
MESSy TRACER User Manual

Patrick Jöckel, Astrid Kerkweg,

Joachim Buchholz, Holger Tost, Rolf Sander &
Andrea Pozzer

for the MESSy TRACER submodel

Air Chemistry Department
Max-Planck Institute of Chemistry

PO Box 3060, 55020 Mainz, Germany
joeckel@mpch-mainz.mpg.de

This manual is part of the electronic supplement of our article “Technical note: Coupling of chemical
processes with the Modular Earth Submodel System (MESSy) submodel TRACER” in Atmos. Chem.
Phys. (2008), available at: http://www.atmos-chem-phys.net

Date: February 12, 2008

2 P. Jöckel et al.: TRACER User Manual

Contents

1 Introduction 3

2 The meta-information structure 3

3 The file messy main tracer.f90 4
3.1 Tracer set routines to be called from the BMIL . 4

3.1.1 The subroutine new tracer set . 4
3.1.2 The subroutine copy tracer set . 5
3.1.3 The subroutine setup tracer set . 5
3.1.4 The subroutine get tracer set . 5
3.1.5 The subroutine clean tracer set . 6
3.1.6 The subroutine print tracer set . 6
3.1.7 The subroutine print tracer set val . 6
3.1.8 The subroutine main tracer read nml ctrl . 7

3.2 Tracer routines to be called from the SMIL of MESSy submodels . 7
3.2.1 The subroutine new tracer . 7
3.2.2 The subroutine set tracer . 8
3.2.3 The subroutine get tracer . 8
3.2.4 The subroutine get tracer list . 9
3.2.5 The subroutine tracer iniflag . 10
3.2.6 The function tracer error str . 10
3.2.7 The function param2string . 10
3.2.8 The subroutine full2base sub . 11

4 A simple example application 11

5 The file messy main tracer family.f90 13
5.1 The subroutine tracer family read nml ctrl . 13
5.2 The subroutine tracfamily init . 13
5.3 The subroutine tracfamily newtrac . 13
5.4 The subroutine tracfamily initmode . 13
5.5 The subroutine tracfamily meta . 13
5.6 The subroutine tracfamily 1 f2t . 14
5.7 The subroutine tracfamily 1 t2f . 14
5.8 The subroutine tracfamily 2 rsc . 14
5.9 The subroutine tracfamily 2 sum . 15
5.10 The subroutine tracfamily freemem . 15

6 The file messy main tracer pdef.f90 15
6.1 The subroutine tracer pdef read nml ctrl . 15
6.2 The subroutine tracpdef initmem . 15
6.3 The subroutine tracpdef settings . 15
6.4 The subroutine tracpdef airmass . 15
6.5 The subroutine tracpdef integrate . 16
6.6 The subroutine tracpdef freemem . 16
6.7 The subroutine tracpdef print . 16

P. Jöckel et al.: TRACER User Manual 3

1 Introduction

This documentation describes some more details of the MESSy submodel TRACER for the chemical coupling of
processes in Earth System Models. Sect. 2 explains the tracer meta-information structure and how to expand it.
A reference for the interface routines of the submodel follows. In most cases, the routines described in Sect. 3 are
sufficient to apply TRACER. An example is illustrated in Sect. 4. The submodel core layer (SMCL) routines of the
TRACER submodels TRACER FAMILY and TRACER PDEF are described in Sect. 5 and Sect. 6, respectively.

In the following description of the Fortran95 code, two parameters from the module
messy main constants mem.f90 are used, one for the precision of real numbers:

INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(12,307)

and one for the length of strings:

INTEGER, PARAMETER :: STRLEN_MEDIUM = 24

The documented code is also part of the MESSy distribution version 1.5.

2 The meta-information structure

The meta-information of the tracers in a tracer set are stored in a concatenated list of Fortran95 structures:

TYPE t_trinfo_list
TYPE(t_trinfo) :: info
TYPE(t_trinfo_list), POINTER :: next

END TYPE t_trinfo_list

The meta-information of one tracer is split into two parts:

TYPE t_trinfo
TYPE(t_ident) :: ident ! IDENTIFICATION
TYPE(t_meta) :: meta ! ADDITIONAL META-INFORMATION

END TYPE t_trinfo

The first part (t ident) is for the identification of the tracer and the second part (t meta) to store additional meta-
information. The tracer identification contains:

� a unique fullname consisting of a basename and an additional optional subname,

� the name of the submodel which has defined the tracer in the tracer set,

� a unique index, which is the number of the tracer in the tracer set that can also be used to address the
corresponding data,

� the medium of the tracer; the following integer parameters are pre-defined: AIR=1, AEROSOL=2, CLOUD=3,
OCEAN=4, LAKE=5, RIVER=6, LANDICE=7, SEAICE=8, VEGETATION=9,

� the quantity describing the abundance of the tracer; the following integer parameters are pre-defined: AMOUNT-
FRACTION=1, NUMBERDENSITY=2, CONCENTRATION=3,

� the unit of the tracer data,

� the type of the tracer; the following integer parameters are pre-defined: SINGLE=0, FAMILY=1, ISOTOPE=2.

