use with total number of C=C–C=O groups in non-aromatic rings. Example: for cyclohex-2-eneone, useb0, b1, b4, b5, b6, andb9 with b4, b5, b6, andb9 all equal to 1.
h Use with total number of hydroxyl groups attached to non-aromatic carbons.
i Use with total number of aldehyde groups.
j Use with total number of ketone groups.
k Use with total number of carboxylic acid groups.
L Use with total number of ester groups unless there is a nitro bonded to the acid side carbon chain of the ester, in this case useb30. Examples: for methyl acetate, useb0, b1, and
b11; for methyl nitroacetate, useb0, b1, b16, andb30.
m Use with ether groups. If both carbons bonded to the oxygen are not part of an aromatic ring, useb12. If the oxygen is within a non-aromatic ring useb13. Otherwise, useb14.
Examples for dimethylether, useb0, b1, andb12; for tetrahydrofuran,useb0, b1, b4, andb13; for methylphenyl ether,useb0, b1, b3, andb14.
n Use with total number of nitrate groups.
o Use with total number of nitro groups. Examples: useb0, b1, andb16 for 2-nitropropane; useb0, b1, b3, andb16 for nitrobenzene.
p Use with total number of aromatic hydroxyls (i.e., phenolic hydroxyls) unless there is a nitro group bonded to a benzene ring, in which case useb29. Examples: for 2-methylphenol,
useb0, b1, b3, andb17; for 2-nitrophenol, useb0, b1, b3, b16, andb29.
q Use with amines. If all carbons bonded to the nitrogen are not aromatic, useb11 or b12 or b13. Otherwise, useb14. Examples: for methylamine useb0, b1, andb11; for
dimethylamine useb0, b1, andb12; for trimethylamine and for N-benzyl-dimethylamine useb0, b1, andb13; for phenylamine, for N-methyl-N-phenylamine, and for N,N-dimethyl-
N-phenylamine, useb0, b1, andb14.
r Use with peroxy compounds. Examples: for peroxy propanyl nitrate useb0, b1, andb25; for N-propyl-N-butyl peroxide useb0, b1, andb26; for N-butyl peroxide useb0, b1, and
b27; and for peroxyacetic acid useb0, b1, andb28.
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Table 6. Values atT = 293.15 K of thebk group contribution terms from this work, theτ group contribution terms from Capouet and
Müller (2006), and for each method whether each group valued1hvap/dT <0 atT =293.15 K.

this work Capouet and M̈uller (2006)

groups k coefficient value ofbk
d1hvap,k(T )

dT
<0? value ofτ k

d1hvap(T )

dT
<0?

T =293.15 T =293.15 K T =293.15 T =293.15 K

zeroeth group (constant term) 0 b0 1.79 NO –a –
carbon number 1 b1 –0.438 YES – –
carbon number, acid-side of amide 2 b2 –0.0338 NO – –
number of aromatic rings 3 b3 –0.675 NO – –
number of non-aromatic rings 4 b4 –0.0104 YES – –
C=C (non-aromatic) 5 b5 –0.105 YES – –
C=C–C=O in non-aromatic ring 6 b6 –0.506 YES – –
hydroxyl (alkyl) 7 b7 –2.23 NO –2.76, –2.10, –1.49b no
aldehyde 8 b8 –1.35 YES

–0.91c noketone 9 b9 –0.935 NO
carboxylic acid 10 b10 –3.58 NO –3.10 no
ester 11 b11 –1.20 YES – –
ether 12 b12 –0.718 NO – –
ether (alicyclic) 13 b13 –0.683 NO – –
ether, aromatic 14 b14 –1.03 NO – –
nitrate 15 b15 –2.23 YES –2.12, –1.70, –1.30d no
nitro 16 b16 –2.15 NO – –
aromatic hydroxyl (e.g., phenol) 17 b17 –2.14 YES – –
amine, primary 18 b18 –1.03 NO – –
amine, secondary 19 b19 –0.849 YES – –
amine, tertiary 20 b20 -0.608 NO – –
amine, aromatic 21 b21 –1.61 YES – –
amide, primary 22 b22 –4.49 YES – –
amide, secondary 23 b23 –5.26 NO – –
amide, tertiary 24 b24 -2.63 NO – –
carbonylperoxynitrate 25 b25 –2.34 YES – –
peroxide 26 b26 –0.368 YES – –
hydroperoxide 27 b27 -2.48 NO –3.17 no
carbonylperoxyacid 28 b28 –2.48 NO –3.10 no
nitrophenol 29 b29 0.0432 YES – –
nitroester 30 b30 –2.67 NO – –

a Not considered by Capouet and Müller (2006).
b Primary, secondary, and tertiary hydroxyl, respectively.
c Capouet and M̈uller (2006) consider only the carbonyl group.
d Primary, secondary, and tertiary nitrate group, respectively.

ring (as in cyclohex-2-enone). Group consideration was not
extended to ortho, meta, or para positioning on aromatic
rings, or to cis/trans positioning for alkenes.

Table 1 lists the 272 basis set compounds used in the ini-
tial fit. There were 6 compounds in the set with primary
amide functionality, 4 secondary amides, 4 tertiary amides,
12 primary amines, 4 secondary amines, 3 tertiary amines,
9 aromatic amines, 37 esters, 21 ethers, 10 nitrates, 35 ni-
tros, 3 peroxides, 4 hydroperoxides, 3 peroxy acids, 1 car-
bonylperoxynitrate, 65 hydroxyls, 6 phenols, 14 aldehydes,
27 ketones, 55 carboxylic acids, 16 aromatic ethers, 16 alkyl
ring ethers, 8 nitrophenols, and 5 nitroesters. (These num-
bers sum to more than 272 because many of the compounds
in the basis set had more than one functional group.)

