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Abstract. Formation of SOA from the aromatic species
toluene, xylene, and, for the first time, benzene, is added
to a global chemical transport model. A simple mechanism
is presented that accounts for competition between low and
high-yield pathways of SOA formation, wherein secondary
gas-phase products react further with either nitric oxide (NO)
or hydroperoxy radical (HO2) to yield semi- or non-volatile
products, respectively. Aromatic species yield more SOA
when they react with OH in regions where the [NO]/[HO2]
ratios are lower. The SOA yield thus depends upon the dis-
tribution of aromatic emissions, with biomass burning emis-
sions being in areas with lower [NO]/[HO2] ratios, and the
reactivity of the aromatic with respect to OH, as a lower ini-
tial reactivity allows transport away from industrial source
regions, where [NO]/[HO2] ratios are higher, to more re-
mote regions, where this ratio is lower and, hence, the ul-
timate yield of SOA is higher. As a result, benzene is esti-
mated to be the most important aromatic species with regards
to global formation of SOA, with a total production nearly
equal that of toluene and xylene combined. Global produc-
tion of SOA from aromatic sources via the mechanisms iden-
tified here is estimated at 3.5 Tg/yr, resulting in a global bur-
den of 0.08 Tg, twice as large as previous estimates. The
contribution of these largely anthropogenic sources to global
SOA is still small relative to biogenic sources, which are es-
timated to comprise 90% of the global SOA burden, about
half of which comes from isoprene. Uncertainty in these es-
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timates owing to factors ranging from the atmospheric rel-
evance of chamber conditions to model deficiencies result
in an estimated range of SOA production from aromatics of
2–12 Tg/yr. Though this uncertainty range affords a signifi-
cant anthropogenic contribution to global SOA, it is evident
from comparisons to recent observations that additional path-
ways for production of anthropogenic SOA still exist beyond
those accounted for here. Nevertheless, owing to differences
in spatial distributions of sources and seasons of peak pro-
duction, regions exist in which aromatic SOA produced via
the mechanisms identified here are predicted to contribute
substantially to, and even dominate, the local SOA concen-
trations, such as outflow regions from North America and
South East Asia during the wintertime, though total modeled
SOA concentrations there are small (∼0.1µg/m3).

1 Introduction

Organic aerosols play an important role in global climate
(Kanakidou et al., 2005). A significant fraction of organic
aerosol material results from the physical and chemical pro-
cessing of volatile gas-phase hydrocarbons to yield less
volatile products that condense in the particulate phase; this
is referred to as secondary organic aerosol (SOA). At present,
levels of organic aerosol measured in field campaigns tend
to exceed those predicted by global chemical transport mod-
els (Heald et al., 2005, 2006). While it is predicted that,
on the global scale, secondary organic aerosol from bio-
genic sources substantially exceeds that from anthropogenic
sources (Tsigaridis et al., 2006; Tsigaridis and Kanakidou,
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2007), data from recent field studies suggest that SOA from
anthropogenic hydrocarbons might be more significant than
previously thought (de Gouw et al., 2005; Volkamer et al.,
2006; Kleinman et al., 2007; de Gouw et al., 2008).

Among anthropogenic hydrocarbons, aromatic com-
pounds have been traditionally considered to be the most im-
portant SOA precursors. It has recently been established that
the SOA yields (aerosol yield is defined as the ratio of the
mass of organic aerosol produced to the mass of parent hy-
drocarbon reacted) from aromatics, as well as those from a
variety of other hydrocarbons, depend critically on the pre-
vailing level of nitrogen oxides (NOx) (Hurley et al., 2001;
Martin-Reviejo and Wirtz, 2005; Presto et al., 2005; Song
et al., 2005; Johnson et al., 2004, 2005; Ng et al., 2007; Song
et al., 2007). This discovery led to a systematic re-evaluation
of aromatic SOA yields (Ng et al., 2007) from the historical
yields ofOdum et al.(1996, 1997) that were measured under
high-NOx conditions. In particular, aromatic yields under
the low-NOx conditions typical of most of the global atmo-
sphere significantly exceed those under high-NOx conditions
typical of urban cores (and of past laboratory chamber exper-
iments). However, given that sources of aromatics are likely
co-located with sources of NOx, the significance of this find-
ing on the global SOA burden is not readily apparent.

Initial global modeling studies of SOA formation from
toluene and xylene (Tsigaridis and Kanakidou, 2003) used
the empirical yield parameters fromOdum et al.(1996,
1997). More recently (Tsigaridis et al., 2006), this model
was updated to include the NOx dependence of yields for
toluene and xylene based upon the xylene yields in the work
of Song et al.(2005). Lack et al.(2004) also included aro-
matic species in their lumped calculation of SOA formation
from industrial sources, using yield coefficients fromOdum
et al.(1997) andCocker et al.(2001). SOA formation from
benzene, as identified byMartin-Reviejo and Wirtz(2005),
has been noted to be an important additional pathway in the
box model studies ofPun and Seigneur(2007) and the La-
grangian trajectory model ofJohnson et al.(2006). The re-
cent data (Ng et al., 2007) on SOA yields from all of these
aromatic hydrocarbons prompt a re-evaluation of the contri-
bution of aromatic SOA to the global SOA production rate
and burden. In the current study, the GEOS-Chem global
chemical transport model is updated to include abbreviated
aromatic oxidation chemistry and SOA formation from aro-
matics.

2 Summary of SOA yields from aromatic hydrocarbons

The SOA-forming potentials ofm-xylene, toluene, and ben-
zene have been measured in a series of laboratory chamber
experiments (Ng et al., 2007). Atmospheric reaction of these
aromatics with the hydroxyl radical (OH) initiates a complex
series of gas-phase reactions (Calvert et al., 2002; Koch et al.,
2007). As noted above, a crucial factor governing the nature

of the gas-phase chemistry and subsequent aerosol formation
is the NOx level. Experiments were conducted under both
low- and high-NOx conditions; these correspond to NOx lev-
els of less than 1 parts-per-billion by volume (ppb) and sev-
eral hundred ppb, respectively.

