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Abstract. The precision of the two-layer cloud height fields
derived from the Atmospheric Infrared Sounder (AIRS) is
explored and quantified for a five-day set of observations.
Coincident profiles of vertical cloud structure by CloudSat, a
94 GHz profiling radar, and the Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observation (CALIPSO), are com-
pared to AIRS for a wide range of cloud types. Bias and
variability in cloud height differences are shown to have
dependence on cloud type, height, and amount, as well as
whether CloudSat or CALIPSO is used as the comparison
standard. The CloudSat-AIRS biases and variability range
from −4.3 to 0.5±1.2–3.6 km for all cloud types. Likewise,
the CALIPSO-AIRS biases range from 0.6–3.0±1.2–3.6 km
(−5.8 to−0.2±0.5–2.7 km) for clouds≥7 km (<7 km). The
upper layer of AIRS has the greatest sensitivity to Altocumu-
lus, Altostratus, Cirrus, Cumulonimbus, and Nimbostratus,
whereas the lower layer has the greatest sensitivity to Cu-
mulus and Stratocumulus. Although the bias and variability
generally decrease with increasing cloud amount, the ability
of AIRS to constrain cloud occurrence, height, and amount
is demonstrated across all cloud types for many geophysi-
cal conditions. In particular, skill is demonstrated for thin
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Cirrus, as well as some Cumulus and Stratocumulus, cloud
types infrared sounders typically struggle to quantify. Fur-
thermore, some improvements in the AIRS Version 5 opera-
tional retrieval algorithm are demonstrated. However, limi-
tations in AIRS cloud retrievals are also revealed, including
the existence of spurious Cirrus near the tropopause and low
cloud layers within Cumulonimbus and Nimbostratus clouds.
Likely causes of spurious clouds are identified and the poten-
tial for further improvement is discussed.

1 Introduction

Improving the realism of cloud fields within general circu-
lation models (GCMs) is necessary to increase certainty in
prognoses of future climate (Houghton et al., 2001). How-
ever, cloud responses to anthropogenic forcing in climate
GCMs vary widely from model to model and are largely at-
tributed to differences in the representation of cloud feed-
back processes (Stephens, 2005). Use of relatively long-
term satellite data records such as the Earth Radiation Bud-
get Experiment (ERBE) (Ramanathan et al., 1989) and the
International Satellite Cloud Climatology Project (ISCCP)
(Rossow and Schiffer, 1999) have clarified cloud radiative
impacts, inspired approaches to climate GCM evaluation,
and contributed to further theoretical understanding of cloud
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feedbacks (e.g. Hartmann et al., 2001). Wielicki et al. (1995)
note the historical satellite record is unable to measure all
cloud properties relevant to Earth’s cloudy radiation budget,
which include liquid and ice water path (LWP/IWP), visible
optical depth (τ), effective particle size (De), particle phase
and shape, fractional coverage, height, and IR emittance. Il-
lustrating the need for improved cloud observations, Webb
et al. (2001) showed that some climate GCMs generate erro-
neous vertical cloud distributions that compensate in a man-
ner producing favorable mean radiative budget comparisons
with observations. Thus, reliable observations of cloud ver-
tical structure will help to reduce the ambiguity in climate
GCM–satellite comparisons.

Several active and passive satellite sensors with unprece-
dented observing capabilities are flying in a formation called
the “A-train” (Stephens et al., 2002). The constellation is
anchored by NASA’s Earth Observing System (EOS) Aqua
and Aura satellites, the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation (CALIPSO) (Winker et al.,
2003), CloudSat (Stephens et al., 2002), along with the Polar-
ization and Anisotropy of Reflectances for Atmospheric Sci-
ences coupled with Observations from a Lidar (PARASOL),
and in the near future Glory (solar irradiance and aerosols),
and the Orbiting Carbon Observatory (OCO) (atmospheric
CO2). Several instruments on Aqua and Aura are designed to
measure temperature, humidity, clouds, aerosols, trace gases,
and surface properties (Parkinson et al., 2003; Schoeberl et
al., 2006). The present focus is on comparisons of cloud
retrievals from the Atmospheric Infrared Sounder (AIRS) lo-
cated on Aqua (Aumann et al., 2003) to CloudSat, a 94 GHz
cloud profiling radar, and CALIOP (Cloud-Aerosol Lidar
with Orthogonal Polarization), a cloud and aerosol profiling
lidar on CALIPSO. Aqua leads CloudSat and CALIPSO by
∼55 and∼70 s, respectively, providing nearly simultaneous
and collocated cloud observations.

From the perspective of a satellite-based cloud observa-
tion, inter-satellite comparisons have several advantages over
surface-satellite comparisons: they (1) eliminate the ambigu-
ity introduced from the integration of a time series of surface-
based measurements to replicate a spatial scale comparable
to the satellite field of view (FOV) that is further complicated
by cloud temporal evolution (e.g. Kahn et al., 2005), (2) re-
duce the effects of certain types of sampling biases, includ-
ing those introduced by the attenuation of surface-based lidar
and cloud radar in thick and precipitating clouds (Comstock
et al., 2002; McGill et al., 2004), (3) provide a larger and sta-
tistically robust set of observations for comparison, and (4)
facilitate near-global sampling for most types of clouds.

Many schemes have been developed to classify clouds into
fixed types. For instance, the ISCCP data set provides a
3×3 classification scheme based on cloud top pressure and
τVIS (Rossow and Schiffer, 1999), while Wang and Sassen
(2001) developed a scheme using multiple ground-based sen-
sors. These (and numerous other) classification schemes are
loosely based on the naming system originating from Luke

Howard (Gedzelman, 1989). Although cloud classification
schemes are limited by measurement sensitivity and subject
to misinterpretation, they help to organize clouds into cate-
gories with unique characteristics of composition, radiative
forcing, and heating/cooling effects (Hartmann et al., 1992;
Klein and Hartmann, 1993; Chen et al., 2000; Inoue and
Ackerman, 2002; Xu et al., 2005; L’Ecuyer et al., 2006).

No single passive or active measurement from space is
able to infer all relevant cloud physical properties (e.g.
Wielicki et al., 1995) spanning all geophysical conditions;
hence, a multi-instrument constellation is needed to observe
Earth’s clouds (Miller et al., 2000; Stephens et al., 2002).
Now that this type of satellite constellation is operational,
the strengths and weaknesses of various instruments can be
evaluated in the presence of different cloud types and ul-
timately observations of multiple instruments can be com-
bined to yield retrievals superior to retrievals from any single
instrument. This is motivated in part because of discrepan-
cies in existing climatologies of cloud height, frequency and
amount derived from combinations of passive (visible, IR,
and microwave) wavelengths (e.g. Rossow et al., 1993; Jin
et al., 1996; Thomas et al., 2004). Discrepancies exist not
only from different measurement characteristics and sam-
pling strategies, but perhaps as significantly, from retrieval
algorithm differences and a priori assumptions (Rossow et
al., 1985; Wielicki and Parker, 1992; Kahn et al., 2007b).
CloudSat and CALIOP generally provide more direct and
easily interpreted observations of cloud detection and vertical
cloud structure than passive methods. A combination of ra-
diative transfer modeling and a priori assumptions of surface
and atmospheric quantities are necessary to infer cloud prop-
erties from passive measurements (e.g. Rossow and Schiffer,
1999).