2.4 Optimization

There is no general theoretical method for determining
whether a local minimumχ2 value found by optimizing the
set ofB values for Eq. (1) is the desired global minimum.
However, beginning the optimization with a large number of
suitably different sets of initialB values provides an equal
number of optimizedχ2 values, and selecting the lowest of
these local minima provides a measure of confidence that the
corresponding optimizedB set either is the set for the global
minimum, or is nearly as good as the set for the global mini-
mum.

Theχ2 fitting function in Eq. (1) was minimized using the
generalized reduced-gradient method (Lasdon et al., 1978)
contained in the nonlinear optimization routines LOADNLP
and OPTIMIZE from SOLVER.DLL (Frontline Systems,
Boulder, Colorado). The optimization was performed in
two steps. First, 100 sets of initialB values (with each
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Table 7. Average standard errors in predicting experimental vapor pressures using SIMPOL.1 coefficients optimized for all compounds in
Tables 1 and 3 and allTj,i for which the experimentally basedpo

L,i
=fi(T ) expressions extended. Units ofσFIT andσSGN are log10 (atm).

number of compounds average absolute error average signed error
Compounds Nc σFIT σSGN

All Compounds 456 0.34 –2.3E-04
Alkenes 64 0.32 –8.2E-03
Nonoxygenated 1 0.16 8.9E-02
Hydroxys 17 0.37 –1.7E-01
Cyclic hydroxys 4 0.23 1.2E-02
Dihydroxys 1 0.57 5.7E-01
Aldehydes 7 0.35 2.3E-01
Ketones 13 0.16 1.4E-01
Cyclic ketones 3 0.25 –8.4E-02
Cyclic hydroxyl ketones 1 0.22 –1.4E-01
Carboxylic acids 15 0.41 –7.9E-02
Cyclic carboxylics 2 0.25 –2.2E-01
Amides 20 0.28 1.1E-02
Primary 8 0.28 1.6E-02
Secondary 5 0.22 2.6E-03
Tertiary 6 0.31 –5.4E-02
Cyclic 1 0.40 4.0E-01
Amines 41 0.28 –9.6E-03
Primary 11 0.22 –2.0E-03
Secondary 8 0.25 –7.2E-02
Tertiary 2 0.18 –1.2E-01
Benzoic acids 6 0.50 2.6E-02
Aromatics 11 0.24 8.5E-03
Ketones 2 0.23 –8.2E-02
Trihydroxys 1 0.52 5.2E-01
Aromatics 89 0.32 3.6E-02
Nonoxygenated 3 0.26 –1.3E-01
Hydroxys 8 0.34 1.2E-02
Hydroxy alkenes 1 0.10 –1.0E-01
Phenols 20 0.36 –4.8E-02
Aldehydes 6 0.28 7.9E-02
Ketones 11 0.18 1.0E-01
Carbonyl phenols 3 1.17 2.3E-01
Benzoic acids 31 0.29 8.3E-02
Other carboxylic acids 5 0.16 –1.4E-01
Carboxylic acid alkenes 1 0.33 3.3E-01
Esters 42 0.25 3.0E-02
Monoesters 23 0.23 2.3E-02
Diesters 11 0.27 –4.4E-02
Cyclic esters 6 0.24 6.4E-02
Ether esters 2 0.48 4.1E-01
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Table 7. Continued.

number of compounds average absolute error average signed error
Compounds Nc σFIT σSGN

Ethers 37 0.31 –5.3E-02
Monoethers 1 0.22 –2.1E-01
Diethers 7 0.18 2.2E-03
Alkene diethers 2 0.12 –1.2E-01
Cyclic diethers 11 0.32 –3.5E-02
Hydroxys 2 0.60 –6.0E-01
Trihydroxy cyclics 1 0.66 6.6E-01
Cyclic ethers 2 0.57 4.8E-02
Carboxylic acid aromatics 6 0.29 –5.3E-03
Aromatic aldehydes 1 0.16 –6.2E-02
Phenols 1 0.12 –6.9E-02
Cyclic and aromatic ethers 1 0.21 –2.1E-01
Carbox. acid aromatic diethers 2 0.44 –1.8E-01
Nitrates 12 0.19 –1.6E-02
Saturated 7 0.21 1.4E-01
Cyclic 2 0.35 –3.5E-01
Nitro trinitrates 1 0.13 –1.3E-01
Saturated trinitrates 1 0.13 –1.3E-01
Ethers 1 0.48 4.8E-01
Nitros 39 0.50 7.0E-02
Saturated 2 0.51 4.8E-01
Aromatics 1 0.41 –4.1E-01
Hydroxys 5 0.47 3.6E-01
Cyclic hydroxyls 1 0.31 1.8E-01
Nitrophenols 7 0.68 6.0E-01
Dinitrophenols 3 0.70 –7.0E-01
Nitrophenol ethers 1 1.24 –1.2E+00
Carbonyl nitrophenols 1 0.64 –6.4E-01
Carbonyls 1 0.52 5.2E-01
Esters 5 0.42 1.3E-02
Nitrobenzoic acids 9 0.29 –2.3E-01
Nitrophenol benzoic acids 3 0.54 5.4E-01
Peroxides 12 0.26 3.0E-03
Carbonylperoxynitrates 1 0.15 –5.4E-02
Hydroperoxides 4 0.18 7.9E-03
Peroxides 4 0.41 –1.3E-02
PeroxyAcids 3 0.18 3.7E-02
Saturated 100 0.43 –4.6E-02
Nonoxygenated 4 0.23 1.7E-01
Cyclic nonoxygenated 5 0.22 –2.8E-02
Hydroxys 10 0.22 –1.7E-01
Cyclic hydroxys 5 0.28 –2.8E-01
Dihydroxys 12 0.38 1.9E-01
Trihydroxys 1 0.60 6.0E-01
Aldehydes 5 0.26 –6.2E-02
Cyclic aldehydes 2 0.39 –2.1E-01
Ketones 5 0.24 1.5E-01
Cyclic ketones 3 0.40 3.4E-01
Hydroxy ketones 4 0.81 –8.1E-01
Carboxylic acids 13 0.41 –1.5E-01
Cyclic carboxylic acids 3 0.11 –1.1E-01
Hydroxy carboxylic acids 4 -1.02 –4.3E-01
Carbonyl carboxylic acids 7 0.81 –2.3E-01
Dicarboxylic acids 17 0.51 1.8E-01
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Table 8. Average standard errors (σ1H andσ1H SGN) and average relative standard errors (ρ1H andρ1H SGN) in predicting1Hvap,i
values at 335.15 K for organic compounds using SIMPOL.1 coefficients as optimized for all compounds in Tables 1 and 3.