SOA yields of the three aromatics studied are highly de-
pendent on the prevailing NOx level. Under high-NOx con-
ditions, measured yields for toluene andm-xylene are in the
range of 5 to 10% with a strong dependence on the amount
of organic aerosol present, in general agreement with those
reported byOdum et al.(1996, 1997). Under low-NOx con-
ditions, all three compounds exhibit high (>30%) constant
yields, exceeding yields from high-NOx conditions. Sim-
ilar findings for SOA yields fromm-xylene have been re-
ported by Song et al.(2007). The first studies of SOA
yields from benzene reported overall yields in the range of 6–
14% for both high and low-NOx conditions (Martin-Reviejo
and Wirtz, 2005); Ng et al. (2007) found a considerably
higher yield for benzene, 28% and 37% under high- and low-
NOx conditions, respectively. The discrepancies between the
two studies, particularly between the two reported low-NOx
yields inMartin-Reviejo and Wirtz(2005) and the one yield
in Ng et al.(2007), may be a result of higher SOA yields in
the presence of an inorganic seed in the experiments ofNg
et al. (2007). Additional factors, such as the uncertainty in
the benzene threshold concentrations inMartin-Reviejo and
Wirtz (2005) make comparisons between these results dif-
ficult. While further studies of the low-NOx yields of ben-
zene are clearly called for, use of inorganic seed particles in
Ng et al. (2007) affords partial decoupling of the NOx ef-
fect from the effects of an “induction period” caused by the
absence of preexisting organic aerosol (Kroll et al., 2007),
which will be shown to facilitate use of such data for model-
ing SOA formation.

The mechanisms for atmospheric oxidation of both bio-
genic and anthropogenic hydrocarbons are complex and not
fully understood; it does appear, however, that the observed
low- and high-NOx behavior of SOA formation (Song et al.,
2005; Ng et al., 2007) hinges on the competitive reactions of
the bicyclic peroxy radicals (RO2) that result from initial at-
tack of the aromatic species by OH radicals followed quickly
by O2 addition and cyclization (Johnson et al., 2005; Koch
et al., 2007), written here simply as

aromatic
kOH
−→ aromatic− OH adduct

O2



aromatic− OH − O2 peroxy radical
Isomerization,O2

−→ bicyclic peroxy radical (1)

As explained in detail inNg et al.(2007), the alternative reac-
tion of the aromatic-OH adducts with NO2 is not expected to
play a significant role under chamber conditions (Koch et al.,
2007). It has been shown that high (>100 ppb) levels of NOx
affect the fate of the aromatic-OH-O2 peroxy radicals (Volka-
mer et al., 2002; Klotz et al., 2002; Volkamer et al., 2002b)
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Table 1. Stoichiometric coefficients,αi,j , and equilibrium partitioning coefficients,Ki,j , for SOA formation derived from high and low-NOx
chamber experiments of reaction of aromatics with OH (Ng et al., 2007). The reference temperature for theKi,j ’s is 295 K.

Parent aromatici αi,H αi,1 αi,2 Ki,1 Ki,2
[m3 µ g−1] [m3 µ g−1]

benzene 0.1815 0.0353 0.4356 3.3150 0.0090
toluene 0.1914 0.0308 0.0601 0.4300 0.0470
m-xylene 0.1701 0.0176 0.0510 0.7610 0.0290

as evident from phenol yields (the phenol products form via
an alternative fate of the aromatic-OH-O2 species – loss of
HO2). The high NOx benzene oxidation experiments ofNg
et al. (2007) were hence carried out with initial NO2 levels
<100 ppb. Theoretical studies ofp- andm-xylene oxidation
suggest that levels of NO up to ppm do not prevent formation
of bicyclic peroxy radicals from the aromatic-OH-O2 per-
oxy radicals after isomerization and O2 addition (Zhao et al.,
2005; Fan and Zhang, 2006), though formation of the phenol
product was not considered. Assuming that these theoretical
results are applicable to toluene as well, it seems likely that
deviation from the isomerization pathway of (R1) was not
the main influence of NO for the aromatic oxidation studies
of Ng et al.(2007). However, a lack of a complete charac-
terization of the influence of NOx reactions on aromatic ox-
idation represents a source of uncertainty in this assumption
and in extrapolating these SOA yields from chamber condi-
tions to different NOx levels. The bicyclic peroxy radicals
react predominantly with either hydroperoxy radicals (HO2)
or NO, depending on the relative concentrations of HO2 and
NO. Reaction of these peroxy radicals with themselves is
found to be unimportant under chamber conditions (the rate
constant for this reaction is relatively small and HO2 con-
centrations are high) in the kinetic simulations ofNg et al.
(2007). The role of such competing reactions in the atmo-
sphere is assessed later in the present work.

While it is common to refer to the oxidative conditions in
environmental chambers according to absolute NOx levels or
VOC:NOx ratios (as those are typically what is measured), it
is often the ratio of [NO]/[HO2] that determines the fate of
secondary gas-phase products and which is more important
than absolute NOx concentrations for extrapolating results
from environmental chamber conditions to atmospheric con-
ditions. Under low-NOx conditions, the levels of HO2 radical
in the chamber are such that reaction with HO2 radical is fa-
vored, and the resulting products, including hydroperoxides,
are generally less volatile than those that result from the NO
reaction path. This competition can be represented as fol-
lows:

RO2 + HO2
kH

−→ αH SOGH + · · · (2)