4 P. Jöckel et al.: TRACER User Manual

The additional meta-information contains one (logical) flag to store the initialisation state of the tracer data and three
meta-information containers (Fortran95 arrays of rank one), for integer, real and string information, respectively. The
meaning of a container content is solely defined by its position in the respective array (i.e., the container number);
currently the following container numbers are pre-defined:

container number value meaning possible container content
I ADVECT 1 switch for advection ON, OFF
I CONVECT 2 switch for convection ON, OFF
I VDIFF 3 switch for vertical diffusion ON, OFF
I WETDEP 4 switch for wet deposition ON, OFF
I DRYDEP 5 switch for dry deposition ON, OFF
I SEDI 6 switch for sedimentation ON, OFF
I SCAV 7 switch for scavenging ON, OFF
I MIX 8 switch for turbulent mixing ON, OFF
I FORCE COL 9 switch for forcing in column mode ON, OFF
I INTEGRATE 10 switch for time integration ON, OFF
I TIMEFILTER 11 switch for time filter ON, OFF
I FORCE INIT 12 switch for re-initialisation after restart ON, OFF
I AEROSOL METHOD 13 method of aerosol dynamical model MODAL, BIN
I AEROSOL MODE 14 number of aerosol mode or bin (0)
I AEROSOL SOL 15 aerosol solubility flag ON, OFF
R MOLARMASS 1 molar mass of species (0.0) g/mol
R HENRY 2 effective henry’s law coefficient (0.0) mol/L/atm
R DRYREAC SF 3 coefficient for dry reaction with surface e.g., 0.0, 0.1, 1.0
R VINI 4 initial value for tracer data (0.0)
R AEROSOL DENSITY 5 aerosol component density (0.0)
S AEROSOL MODEL 1 name of associated aerosol dynamical model

Text in bold-face or in parentheses shows the default values; OFF=0, ON=1, MODAL=2, and BIN=3 are pre-defined
integer parameters. The container number names begin with “I ”, “R ” and “S ” for integer, real and string containers,
respectively.

To add new containers, the following steps are required (messy main tracer.f90, X is either I, R or S):

� add new container number parameter with MAX CASK X + 1

� increase MAX CASK X by one

� add descriptive string to NAMES CASK X

� add default container content to DEFAULT CASK X

3 The file messy main tracer.f90

The subroutines and functions in this file constitute the main interface routines for the application of TRACER from
within a model. They are divided into two groups: the first group (to be called from the basemodel interface layer
(BMIL)) to provide the overall framework for tracer sets, and the second group (to be called from the submodel
interface layer (SMIL)) of MESSy submodels to handle individual tracers.

In the following description, the Fortran95 variable status defines an INTENT(OUT) variable of type INTEGER,
which returns the status information of the respective subroutine. The status is 0, if the routine was successful, and
> 0, if an error occurred. The value of status can be transformed by the function tracer error str into an error
message.

3.1 Tracer set routines to be called from the BMIL

3.1.1 The subroutine new tracer set

The subroutine new tracer set defines a new tracer set and generates the meta-information framework for the set.

P. Jöckel et al.: TRACER User Manual 5

SUBROUTINE new tracer set (status ,setname ,l enable)
name type intent description
mandatory arguments:
status INTEGER OUT
setname CHARACTER(LEN=*) IN name of the tracer set
l enable LOGICAL IN enable or disable tracer set

The name of a tracer set must be unique.

With the switch l enable a tracer set can be enabled (.TRUE.) or disabled (.FALSE.) during the initialisation phase
of the model simulation. Depending on the model setup, not all available (=defined) tracer sets might be always
enabled. The routines accessing tracers (Sect. 3.2) of disabled tracer sets will always return status=0.

3.1.2 The subroutine copy tracer set

The subroutine copy tracer set copies the meta-information of a complete tracer set (including the meta-information
of its tracers) into a new tracer set.