number of compounds average absolute error Average relative absolute error average signed error Average relative signed error
Compounds Nc σ1H (kJ mol−1) ρ1H σ1H SGN (kJ mol−1) ρ1H SGN

All Compounds 456 8.9 2.7 1.6E-01 8.0E-02
Alkenes 64 6.6 –1.2 1.2E-01 3.4E-03
Nonoxygenated alkenes 1 8.2 8.2 2.9E-01 2.9E-01
Hydroxy alkenes 17 5.9 4.7 1.2E-01 1.1E-01
Cyclic hydroxyl alkenes 4 9.5 –2.9 1.9E-01 –2.5E-03
Dihydroxy alkenes 1 1.7 1.7 2.6E-02 2.6E-02
Aldehyde alkenes 7 6.8 –2.5 1.4E-01 –2.8E-02
Ketone alkenes 13 3.0 –1.7 7.6E-02 –3.4E-02
Cyclic ketone alkenes 3 10.7 –10.7 2.3E-01 –2.3E-01
Cyclic hydroxyl ketone alkenes 1 29.6 –29.6 3.2E-01 –3.2E-01
Carboxylic acid alkenes 15 7.6 –2.7 9.7E-02 –7.8E-03
Cyclic carboxylic alkenes 2 4.8 -4.8 7.1E-02 –7.1E-02
Amides 20 11.8 0.4 1.9E-01 2.9E-03
Primary amides 8 15.9 –6.5 2.6E-01 –1.1E-01
Secondary amides 5 11.3 8.5 1.7E-01 1.4E-01
Tertiary amides 6 7.5 1.6 1.4E-01 1.9E-02
Cyclic amides 1 7.5 7.5 1.4E-01 1.4E-01
Amines 41 6.2 3.4 1.5E-01 1.0E-01
Primary amines 11 4.4 1.3 1.3E-01 6.3E-02
Secondary amines 8 5.5 3.9 1.7E-01 1.4E-01
Tertiary amines 2 11.3 11.3 4.2E-01 4.2E-01
Benzoic acid amines 6 8.1 2.8 1.0E-01 4.5E-02
Aromatic amines 11 7.0 4.7 1.3E-01 1.0E-01
Ketone amines 2 3.7 3.7 9.6E-02 9.6E-02
Trihydroxy amines 1 3.5 –3.5 3.5E-02 –3.5E-02
Aromatics 89 9.3 4.6 1.4E-01 8.7E-02
Nonoxygenated aromatics 3 9.1 7.8 2.0E-01 1.9E-01
Hydroxy aromatics 8 5.6 –1.3 7.7E-02 –6.9E-03
Hydroxy alkene aromatics 1 7.4 7.4 1.2E-01 1.2E-01
Phenols 20 4.2 –0.4 7.0E-02 –5.4E-03
Aldehydes aromatics 6 10.7 1.8 1.7E-01 7.7E-02
Ketone aromatics 11 3.6 –1.5 5.9E-02 –1.9E-02
Carbonyl phenol aromatics 3 8.1 –4.8 1.2E-01 –6.2E-02
Benzoic acids 31 16.7 13.1 2.5E-01 2.2E-01
Carboxylic acid aromatics 5 2.6 1.4 3.5E-02 2.2E-02
Carboxylic acid alkene aromatics 1 3.1 3.1 4.1E-02 4.1E-02
Esters 42 6.9 3.9 1.7E-01 1.2E-01
Monoesters 23 5.5 3.8 1.2E-01 9.3E-02
Diesters 11 6.5 0.7 1.3E-01 3.0E-02
Cyclic esters 6 13.2 13.2 4.4E-01 4.4E-01
Ether esters 2 5.8 -5.6 9.1E-02 –8.6E-02

set containing 31×4 initial values) were populated randomly
(though subject to the condition that the absolute value of all
four terms on the right-hand side of Eq. (8) were of order
unity). The mean and standard deviation of the 100χ2 val-
ues were 472 and 23, respectively. The smallest of theseχ2

was 372.

In the second step of the optimization, the set ofB val-
ues givingχ2=372 was subjected to further refinement by
running 100 additional optimizations, varying eachB by a
random amount, with all variations restricted within±30%.
The mean and standard deviation of the resulting 100χ2 val-
ues were 332 and 3, respectively. The smallest of theχ2 was
325. Further attempts to refine the coefficients did not pro-
duce any significant decrease inχ2. When comparing theB
set forχ2 = 372 to the set forχ2=325, the median absolute
difference is 30%.