RO2 + NO
kN

−→ α1SOG1 + α2SOG2 + · · · (3)

where RO2 are the bicyclic peroxy radicals from (R1),
SOG designates secondary organic gas-phase semivolatile
products, and theα’s are mass-based stoichiometric coeffi-
cients (i.e. for every gram of peroxy radical that reacts,α

grams of SOG are formed).
The fact that, for all three aromatics, the SOA yield under

low-NOx conditions is constant with respect to changes in
available substrate implies that the semivolatile products are
essentially nonvolatile, at least at the level of aerosol mass
concentrations in the chamber; thus, the RO2+HO2 pathway
can be represented as leading to a single nonvolatile product,
SOGH=SOAH. Since the high-NOx pathway exhibits yields
that depend on the total amount of absorbing organic aerosol,
we use the customary two-product model for SOA formation,
originally formulated byOdum et al.(1996, 1997); SOG1
and SOG2 represent these products, which have associated
gas-particle partitioning equilibrium constants,K1 andK2,

[SOGi]=
[SOAi]

KiM
, (4)

whereM is the concentration of total available substrate in
µg m−3. Parameters describing yields under both sets of
NOx levels are given in Table 1. Equilibrium constants and
stoichiometric coefficients are based on laboratory studies of
Ng et al.(2007), where here the latter are multiplied by the
ratio of the molecular weight of the parent aromatic to that
of the peroxy radical to reflect formation of SOG species di-
rectly from the peroxy radical. The assumption that the low-
NOx product is nonvolatile is specific to aromatic species; in
general, sets ofα’s andK ’s can be derived for semivolatile
products from both pathways.

3 Aromatic SOA formation in GEOS-Chem

In the current study, the GEOS-Chem global chemical trans-
port model (version 7-04-11 with a horizontal resolution of
2◦

×2.5◦ and 30 layers up to 0.01 hPa, GEOS-4 meteorolog-
ical fields) is used to simulate one year of present day condi-
tions (2004). This model includes detailed simulation of gas-
phase tropospheric chemistry (e.g.,Bey et al., 2001; Hud-
man et al., 2007) in addition to external mixtures of several
aerosol components (Park et al., 2004, 2006). Previous ver-
sions have been implemented with a gas-particle partitioning
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Fig. 1. Emissions of aromatic compounds.

Table 2. Reaction rate constants,k=AeB/T .

Reaction Rate constanta k298 A B

[cm3 molec−1s−1] [cm3 molec−1s−1] [K]

(R1) kOH,B 1.22×10−12 2.33×10−12 -193
(R1) kOH,T 5.63×10−12 1.81×10−12 338
(R1) kOH,X 2.31×10−11 2.31×10−11 0
(R2) kH 1.5×10−11 1.4×10−12 700
(R3) kN 8.5×10−12 2.6×10−12 350

a B = benzene,T = toluene,X = xylene. ConstantskH andkN assumed equal for each parent aromatic.

model of SOA formation from terpenes, alcohols, sesquiter-
penes (Chung and Seinfeld, 2002; Heald et al., 2005) and
isoprene (Henze and Seinfeld, 2006). As such, estimates
of organic carbon aerosol have been notably low compared
to measurements during springtime 2001 measurements in
the free troposphere of the Asian continental outflow re-

gion (ACE-Asia) (Heald et al., 2005) and have failed to cap-
ture the variance in observations in the free troposphere dur-
ing the summer 2004 campaign (ICARTT) in the northeast-
ern United States (Heald et al., 2006); in comparison, such
overwhelming inconsistencies have not been found in yearly
average estimates of surface organic aerosol concentrations
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compared to filter samples (Liao et al., 2007). The addition
of abbreviated aromatic oxidation chemistry and SOA forma-
tion from aromatics to the chemical reactions and SOA mod-
ule in GEOS-Chem is described in the following sections.

3.1 Global emissions

Global emissions of benzene, toluene and xylene from in-
dustrial and fossil fuel sources are taken from the Emission
Database for Global Atmospheric Research (EDGAR V2.0)
(Olivier et al., 1996, 1999) for 1990 and scaled to the year
2000 using liquid fossil fuel usage from the Global Emission
Inventory Activity (GEIA) project (Benkovitz et al., 1996)
following Bey et al.(2001). Emissions of aromatics from
biofuel and biomass burning are calculated by applying emis-
sion ratios to emissions of CO, where sources of CO from
biofuel burning are from the GEIA database, while biomass
burning sources of CO are from the Global Fire Emissions
Database version 2 (GFEDv2) (Giglio et al., 2006; van der
Werf et al., 2006). The emissions ratios, listed in Table3, are
taken fromAndreae and Merlet(2001) with updates from
Andreae (personal communication, 2006). Total emissions
are 5.6, 6.9 and 4.7 Tg C/yr for benzene, toluene and xy-
lene, respectively. The breakdown by source type is given in
Table4, and the yearly average emission fluxes of each aro-
matic species, and the combined total, are shown in Fig.1.
The largest global sources are road transport and solvent use
(for toluene and xylene), and biofuel and biomass burning
(for benzene); road transport is the main source of benzene in
urban areas. Anthropogenic emissions dominate in northern
mid-latitudes, which are thus fairly aseasonal, while biomass
burning is a major source in the Southern Hemisphere with
strong seasonal cycles.

Fossil fuel NOx emissions are from the GEIA inventory
and are scaled to year 2001 using liquid fossil fuel usageBey
et al.(2001). The biomass burning NOx emissions are from
GFEDv2, and additional sources of NOx emissions from bio-
fuel, lightning, soil and ships are as described inMartin
et al. (2002). Isoprene and monoterpene emissions are cal-
culated using the MEGAN (Model of Emissions of Gases
and Aerosols from Nature) version 2 model (Guenther et al.,
2006), totaling 408 and 103 Tg C/yr, respectively, while pri-
mary organic aerosol emissions are 9.8 Tg C/yr from an-
thropogenic fuel sources followingPark et al.(2006) and
23.3 Tg C/yr from GFEDv2.