SUBROUTINE copy tracer set (status ,oldset ,newset)
name type intent description
mandatory arguments:
status INTEGER OUT
oldset CHARACTER(LEN=*) IN name of the tracer set to be copied
newset CHARACTER(LEN=*) IN name of the new tracer set

This can be used to specify tracer sets, which are identical w.r.t. their tracer meta-information, however, different
w.r.t. their representation, e.g., tracer sets with different grid structures.

3.1.3 The subroutine setup tracer set

The subroutine setup tracer set allocates memory for a tracer set.

SUBROUTINE setup tracer set (status ,setname ,dim ,nt ,l tfstd ,l init)
name type intent description
mandatory arguments:
status INTEGER OUT
setname CHARACTER(LEN=*) IN name of the tracer set
dim INTEGER, DIMENSION(3) IN representation dimension lengths
nt INTEGER IN number of data instances
l tfstd LOGICAL IN .TRUE. for standard instances
l init LOGICAL IN initialisation protector

Up to three dimensions (dim) can be used to associate a representation (e.g., a 3-dimensional spatial grid) to a tracer
set. If the representation is less than 3-dimensional, the remaining dimension lengths must be set to 1.

The number of data instances is usually used for different stages of the time integration scheme (e.g., leap-frog with
filter). In case nt is 3 or larger, the switch l tfstd (=.TRUE.) associates a special meaning to the first three instances,
namely the tracer data at time step t, the tracer tendency, and the tracer data at time step t −∆t, respectively (∆t
is the model time step length).

The switch l init (=.FALSE.) can be used to protect the tracer data of all tracers in this set from potential tracer
initialisation procedures during the initialisation phase of the model (in the BMIL).

3.1.4 The subroutine get tracer set

The subroutine get tracer set sets references to tracer sets.

6 P. Jöckel et al.: TRACER User Manual

SUBROUTINE get tracer set (status [,setid] [,setname] [,trlist] [,ti]
[,ntrac] [,xt] [,xtte] [,xtm1] [,xmem]
[,l tfstd] [,l init] [,l enable])

name type intent description
mandatory arguments:
status INTEGER OUT
optional arguments:
setid∗) INTEGER IN id of tracer set
setname∗) CHARACTER(LEN=*) IN∗) name of the tracer set
trlist TYPE(t trinfo list) POINTER meta-information list
ti TYPE(t trinfo tp), DIMENSION(:) POINTER meta-information array
ntrac INTEGER OUT number of tracers in set
xt REAL(DP), DIMENSION(:,:,:,:,:) POINTER 1st instance
xtte REAL(DP), DIMENSION(:,:,:,:,:) POINTER 2nd instance
xtm1 REAL(DP), DIMENSION(:,:,:,:,:) POINTER 3rd instance
xmem REAL(DP), DIMENSION(:,:,:,:,:) POINTER > 3 or all instances
l tfstd LOGICAL OUT standard instances ?
l init LOGICAL OUT initialisation protector ?
l enable LOGICAL OUT enabled or disabled ?

∗)Note: If setid is present, setname is optional and INTENT(OUT). Otherwise, setname is mandatory and IN-
TENT(IN).

trlist returns the tracer meta-information as a concatenated list of Fortran95 pointer structures, whereas ti returns
the same information as 1-dimensional array with the tracer index as array index.

The total number of tracers defined in the set by all submodels (with the routine new tracer) is ntrac.

xt, xtte, xtm1 and xmem are pointers to the data memory. xt always points to the first data instance. In case l tfstd
is not set (=.FALSE.), or the number of instances is less than three, xtte and xtm1 are nullified pointers, and xmem
points to all instances > 1. In case l tfstd is .TRUE. and the number of instances is three or larger, xt, xtte
and xtm1 point to instances 1 to 3 respectively, and xmem to all instances > 3 (if available; otherwise the pointer is
nullified).

The initialisation protector and the activity status (enabled or disabled) of the tracer set can be retrieved with l init
and l enable, respectively.

3.1.5 The subroutine clean tracer set

The subroutine clean tracer set removes a tracer set from memory.

SUBROUTINE clean tracer set (status ,setname)
name type intent description
mandatory arguments:
status INTEGER OUT
setname CHARACTER(LEN=*) IN name of the tracer set

The data memory of the tracer set is deallocated and the meta-information of all tracers in the tracer set are deleted.

3.1.6 The subroutine print tracer set

The subroutine print tracer set prints a summary of all tracer sets (tracer meta-information only).