3 Results

3.1 Fit accuracy of SIMPOL.1 with initial basis set com-
pounds

The overall agreement between the experimental and pre-
dicted values can be assessed in terms of an absolute value
form of standard error of the fit:

σFIT=
1

N

Nc∑
i=1

NT,i∑
j=1

∣∣ log10(p
o
L,i(Tj,i))P− log10(p

o
L,i(Tj,i))E

∣∣
=

1

N

Nc∑
i=1

NT,i∑
j=1

σFIT,i (13)

where(po
L,i(Tj,i))P is the predicted vapor pressure fori at

temperatureTj,i by Eq. (6). For the basis set,Nc=272 and
N=1844 (see above), and using the set ofB giving χ2=325
yields σFIT=0.29 (log units): on average,(po

L,i(Tj,i))E for
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Table 8. Continued.

number of compounds average absolute error Average relative absolute error average signed error Average relative signed error
Compounds Nc σ1H (kJ mol−1) ρ1H σ1H SGN (kJ mol−1) ρ1H SGN

Ethers 37 7.2 4.5 1.4E-01 1.1E-01
Monoethers 1 11.3 11.3 4.3E-01 4.3E-01
Diethers 7 3.5 2.6 9.7E-02 8.2E-02
Alkene diethers 2 3.5 3.5 9.4E-02 9.4E-02
Cyclic diethers 11 6.1 5.2 1.5E-01 1.4E-01
Hydroxy ethers 2 12.9 12.9 2.6E-01 2.6E-01
Trihydroxy cyclic ethers 1 21.5 –21.5 1.8E-01 –1.8E-01
Ether cyclic ethers 2 10.5 –2.4 1.8E-01 –1.9E-03
Carboxylic acid aromatic ethers 6 5.0 4.6 6.0E-02 5.6E-02
Aromatic aldehyde ethers 1 10.0 10.0 1.7E-01 1.7E-01
Phenolic ethers 1 7.4 –7.4 1.0E-01 –1.0E-01
Cyclic ether and aromatic ethers 1 9.7 9.7 1.8E-01 1.8E-01
Carboxylic acid aromatic diethers 2 16.0 16.0 2.0E-01 2.0E-01
Nitrates 12 9.2 2.04 1.7E-01 7.7E-02
Saturated nitrates 7 4.4 –0.5 1.2E-01 7.4E-03
Cyclic nitrates 2 7.0 7.0 2.5E-01 2.5E-01
Nitro trinitrates 1 2.4 2.4 8.9E-02 8.9E-02
Saturated trinitrates 1 1.0 1.0 4.1E-02 4.1E-02
Nitrate ethers 1 6.5 -6.5 1.2E-01 –1.2E-01
Nitros 39 11.0 4.2 1.6E-01 7.2E-02
Saturated nitros 2 7.4 2.3 1.7E-01 7.5E-02
Aromatic nitros 1 10.9 10.9 1.3E-01 1.3E-01
Hydroxy nitros 5 7.9 –1.3 1.2E-01 3.2E-03
Cyclic hydroxy nitros 1 27.0 –27.0 2.7E-01 –2.7E-01
Nitrophenols 7 9.2 –9.2 1.3E-01 –1.3E-01
Dinitrophenols 3 2.0 –2.0 2.7E-02 –2.7E-02
Nitrophenol ethers 1 13.1 13.1 2.6E-01 2.6E-01
Carbonyl nitrophenols 1 3.0 –3.0 4.4E-02 –4.4E-02
Carbonyl nitros 1 4.2 –4.2 7.8E-02 –7.8E-02
Nitro esters 5 23.3 23.3 4.1E-01 4.1E-01
Nitrobenzoic acids 9 11.3 11.3 1.5E-01 1.5E-01
Nitrophenol benzoic acids 3 8.7 8.7 9.6E-02 9.6E-02
Peroxides 12 8.6 –1.6 2.0E-01 2.9E-02
Carbonylperoxynitrates 1 8.6 –8.6 2.3E-01 –2.3E-01
Hydroperoxides 4 10.3 –4.2 1.4E-01 1.4E-03
Peroxides 4 11.1 –0.2 3.6E-01 1.0E-01
PeroxyAcids 3 3.1 2.5 7.0E-02 5.5E-02
Saturated 100 11.0 2.4 2.1E-01 1.1E-01
Nonoxygenated 4 9.6 9.6 2.8E-01 2.8E-01
Cyclic nonoxygenated 5 4.6 4.6 1.4E-01 1.4E-01
Hydroxys 10 6.6 6.6 1.4E-01 1.4E-01
Cyclic hydroxys 5 4.1 3.8 8.5E-02 7.9E-02
Dihydroxys 12 4.1 -1.2 5.6E-02 –9.9E-03
Trihydroxys 1 1.3 –1.3 1.5E-02 –1.5E-02
Aldehydes 5 13.7 13.7 4.6E-01 4.6E-01
Cyclic aldehydes 2 22.7 –22.7 3.0E-01 –3.0E-01
Ketones 5 3.5 -2.7 7.3E-02 –5.3E-02
Cyclic ketones 3 6.2 –2.5 1.7E-01 –3.0E-02
Hydroxy ketones 4 9.6 9.6 2.1E-01 2.1E-01
Carboxylic acids 13 7.0 1.6 1.2E-01 5.6E-02
Cyclic carboxylic acids 3 1.7 –1.6 2.7E-02 –2.6E-02
Hydroxy carboxylic acids 4 54.7 42.0 6.7E-01 6.5E-01
Carbonyl carboxylic acids 7 20.6 –12.1 2.0E-01 –8.1E-02
Dicarboxylic acids 17 15.1 –1.8 2.9E-01 1.3E-01

compounds in the basis set is predicted to within a fac-
tor of ∼2. This is evidenced in Fig. 1, which is a plot of
log10(p

o
L,i(Tj,i))P vs. log10(p

o
L,i(Tj,i))E for the initial basis

set compounds at 333.15 K, the lowestT to which all of the
experimentally basedpo

L,i=fi(T ) expressions extended. It
should be noted that although the minimumpo

L,i shown in

Fig. 1 is 10−9 atm, there were 24 values ofpo
L,i included in

the optimization that were lower than 10−9 atm with a mini-
mumpo

L,i of 7.90×10−14 atm. However, these lower values

were for compounds at lower temperatures, where the data is
not shown on the figure.