3.2 Implementation of aromatic SOA formation

Gas-phase oxidation of each parent aromatic hydrocarbon (1)
and subsequent reaction of the peroxy radical product, RO2,
with HO2 (2) and NO (3) is calculated online as an addi-
tional part of the tropospheric chemical reaction mechanism.
The loss of RO2 via each reaction is tracked in order to ex-
plicitly calculate the branching ratio between these two path-
ways; this implementation allows natural transitions between

Table 3. Emission ratios for biofuel and biomass burning sources
of aromatic species (mmoles emitted per mole CO emitted) taken
from Andreae and Merlet(2001) with updates from Andreae (per-
sonal communication, 2006).

Aromatic species Biofuel burning Biomass burning

benzene 4.06 2.33
toluene 2.01 1.24
xylene 0.82 0.48

low and high-yield environments as governed by tempera-
ture, and HO2 radical and NO concentrations. This approach,
initially suggested in the work ofPresto and Donahue(2006),
has the advantage of avoiding prior delineation of oxidative
regimes based upon VOC/NOx ratios (Song et al., 2005; Tsi-
garidis et al., 2006; Presto and Donahue, 2006). Parameters
for calculating the reaction rate constants for these steps are
listed in Table2. Kinetic parameters for reaction of the aro-
matic species with OH (the rate limiting step in peroxy radi-
cal formation) are fromCalvert et al.(2002). Rate constants
for peroxy radical reactions, (2) and (3), are fromAtkinson
et al. (1997), assuming similar temperature dependence as
peroxy radical reactions with isoprene, as most reactions of
hydrocarbon peroxy radicals with NO and HO2 have similar
kinetics (Lightfoot et al., 1992; Eberhard and Howard, 1997).
All forms of xylene are assumed to behave asm-xylene for
both gas and aerosol processes.

Calculation of reversible SOA formation follows the ap-
proach outlined inChung and Seinfeld(2002). The em-
pirical yield parameters (Table1) are used to estimate the
mass of SOA formed per mass of peroxy radical that re-
acts. An important aspect of this treatment is specification of
the available substrate,M, which affects gas-particle equilib-
rium. For this work,M is taken to consist of the total mass of
primary and secondary organic material1. As GEOS-Chem
tracks only the carbonaceous component of primary organic
aerosol, the ratio of total organic to organic carbon aerosol
mass must be specified in order to calculateM – here the ra-
tio is assumed to be 2.1. Though this differs from previous
studies that used a ratio of 1.4 (Henze and Seinfeld, 2006;
Liao et al., 2007; Heald et al., 2006; Zhang et al., 2007;
van Donkelaar et al., 2007), 2.1 is recommended for non-
urban aerosols (Turpin and Lim, 2001). Given the ubiquity
of highly oxygenated carbonaceous aerosol in urban and re-
mote areas (Zhang et al., 2007) and thatM represents both
primary and secondary organic aerosol mass, the higher ra-
tio is thought to better represent the bulk properties of global
organic aerosol. The Clausius-Clapeyron equation is used
to extrapolate equilibrium constants to tropospheric tempera-

1Condensation directly on sulfate aerosol, considered in some
versions of GEOS-Chem and other studies (Tsigaridis and Kanaki-
dou, 2003), is not included in these simulations.
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Table 4. Emissions of each aromatic species broken down by source [Tg C/yr].

Aromatic species Industrial and fossil fuel Biofuel burning Biomass burning

benzene 1.3 1.8 2.5
toluene 4.3 1.0 1.6
xylene 3.5 0.5 0.7

166.355263
166.905103
0.00222499

269
268.817204
287.142857
0.00222499
0.00116086
0.00045709

51%

37%

26%

49%

63%

74%

0%

25%
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100%

benzene toluene xylene

% of products react with HO2
% of products react with NO

32%
29%

11%

16%

8%

4%

0%
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20%

30%
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50%
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% of total aromatic SOA formed via HO2 pathway

% of total aromatic SOA formed via NO pathway

Fig. 2. Percentages of peroxy radical from each parent aromatic
that react with HO2 radical (2) vs. with NO (3) and the eventual
contributions from each pathway to the total SOA production from
all aromatic species.

tures. The enthalpy of vaporization for SOA is assumed to be
42 kJ mol−1 for all species, in the range of limited available
experimental data (Offenberg et al., 2006). Dry deposition
of all types of SOA is calculated using a resistance-in-series
model (Wesely, 1989; Wang et al., 1998); wet scavenging
follows Liu et al. (2001) with an assumed scavenging effi-
ciency of 80% (Chung and Seinfeld, 2002).

4 Simulation of global aromatic SOA

The predicted contributions of benzene, toluene, and xylene
to global aromatic SOA via high- and low-yield pathways
(the opposite of the NOx levels) and the percentage of the
aromatics that react via each pathway are given in Fig.2.

Thus, 51% of globally emitted benzene, for example, reacts
via reaction (2), the high-yield path, whereas only 26% of
xylene follows this route. The location of the sources plays
an important role in determining the total SOA yield from
each species. Aromatics, primarily benzene, emitted from
biofuel and biomass burning sources are more likely to react
via the high-yield pathway as these emissions are less as-
sociated with sources of NOx than the industrial and fossil
fuel emissions. Additionally, for emissions from industrial
and fossil fuel sources, it is the less reactive aromatics, as
measured by their OH reaction rate constants, that actually
produce more SOA. The explanation is that lower reactivity
affords the parent hydrocarbon more time to be transported to
regions of lower [NO]/[HO2] ratios, where ultimately, once
reacted, the SOA yield is larger. Proportionately more of
a reactive molecule like xylene is consumed in regions in
which the NOx levels are more characteristic of the source
emission areas. On a global average, 39% of the total aro-
matics proceed through the high yield pathway. As a result,
72% of global aromatic SOA is produced via the high-yield
(low-NOx) pathway.