SUBROUTINE print tracer set ()

This routine can be used to output the tracer meta-information of all tracer sets after the initialisation or for debugging.

3.1.7 The subroutine print tracer set val

The subroutine print tracer set val prints the range of tracer data values (all instances) of all tracers in all tracer
sets.

P. Jöckel et al.: TRACER User Manual 7

SUBROUTINE print tracer set val ()

This routine can be used to output the tracer information of all tracer sets after the tracer sets have been set up, or
for debugging.

3.1.8 The subroutine main tracer read nml ctrl

The subroutine main tracer read nml ctrl reads the tracer CTRL namelist, checks it, and initialises global variables.

SUBROUTINE main tracer read nml ctrl (status ,iou)
name type intent description
mandatory arguments:
status INTEGER OUT
iou INTEGER IN Fortran95 input unit

3.2 Tracer routines to be called from the SMIL of MESSy submodels

3.2.1 The subroutine new tracer

The subroutine new tracer defines a new tracer in a set and optionally sets the tracer meta-information.

SUBROUTINE new tracer (status ,setname ,basename ,submodel [,idx]
[,subname] [,longname] [,unit] [,medium]
[,quantity] [,type] [,cask i] [,cask r],
[,cask s])

name type intent description
mandatory arguments:
status INTEGER OUT
setname CHARACTER(LEN=*) IN name of the tracer set
basename CHARACTER(LEN=*) IN basename of the tracer
submodel CHARACTER(LEN=*) IN name of submodel which defines the

tracer
optional arguments:
idx INTEGER OUT index of tracer in tracer set
subname CHARACTER(LEN=*) IN subname of the tracer
longname CHARACTER(LEN=*) IN string for more information
unit CHARACTER(LEN=*) IN unit of the tracer data
medium INTEGER IN medium of the tracer
quantity INTEGER IN quantity of the tracer
type INTEGER IN type of the tracer
cask i INTEGER, DIMENSION(MAX CASK I) IN integer values
cask r INTEGER, DIMENSION(MAX CASK R) IN real values
cask s CHARACTER(LEN=STRLEN MEDIUM), IN string values

DIMENSION(MAX CASK S)

The minimum necessary information to define a new tracer in a tracer set is the basename of the tracer and the name
of the submodel which defines the tracer. The basename must not contain any underscore (“ ”). The basename can
optionally be supplemented by a subname. The tracer within a set is identified by its unique fullname, which is the
basename, if the subname is empty, or the basename followed by an underscore (“ ”) followed by the subname. The
unit specifies the unit of the corresponding tracer data. The longname can be used for an extended description of the
species. medium, quantity and type of the tracer can be specified, if the default values (AIR, AMOUNTFRACTION,
SINGLE) are not appropriate. With the three containers cask i, cask r, and cask s the additional meta-information
can be specified, e.g., with the following sequence:

...
USE messy_main_tracer, ONLY: new_tracer, MAX_CASK_I, DEFAULT_CASK_I, OFF &

, MAX_CASK_R, DEFAULT_CASK_R, R_MOLARMASS &
, I_ADVECTION

...

8 P. Jöckel et al.: TRACER User Manual

INTEGER, DIMENSION(MAX_CASK_I) :: MY_CASK_I
REAL(DP), DIMENSION(MAX_CASK_R) :: MY_CASK_R
...
MY_CASK_I(:) = DEFAULT_CASK_I(:)
MY_CASK_R(:) = DEFAULT_CASK_R(:)
MY_CASK_I(I_ADVECTION) = OFF
MY_CASK_R(R_MOLARMASS) = 30.0_dp
...
CALL new_tracer(status, setname, basename &

, cask_i=MY_CASK_I, cask_R=_MY_CASK_R)
...

The index idx of the tracer in the set can optionally be retrieved for further application with the subroutine set tracer,
and / or for addressing the corresponding tracer data memory.

3.2.2 The subroutine set tracer

The subroutine set tracer specifies the meta-information of a tracer in a tracer set.

SUBROUTINE set tracer (status ,setname ,idx, flag , i | r | s)
name type intent description
mandatory arguments:
status INTEGER OUT
setname CHARACTER(LEN=*) IN name of the tracer set
idx INTEGER IN index of tracer in tracer set
flag INTEGER IN container number
i∗) INTEGER IN integer container content
r∗) REAL(DP) IN real container content
s∗) CHARACTER(LEN=STRLEN MEDIUM) IN string container content

∗)Note: This subroutine is threefoldly overloaded for integer, real and string values respectively.