The scientific literature is replete with cross-comparisons
of in situ, surface-based, and satellite-derived cloud proper-
ties. However, there are few that consider the impacts of
cloud type on the distribution of statistical properties. The
precision of passive satellite-derived cloud quantities is not
only impacted by cloud type, but temperature (Susskind et
al., 2006) and water vapor variability (Fetzer et al., 2006),
trace gases (Kulawik et al., 2006), aerosols (Remer et al.,
2005), and surface quantities have varying degrees of preci-
sion within different cloud types. In this article, the accuracy
of AIRS cloud height and amount for different cloud type
configurations is quantified using CloudSat and CALIPSO.
In Sect. 2 the observations and data products of the three
observing platforms are introduced. Section 3 describes
the comparison methodology and presents illustrative cloud
climatologies of AIRS, CloudSat, and CALIOP. Similari-
ties and differences are placed in the context of measure-
ment sensitivity. Section 4 presents coincident CloudSat-
AIRS cloud top differences spanning the breadth of cloud
types. CALIPSO-AIRS cloud top differences are shown
and compared to those between CloudSat-AIRS. Further-
more, strengths and weaknesses of AIRS cloud retrievals are
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revealed and probable causes of discrepancies are discussed.
In Sect. 5 the results are discussed and summarized.

2 Data

The sensitivity of radar, lidar and passive IR sounders to
clouds differs greatly. Active sensors provide relatively di-
rect observations of cloud vertical structure compared to pas-
sive IR sounders, which derive cloud vertical structure using
combinations of radiative transfer modeling and a priori as-
sumptions about the surface and atmospheric state. AIRS
has sensitivity to clouds withτVIS≤10 (Huang et al., 2004).
CALIOP can be used to obtain very accurate cloud top
boundaries, especially when the cloud scatters visible light
well above that of the molecular atmosphere and aerosols,
but has an upper bound ofτVIS∼3 (Winker et al., 1998; You
et al., 2006). CloudSat penetrates through clouds well be-
yond the sensitivity limit of IR sounders, but is insensitive to
small hydrometeors and will often miss tenuous cloud con-
densate at the tops of some clouds or clouds composed only
of small liquid water droplets. In this comparison, a subset
of publicly released products is used: cloud top height (ZA)

and effective cloud fraction (fA) from AIRS, the radar-only
cloud confidence and cloud classification masks from Cloud-
Sat, and the 5 km cloud feature mask from CALIPSO.

2.1 AIRS

AIRS is a thermal IR grating spectrometer operating in tan-
dem with the Advanced Microwave Sounding Unit (AMSU)
(Aumann et al., 2003). A substantial portion of Earth’s ther-
mal emission spectrum is observed with 2378 spectral chan-
nels from 3.7–15.4µm at a nominal spectral resolution of
υ/1υ≈1200. The AIRS footprint size is 13.5 km at nadir,
whereas AMSU is approximately 40 km at nadir and co-
aligned to a 3×3 array of AIRS FOVs. The AIRS/AMSU
suite scans±48.95◦ off nadir recording over 2.9 million
AIRS spectra and 300 000 Level 2 (L2) retrievals for daily,
near-global coverage. The Version 5 (V5) AIRS L2 oper-
ational retrieval system (and all previous versions) is based
on the cloud-clearing approach of Chahine (1974). Unless
otherwise noted the AIRS retrievals used are V5. Profiles of
T (z), q(z), O3(z), additional minor gases such as CH4, CO,
CO2 and SO2, and other atmospheric and surface properties
are derived from the cloud-cleared radiances (Chahine et al.,
2006).

Up to two cloud layers are inferred from fitting observed
AIRS radiances to calculated ones (Kahn et al., 2007a).
Cloud top pressure (PA) and cloud top temperature (TA) are
reported at the AMSU resolution (∼40 km at nadir), whereas
fA – the multiplication of spatial cloud fraction and cloud
emissivity – is reported at the AIRS resolution. (Henceforth,
“AIRS FOV” refers to the spatial scale of geophysical param-
eters reported at the AMSU FOV resolution unless otherwise

noted.) ZA is derived fromPA and geopotential height us-
ing a log-linear interpolation ofPA in between adjacent stan-
dard geopotential levels. An illustrative (and partial) AIRS
granule (defined to be 135 scan lines or 6 min of data) is pre-
sented in Fig. 1. Shown is the brightness temperature (BT)
at 960 cm−1 (BT960), a BT difference between 1231 cm−1

and 960 cm−1 (BTD) that reveals a sensitivity to cloud phase
(Nasiri et al., 2007), andPA andfA for two cloud layers.
A wide variety of structure, including extensive multi-layer
clouds, is observed in thePA andfA fields. Figure 1b indi-
cates negative BTDs from 6–8◦ S that coincide with Altocu-
mulus (Ac) and Altostratus (As) and higher values ofPA and
fA, whereas scattered positive BTD are present to the north
and south within thinner Cirrus (Ci) layers having lower val-
ues ofPA andfA. The negative and positive BTDs coincide
with cloud types consistent with liquid water droplets (Ac
and As) and ice crystals (Ci), respectively (see Sect. 2.2).
For further detail about AIRS cloud retrievals, cloud valida-
tion efforts, and cross-comparisons with the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) and Microwave
Limb Sounder (MLS), please refer to Susskind et al. (2006),
Kahn et al. (2007a, b), Weisz et al. (2007), and references
therein.

2.2 CloudSat

CloudSat is a 94 GHz cloud profiling radar providing
vertically-resolved information on cloud location, cloud ice
and liquid water content (IWC/LWC), precipitation, cloud
classification, radiative fluxes and heating rates (Stephens et
al., 2002). The vertical resolution is 480 m with 240 m sam-
pling, and the horizontal resolution is approximately 1.4 km
(cross-track)×2.5 km (along-track) with sampling roughly
every 1 km. Surface reflection/clutter over most surfaces
greatly reduces radar sensitivity in the lowest 3–4 range bins
(roughly the lowest km) such that these data are marginally
useful in release 3 (R03) (Marchand et al., 2008). An ex-
ample cross-section of height-resolved reflectivity is shown
in Fig. 2a for the same granule introduced in Fig. 1. Cloud-
Sat reveals details in vertical cloud structure that IR sounders
are unable to either resolve or sample because the IR signal
is emitted by the upper 8–10 or so optical depths of a given
cloud profile (Huang et al., 2004).

Range bins with detectable hydrometeors are reported in
the 2B-GEOPROF product (Mace et al., 2007). A cloudy
range bin is associated with a confidence mask value that
ranges from 0–40. Values≥30 are confidently associated
with clouds although values as low as 6 suggest clouds ap-
proximately 50% of the time (Marchand et al., 2008). Fig-
ure 2b shows the cloud mask for confidence values≥20.
When compared to AIRS cloud fields (Figs. 1 and 2b),PA

agrees better with CloudSat whenfA is relatively large. In
more tenuous scenes (smallfA) CloudSat infrequently ob-
serves clouds. It is unclear if this is a result of clouds with
low radar reflectivities (due perhaps to small hydrometeor
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Fig. 1. An illustrative AIRS granule (number 53) from a descending orbit on 26 October 2006 (05:12:00–05:18:00 UTC).(a) AIRS BT at
960 cm−1. (b) AIRS BT difference (1231–960 cm−1) indicating cloud phase sensitivity.(c) AIRS upper cloud top pressure (PC) (hPa).(d)
AIRS effective cloud fraction (fA) associated with the upperPC . (e) As in (c) except for the lowerPC . (f) As in (d) except for the lower
layerfA. Lines with various colors indicate the CloudSat ground track that trails the AIRS observation by approximately 55 s.

size), or spurious AIRS cloud retrievals, or just simple mis-
matches in the sensor time and space sampling. This sub-
ject is discussed in Sects. 3 and 4. About 51% of all R03
CloudSat profiles confidently contain at least one range bin
with hydrometeors based on three months of data from the
Summer of 2006 (Mace et al., 2007). In Release 4 (R04),
a combined radar-lidar 2B-GEOPROF product will be pro-
duced (Marchand et al., 2008).