Figure3 shows the predicted seasonally averaged surface-
level concentrations of aromatic SOA. The concentrations
generally reflect the distribution of areas with substantial an-
thropogenic emissions in northern mid-latitudes, which are
themselves aseasonal, and biomass burning in the Southern
Hemisphere, which have strong seasonal cycles. The result-
ing SOA concentrations show considerable seasonal variabil-
ity, even in the northern mid-latitudes. Concentrations in
the eastern parts of the United States and Europe are lowest
during the Northern Hemisphere winter months, and highest
during the Northern Hemisphere summer months. Figure4
shows the contrast between the estimated concentrations of
NO and HO2 radical during DJF and JJA, the cycles of which
both contribute to more of the aromatics in these areas react-
ing via the high-yield pathway during the summer. The com-
bined effects on the fate of toluene are shown in panels (e)
and (f), which are the log of the branching ratio,

log10

(
Number of toluene peroxy radicals that proceed via reaction with NO

Number of toluene peroxy radicals that proceed via reaction with HO2

)
. (5)

For example, yellow colors indicate areas where the NO
pathway is estimated to dominate by two or more orders of
magnitude while blue colors indicate areas where an order
of magnitude more toluene molecules are calculated to pro-
ceeded via the HO2 pathway. Values where the total toluene

Atmos. Chem. Phys., 8, 2405–2421, 2008 www.atmos-chem-phys.net/8/2405/2008/



Henze et al.: Modeling SOA from Aromatics 2411

DJF MAM

JJA SON

Fig. 3. Seasonal distributions of the total surface-level SOA concentrations from benzene, toluene and xylene.

peroxy radical concentrations are less than 1% of the maxi-
mum global surface concentration are not shown. The HO2
pathway entirely dominates only rarely; however, it is clear
that SOA formation via this low-NOx pathway is much more
important in the eastern United States and Europe during
JJA than DJF. Also note that during JJA, SOA production
in these areas is not inhibited by increased summertime tem-
peratures as formation of SOA via the low-NOx pathway is
treated as irreversible. Biogenic sources of organic aerosol
are also elevated during the summer. This additional sub-
strate increases SOA production from aromatics via the (3)
pathway, but this enhancement is found to be less than 5%.
This demonstrates the potential of NOx variations, whether
perturbed by changes in anthropogenic emissions or mod-
ulated by natural seasonal cycles, to influence global SOA
yields.

Total aromatic emissions and resulting SOA production
rates and burdens are given in Table5. The burden of SOA
from aromatic compounds is estimated here to be 0.08 Tg
from a production of 3.5 Tg/yr. Similarly, recent work by
Tsigaridis and Kanakidou(2007) estimated SOA burdens
from aromatics at 0.04 Tg, considering only toluene and xy-

lene. Using the same yields and mechanism reported here,
Heald et al.(2007) explored the response of SOA estimates
to future climate, land-use and emissions changes in a gen-
eral circulation model and estimated present day production
of SOA from anthropogenic sources to be 1.4 Tg C/yr. Each
of these studies highlights the importance of accounting for
the NOx dependent yields of these species. Overall, the range
of estimated global burdens of aromatic SOA from recent
simulations (0.04–0.08 Tg) is nearly three times the range of
earlier estimates of 0.01–0.03 Tg (Tsigaridis and Kanakidou,
2003).

5 Sources of uncertainty

There are several sources of uncertainty in the estimates of
SOA from aromatic VOCs. The model for SOA formation
outlined in the previous sections includes many parameters
whose values are poorly constrained or whose robustness is
indeterminate. To begin with, there are reasons why the yield
parameters determined from the chamber studies ofNg et al.
(2007) may not be wholly representative of SOA yields from
aromatics in the atmosphere. It is not clear the extent to
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(a) NO (DJF) (b) NO (JJA)

(c) HO2 (DJF) (d) HO2 (JJA)

(e) log10(rNO/rHO2
) for toluene  (DJF) (f ) log10(rNO/rHO2

) for toluene  (JJA)

Fig. 4. Panels(a)–(d) are the seasonally averaged surface-level concentrations of NO and HO2. Panels(e) and (f) show the log of the
resulting branching ratio between reaction of the toluene peroxy radical with NO vs reaction with HO2. Not shown are values where net
reacted peroxy radical is<1% of the surface-level maximum. Comparing results in the Eastern United States and Europe, both decreased
NO and increased HO2 during JJA lead to increased reaction via the low-NOx (high-yield) pathway.
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which yields determined in chamber studies in the presence
of high organic aerosol loadings (∼10–30µg m−3) can be
extrapolated to the atmosphere (Presto and Donahue, 2006;
Pathak et al., 2007), particularly given the assumption of ir-
reversible SOA formation at low NOx levels. Further, the
lack of preexisting organic aerosol (an inorganic seed was
used) in these experiments leads to an induction period dur-
ing which no SOA is formed yet the pool of condensible
semivolatile gas-phase species may be depleted. If this de-
pletion is the result of an atmospherically relevant process
(as opposed to an experimental artifact, like wall loss), then
the resulting SOA yields are likely substantially underesti-
mated by as much as a factor of two at low organic aerosol
mass loadings (Kroll et al., 2007). The same reasoning may
in part explain why the SOA yields from benzene reported
by Martin-Reviejo and Wirtz(2005) are much lower than
those determined byNg et al. (2007). However, the study
of Martin-Reviejo and Wirtz(2005) found constant (i.e. ir-
reversible SOA formation) overall yields in the range of 6–
14% at both high- and low-NOx levels. These may perhaps
be taken as a lower limit on SOA production from benzene.
An upper limit, obtained by doubling the yields ofNg et al.
(2007), could be 40%2 and 70% at high- and low-NOx lev-
els, respectively, if indeed the observed SOA formation at
low aerosol mass loadings was hindered by lack of an or-
ganic substrate during the initial phases of chamber experi-
ments (Kroll et al., 2007). Ignoring nonlinear effects of parti-
tioning, this range of uncertainty translates to global produc-
tions of 0.5–3.3 Tg/yr from benzene alone. Though chamber
yields from toluene andm-xylene are arguably better charac-
terized (Song et al., 2005; Ng et al., 2007; Song et al., 2007),
applying similar ranges of uncertainty to the other aromatics
gives a range of 1.0–6.8 Tg/yr