With each call to this subroutine one specific meta-information container can be filled. The corresponding tracer is
identified by the name of the tracer set and the index of the tracer in the tracer set, e.g.:

...
USE messy_main_tracer, ONLY: set_tracer, R_MOLARMASS
...
CALL set_tracer(status, setname, idx, R_molarmass, 30.0_dp)
...

The index can be retrieved from the call to the subroutine new tracer.

3.2.3 The subroutine get tracer

The subroutine get tracer retrieves information about a tracer in a tracer set.

P. Jöckel et al.: TRACER User Manual 9

SUBROUTINE get tracer (status ,setname ,basename [,subname] [,idx]
[,fullname] [,longname] [,unit] [,submodel]
[,medium] [,quantity] [,type] [,trinfo]
[,pxt] [,pxtm1] [,pxtte] [,pxmem])

name type intent description
mandatory arguments:
status INTEGER OUT
setname CHARACTER(LEN=*) IN name of the tracer set
basename CHARACTER(LEN=*) IN basename of the tracer
optional arguments:
subname CHARACTER(LEN=*) IN subname of the tracer
idx INTEGER OUT index of tracer in tracer set
fullname CHARACTER(LEN=*) OUT fullname of the tracer
longname CHARACTER(LEN=*) OUT string information about the tracer
unit CHARACTER(LEN=*) OUT unit of the tracer data
submodel CHARACTER(LEN=*) OUT name of submodel which defined the

tracer
medium INTEGER OUT medium of the tracer
quantity INTEGER OUT quantity of the tracer
type INTEGER OUT type of the tracer
trinfo TYPE(t trinfo) OUT meta-information structure
pxt REAL(DP), DIMENSION(:,:,:) POINTER pointer to tracer memory (t)
pxtm1 REAL(DP), DIMENSION(:,:,:) POINTER pointer to tracer memory (t−∆t)
pxtte REAL(DP), DIMENSION(:,:,:) POINTER pointer to tracer memory (tendency)
pxmem REAL(DP), DIMENSION(:,:,:,:) POINTER pointer to additional memory instances

Knowing the basename (and optional subname) of the tracer, the meta-information of the tracer in the set can be
retrieved and local pointers to the corresponding tracer data memory can be set. The fullname is the basename, if the
subname is empty, or the basename followed by an underscore (“ ”) and the subname. The structure trinfo contains
(a copy of) the meta-information of the tracer (see Sect. 2). The following example shows how to access it:

...
USE messy_main_tracer, ONLY: get_tracer, t_trinfo, R_molarmass
...
TYPE(t_trinfo) :: ti
...
CALL get_tracer(status, setname, basename, trinfo=ti)
...
WRITE(*,*) "The molar mass is :",ti%info%meta%cask_R(R_molarmass)
...

The pointers pxt, pxtm1 and pxtte point to the instances corresponding to the tracer data at model time step t, t−∆t,
and to the tracer tendency, respectively, if the tracer set has been set up (subroutine setup tracer set) with three or
more instances and l tfstd = .TRUE.. In this case, pxmem points to all remaining instances, or causes status > 0,
if only three instances are defined. If the tracer set has been setup in a different way, accessing pxtm1 and / or pxtte
will result in a status > 0. Accessing pxmem, if only one instance has been defined, will also result in status > 0.

It is highly recommended to test the status of this routine after it has been called.

3.2.4 The subroutine get tracer list

The subroutine get tracer list retrieves the tracer indices of all tracers with the same basename from a tracer set.

10 P. Jöckel et al.: TRACER User Manual

SUBROUTINE get tracer list (status ,setname ,basename ,idxs [,subnames])
name type intent description
mandatory arguments:
status INTEGER OUT
setname CHARACTER(LEN=*) IN name of the tracer set
basename CHARACTER(LEN=*) IN basename of the tracer
idxs INTEGER, DIMENSION(:) POINTER tracer indices
optional arguments:
subnames CHARACTER(LEN=STRLEN MEDIUM), POINTER tracer subnames

DIMENSION(:)
Optionally, the subnames of all tracers with the specified basename can be retrieved. The two pointers will be allocated
with the number of tracers found (≥ 0).