The detected clouds in 2B-GEOPROF are assigned cloud
types and are reported in the 2B-CLDCLASS product (Wang
and Sassen 2007). Clouds with a confidence mask≥20 are
classified into Ac, As, Cumulonimbus (Cb), Ci, Cumulus
(Cu), Nimbostratus (Ns), Stratocumulus (Sc), and Stratus
(St). The two-dimensional structure and maximum value
of cloud reflectivity as well as cloud temperature (based
on ECMWF profiles) are combined to identify cloud types.
Cloud type frequency and spatial statistics are presented in
Wang and Sassen (2007) for the initial 6 months of CloudSat
observations. In a future version a radar-lidar cloud classi-
fication mask will be released. The radar-only cloud clas-
sification scheme has some differences when compared to a
combined radar-lidar scheme. The cloud types As, Ns, Cb,
and Cu (congestus) are well detected and classified with a
radar-only algorithm. Ci is well classified but under-detected
because of the existence of small ice particles in thin Ci that a
lidar is able to detect. Ac, St, Sc, and fair weather Cu (in the
absence of virga or drizzle) are under-detected using a radar-
only algorithm and will be greatly improved with a combined
radar-lidar algorithm. The classification of these cloud types
is sufficient except that a combined radar-lidar approach is
needed to partition St from Sc clouds. The relative merits

between a radar-only and combined radar-lidar classification
algorithm will be summarized and published elsewhere. The
R03 cloud classification mask is shown in Fig. 2c. Compari-
son to Fig. 2b strongly suggests bias and variability statistics
of AIRS and CloudSat cloud top height differences depend
on cloud type. As discussed in the introduction most cloud
comparison studies present statistics averaged over multiple
cloud types. Thus, cloud type classification is able to pro-
vide more relevant and useful satellite-based cloud retrieval
comparisons.

2.3 CALIPSO

The CALIPSO payload consists of three nadir-viewing in-
struments: CALIOP, the imaging infrared radiometer (IIR),
and the wide field camera (WFC) (Winker et al., 2003). This
instrument synergy enables the retrieval of a wide range of
aerosol and cloud products including (but not limited to):
vertically resolved aerosol and cloud layers, extinction, op-
tical depth, aerosol and cloud type, cloud water phase, cir-
rus emissivity, and particle size and shape (Winker et al.,
2003; You et al., 2006). We use the Level 1B total attenu-
ated backscatter profiles to illustrate cloud vertical structure,
and the 5 km Level 2 cloud feature mask to quantify cloud al-
titude. The bit-based feature mask indicates the presence of
cloud and aerosol features (layers) and an associated top and
base for each feature detected; up to 10 features are reported
for cloud (8 for aerosol). Presently, the publicly released fea-
ture mask does not discriminate between cloud and aerosol
types although type discrimination is planned for a future re-
lease. Cloud identification is considerably accurate in Ver-
sion 1.10, although some thick aerosol can be misidentified
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Fig. 2. Vertical cross-sections of CloudSat, CALIPSO, and AIRS cloud fields for the AIRS granule introduced in Fig. 1.(a) CloudSat
94 GHz reflectivity from the 2B-GEOPROF product.(b) CloudSat cloud confidence mask from the 2B-GEOPROF product restricted to
cloud confidence≥20 (Mace et al., 2007). The 5 km CALIPSO cloud feature mask cloud top heights and bases are shown in black. The
centers of the red circles show the AIRS V5 (up to) two layerZA and associatedfA (smallest to largest circles arefA from 0→1). Likely
unphysical cloud layers withfA≤0.01 not included.(c) CloudSat cloud classification from the 2B-CLDCLASS files (Wang and Sassen,
2007). (d) CALIPSO 532 nm total attenuated backscatter (colorized) and 5 km cloud feature mask cloud top heights and bases shown in
white.

as cloud (see the data quality statement athttp://eosweb.larc.
nasa.gov/PRODOCS/calipso/tablecalipso.html). Relatively
weak backscatter for tenuous aerosol and cloud approaches
the limits of feature detection with CALIOP, thus varying
degrees of horizontal averaging is performed to reduce noise
and reveal tenuous features, reported at 333 m, 1, 5, 20, or
80 km depending on the feature. The vertical resolution is
30 m from the surface to 8.2 km; higher than 8.2 km it is 60 m
(Vaughan et al., 2005).

2.4 An illustrative cloudy snapshot

The CALIOP 532 nm total attenuated backscatter and 5 km
cloud feature mask is shown in Fig. 2d. Commonly observed
differences between lidar- and radar-derived cloudiness that
have been previously reported are seen in Fig. 2 (Comstock

et al., 2002; McGill et al., 2004). When CloudSat (the radar)
and CALIOP (the lidar) both detect clouds (6–15◦ S), the li-
dar observes higher cloud tops than the radar. This difference
is expected because lidar is more sensitive to small hydrom-
eteors than radar; small ice crystals and water droplets are
ubiquitous near cloud tops. The radar penetrates to the sur-
face through nearly all clouds except for those with signif-
icant precipitation (e.g. Cb) unlike most lidars, which gen-
erally saturate at optical depth values not much greater than
3 (Comstock et al., 2002). Similarly, the lidar detects ex-
tensive thin cirrus from 4–6◦ S and 15–25◦ S that the radar
misses. Figure 2b shows that AIRS-derived cloud tops follow
the radar more closely than the lidar when thick clouds oc-
cur below tenuous clouds (Baum and Wielicki, 1994; Weisz
et al., 2007). Effective cloud fraction (fA) tends to be much
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Table 1. List of days and AIRS granules used in the cross-
comparisons with CloudSat and CALIPSO. The days shown below
are part of the “focus day” list used for ongoing algorithm develop-
ment.

Year-Month-Day AIRS granule range

2006-07-22 3–234
2006-08-15 11–225
2006-09-08 3–234
2006-10-26 3–234
2006-11-19 11–225

higher in the presence of geometrically thick cloud (observed
by the radar), or large backscatter (observed by the lidar),
and vice-versa, implying qualitative agreement offA with
radar and lidar observations. AIRS detects much of the thin
Ci observed by the lidar only and generally places the up-
per layer (ZAU ) in the middle or lower portions of the Ci
layers (Holz et al., 2006). The radar occasionally misses
clouds belowfA<0.2–0.3 that the lidar easily observes. In
some two-layered cloud systems (e.g. Ci, Cu, and Ns from
14–17◦ S) AIRS retrieves realisticZA values for both lay-
ers. In more complicated multi-layer cloud structures (e.g.
Ac, As, Ns, and Ci detected by the lidar only from 6–10◦ S)
locating the two dominant cloud tops is problematic. Fur-
thermore, in areas of thick and/or precipitating cloud (e.g.
Cb from 11–14◦ S), AIRS “retrieves” a lower layer (ZAL)

within the cloud at a depth beyond the expected range of sen-
sitivity for IR sounders. In summary, the cloudy snapshot in
Fig. 2 illustrates CloudSat’s ability to profile thick and multi-
layered cloud structure, CALIPSO’s ability to accurately de-
termine cloud top boundaries and profile thin clouds, and re-
veals strengths and weaknesses of IR-based cloud top height
retrievals.

3 AIRS, CloudSat and CALIPSO cloud frequency

3.1 Methodology

In this section the comparison approach between AIRS,
CloudSat and CALIPSO is outlined for a five-day set of co-
incident observations (Table 1). The different horizontal res-
olutions suggest the results may be sensitive to the treatment
of spatial variability of CloudSat and CALIPSO within the
AIRS FOV. Results by Kahn et al. (2007a) (their Table 1)
demonstrate a variation in bias of 0.5–1.5 km and variability
of 0.3–0.7 km from using different spatial and temporal aver-
aging approaches betweenZA and surface-based lidar and
radar at the Atmospheric Radiation Measurement (ARM)
program Manus and Nauru Island sites. Different tempo-
ral averages of ARM data (used to replicate the AIRS spa-
tial scale) show similar (smaller) sensitivity for thin (thick)

 (a)   31.3%  (b)   40.8%  (c)  10.9% 

 (d)   2.1%  (e)   9.0%  (f)   6.0% 

(61.0%) (24.8%) (8.8%)

(1.6%) (1.7%) (2.1%)

Fig. 3. Six general scenarios describe collocated AIRS and Cloud-
Sat/CALIPSO observations. Large gray (white) circles indicate
cloudy (clear) AIRS FOVs. Small dark gray (white) circles indicate
either cloudy (clear) CloudSat or CALIPSO profiles. The number
and relative placement of small circles do not represent the actual
number and locations of CloudSat and CALIPSO profiles within a
given AIRS FOV, which vary substantially between FOVs. Cloud-
Sat or CALIPSO profiles with rows of partly cloudy demonstrate
heterogeneous cloud/clear scenes within an AIRS FOV. The rela-
tive frequency of occurrence (in percent) for each scenario is shown
separately for CloudSat and CALIPSO (in parentheses) for the five
days listed in Table 1. The large red circles are candidates for
“false” (Scenario C) or “failed” (Scenarios D and E) cloud detec-
tions (AIRS relative to CloudSat or CALIPSO).

clouds when compared to the sensitivity from different spa-
tial averaging approaches (Kahn et al., 2007a).