However, the global SOA production depends upon the
available substrate into which semivolatile species partition,
the specification of which is another large source of uncer-
tainty. The ratio of total organic aerosol mass to that of
the organic carbon aerosol mass is assumed to be 2.1 in the
present work. Changing this value from the previously as-
sumed value of 1.4 leads to a 20% increase in total SOA pro-
duction. The study ofTsigaridis and Kanakidou(2003) esti-
mated that including ammonium sulfate aerosol in the speci-
fication of the available substrate for partitioning nearly dou-

2This number comes from doubling the “global” yield of SOA
from benzene via the high-NOx pathway of 20%, calculated as the
total mass of benzene that reacts via this pathway divided by the to-
tal mass of SOA formed via this pathway throughout the model over
the course of the year-long simulation. Similarly, the global yields
from toluene and xylene from the high-NOx pathway were found
to be 6% and 3%, respectively, corresponding to chamber yields
extrapolated to organic aerosol mass loadings of 5µg m−3 in Ng
et al.(2007). That global yields align with the chamber yields in a
consistent manner suggests that extrapolating variations in chamber
yields directly to global SOA production estimates is a reasonable
first-order approximation.

bled global SOA production. The overall effect of the sub-
strate could therefore seemingly change the estimated SOA
concentrations by as much as –20% to +100%, resulting in a
range of SOA production of 2.8 to 7.0 Tg/yr. In contrast to
models that assume any organic aerosol mass as part of the
available substrate,Song et al.(2007) found that the presence
of a hydrophobic organic seed did not enhance partitioning.
The implications would be an overestimate of SOA forma-
tion in the current model near sources of primary (hydropho-
bic) organic aerosol. Other factors that affect the partitioning
of all types of SOA include RH (Cocker et al., 2001; Pun
and Seigneur, 2007), and temperature. The dependence of
partitioning on temperature is approximated using an effec-
tive enthalpy of vaporization,4Hv. Given the large range
of measured values of4Hv for SOA (11–43 kJ mol−1) and
typical components found in SOA (>50 kJ mol−1 for many)
in the work ofOffenberg et al.(2006), coupled with the large
sensitivity of global SOA models to this parameter (for ex-
ample, inHenze and Seinfeld(2006) a 19% increase in4Hv

was found to result in a 28% and 50% increase in the SOA
production and burden, respectively), the temperature depen-
dence of SOA yields clearly imparts a large degree of uncer-
tainty to such calculations (Tsigaridis and Kanakidou, 2003),
particularly the SOA burden in the troposphere (Henze and
Seinfeld, 2006).

Regardless of the treatment of partitioning, it is not certain
that the gas-phase chemical reaction scheme inferred from
the chamber studies, (R1)–(R3), will similarly dominate in
the atmosphere. As noted in Sect. 2, this scheme does not
include reaction of the bicyclic peroxy radicals with them-
selves or other peroxy radicals. The consequences of reac-
tion with other peroxy radicals would likely be formation of
species with different volatility than those formed from reac-
tion with HO2. Observational constraints of the atmospheric
concentrations of RO2 and HO2 have found RO2 to HO2 ra-
tios ranging from 1:1 (Hanke et al., 2002) to up to 5:1 (Mi-
helcic et al., 2003; Stevens et al., 1997), though since these
were determined at ground level, they likely represent upper
bounds on this ratio in the atmosphere. However, 57% of
the SOA production in the present model occurs above the
boundary layer, so SOA production could be likely affected
by at most 43% if such competition takes place only near
VOC sources. For this to happen, the peroxy radical concen-
trations must exceed those of NO and HO2 by much more
than an order of magnitude as the rate constant for RO2 +
R′O2 at 298 K is slower (likely<1×10−14 cm3 molecule−1

s−1 given their level of substitution) thankN (8.5×10−12

cm3 molecule−1 s−1) or kH (1.5×10−11 cm3 molecule−1

s−1). Hence this seems unlikely, as even the observed ratios
of RO2 to HO2 are not that high. Self-reaction of the bicyclic
peroxy radical also seems rare since estimated concentrations
of even the parent aromatic species are typically on the order
of only a few ppb near source regions, where modeled NOx
concentrations are of order 0.1 ppb and/or HO2 are 10 ppt.
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Table 5. Global SOA budgets.

Hydrocarbon Emission (Tg/yr) SOA Production (Tg/yr) Burden (Tg)

terpenes 121 8.7 0.22
alcohols 38.3 1.6 0.03
sesquiterpenes 14.8 2.1 0.03
isoprene 461 14.4 0.45
aromatics 18.8 3.5 0.08
total 654 30.3 0.81

Finally, in addition to the mechanism for SOA forma-
tion from aromatics considered here, there have been sev-
eral other works that present means by which the SOA yields
from aromatics may be much higher than originally esti-
mated byOdum et al.(1996, 1997). Aqueous-phase chem-
ical production of nonvolatile species in cloud droplets (Er-
vens et al., 2004) has been shown to be an important mech-
anism for SOA production from isoprene (Lim et al., 2005),
and could potentially be an important pathway for aromat-
ics (Sorooshian et al., 2007). Prolonged photochemical ag-
ing towards less volatile species (Donahue et al., 2006), het-
erogeneous chemistry (Na et al., 2006) and even subsequent
evaporation of organic aerosol (Kwan et al., 2006) are effects
of (as of yet) undetermined magnitude for aromatics. Irre-
versible uptake of methylglyoxal and glyoxal (Liggio et al.,
2005) may also be a substantial source of SOA (Fu et al.,
2008; Volkamer et al., 2007).