3.2.5 The subroutine tracer iniflag

The subroutine tracer iniflag sets the initialisation flag.
SUBROUTINE tracer iniflag (status ,setname ,id ,linit)
name type intent description
mandatory arguments:
status INTEGER OUT
setname CHARACTER(LEN=*) IN name of the tracer set
id INTEGER IN index of tracer in tracer set
linit LOGICAL IN initialisation state

linit=.TRUE. means the tracer data is initialised.

3.2.6 The function tracer error str

The function tracer error str returns status information.
CHARACTER(LEN=STRLEN VLONG) FUNCTION tracer error str (status)
name type intent description
mandatory arguments:
status INTEGER IN

The error status is converted into a meaningful message.

3.2.7 The function param2string

The function param2string converts a parameter to a string.
CHARACTER(LEN=STRLEN MEDIUM) FUNCTION param2string (i ,mode)
name type intent description
mandatory arguments:
i INTEGER IN
mode CHARACTER(LEN=*) IN

With this information tracer meta-information can be converted to strings, e.g., to generate readable output or
attributes. Four modes are available: ’switch’, ’type’, ’medium’, and ’quantity’. An application sequence is for
example:

...
CALL get_tracer(status, setname, basename, trinfo=ti)
str = param2string(ti%meta%ident%medium, ’medium’)
! will return ’AIR’, or ’AEROSOL’, or ...
...
CALL get_tracer(status, setname, basename, trinfo=ti)
str = param2string(ti%meta%cask_i(I_ADVECTION), ’switch’)
! will return ’ON’, or ’OFF’
...

P. Jöckel et al.: TRACER User Manual 11

3.2.8 The subroutine full2base sub

The subroutine full2base sub converts a fullname to basename and subname.
SUBROUTINE full2base sub (status ,fullname ,basename ,subname)
name type intent description
mandatory arguments:
status INTEGER OUT
fullname CHARACTER(LEN=*) IN fullname of the tracer
basename CHARACTER(LEN=*) OUT basename of the tracer
subname CHARACTER(LEN=*) OUT subname of the tracer

4 A simple example application

A typical sequence of calls during the three phases of a model simulation is provided in tracer bml.f90, an example
basemodel (BML) and its base model interface layer (BMIL) messy main tracer bi.f90. For the implementation of
TRACER into a specific model, it is recommended to modify and use messy main tracer bi.f90, since it contains also
correct calls to the TRACER submodels TRACER FAMILY and TRACER PDEF, and further provides a high-level
interface for the tracer-family conversion.

INITIALISATION PHASE

� bml initialize: initialise base model

� main tracer initialize

– main tracer read nml ctrl: read CTRL namelist and set switches

– main tracer family initialize:

* tracer family read nml ctrl: read CTRL FAMILY namelist and set switches

– main tracer pdef initialize:

* tracer pdef read nml ctrl: read CTRL PDEF namelist and set switches

� initialise MESSy submodels

� main tracer new tracer(1)

– new tracer set: define new tracer set(s)

� add tracers by MESSy submodels with new tracer

� main tracer new tracer(2)

– main tracer family new tracer: define tracer families according to CTRL FAMILY namelist

� main tracer new tracer(3)

– print tracer set: diagnostic output

� main tracer init memory(1)

– setup tracer set: fixate meta-information and allocate data memory

– get tracer set: set pointers to tracer set data memory

� setup memory of MESSy submodels

� main tracer init memory(2)

– main tracer pdef init mem: additional memory for TRACER PDEF

– main tracer family init mem: set meta information of family-members to fraction

12 P. Jöckel et al.: TRACER User Manual

� main tracer init coupling

– main tracer family init cpl: reset meta information of family-members

– main tracer pdef init cpl: fixate settings of TRACER PDEF

� coupling of MESSy submodels with get tracer

� main tracer init tracer(1): check initialisation after restart

� initialise tracers via MESSy submodels

� main tracer init tracer(2): check initialisation state; initialise with constant

� main tracer init tracer(3)

– print tracer set val: diagnostic output

TIME INTEGRATION PHASE

� main tracer global start(1)

– main tracer pdef global start: set trigger

� global start of MESSy submodels

� main tracer global start(2)

– main tracer family global start:

* tracfamily 2 sum: conversion of type-2 families into family mode (summation)
* tracfamily 1 t2f: conversion of type-1 families into family mode

� processes in family mode; e.g., advection

� main tracer afteradv

– main tracer family afteradv

* tracfamily 1 f2t: conversion of type-1 families into tracer mode
* tracfamily 2 rsc: conversion of type-2 families into tracer mode (rescaling)