Clear sky and cloud frequency statistics for the three in-
strument platforms are shown in Table 2. Most notable is
the large difference in cloud frequency between CloudSat
and CALIPSO. Although the CloudSat and CALIPSO data
products have 1 and 5 km ground resolution, respectively,
the majority of the difference is due to the relative sensitiv-
ity of each instrument to hydrometeors that was discussed in
Sect. 2. CloudSat reports the smallest frequency of clouds
whereas AIRS demonstrates the greatest. That AIRS detects
more clouds than CALIPSO is an indication of (1) some false
cloud detections by AIRS, (2) missed clouds by CALIPSO,
or (3) increases in FOV size lead to increases in perceived
cloud frequency within some spatially heterogeneous cloud
fields. Furthermore, a sensitivity of a few percent in AIRS
frequency depends on the inclusion of the smallest values of
fA. CALIPSO cloud frequency statistics may depend on the
resolution of the feature mask (333 m, 1 km, and 5 km) but
are not explored here.
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Fig. 4. Zonal average AIRS cloud frequency andfA for the five days listed in Table 1. Latitude bins are 5◦ in width and height bins are
0.5 km in depth. Cloud frequency PDFs are determined by counting the frequency of AIRS FOVs withfA≥0.005, whereasfA is the average
value (including clear sky) that is reported in the AIRS L2 Standard product.(a) AIRS upper layer frequency.(b) AIRS upper layerfA. (c)
and(d) as in (a) and (b) except for the AIRS lower layer.

To address the relative frequency of false and positive
cloud detections, six general scenarios of coincidence are de-
fined in Fig. 3. The frequency of occurrence for each sce-
nario is shown, which account for heterogeneous and homo-
geneous cloud fields within an AIRS FOV at any altitude in
the vertical column. “False” (Scenario C) or “failed” (Sce-
narios D and E) cloud detections occur approximately 22.0%
(12.1%) of the time for CloudSat (CALIPSO) comparisons.
Some cases are explained by the insensitivity of CloudSat to
thin Ci (Scenario C) and the inability of AIRS to detect some
low clouds such as Sc and Cu (Scenarios D and E), while
others are explained by partial cloud adjacent to the Cloud-
Sat/CALIPSO ground track within the AIRS FOV (Sce-
nario C; e.g. Kahn et al., 2005), co-registration/collocation
uncertainties (e.g. Kahn et al., 2007b), and other factors. For
the five days in Table 1, averages of 19.3 and 10.6 Cloud-
Sat profiles containing cloud (6.0 and 4.3 CALIPSO 5 km
profiles) are located within a typical AIRS FOV for Scenar-
ios (B) and (E), respectively. With regard to thin Ci, the
CALIPSO comparison in Scenario C demonstrates a signifi-
cant portion of either false AIRS detection (see Sect. 4.2) or
clouds located outside of the CALIPSO ground track. In sce-
narios D and E, many of these cases are thin Ci detected by
CALIPSO that are below the detection limit of AIRS. Further
analysis using (for instance) MODIS radiances is required to
quantify the relative contributions to false and failed AIRS
detection frequency.

Table 2. Percentage of clear and cloudy occurrences for Cloud-
Sat, CALIPSO, and AIRS. CloudSat cloud frequency is based on
whether one or more range bins have a cloud confidence mask≥20.
AIRS cloud frequency is based on whether either the upper or lower
layer containsfA≥0.01 orfA≥0.0. CALIPSO cloud frequency is
based on the 5 km feature mask and whether at least one feature is
detected in a given profile. These values do not represent the true
global climatology because of the small sample (5 days), and the
fact the days chosen are on the 16-day orbit repeat cycle, leading to
potential spatial sampling biases.

Instrument % Clear % Cloudy

CloudSat 48.1 51.9
CALIPSO 22.7 77.3
(5 km)
AIRS 19.6 80.4
(fA≥0.01)
AIRS 17.1 82.9
(fA>0.0)

For Scenarios D and E (instances when the radar senses
clouds and AIRS does not), the cloud types that dominate the
missed cloud detections are assessed. For Scenario D (E), the
percentage of missed St is 55% (70.1%) of all cloud types,
respectively. This is not a surprise given that St dominates
the overall frequency statistics (Wang and Sassen, 2007).
Furthermore, the AIRS channel list was modified for V5 in
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Table 3. Shown are the percentage of AIRS FOVs that contain at
least one CloudSat profile with these particular cloud types (mid-
dle column), and the percentage of homogenous FOVs for the same
cloud types (right column). A total of 52 320 AMSU FOVs and
2.37×106 CloudSat profiles (about 45 CloudSat profiles per AMSU
FOV) are used in this comparison for the 5-day period listed in Ta-
ble 1.

Cloud % All FOVs % All FOVs
Type Found Homogeneous

Clear 66.8 17.5
Ac 16.0 7.1
As 19.7 14.1
Cb 3.1 2.6
Ci 21.6 12.6
Cu 6.2 1.2
Ns 9.8 9.2
Sc 46.9 7.3

such a way to be less sensitive to low clouds, hence increas-
ing missed St detections over V4 that is to be discussed in
Sect. 4.3. For Scenario D (E), As explains 23.7% (22.7%)
missed cloud detections, while Ac composes 5.9% (3.6%)
of all cases. Approximately 14.5% (1.6%) of Ns clouds ex-
plain missed detections; the difference in percentages be-
tween Scenarios D and E are largely explained by the fre-
quency of homogeneous Ns clouds within the AIRS FOV
(see Table 3). Missed detections of Ns are consistent with
limitations of the AIRS algorithm in the presence of precip-
itating clouds (Kahn et al., 2007a). All other cloud types
explain about 1.5% or less of the missed cloud detections by
AIRS. For instance, it is very rare that CloudSat detects Ci
cloud when AIRS does not.

According to Scenarios B and E, the AIRS FOV is het-
erogeneous 49.8% of the time using coincident radar-derived
cloud profiles, but is reduced to 26.5% using lidar profiles.
The higher sensitivity of lidar in detecting small hydrom-
eteors suggests a lower frequency of clear sky/cloud het-
erogeneity on the scale of the AIRS FOV than implied by
the radar. Regardless of the instrument sensitivity, a sig-
nificant percentage of AIRS observations contain heteroge-
neous mixtures of clear and cloudy sky. The frequency of
each cloud type detected within an AIRS FOV and the per-
centage of homogeneous AIRS FOVs (where only one type
occurs) are shown in Table 3. For AIRS FOVs that contain
As, Cb, Ci and Ns a majority is homogeneous; in contrast
Ac, Cu, and Sc are substantially more heterogeneous. Cloud
profiles with vertically heterogeneous cloud types will be
explored upon release of the combined CloudSat/CALIPSO
cloud type mask and are not presented here.