Lastly, uncertainty in the emissions inventories, of not
only aromatics but NOx, biogenics, and primary organic
aerosols, can be important, as are aspects of the model such
as transport, deposition and land cover. For example, im-
plementation of the same mechanism for SOA formation by
Heald et al.(2007) resulted in SOA production of 1.4 Tg C/yr
from aromatics and 22.9 Tg C/yr from monoterpenes and iso-
prene for the year 2000. While this is similar in magnitude to
the amount of SOA produced from aromatics in the present
work (assuming an OA/OC ratio of 2.1), the percentage of
global SOA production from aromatics inHeald et al.(2007)
(6%) is a factors of two less than the amount reported here
(12%).

Overall, there are many sources of uncertainty in the
present model estimates of SOA production from aromatic
VOCs. As the uncertainty range from each source (not even
considering their likelihood), is highly speculative, a quan-
titative estimate of the combined total uncertainty is diffi-
cult. Nevertheless, we postulate a conservative range of 2–
12 Tg/yr owing to the combination of the sources of uncer-
tainty discussed above, even if only in a highly approximate
fashion. Clearly the maximum theoretical limit is closer to
25–30 Tg/yr, though this value should not be taken as an up-
per limit on model estimates unless a mechanism for pro-
ducing this much SOA from aromatic VOCs can be specified
well enough for implementation in global models.

6 Anthropogenic vs biogenic SOA

Table 5 also presents the emissions and resulting produc-
tion rates and burdens of SOA from biogenic species, where
for simplicity we consider all aromatic sources to be anthro-
pogenic, though undoubtedly some of the biomass burning
sources are naturally occurring. Even though aromatic SOA
is appreciable, the global SOA burden is dominated by bio-
genic sources, about 50% of which is attributable to isoprene,
as predicted based on current SOA yields from laboratory
chamber studies. As such, addition of aromatic SOA does not
significantly affect global estimates of biogenic SOA through
nonlinear effects, though it may have a stronger influence in
future emissions scenarios (Heald et al., 2007; Tsigaridis and
Kanakidou, 2007).

While the bulk of the total modeled SOA is biogenic in
origin, there are regions of the global distribution where con-
centrations of SOA from aromatics are predicted to be equal
or larger than those from biogenics. Figure5 shows the log
of the ratio of aromatic to biogenic SOA concentrations,

log10

(
[SOAarom]

[SOAbiogenic]

)
(6)

excluding locations where the total SOA concentration is less
than 0.05µg/m3. During DJF and MAM, much of the out-
flow regions in the Northern Hemisphere are dominated by
anthropogenic SOA. Nevertheless, SOA concentrations in
these areas are still small,<0.1µg/m3, as can be seen by
comparison to Fig.3. Further, concentrations in these re-
gions are typically much smaller than the total (primary plus
secondary) organic aerosol. For example, Fig.6 shows the
profile of SOA concentrations at 70◦W, an area identified in
Fig. 5 where the SOA is predominantly anthropogenic in ori-
gin. While SOA concentrations from aromatics, see panel
(a), are greater than from other sources, panel (b), the total
SOA concentrations are small, particularly in comparison to
total carbon aerosol concentrations, panels (c)–(d).

As such, the revised estimates of total carbonaceous
aerosol from this work alone do not likely explain the “miss-
ing source” of SOA noted in previous model estimates of
OC aerosol in ACE-Asia (Heald et al., 2005), nor the mag-
nitude and variability of soluble OC from observations dur-
ing the ICARTT campaign of summer, 2004 (Heald et al.,
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DJF MAM

JJA SON

Fig. 5. The log of the ratio of seasonally averaged surface concentrations of anthropogenic to biogenic SOA, log10

(
[SOAarom]

[SOAbiogenic]

)
, omitting

values where the total SOA concentration is less than 0.05µg/m3. For simplicity, biomass burning sources of aromatics are considered to be
anthropogenic.

2006). In Europe, the importance of anthropogenic SOA
in winter and biogenic SOA in the summer is in general
agreement with recent findings (Simpson et al., 2007; Ge-
lencśer et al., 2007), though more detailed comparison is
called for. Over the Northeastern United States during JJA,
the estimated SOA from aromatics via the pathways consid-
ered here is still smaller than the anthropogenic source of
SOA suggested byde Gouw et al.(2008), though use of the
revised yields ofNg et al.(2007) did improve the agreement
overde Gouw et al.(2005). While it is tempting to directly
compare the results of the present calculation to the observa-
tions of SOA formation in Mexico City reported byVolkamer
et al. (2006), the results of this global modeling study are
too coarse to resolve specific urban scale pollution events.
Even when considering the sources of uncertainty discussed
in Section 5, it is evident that additional mechanisms for an-
thropogenic SOA formation still exist beyond those presently
considered. Further consideration of the role of intermediate
volatility compounds (Robinson et al., 2007) and additional
SOA precursors appear vital to our understanding of global
SOA (Goldstein and Galbally, 2007).