� main tracer fconv glb: optional family conversion

� ... START LOOP OVER OUTER RANK IN REPRESENTATION

� main tracer local start: set pointers (reduced in rank) to data memory

� main tracer fconv loc: optional family conversion

� ... END LOOP OVER OUTER RANK IN REPRESENTATION

� main tracer global end

– tracpdef airmass: set tracer set (representation) specific airmass for global tracer mass integration

– main tracer pdef global end: global tracer mass integration

� output of results

FINALISING PHASE

� main tracer free memory

– clean tracer set

– main tracer pdef free mem

– main tracer family free mem

P. Jöckel et al.: TRACER User Manual 13

5 The file messy main tracer family.f90

5.1 The subroutine tracer family read nml ctrl

The subroutine tracer family read nml ctrl reads the CTRL FAMILY namelist.

SUBROUTINE tracer family read nml ctrl (status ,iou)
name type intent description
mandatory arguments:
status INTEGER OUT
iou INTEGER IN Fortran95 input unit

5.2 The subroutine tracfamily init

The subroutine tracfamily init processes the information read from the CTRL FAMILY namelist.

SUBROUTINE tracfamily init (status)
name type intent description
mandatory arguments:
status INTEGER OUT

5.3 The subroutine tracfamily newtrac

The subroutine tracfamily newtrac defines new tracers (for the families) according to the CTRL FAMILY namelist.

SUBROUTINE tracfamily newtrac (status ,ldiagout)
name type intent description
mandatory arguments:
status INTEGER OUT
ldiagout LOGICAL IN diagnostic output ?

The first valid tracer in a list of family members determines the meta-information of the family tracer. Tracers which
are not defined, tracers which are already a member of another family (except for members of type-2 families without
rescaling), empty families and families with the same name as already defined tracers are ignored.

5.4 The subroutine tracfamily initmode

The subroutine tracfamily initmode initialises the internal mode as tracer mode.

SUBROUTINE tracfamily initmode ()

5.5 The subroutine tracfamily meta

The subroutine tracfamily meta converts the meta-information for type-1 families and their members between tracer
mode and family mode in both directions.

SUBROUTINE tracfamily meta (status ,flag ,callstr ,setname ,ldiagout)
name type intent description
mandatory arguments:
status INTEGER OUT
flag INTEGER IN 1: conversion into tracer mode; 2: con-

version into family mode
callstr CHARACTER(LEN=*) IN name of calling routine
setname CHARACTER(LEN=*) IN name of the tracer set
ldiagout LOGICAL IN diagnostic output ?

14 P. Jöckel et al.: TRACER User Manual

5.6 The subroutine tracfamily 1 f2t

The subroutine tracfamily 1 f2t converts type-1 families into the tracer mode (Eqs. (12)-(14)).

SUBROUTINE tracfamily 1 f2t (status ,callstr ,p pe ,setname ,ztmst ,jjrow
[,ksize] [,ltesubst])

name type intent description
mandatory arguments:
status INTEGER OUT
callstr CHARACTER(LEN=*) IN name of calling routine
p pe INTEGER IN ∗)

setname CHARACTER(LEN=*) IN name of the tracer set
ztmst REAL(DP) IN model time step length (∆t)
jjrow INTEGER IN ∗)

optional arguments:
ksize INTEGER IN size of 1st data rank

∗)Note: p pe and jjrow are used for restricting diagnostic output (l verbose=.TRUE. in CTRL FAMILY namelist)
to only one task (i diag pe in CTRL FAMILY namelist) in a parallel environment and to only one row (i diag jrow
in CTRL FAMILY namelist) along the 3rd rank of the data representation.

5.7 The subroutine tracfamily 1 t2f

The subroutine tracfamily 1 t2f converts type-1 families into the family mode (Eqs. (3)-(5), (7)-(9) and (10)).

SUBROUTINE tracfamily 1 t2f (status ,callstr ,p pe ,setname ,ztmst ,jjrow
[,ksize] [,l frac])

name type intent description
mandatory arguments:
status INTEGER OUT
callstr CHARACTER(LEN=*) IN name of calling routine
p pe INTEGER IN ∗)

setname CHARACTER(LEN=*) IN name of the tracer set
ztmst REAL(DP) IN model time step length (∆t)
jjrow INTEGER IN ∗)

optional arguments:
ksize INTEGER IN size of 1st data rank
l frac LOGICAL IN calculate fractions ?