3.2 A global five-day climatology

Figure 4 shows AIRS zonally averaged cloud frequency and
fA (defined in Sect. 2.1) from 70◦ S–70◦ N illustrating the
realism of AIRS cloud height (ZA), amount (fA), and fre-
quency. Cloud “frequency” is defined as the percentage of
AIRS FOVs with non-zerofA. In the case of Fig. 4, cloud
frequency is partitioned into vertical bins, which sum to the
values shown in Fig. 5. Although the biases ofZA rela-
tive to the radar are not appreciably different in the Polar
latitudes, the rate of “false” or “failed” cloud detections is
greatly increased (31%) compared to all latitudes (22%). The
reasons for poorer cloud retrievals in high latitudes are be-
ing explored and will be presented elsewhere. Figure 4a
and b (4c and d) illustrates cloud frequency andfA for
the upper (lower) layer, respectively. Familiar global- and
regional-scale cloud distributions are revealed. High cloudi-
ness is most frequent in the tropical upper troposphere and
mid-latitude storm tracks, whereas low cloud occurs within
the subtropics extending to the high latitudes. Furthermore,
minima in cloud frequency and amount are observed in the
subtropical middle and upper troposphere. These patterns
are qualitatively consistent with other climatologies (Rossow
and Schiffer, 1999; Wylie et al., 1999; Thomas et al., 2004).

Zonally averaged cloud frequency andfA are shown in
Fig. 5a and b, respectively. Two minimum values offA (0.0
and 0.01) used to define cloud in a frequency-based clima-
tology (Fig. 4) illustrate the sensitivity to potentially spuri-
ous cloud. Cloud frequency is 5–15% smaller (depending on
latitude) usingfAU<0.01 for the upper layer, however, the
corresponding change forfAL is only 1–2%. Zonally aver-
agedfA is lower with a global mean of∼0.4 for the sum
of both layers, consistent with observations from the High
Resolution Infrared Radiation Sounder (HIRS) (Wylie et al.,
1999). We note that fractional global cloud cover is sub-
stantially larger than 0.4, andfA includes the effect of cloud
emissivity. Since many clouds do not radiate as black bodies,
the average offA is expected to be less than the true cloud
fraction (or frequency).

Zonally averaged cloud climatologies for collocated
AIRS, CloudSat, and CALIPSO observations are illustrated
in Fig. 6. The cloud distribution in Fig. 6 is not representative
of any particular season or month (Table 1). CloudSat cloud
frequency for mask values≥40 is shown in Fig. 6a. The radar
penetrates through nearly all clouds and high frequencies are
present throughout the tropical column with the peak from
10–13 km. However, a climatology like that shown in Fig. 6a
is not directly comparable to one derived from AIRS. A cli-
matology of CloudSat-observed cloud tops using the high-
est cloudy range bin within a given vertical profile is pre-
sented in Fig. 6c. The cloud top climatology compares much
more favorably with AIRS (Fig. 6e) as expected in terms of
zonally-averaged spatial patterns and the magnitude of cloud
frequency since AIRS does not sample the full vertical struc-
ture of a given cloudy column. Likewise, CALIPSO cloud
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frequency derived from the 5 km feature mask is shown in
Fig. 6b, and the cloud top climatology is shown in Fig. 6d.
As with CloudSat, the CALIPSO cloud top climatology qual-
itatively agrees more favorably with AIRS, although height
and sampling biases are apparent from inspection of the fre-
quency patterns with respect to height and latitude, these will
be explored in more detail in Sect. 4.

There are several additional notable features between
AIRS and CloudSat/CALIPSO shown in Fig. 6. First, the
peak frequency in the tropical upper troposphere is zonally
offset between AIRS and CloudSat by∼5◦. At least two
explanations are possible: (1) the cloud types AIRS and
the radar are most sensitive to are not uniformly distributed
(i.e. Ci versus Cb) introducing a zonally-dependent sam-
pling bias, and (2) precipitating clouds occasionally produce
ZA retrievals too low in the troposphere with erroneously
low values offA (Kahn et al., 2007a). Second, AIRS re-
trieves tenuous clouds at higher altitudes than the radar in
the subtropical latitudes, suggestive of either sensitivity to
thin Ci with small ice particles and/or spurious AIRS re-
trievals. Third, the radar observes high frequencies of low
clouds 1–2 km in height in most latitude bands implying a
positive height bias for low clouds sensed by AIRS. Fourth,
a second layer within Ns from 2–3 km is frequently observed
and is inconsistent with IR sensitivity, to be discussed further
in Sect. 4.

Several of the radar-lidar differences that are pointed out
in Fig. 2 are also observed in Fig. 6. Cloud tops in the upper
troposphere observed by the lidar are higher than the radar
by 1–4 km depending on the latitude, and are more verti-
cally extensive than observed by AIRS and the radar. This
feature is more expansive from 15 S–15 N, whereas the peak
frequency is shifted 5 N (10 N) relative to AIRS in Fig. 6a–
b. However, a more appropriate cloud top boundary-based
cloud climatology in Fig. 6c–e shows that the tropical cloud
features compare much better. The broader zonal extent in
the lidar climatology is expected because of high sensitivity
to thin Ci. The northward shift is consistent with vertically
thick and tenuous Ci layers persisting along the edge of the
ITCZ allowing the lidar to detect higher cloud frequencies
at lower altitude bins. The lower frequency of lidar-detected
clouds from 5◦ S–5◦ N is a result of sampling biases. At this
latitude, clouds are more frequently opaque and precipitating
and the lidar observations are restricted to a narrow vertical
range resulting in fewer detected clouds. Furthermore, the li-
dar and radar (Fig. 6a and b) observe low clouds across most
latitudes, however, the radar observes more in the ITCZ and
less in the Northern Hemisphere (NH) subtropics than the
lidar. The low cloud frequency differences are likely a re-
sult from a combination of sampling biases (e.g. upper cloud
layers obscuring the lidar’s view of low cloud, the insensitiv-
ity of radar to smaller droplets, etc.), and CloudSat’s limita-
tions in the lowest 1.0–1.25 km in R03. Lastly, the frequency
minima within subtropical gyres in Fig. 6a extend more pole-
ward into the midlatitudes in Fig. 6b, consistent with the high

1.0

0.8

0.6

0.4

0.2

0.0
 f A

 
-60 -40 -20 0 20 40 60

 Latitude 

���  fAU 
 fAL 
 fAU + fAL

1.0

0.8

0.6

0.4

0.2

0.0

 C
lo

ud
 F

re
qu

en
cy

 

 Upper Layer Freq (fAU > 0.0)
 Upper Layer Freq (fAU  0.01)
 Lower Layer Freq (fAL > 0.0)
 Lower Layer Freq (fAL  0.01)���

Fig. 5. (a)Zonal average cloud frequency for both AIRS cloud lay-
ers (the total of all vertical bins in Fig. 4a and d) for all clouds
(fA>0) and screened for clouds most likely to be unphysical
(fA≥0.01). See the text for discussion on unphysical cloud re-
trievals. (b) As in (a) except for the two layers offA and their
sum. No screening offA is shown in (b).

opacity of clouds in the storm tracks.

4 Height differences partitioned by cloud type

While AIRS estimates up to two cloud layers, the verti-
cal structure cannot be profiled in the manner of a radar or
lidar, making comparisons less straightforward than some
other studies (Mace et al., 1998; Miller et al., 1999). In
this section, coincident cloud top height observations be-
tween AIRS, CloudSat, and CALIPSO are differenced to
quantify the precision ofZA as a function offA and cloud
type. The resolution of CloudSat and CALIPSO is not de-
graded to AIRS, instead each CloudSat and CALIPSO pro-
file is compared to the nearest AIRS retrieval. Random sam-
pling of one CloudSat profile per AIRS FOV demonstrates
that the bias and variability are within±0.1–0.3 km for the
approach taken in this section. Furthermore, we show that
biases and variability in cloud top differences among dif-
ferent cloud types are several factors larger than those in-
troduced from choosing a particular averaging methodology
(Kahn et al., 2007a). More importantly, we will show that
the differences among the different cloud types are several
factors larger than biases and variability introduced by the
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Fig. 6. Zonal-height cross-sectional averages of the 5 days listed in Table 1 for(a) CloudSat cloud frequency using cloud confidence mask
values≥40, (b) CALIPSO cloud frequency using feature base and height values from the 5 km cloud feature mask,(c) as in (a) except for
only the highest cloudy CloudSat range bin (cloud top),(d) as in (b) except for the highest detected cloud top sensed by CALIPSO (cloud
top), and(e) a combined AIRS upper and lowerfA (sum of Fig. 4b and d). All latitude and height bins are in 5◦ and 0.5 km increments,
respectively.

choice of sampling strategy. Approximately 45–50 CloudSat
profiles (9–10 CALIPSO) coincide with the AIRS FOV. A
“nearest neighbor” collocation approach is applied using lat-
itude/longitude pairs. The gap between AIRS nadir view and
CloudSat and CALIPSO depends on latitude. As a result, an
AIRS FOV occasionally contains less than 45–50 CloudSat
and 9–10 CALIPSO match-ups since the index of the col-
located footprint is not constant with successive scan lines.
Fields offA are averaged to the resolution ofZA. Additional
challenges of collocating multiple satellite measurements are
addressed further in Kahn et al. (2007b).