Given the multi-functionality possessed by many of the
compounds, the 13 major compound class designations used
in the figures are somewhat arbitrary. The “saturated” class
for example, includes all compounds lacking double bonds
and aromatic rings that are not assigned to another class,
and so includes simple alcohols, carbonyls, and acids. Sim-
ilarly, the nitro class contains compounds having only nitro
groups, but also compounds with nitro groups and hydroxyl,
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Table 9. Numbers of compounds withd1Hvap,i/dT <0 atT =333.15.

number of compounds
Nc

Class total d1Hvap,i/dT <0

All Compounds 456 408
Alkenes 64 63
Nonoxygenated alkenes 1 1
Hydroxy alkenes 17 17
Cyclic hydroxyl alkenes 4 4
Dihydroxy alkenes 1 1
Aldehyde alkenes 7 7
Ketone alkenes 13 13
Cyclic ketone alkenes 3 3
Cyclic hydroxyl ketone alkenes 1 1
Carboxylic acid alkenes 15 14
Cyclic carboxylic alkenes 2 2
Amides 20 12
Primary amides 8 6
Secondary amides 5 1
Tertiary amides 6 4
Cyclic amides 1 1
Amines 41 38
Primary amines 11 8
Secondary amines 8 8
Tertiary amines 2 2
Benzoic acid amines 6 6
Aromatic amines 11 11
Ketone amines 2 2
Trihydroxy amines 1 1
Aromatics 89 89
Nonoxygenated aromatics 3 3
Hydroxy aromatics 8 8
Hydroxy alkene aromatics 1 1
Phenols 20 20
Aldehydes aromatics 6 6
Ketone aromatics 11 11
Carbonyl phenol aromatics 3 3
Benzoic acids 31 31
Carboxylic acid aromatics 5 5
Carboxylic acid alkene aromatics 1 1
Esters 42 42
Monoesters 23 23
Diesters 11 11
Cyclic esters 6 6
Ether esters 2 2

carbonyl, or acid functionality. Table 2 providesσFIT for the
initial basis set by compound class, i.e., withNc andN in
Eq. (13) limited to represent the compounds within a par-
ticular class. Figure 2 provides a plot of the corresponding
individualσFIT,i vs. log10(p

o
L,i(Tj,i))E for 333.15 K.

An estimate of the method bias towards over- or under-
fitting thepo

L,i is obtained by a variation of Eq. (13) that does

not use absolute values:

σSGN=
1

N

Nc∑
i=1

NT,i∑
j=1

(
log10po

L,i(Tj,i)P− log10po
L,i(Tj,i)E

)
=

1

N

Nc∑
i=1

NT,i∑
j=1

σSGN,i (14)
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Table 9. Continued.

number of compounds
Nc

Class total d1Hvap,i/dT <0

Ethers 37 36
Monoethers 1 1
Diethers 7 7
Alkene diethers 2 2
Cyclic diethers 11 10
Hydroxy ethers 2 2
Trihydroxy cyclic ethers 1 1
Ether cyclic ethers 2 2
Carboxylic acid aromatic ethers 6 6
Aromatic aldehyde ethers 1 1
Phenolic ethers 1 1
Cyclic ether and aromatic ethers 1 1
Carboxylic acid aromatic diethers 2 2
Nitrates 12 12
Saturated nitrates 7 6
Cyclic nitrates 2 2
Nitro trinitrates 1 0
Saturated trinitrates 1 0
Nitrate ethers 1 1
Nitros 39 32
Saturated nitros 2 2
Aromatic nitros 1 1
Hydroxy nitros 5 1
Cyclic hydroxy nitros 1 1
Nitrophenols 7 7
Dinitrophenols 3 3
Nitrophenol ethers 1 1
Carbonyl nitrophenols 1 1
Carbonyl nitros 1 1
Nitro esters 5 2
Nitrobenzoic acids 9 9
Nitrophenol benzoic acids 3 3
Peroxides 12 8
Carbonylperoxynitrates 1 1
Hydroperoxides 4 1
Peroxides 4 4
PeroxyAcids 3 2
Saturated 100 76
Nonoxygenated 4 4
Cyclic nonoxygenated 5 5
Hydroxy 10 10
Cyclic hydroxy 5 5
Dihydroxy 12 6
Trihydroxy 1 0
Aldehyde 5 5
Cyclic aldehyde 2 2
Ketone 5 5
Cyclic ketone 3 3
Hydroxy ketone 4 4
Carboxylic acid 13 9
Cyclic carboxylic acid 3 3
Hydroxy carboxylic acid 4 3
Carbonyl carboxylic acid 7 2
Dicarboxylic acid 17 10
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Fig. 8. σFIT,i at 333.15 K for all compounds calculated as defined
in Eq. (13) plotted vs. experimentally derived log10po

L,i
(333.15).

Predictedpo
L,i

values used in calculating theσFIT,i are based on the
final optimization using all of the compounds.

Fig. 9. σSGN,i at 333.15 K for all compounds calculated as defined
in Eq. (14) plotted vs. experimentally derived log10po

L,i
(333.15).

Predictedpo
L,i

values used in calculating theσSGN,i are based on
the final optimization using all of the compounds.

Fig. 10. σFIT as a function ofT and compound class. Predicted
po

L,i
values used in calculating theσFIT are based on the final opti-

mization using all of the compounds.

Fig. 11. Experimentalpo
L data for nitroethanol from the Beilstein

PlusReactions Database BS070100PR (http://www.beilstein.com/)
showing increase in uncertainty in data as temperature decreases.
Solid line is fit to the data.
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Fig. 12.The standard errorσFIT at eachT was calculated by sorting
all compounds by increasingpo

L , and then computing the average
σFIT values andpo

L values over decade ranges. E.g., at 333.15 K,
eachx-coordinate is the log10 value of thepo

L average for all com-

pounds with 1×10−6 atm≤po
L< 1×10−5 atm at thatT , and they-

coordinate is the average of the correspondingσFIT,i values.

For the initial basis set of compounds, the set ofB pro-
ducingχ2=325 givesσSGN=1.4×10−3 (log units). This in-
dicates that as averaged over all 272 initial basis set com-
pounds and seven temperatures, there is no significant bias
in the fitting; theσSGN values in Table 2 indicate that this re-
sult extends down to each of the 13 major compound classes
considered. Figure 3 provides a plot of the corresponding
individualσSGN,i vs. log10(p

o
L,i(Tj,i))E for 333.15 K.