∗)Note: p pe and jjrow are used for restricting diagnostic output (l verbose=.TRUE. in CTRL FAMILY namelist)
to only one task (i diag pe in CTRL FAMILY namelist) in a parallel environment and to only one row (i diag jrow
in CTRL FAMILY namelist) along the 3rd rank of the data representation.

The optional switch l frac=.FALSE. (default: .TRUE.) is used to restrict the conversion only to the summation of
the families (i.e., Eqs. (3)-(5)), omitting the calculation of the fractions (Eqs. (7)-(9)) and the storage (Eq. (10)). This
is used to update the family tracers just before the model output.

5.8 The subroutine tracfamily 2 rsc

The subroutine tracfamily 2 rsc converts type-2 families into the tracer mode (rescaling of the tracers, Eqs.(15)-
(17)).

SUBROUTINE tracfamily 2 rsc (setname ,ztmst ,jjrow)
name type intent description
mandatory arguments:
setname CHARACTER(LEN=*) IN name of the tracer set
ztmst REAL(DP) IN model time step length (∆t)
jjrow INTEGER IN row along 3rd rank of data

P. Jöckel et al.: TRACER User Manual 15

5.9 The subroutine tracfamily 2 sum

The subroutine tracfamily 2 sum converts type-2 families into the family mode (summation, Eqs. (3)-(5)).
SUBROUTINE tracfamily 2 sum (setname ,jjrow)
name type intent description
mandatory arguments:
setname CHARACTER(LEN=*) IN name of the tracer set
jjrow INTEGER IN row along 3rd rank of data

5.10 The subroutine tracfamily freemem

The subroutine tracfamily freemem deallocates the additional memory used to store information for tracer families.
SUBROUTINE tracfamily freemem ()

6 The file messy main tracer pdef.f90

6.1 The subroutine tracer pdef read nml ctrl

The subroutine tracer pdef read nml ctrl reads the CTRL PDEF namelist.
SUBROUTINE tracer pdef read nml ctrl (status ,iou)
name type intent description
mandatory arguments:
status INTEGER OUT
iou INTEGER IN Fortran95 input unit

6.2 The subroutine tracpdef initmem

The subroutine tracpdef initmem allocates and initialises the required memory.
SUBROUTINE tracpdef initmem (nprocs)
name type intent description
mandatory arguments:
nprocs INTEGER IN number of processors in parallel envi-

ronment

6.3 The subroutine tracpdef settings

The subroutine tracpdef settings processes the information read from the CTRL PDEF namelist.
SUBROUTINE tracpdef settings (ldiagout)
name type intent description
mandatory arguments:
ldiagout LOGICAL IN diagnostic output ?

6.4 The subroutine tracpdef airmass

The subroutine tracpdef airmass sets the airmass used for the tracer mass integration.
SUBROUTINE tracpdef airmass (setname ,airmass)
name type intent description
mandatory arguments:
setname CHARACTER(LEN=*) IN name of the tracer set
airmass∗) REAL(DP), DIMENSION(:,:,:) IN airmass in kg
airmass∗) REAL(DP) IN airmass in kg

∗)Note: This subroutine is overloaded for setting the airmass in the corresponding tracer set representation (e.g., the
grid) either variable along the representation dimensions, or constant in all points of the corresponding tracer set
representation.

16 P. Jöckel et al.: TRACER User Manual

6.5 The subroutine tracpdef integrate

The subroutine tracpdef integrate calculates the global tracer masses (Eqs. (18) and (19)) and checks the tolerance
criterium for the negative mass (Eq. (20)).

SUBROUTINE tracpdef integrate (status ,flag ,time step len ,p pe)
name type intent description
mandatory arguments:
status INTEGER OUT
flag INTEGER IN switch (1 or 2)
time step len REAL(DP) IN time step length (∆t)
p pe INTEGER IN number of process in parallel environ-

ment

This routine needs to be called twice. Once with flag=1 for the integration (summation) on each processor in the
parallel environment. After this, the results of all processors need to be distributed to each other. Then this routine
is called a second time (with flag=2) for the integration (summation) over all processors and the checking of the
tolerance criterion.

6.6 The subroutine tracpdef freemem

The subroutine tracpdef freemem deallocates the memory used for TRACER PDEF.

SUBROUTINE tracpdef freemem ()

6.7 The subroutine tracpdef print

The subroutine tracpdef print outputs the global tracer masses of all tracer sets.

SUBROUTINE tracpdef print (ldiagout)
name type intent description
mandatory arguments:
ldiagout LOGICAL IN switch

The switch ldiagout can be used to restrict the output to one processor in a parallel environment.