4.1 CloudSat–AIRS

Globally averaged differences of AIRS upper (ZAU ) and
lower (ZAL) cloud layers with radar-derived cloud top height
(ZCS) are shown in Fig. 7. About 72.1% of AIRS FOVs are
comparable to CloudSat, following Scenarios A and B pre-
sented in Fig. 3; the remaining FOVs are clear or represent
false or failed detections, which encompass several possibil-
ities (see Sect. 3). TheZCS is the highest altitude range bin
with a confidence mask≥20; no other cloud layer detected
by the radar is used in the comparison, even in the presence
of additional layers. The cloud type associated with the high-
est range bin classifies the comparisons by cloud type. As
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Fig. 7. Joint probability density functions of CloudSat-AIRS cloud
top height differences (for the days listed in Table 1) as a function
of fA. (a) CloudSat-AIRS height differences (1Z) using the AIRS
upper cloud layer (ZAU ). (b) As in (a) except the AIRS lower cloud
layer (ZAL) is used. For a given vertical profile, the CloudSat cloud
top is defined as the highest altitude in which a cloud confidence
mask value≥20 (both (a) and (b) use the same value).ZAU and
ZAL are calculated from the cloud top pressure and geopotential
height fields in the AIRS L2 Standard files. The solid red line is the
mean value of1Z for eachfA bin and the dashed red lines are the
±1σ variability.

discussed in Sect. 3, a histogram approach like that taken
by Kahn et al. (2007a) to account for multiple radar-derived
cloud layers, changes the biases and variability by a smaller
amount than those found between different cloud types.

Figure 7a and b shows differences ofZCS–ZAU≡1ZU

andZCS–ZAL≡1ZL, respectively, as a function offA av-
eraged over all cloud types. The variability is greater (espe-
cially for 1ZU>0) if the confidence mask is relaxed to val-
ues less than 20 (not shown). Figure 7a shows that1ZU

is a strong (weak) function offAU<0.2 (fAU>0.2). The
mean bias (solid red line) is−1.0 to−4.0 km forfAU<0.2,
increasing to 0.5 km asfAU approaches 1.0. Likewise,
the variability (dashed red lines) ranges from±3.5 km for

Table 4. Summary of CloudSat–AIRS cloud top differences shown
in Figs. 7–10. Bias and variability (±1σ) are in km. “AIRS Layer”
indicates the layer that most accurately captures a particular cloud
type.

Cloud AIRS Bias ±1σ

Type Layer Variability

All Upper 4.0 to 0.2 1.2–3.6
All Lower 0.1 to 6.2 1.8–4.5
Ac Upper 4.0 to 0.2 0.7–3.0
As Upper 2.3 to 0.7 0.9–2.6
Cb Upper 1.4 to 1.6 0.9–4.0
Ci Upper 0.2 to 1.5 1.1–2.8
Cu Lower 0.3 to 1.5 0.3–2.2
Ns Upper 3.3 to 0.4 0.7–2.5
Sc Lower 1.3 to 0.3 0.4–1.7

fAU∼0.01 to±1.25 km forfAU∼1.0. There are two con-
tributing factors to the negative bias forfA<0.2: (1) the
radar is insensitive to thin and tenuous Ci layers that AIRS
detects above lower cloud layers that the radar detects, and
(2) some of the smallfAU retrievals are spurious. In Fig. 7b,
two broad clusters are suggested for1ZL. AsfAL increases,
1ZL decreases for the cluster with smallerfAL because the
lower layer becomes the dominant cloud layer. The clus-
ter with higherfAL is centered near1ZL∼0 km and is in-
dependent offAL. This second cluster suggests that AIRS
retrieves a quantitatively meaningful lower cloud layer. We
will show that the second cluster is associated with particular
cloud types.

The results in Fig. 7a are partitioned into individual cloud
types using the 2B-CLDCLASS product and are shown in
Fig. 8. Several differences of1ZU among the assorted cloud
types are observed. First, the negative bias for lowfAU in
Fig. 7a is primarily due to Sc (the count in Fig. 8h exceeds
Fig. 8b–g), with additional contributions from Ac, Cu, and
Ns. For these cases the radar detects low or middle clouds
while ZAU is located at a higher altitude. SomeZAU are
physically plausible (e.g. thin Ci residing over Sc or Cu in the
subtropics or tropics) and some are spurious (to be discussed
in Sect. 4.2). Second, the magnitude offAU for individual
cloud types is qualitatively consistent with expectations. For
instance, Cb is dominated byfAU>0.8 (low values occur for
partial coverage in the AIRS FOV), Ci is 0.05<fAU<0.4,
and Ns is in between Cb and Ci with 0.5<fAU<0.9. Few
cases of Ns withfAU>0.9 are observed because non-zero
fAL several km below the Ns cloud top is frequently retrieved
(fAL+fAU typically sum to 1.0); a similar tendency is also
observed within some Cb as well (see Fig. 2). Ac has a lower
range offAU compared to As, consistent with the classifica-
tion used in Rossow and Schiffer (1999) and the increased
heterogeneity of Ac (Table 3).
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Fig. 8. CloudSat-ZAU (for the days listed in Table 1) as a function of AIRSfAU . (a) Repeat of Fig. 7a.(b) Portion of PDF in (a) where the
cloud classification indicates Altocumulus (Ac) clouds at the CloudSat cloud top (as defined in the caption of Fig. 7); there is no partitioning
of CloudSat profiles that may contain one or more vertically-stacked cloud types.(c) Altostratus (As).(d) Cumulonimbus (Cb).(e) Cirrus
(Ci). (f) Cumulus (Cu). (g) Nimbostratus (Ns).(h) Stratocumulus (Sc). The relative frequencies of each cloud type are given by the
magnitudes of each PDF; further frequency statistics on cloud-type frequencies are given in Wang and Sassen (2007). The solid and dashed
red lines are the mean and±1σ variability, respectively, as in Fig. 7.

Third, both bias and variability strongly depend on cloud
type. Sc and Cu have negative1ZU , consistent with the high
height biases shown for low clouds in Fig. 6. Cb and Ci (and
As and Ns for higher values offAU ) have positive biases
of 1ZU . Holz et al. (2006) showed that Ci cloud top re-
trievals derived from IR measurements are frequently placed
1–2 km or more below the physical cloud top. Likewise,
Sherwood et al. (2004) showed that height differences de-
rived from geostationary imagery and coincident lidar are 1–
2 km even within highly opaque cloud tops. The variability in
bias decreases asfAU increases for all cloud types except Ci,
which remains somewhat constant withfAU . The variability
is smallest for As, Ci, and Ns (forfAU>0.5) and largest for
Cb (fAU<0.6), Cu (fAU<0.4), and Sc (fAU<0.4). Further-
more, As shows less variability than Ac. Therefore, more
heterogeneous clouds (see Table 3) tend to have larger vari-
ability in 1ZU .