3.2 Method validation of SIMPOL.1 with a test set of com-
pounds

The ability of the set ofB coefficients producingχ2=325
to predict values of(po

L,i(Tj,i))E for compounds outside the
initial basis set was examined using a test set of 184 com-
pounds (Table 3) withN=1245 (po

L,i(Tj,i))E values cho-
sen to span the range of volatilities and functionalities of
the compounds in the basis set; the results are given in
Figs. 4–6 and Table 4. Thepo

L,i=fi(T ) expressions used
in evaluation of the(po

L,i(Tj,i))E are provided in the supple-
mentary online materialshttp://www.atmos-chem-phys.net/
8/2773/2008/acp-8-2773-2008-supplement.pdf. Averaged
over all test set compounds,σFIT=0.45, andσSGN=−0.071:
the average prediction error is a factor of∼3, and there is no
significant overall bias. Table 4 givesσFIT andσSGN values
for the test compounds whenNc andN are limited to rep-
resent the compounds within a particular compound class.

Fig. 13.1Hvap,i at 333.15 K based on Eq. (10) and the final coeffi-
cients in Table 5, vs.1Hvap,i at 333.15 K based on Eq. (9) and the
experimentally basedpo

L,i
=fi(T ) functions.

Overall, given the wide range of compounds in the test set,
SIMPOL.1 does well in predicting(po

L,i(Tj,i))E. However,
the individual compounds for which the performance is ap-
pears to be poor bear some discussion. In the case of the ni-
tro class,σFIT andσSGN are 1.0 and 0.40, respectively. These
ostensibly poor results are driven by: 1) the small number of
nitro compounds in the test set; and 2) large apparent errors
for only two of the nitro compounds, 3-nitrophenol and 4-
nitrophenol (σFIT,i=2.64 and 2.24, respectively). The cause
of the poor performance for 3-nitrophenol and 4-nitrophenol
is not clear. By comparison, for 2-nitrophenol (which is in
the initial basis set),σFIT,i is better (0.42). Thus, there might
be a large effect of meta and para substitution onpo

L for ni-
trophenols. Alternatively, it is possible that the(po

L,i(Tj,i))E
values for 3-nitrophenol and 4-nitrophenol are in error. In-
deed, it is undoubtedly true that some of the experimentally
basedpo

L,i=fi(T ) expressions suffer from significant error:
numerous prior parameter prediction studies have identified
experimental data that likely are in error, e.g., see the com-
ments by Rathbun (1987) on the likelihood of errors in the
po

L data of Stull (1947) for 2-pentanone and other similar ke-
tones.

Besides compounds containing the nitro group, method
performance appears to be relatively poor for some com-
pounds in the saturated class, the aromatic class, and some
compounds in the ether class. For the saturated class,
σFIT=0.66, due mainly to 2-hydroxy-2-methyl-3-hexanone,
2-ethyl-hexanoic acid, norpinic acid, and the three long-
chain hydroxyl acids. When these six compounds are re-
moved,σFIT for the remaining 32 compounds is lowered to
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0.51, and the method may be viewed as performing relatively
well. Given their relatively simple structures, (i.e., the ab-
sence of likely effects from higher order groups), errors in
some of the(po

L,i(Tj,i))E values for compounds in the satu-
rated class seem possible. This is especially the case for the
hydroxyl acids, where atT =273.15 K SIMPOL.1 underesti-
mates the measured(po

L,i(Tj,i))E by over 3 orders of mag-
nitude. However, SIMPOL.1 overestimates the measured
(po

L,i(Tj,i))E by a factor of at least 10 forT =273.15 K, sug-
gesting that the dependence of(po

L,i(Tj,i))E on T is very
different from that predicted overall by SIMPOL.1. For the
ethers, the overall error is relatively low,σFIT=0.42, with a
relatively large bias,σSGN=−0.25, but there are not consis-
tent patterns in the results that explain the relatively large
bias. However, fortrans-2,2,4,6-tetramethyl-1,3-dioxane,
for its set ofTj,i values,σFIT,i averages 1.2; removing this
compound from the average for the ether class dramatically
reduces the magnitudes ofσFIT andσSGN for the ethers to
0.34 and –0.15, respectively.

3.3 Final coefficients for SIMPOL.1 and associated error
estimates forpo

L values

In the determination of the final set ofB coefficients, the ba-
sis set compounds in Table 1 were combined with the test
set compounds in Table 3. For this combined set (456 com-
pounds), the set ofB coefficients determined using the ini-
tial basis set givesχ2=855. For each of 100 subsequent op-
timization runs, the initial value of eachB coefficient was
taken as the final value determined using the initial basis set
modified randomly by at most±30%. The lowestχ2 value
thus obtained was 728 (mean=736, standard deviation=6).
Further optimization attempts did not succeed in lowering
χ2.

Table 5 gives the finalB coefficients givingχ2=736. Ta-
ble 6 gives the values of thebk(T ) at T =293.15: at that
T , adding one carbon, carboxylic acid, alkyl hydroxyl, ke-
tone, or aldehyde groups alters log10po

L,i by –0.438, –3.58,
–2.23, –0.935, and –1.35, respectively. For comparison, Ta-
ble 6 also provides the corresponding values ofτk(293.15)
from Capouet and M̈uller (2006); these are generally similar
to thebk(293.15) determined here. For the carboxylic acid,
primary hydroxyl, and carbonyl (i.e., ketoneor aldehyde)
groups, Capouet and M̈uller (2006) giveτk(293.15)=–3.10,
–2.76, and –0.91.