7 Conclusions

The global chemical transport model GEOS-Chem is up-
dated to include simulation of SOA formation from the aro-
matic species benzene, toluene and xylene. Following the
suggestion ofPresto and Donahue(2006), a simple mecha-
nism is presented that accounts for the competition between
low and high-NOx pathways on SOA formation in a con-
tinuous fashion. Depending upon the immediate chemical
environment, secondary peroxy radicals from photooxida-
tion of aromatics by OH react with either NO or HO2 rad-
ical. Formation of SOA from reaction with NO leads to re-
versible formation of SOA following the two-product model
of Odum et al.(1996, 1997) using empirically determined
yield and partitioning coefficients from the high-NOx studies
of Ng et al.(2007). Aromatic peroxy radicals that react with
HO2 radical are treated as forming SOA irreversibly, follow-
ing the low-NOx results ofNg et al.(2007). This approach to
treating NOx dependence is general and could (with enough
empirical data) be extended to address the NOx dependence
of other species that are associated enough with sources of
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(a) SOA from aromatic species (b) SOA from non-aromatic species

(c) SOA from all species (d) OC (primary and secondary)

Fig. 6. A profile of SOA concentrations at 70◦W (east of the United States) during DJF. Panels(a) and(b) show the linear contributions
from anthropogenic and biogenic sources, respectively. Noting the change in scale, panels(c) and(d) show the total SOA from all sources
and the total organic carbon aerosol from primary and secondary sources.

NOx to warrant discrimination between the two pathways.
For the aromatic species, explicitly considering both path-
ways was found to be important as substantial amounts (25%
or higher) of each aromatic species proceed via each path-
way. In contrast, implementing a similar model description
for monoterpenes, sesquiterpenes, or isoprene, largely emit-
ted in low-NOx environments, may not be as crucial for esti-
mating their contributions to SOA in global models.

Previously assumed to generate negligible amounts of
SOA because of its low reactivity with OH, benzene is esti-
mated in this work to be the most important aromatic species
with regards to global formation of SOA owing to its low ini-
tial reactivity and the location of its emissions. Its low initial
reactivity allows benzene to be transported away from source
regions, where [NO]/[HO2] ratios are high, to more remote
regions, where this ratio is lower and, hence, the ultimate
yield of SOA is higher. In total, nearly 75% of the aromatic
SOA is formed via the low-NOx pathway, though only 39%
percent of the aromatic species react via this mechanism.
Predicted SOA concentrations from aromatics in the Eastern
United States and Europe are actually largest during the sum-
mer, owing to both higher HO2 radical concentrations and

lower NO concentrations. Influence of NOx variability on
SOA formation is particularly interesting as current models
may underestimate seasonal NOx cycles in many areas as in-
dicated by observations from GOME (van Noije et al., 2006;
Wang et al., 2007), though further analysis is warranted.

Even though the predicted burden and production rate of
aromatic SOA is considerably more than previous estimates
(Tsigaridis and Kanakidou, 2003, 2007), the contribution of
these sources to global SOA is small relative to contributions
from monoterpenes and isoprene, which alone are estimated
to comprise 82% of the global SOA burden. However, owing
to differences in spatial distributions of sources and seasons
of peak production, there are regions in which aromatic SOA
is predicted to contribute substantially to, and even domi-
nate, the local SOA concentrations, such as outflow regions
from North America and South East Asia during the win-
tertime. The contribution of aromatic SOA to carbonaceous
aerosol may also affect interpretation of total organic carbon
aerosol concentrations from surface stations in which win-
ter concentrations have been assumed to be primary in origin
(Liao et al., 2007).
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Comprehensive model treatment of SOA is difficult ow-
ing to a large range of effects not yet included, from inter-
actions of aqueous and organic phases (Pun and Seigneur,
2007) to effects of particle acidity on yields from isoprene
(Surratt et al., 2007). Recent works byPresto and Donahue
(2006) and Pathak et al.(2007) also emphasize additional
factors that complicate the interpretation of parameterized
SOA yields from chamber data, such as low aerosol mass
loading; the presence and content of the aerosol seed par-
ticles in such studies can have important outcomes on the
derived yields (Kroll et al., 2007; Song et al., 2007; Chan
et al., 2007). Further, the mechanisms governing the NOx
dependence of SOA formation from aromatics as modeled
here may differ in the actual atmosphere. Uncertainties in
biogenic emissions estimates are frequently cited; uncertain-
ties of even the aromatic emissions are possibly as large as
a factor of two or more (Warneke et al., 2007). The combi-
nation of all such uncertainties in the mechanism presented
here could produce a range of predictions. Though quan-
tifying the effects of as-of-yet uncharacterized processes is
highly subjective, it seems reasonable to speculate that this
pathway of SOA production from aromatics via partitioning
of secondary gas-phase semivolatile species could result in a
range of 2–12 Tg/yr.

Compared to observations from urban (influenced) air
masses (de Gouw et al., 2005; Volkamer et al., 2006; Klein-
man et al., 2007; Weber et al., 2007; de Gouw et al., 2008),
it would appear that the anthropogenic component of SOA is
still being underestimated, despite the fact that the estimates
given here produce two to three times more anthropogenic
SOA than previous works. Consideration of additional mech-
anisms for formation of SOA beyond those considered here,
such as evolution of the constituents’ volatility (Donahue
et al., 2006), the oxidation of intermediate-volatility com-
pounds (Robinson et al., 2007), or the potential for addi-
tional species such as glyoxal and methylglyoxal to make
SOA (Fu et al., 2008; Liggio et al., 2005; Volkamer et al.,
2007) would appear vital to our description of anthropogenic
SOA. Further efforts towards understanding such processes
and sources of SOA are important for assessing both the an-
thropogenic and biogenic contribution to widespread obser-
vations of oxygenated organic aerosol (Zhang et al., 2007)
and the overall budget of organic carbon species in the atmo-
sphere (Goldstein and Galbally, 2007).

Overall, the importance of NOx on estimating yields of
SOA from aromatics is clear. This work highlights the impor-
tance of additional studies of the NOx dependence of SOA
formation from other species, and the role that such depen-
dance plays on SOA yields of long lived hydrocarbons in
general, as this represents an important mechanism by which
anthropogenic activity can affect global SOA. This is of con-
cern for not only interpretation of current measurements of
organic aerosol, but also for estimates of the effects of fu-
ture climate and emissions changes on global aerosol burdens
(Heald et al., 2007; Tsigaridis and Kanakidou, 2007).
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