Figure 9 shows the results for1ZL. The cluster at small
fAL is dominated by As, Cb, Ci, and Ns. WhetherZAL is a
physically reasonable second cloud layer, or a consequence
of retrieval algorithm limitations, it is expected that vertical
profiles of IWP derived from the radar will provide further
insight onZAL. In R03, CloudSat IWP retrievals in thick
and/or precipitating clouds are not reported which hinders
the exploration ofZAL within Cb and Ns; however, an im-
proved retrieval is anticipated for the R04 release (2B-CWC-
RO R03 data quality statement athttp://www.cloudsat.cira.
colostate.edu). Sc clouds dominate the cluster with highfAL

(see the high count in Fig. 9h) with contributions from Ac
and Cu.ZAL agrees best with the radar in low and middle al-
titude liquid water clouds. For Ns clouds, the bias inZAL is
lower asfAL increases, resulting in two cloud layers in close
vertical proximity whenfAL is large. Despite the complexity
in the interpretation of the observed two-layer cloud fields,
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Fig. 9. As in Fig. 8 except forZAL. The CloudSat cloud top and cloud type are the same as shown in Fig. 8.

AIRS is shown to possess skill in detecting and assigning an
altitude to low cloud layers.

Figure 10 shows mean bias and variability statistics for V4
and V5 AIRS retrievals, and the results for V5 are summa-
rized in Table 4. In Fig. 10a, the bias is substantially smaller
for fAU<0.1 andfAU>0.6 in V5. This demonstrates that
improvements to cloud retrievals were made for V5. The
larger negative bias forfAU<0.1 in V4 was primarily a re-
sult of poorer retrievals in Ac and Ci (not shown). The larger
positive bias in V4 forfAU>0.6 was a result of poorer re-
trievals in As and Ns, and to a lesser extent, Ci and Cu (not
shown). However, in the case of Sc, the V5 bias is larger
by 0.25–0.5 km depending on the magnitude offAU . Dif-
ferences in day-night and land-ocean biases and variability
were explored. Between day and night, as well as between
land and ocean, these differences are not qualitatively sig-
nificant and are several factors smaller than the differences
between V4 and V5 (not shown).

4.2 CALIPSO-AIRS

Given the known differences in lidar and radar sensitivity,
ZA and lidar-derived cloud top height (ZCAL) differences
(1ZCAL) have the potential to be significantly different than
demonstrated in Sect. 4.1 with the radar. However, Fig. 11
reveals qualitatively similar distributions compared to Fig. 7.
The sum of Fig. 11a and b (11c and d) is analogous to
Fig. 7a (7b). Clouds are partitioned into two categories with
ZCAL<7 km andZCAL≥7 km. About 85.8% of AIRS FOVs
are comparable to CALIPSO, following Scenarios A and B
presented in Fig. 3; as discussed in Sect. 3 the remaining
FOVs are clear or represent false or failed detections. In
Fig. 11a, the bias of1ZCAL is 1–3 km with high values for
smallfAU . The variability is relatively large for smallfAU

with most of the scatter skewed towardsZCAL>0. This reaf-
firms the sensitivity of lidar to tenuous clouds and the ten-
dency for IR-derived cloud tops to be located within the mid-
dle or lower portions of Ci layers (Holz et al., 2006).

Differences between Figs. 7a and 11 reveal the following
about the lidar-AIRS comparisons in Fig. 11b: (1) the nega-
tive bias for smallfAU is greater by 2 km, (2) the variability

www.atmos-chem-phys.net/8/1231/2008/ Atmos. Chem. Phys., 8, 1231–1248, 2008



1244 B. H. Kahn et al.: AIRS, CloudSat, and CALIPSO clouds

1.0

0.8

0.6

0.4

0.2

0.0

 f A
U
 

-12 -8 -4 0
 CloudSat – ZAU (km) 

���
�����
	
��

 V4 bias
 V4 ± 1σ
 V5 bias
 V5 ± 1σ

1.0

0.8

0.6

0.4

0.2

0.0

 f A
L 

12840-4
 CloudSat – ZAL (km) 

�
�

�����
	
��

Fig. 10. Bias (solid) and±1σ variability (dashed) of CloudSat-
AIRS ZA differences for V4 (black) and V5 (red).

is smaller by 0.5–1.0 km, and (3) the largest negative biases
are limited to a smaller range offAU . The radar’s insensi-
tivity to small hydrometeors is consistent with (3). Another
implication of (3) is thatZAU is “reasonable” (although bi-
ased in altitude) for many tenuous Ci. This is also suggested
by (2) since slightly lower variability is observed with the
lidar comparisons, which are more accurate observations of
“true” cloud top boundary than radar. Both (1) and (3) sug-
gest many spurious cloud retrievals in the upper troposphere
for fAU<0.02. However, the percentage of spurious re-
trievals is variable and generally decreases asfAU increases
and are not necessarily restricted tofA<0.02. The likeli-
hood is small that heterogeneous AIRS FOVs explain a sig-
nificant portion of the large negative bias forfAL<0.02 since
sub-pixel heterogeneity tends to increase variability, not nec-
essarily bias (Kahn et al., 2007b). In Fig. 11b, the bias in
1ZCAL ranges from−2 to −0.5 km asfAU increases from
0.2 to 1.0, whereas the variability is somewhat smaller than
1ZU in Fig. 7a. Overall,ZA shows positive height biases
for low clouds and negative height biases for high clouds rel-

Table 5. Summary of CALIPSO-AIRS cloud top differences shown
in Fig. 11. Bias and variability (±1σ) are in km.

CALIPSO AIRS Bias ±1σ

ZCLD Layer Variability

>7 km Upper 0.6 to 3.0 1.2–3.6
>7 km Lower 6.5 to 10.8 1.2–4.0
≤7 km Upper −5.8 to−0.2 0.5–2.7
≤7 km Lower −0.7 to 1.0 0.5–2.8

ative to the radar and lidar (although the negative bias for
high clouds is larger in the lidar comparisons and smaller for
low clouds).

Figure 11c and d reveals a tendency for two height clusters
as with Fig. 7b. In Fig. 11c (ZCAL≥7 km), ZAL is consis-
tently several km below cloud top, consistent within As, Cb,
Ci, and Ns shown in Fig. 9. In Fig. 11d (ZCAL<7 km),ZAL is
roughly equal toZCAL over the range offAL, which resem-
bles the second cluster in Fig. 7b. Since cloud classification
is not applied in the lidar comparisons, certain cloud types
cannot be shown to explain particular height biases. How-
ever, Fig. 11d is consistent with Cu and Sc shown in Fig. 9,
which implies (like the radar) thatZAL is skillful in retriev-
ing a lower layer. The ranges of bias and variability for V5
are summarized in Table 5. As with the CloudSat compar-
isons, a reduction in negative bias is seen in V5 for tenuous
clouds, and day/night and land/ocean differences in bias and
variability are much smaller than V4 and V5 differences (not
shown).

4.3 Changes in V5 AIRS retrievals and impacts on clouds

Some of the algorithm changes to V5 have the potential
to impact cloud retrievals, which include: limiting chan-
nel selection for cloud clearing and cloud retrieval to 665–
811 cm−1, treating CO2 as a global and time-dependent con-
stant, updating spectroscopic parameters like O3 and HNO3
that affect transmittance in the cloud clearing channels,
changing the approach to the downwelling IR radiance term,
reducing the number of cloud height retrieval iterations dur-
ing cloud clearing from 4 to 3, removing the ad hoc error
term that impacts the damping parameters for cloud height
retrievals (Susskind et al., 2003), and changing the basis of
the empirical bias adjustment. The empirical bias correction
in V4 used ECMWF analysis fields and in V5 the correction
was derived from radiosondes launched during AIRS over-
passes that coincided with intensive fields campaigns (Tobin
et al., 2006).