Consider the transformation of cyclohexene to adipic acid,
an example that has historical significance in the evolution
of the understanding of the formation of secondary OPM in
the atmosphere (Haagen-Smit, 1952). For cyclohexene,υ0=
1, υ1=6, υ4=1, andυ5=1, and by Eq. (6) and the values in
Table 6, SIMPOL.1 predicts log10po

L(293.15)=−0.94. For
adipic acid,υ0=1, υ1=6, andυ10=2, and SIMPOL.1 predicts
log10po

L(293.15)=−7.99. Overall, for cyclohexene→adipic
acid, the SIMPOL.1 method provides a simple parameteri-
zation for quantifying how addition of two COOH groups

(b10=−3.58 at 293.15 K) causes a seven order magnitude
change in volatility. The log10po

L(293.15) values derived us-
ing SIMPOL.1 may be compared with experimental values
as follows. For cyclohexene, data in Lister (1941), Meyer
and Hotz (1973) and Steele et al. (1996) yield the Antoine
fit log10po

L(T )=4.814-(1713/(T +0.04870)), which gives
log10po

L(T )=−1.08 at 293.15 K. For adipic acid, when the
po

S(T ) (sublimation) data of Davies and Thomas (1960), Tao
and McMurray (1989), Chattopadhyay and Zieman (2005),
and Cappa et al. (2007) are combined with the entropy of fu-
sion data of Roux et al. (2005) and averaged with sub-cooled
liquid vapor pressures from Bilde et al. (2003), the resulting
value for log10po

L is –8.49 at 293.15 K.
Figure 7a provides a plot of log10(p

o
L,i(Tj,i))P

vs. log10(p
o
L,i(Tj,i))E for all compounds atT =333.15 K and

Fig. 7b is a plot of log10(p
o
L,i(Tj,i))P vs. log10(p

o
L,i(Tj,i))E

for all compounds at all seven temperatures showing
the full lower volatility range of the dataset; Figs. 8
and 9 provide corresponding plots ofσSGN,i and σFIT,i

vs. log10(p
o
L,i(Tj,i))E except in the interest of brevity the

data in Figs. 8 and 9 are shown forT =333.15 K only. Table 7
provides σSGN and σFIT values by compound class and
sub-class. AllσSGN values for the major classes are low
(no significant biases). However, among the compounds
containing the nitro group, as noted above,po

L is predicted
poorly for 3-nitrophenol and 4-nitrophenol. When these
two compounds are excluded,σFIT for the nitro class is
reduced from 0.50 to 0.42, but even so prediction for this
class seems problematical. As discussed above, this may be
due to complexities in the effects of structure onpo

L with
nitro-containing compounds, or accuracy problems with the
experimental data.

Figure 10 showsσFIT at variousT by major compound
class. For some classes, e.g., amides and peroxides, the mean
error is least forT values in the center of the fitted range, and
larger at bothT <300 K andT >360 K. This type of parabolic
behavior in the error is typical of least-squares fitting carried
out over a specific data range for the independent variable.
The relatively larger errors at lowerT for all classes are likely
exacerbated due to the increase in experimental difficulty
at low po

L . Evidence of this difficulty at lowpo
L is shown

in Fig. 11 using data for nitroethanol. Fig. 12 plotsσFIT
vs. log10(p

o
L,i(Tj,i))E, again showing the general tendency in

the error to increase with decreasing log10(p
o
L,i(Tj,i))E. The

increase inσFIT with decreasingpo
L is most likely a combina-

tion of the relatively small number of data points at low vapor
pressure, the increase in experimental error with decreasing
volatility, and the parabolic error profile for a least-squares
type of approach.

3.4 1Hvap,i prediction using SIMPOL.1 with final coeffi-
cients

Values of 1Hvap,i may be predicted using Eq. (10) and
the final B coefficients in Table 5. Figure 13 shows
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predicted values of1Hvap,i at T =333.15 K vs. experimen-
tally based values derived by consideration of the experimen-
tal po

L,i=fi(T ) functions and Eq. (9). Table 8 summarizes
the quality of the predictions atT =333.15 K based on the fol-
lowing un-normalized (σ) and normalized (i.e., relative,ρ)

error estimates, with each in absolute value and signed form:

σ1H =
1

N

∑
i

∣∣(1Hvap,i)P − (1Hvap,i)E
∣∣ (15)

σ1H SGN =
1

N

∑
i

(
(1Hvap,i)P − (1Hvap,i)E

)
(16)

ρ1H =
1

N

∑
i

∣∣∣∣ (1Hvap,i)P − (1Hvap,i)E

(1Hvap,i)E

∣∣∣∣ (17)

ρ1H SGN =
1

N

∑
i

(
(1Hvap,i)P − (1Hvap,i)E

(1Hvap,i)E

)
(18)

For all compounds, σ1H =8.9 kJ mol−1,
σ1H SGN=2.7 kJ mol−1, ρ1H =0.16 (i.e., 16%), and
ρ1H SGN=0.080 (i.e., 8%). Overall, the fit is reasonably
good, especially considering that the fitted quantity was not
1Hvap,i but rather the underlyingpo

L,i(T ) functionalities.

3.5 Temperature dependence of1Hvap,i using SIMPOL.1
with final coefficients

As noted above, theoretical considerations indicate that
d1Hvap,i/dT <0 for any real compound below its critical
temperatureTc,i . Examination of values returned by Eq. (10)
with Eq. (11) indicate that while imperfect, the results are
encouraging in this regard, with 408 of the 456 compounds
considered returningd1Hvap,i/dT < 0 for T =335.15 K. The
results by compound class and sub-class are given in Table 9.

At any given T <Tc,i , though we know that
d1Hvap,i(T )/dT <0 (see above), this does not require
for any particular groupk that d1hvap,k(T )/dT <0, only
that theυk,i− weighted sum is negative. However, since
all υk,i≥0, by Eq. (11), at least some fraction of the struc-
turally important groups must gived1hvap,k(T )/dT <0.
Table 6 gives the sign of thed1hvap,k(T )/dT values at
293.15 K for the SIMPOL.1 groups based on Eq. (11) and
the B values in Table 5. Importantly, for the carbon group
(k=1), d1hvap,k(T )/dT <0. This result is important in
causingd1Hvap,i(T )/dT <0 to be predicted for many of the
compounds in Tables 1 and 3.

For the method of Capouet and Müller (2006), taking the
derivative of Eq. (3) with respect to (1/T ) and consideration
of Eq. (9) yields

1Hvap,i(T )=1Hvap,hc−i(T )−2.303R
∑

k
νk,i

d τk(T )

d(1/T )
(19)

and
d1Hvap,i(T )

dT
=

d1Hvap,hc−i(T )

dT

−2.303R
∑

k
νk,i

d

dT

d τk(T )

d(1/T )
(20)

The analogous expressions for the SIMPOL.1 representa-
tion are Eqs. (10) and (11), respectively.

The functionality selected for the bk(T )

as fitted by Capouet and M̈uller (2006) is
τk(T )=αk+βkT , giving d τk(T )/d(1/T )= − βkT

2 and
(d/dT )d τk(T )/d(1/T )=−2βkT . In the fitting results
reported by Capouet and M̈uller (2006), allβk>0. Thus in
that fitting, the role of forcingd1Hvap,i(T )/dT < 0 must
then be borne entirely byd1Hvap,hc−i(T )/dT . This is
not possible for any real compoundi. The latter derivative
is only capable of bringing1Hvap,hc−i(T ) to zero, and
for the groups considered by Capouet and Müller (2006),
1Hvap,i(T )>1Hvap,hc−i(T ). Caution should therefore
accompany use of the temperature dependencies given for
theτk in Capouet and M̈uller (2006).

Overall, regardless of thepo
L(T ) prediction method used

when modeling the atmospheric behavior of a compound
over a particularT interval, when it is correctly predicted
over the entire interval thatd1Hvap,i/dT < 0, then theT de-
pendence given by Eq. (10) may be used. However, when
d1Hvap,i/dT >0 over some portion of theT interval of in-
terest,1Hvap,i should be evaluated at the centralT and then
assumed to remain constant over the entire interval.

4 Conclusions

A simple group contribution method has been developed
that allows prediction ofpo

L,i and1Hvap,i values based on
straightforward molecular structure considerations. Exten-
sive error analyses for both parameters provide a detailed un-
derstanding of the reliability of the estimates by compound
class and sub-class.

One of the implications of this work is related to the infor-
mation in Figs. 10, 11, and 12. There is an obvious increase
in error of the fit at low vapor pressures and temperatures.
The reasons for this are related to the difficulty of making ac-
curate measurements ofpo

L,i for low temperatures and pres-
sures. Improvement in vapor pressure estimation techniques,
especially for compounds withpo

L,i<10−10 atm will require
additional empirical data.

Acknowledgements.This work was supported by National Science
Foundation Grant ATM-0513492, by the Electric Power Research
Institute, and by the Cooley Family Fund for Critical Research of
the Oregon Community Foundation.

Edited by: M. Kulmala

References

Asher, W. E., Pankow, J. F., Erdakos, G. B., and Seinfeld, J.
H.: Estimating the vapor pressures of multi-functional oxygen-
containing organic compounds using group contribution meth-
ods, Atmos. Environ., 36, 1483–1498, 2002.

Atmos. Chem. Phys., 8, 2773–2796, 2008 www.atmos-chem-phys.net/8/2773/2008/



J. F. Pankow and W. E. Asher: Vapor pressure prediction – simple group contribution method 2795

Asher, W. E. and Pankow J. F.: Vapor pressure prediction for
alkenoic and aromatic organic compounds by a UNIFAC-based
group contribution method, Atmos. Environ., 40, 3588–3600,
2006.

Banerjee, T., Singh, M .K., and Khanna, A.: Prediction of binary
VLE for imidazolium based ionic liquid systems using COSMO-
RS, Ind. Eng. Chem. Res., 45, 3207–3219, 2006.

Barsanti, K. C. and Pankow, J. F.: Thermodynamics of the forma-
tion of atmospheric organic particulate matter by accretion re-
actions, 1. Aldehydes and ketones, Atmos. Environ., 38, 4371–
4382, 2004.

Barsanti, K. C. and Pankow, J. F.: Thermodynamics of the forma-
tion of atmospheric organic particulate matter by accretion re-
actions, 2. Dialdehydes, methylglyoxal, and diketones, Atmos.
Environ., 39, 6597–6607, 2005.

Barsanti, K. C. and Pankow, J. F.: Thermodynamics of the forma-
tion of atmospheric organic particulate matter by accretion reac-
tions. 3. Carboxylic and dicarboxylic acids, Atmos. Environ., 40,
6676–6686, 2006.

Bilde, M., Svenningsson, B., Monster, J., and Rosenorn, T.: Even-
odd alternation of evaporation rates and vapor pressures of C3-
C9 dicarboxylic acid aerosols, Environ. Sci. Technol., 37, 1371–
1378, 2003.

Cappa, C. D., Lovejoy, E. R., and Ravishankara, A. R.: Determina-
tion of evaporation rates and vapor pressures of very low volatil-
ity compounds: A study of the C4-C10 and C12 dicarboxylic
acids, J. Phys. Chem., 111, 3099–3109.

Capouet, M. and M̈uller, J.-F.: A group contribution method for
estimating the vapour pressures ofα-pinene oxidation products,
Atmos. Chem. Phys., 6, 1455–1467, 2006,
http://www.atmos-chem-phys.net/6/1455/2006/.

Chattopadhyay, S. and Zieman, P. J.: Vapor pressures of substi-
tuted and unsubstituted monocarboxylic and dicarboxylic acids
measured using an improved thermal desorption particle beam
mass spectrometry method, Aerosol Sci. Technol., 39, 1085–
1100, 2005.

Davies, M. and Thomas, G. H.: Lattice energies, infrared spectra,
and possible cyclization of some dicarboxylic acids, Trans. Fara-
day Soc., 56, 185–192, 1960.

Diedenhofen, M., Klamt, A., Marshd, K., and Schäfere, A.:
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