The adjustments in the channel list were motivated in large
part to eliminate window channels that have large contribu-
tions of radiance from the surface. Retrieval yield and pre-
cision over surfaces with large spectral emissivity features
were improved, but the sensitivity to low clouds was reduced,
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Fig. 11. CALIPSO-AIRS1Z. Cloud top height derived from CALIPSO is the highest cloud top found within the 5 km feature mask in a
given 5 km vertical profile.

including oceanic stratus. Thus, the sample size of AIRS and
CloudSat comparisons for Sc clouds was smaller from V4 to
V5. For instance, the frequency of occurrence of Sc within
the dominant subtropical subsidence regions has decreased
by as much as 10–20%. The comparisons presented here
only consider cases when AIRS and CloudSat/CALIPSO si-
multaneously observe cloud; it should be emphasized that
the V4/V5 differences in Fig. 10 do not include observations
when one of the instruments and/or data versions does not
sense clouds.

CO2 was assumed to be globally constant at 370 ppm in
V4. However, in V5 the treatment of CO2 was changed to
a globally constant linear trend that increases as a function
of time, but is without seasonal or latitudinal variation. In
the case of high clouds, sensitivity tests have shown that thin
cloud frequency is impacted for changes of 5–10 ppm, typ-
ical for regional and seasonal variability, while very little
change infA is observed (consistent with a 5 ppm change
equivalent to 0.4 K in BT). The appearance (disappearance)
of spurious (physically reasonable) Ci is observed when CO2
levels are assumed to be too low (high) in the forward model
(Hearty et al., 2006). In practice, many thin Ci are placed

near the tropopause in otherwise clear sky in retrieved cloud
fields. Erroneous values of CO2 are likely to have some im-
pact on the misplaced cloud height for very low values offA

seen in Fig. 11. Regarding middle and low clouds, signifi-
cant changes are observed infA, not only the frequency, in
the CO2 sensitivity tests (Hearty et al., 2006). This demon-
strates the need for a more realistic estimate of CO2 in the
forward model and suggests the potential utility of a simulta-
neous CO2 retrieval (Chahine et al., 2006) to more accurately
retrieve cloud amount and height.

Since the AIRS cloud retrieval steps are initialized with
two cloud layers (350 and 850 hPa withfA of 0.167 and
0.333, respectively), the cloud-clearing algorithm must itera-
tively “remove” cloud to produce cloud-cleared radiances for
downstream retrievals of atmospheric and surface quantities.
In a regularized algorithm like that discussed in Susskind
et al. (2003), residualfA may be present in clear scenes
because the effectiveness of cloud clearing is limited (in
part) by the magnitude of noise in the observed radiances.
Thus, small amounts of residual cloud may remain for some
clear FOVs. Lastly, global-scale trends of cloud frequency
in V5 are greatly reduced over V4 (T. Hearty, personal
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communication), although the lack of seasonal and latitu-
dinal variability in CO2 likely creates regionally dependent
biases in cloud frequency since cloud type and frequency
are not distributed uniformly around the globe (e.g. Rossow
and Schiffer, 1999; Wylie et al., 1999). Both CALIPSO and
CloudSat will continue to play important roles in ongoing
assessments of AIRS reprocessing efforts.

5 Conclusions

The precision of cloud height derived from the Atmospheric
Infrared Sounder (AIRS), located on EOS Aqua, is explored
and quantified for a five-day set of observations. Coincident
profiles of vertical cloud structure by CloudSat, a 94 GHz
profiling radar, and the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation (CALIPSO) determine the
precision of AIRS-derived clouds in a wide variety of geo-
physical conditions. By fitting simulated and observed spec-
tral radiances, the AIRS retrieval algorithm derives up to two
layers of cloud height (ZA) and effective cloud fraction (fA).
Comparisons are shown for both cloud layers and the entire
range offA. The cloud confidence and classification masks
reported by CloudSat determine cloud occurrence and height
and allow the comparisons to be partitioned by cloud type.
The 5 km cloud feature mask from CALIPSO is used for the
same five-day set of collocated observations.

The CloudSat-AIRS biases and variability strongly depend
on cloud type,ZA andfA. Using Version 5 (V5) AIRS re-
trievals, the cloud top biases range from−4.3 to 0.5 km±1.2
to 3.6 km, depending onfA and cloud type. Large negative
biases occur for the smallest values offA and small positive
biases for largefA. Likewise, the largest variability occurs
for the smallestfA and the smallest variability occurs for the
largest values offA. Therefore, AIRS cloud top height is
shown to excel for most cloud types with relatively high val-
ues offA. Given that the cloud classification scheme used
in this work is developed from radar observations, the sensi-
tivity of AIRS to particular cloud types is based strictly on
clouds observed by CloudSat. The upper cloud layer has
the highest sensitivity to Altocumulus, Altostratus, Cirrus,
Cumulonimbus, and Nimbostratus cloud types and the lower
layer to Cumulus and Stratocumulus. The bias and variability
for individual cloud types vary widely, but almost all cloud
types show reductions in biases and variability with increas-
ing fA. Furthermore, a tendency for high (low) clouds to be
biased low (high) in height is shown. Frequently, two layers
of ZA are retrieved within Nimbostratus, and to a lesser de-
gree, Cumulonimbus. The lower layer is not necessarily con-
sistent with a physically plausible lower cloud layer. Some
cloud types like thin Cirrus, Cumulus, and Stratocumulus are
very challenging to characterize with IR measurements. The
results presented herein suggest that AIRS has skill in detect-
ing and assigning cloud top heights to these difficult cloud
types. For instance, the bias and variability of Cirrus, Cu-

mulus, and Stratocumulus are 0.2 to 1.5±1.1–2.8 km,−0.3
to 1.5±0.3–2.2 km, and−1.3 to−0.3±0.4–1.7 km, respec-
tively. However, AIRS V5 detects a smaller percentage of Sc
fields in and around the major oceanic Stratus regions in the
subtropics compared to V4.

CALIPSO-AIRS differences qualitatively agree with those
from the CloudSat-AIRS comparisons. For CALIPSO cloud
tops≥7 km and<7 km, the biases and variability are 0.6–
3.0±1.2–3.6 km, and−5.8 to −0.2±0.5–2.7 km, respec-
tively, with the largest biases and variability for the smallest
values offA. The tendency for high clouds to have lowZA

biases is increased using CALIPSO (rather than CloudSat),
consistent with the lidar’s increased sensitivity over the radar
to small particles in tenuous cloud top boundaries. Likewise,
the highZA biases for low clouds are reduced in magni-
tude. This demonstrates that both CloudSat and AIRS are not
as sensitive to thin Ci and boundary layer clouds compared
to CALIPSO. The large negativeZA biases in the CloudSat
comparisons for low values offA are increased (decreased)
in the CALIPSO comparisons for clouds<7 km (>7 km)
in height. This demonstrates thatZA is more precise for
thin Cirrus than implied by the CloudSat comparisons alone.
However, there are instances when CALIPSO does not agree
with AIRS thin Ci retrievals, demonstrating the existence of
spuriousZA in the upper troposphere. Significant improve-
ments in the AIRS V5 operational retrieval algorithm are
demonstrated. Some of the algorithm changes made to V5
are highlighted, and those that could have impacted cloud
retrievals are discussed.

In summary, we have demonstrated the utility of Cloud-
Sat and CALIPSO to evaluate the precision of AIRS cloud
retrievals and identified particular cloud types for improve-
ment. Given the relatively favourable agreement between the
active- and passive-derived cloud heights, the AIRS swath
will be useful to supplement the near-nadir cloud climatol-
ogy from CloudSat and CALIPSO. Furthermore, since the
biases and variability of AIRS cloud height have been quan-
tified as a function of cloud type, they will help to determine
biases in cloud type-dependent microphysical and optical re-
trievals derived from AIRS radiances and similar IR imagers
and sounders because cloud vertical structure is required for
these retrievals. The inter-comparison of these (and other)
data sets is a necessary step towards a unified and global view
of cloud properties and their validated error estimates.
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