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Abstract. The monthly mean values of the atmospheric car-pogenic impacts on global climate deserve special attention
bon dioxide concentration derived from in-situ air samples(Berger and Dameris, 1993; Dameris et al., 2005, Reid et al.,
collected at Mauna Loa Observatory, Hawaii, USA during 1998).
1958-2004 (the longest continuous record available in the Recent years have been marked by an undoubtedly grow-
world) are analyzed by employing the detrended fluctuationing interest in the problem of complex studies of atmospheric
analysis to detect scaling behavior in this time series. TheCO, in connection with the necessity to obtain reliable esti-
main result is that the fluctuations of carbon dioxide con-mates of the C@ (both natural and anthropogenic) impact
centrations exhibit long-range power-law correlations (longon global climate. The global climate numerical simulation
memory) with lag times ranging from four months to eleven performed recently with consideration of not only anthro-
years, which correspond to 1/f noise. This result indicatespogenically induced growth of greenhouse gases concentra-
that random perturbations in the carbon dioxide concentrations, but also increasing content in the atmosphere of anthro-
tions give rise to noise, characterized by a frequency specpogenic sulphate aerosol revealed a much more complicated
trum following a power-law with exponent that approaches to pattern of climate formation than it was supposed before: the
one; the latter shows that the correlation times grow stronglyaerosol-induced climate cooling is mostly compensated from
This feature is pointing out that a correctly rescaled subset othe greenhouse warming (Kondratyev and Varotsos, 1995;
the original time series of the carbon dioxide concentrationsvarotsos, 2002a,b; Cartalis and Varotsos, 1994).
resembles the original time series. Finally, the power-law One of the main uncertainties and difficulties in assess-
relationship derived from the real measurements of the carment of the role of atmospheric GGn climate changes is
bon dioxide concentrations could also serve as a tool to imconnected with the absence of adequate information about its
prove the confidence of the atmospheric chemistry-transporiemporal variability values, and, in particular, whether,CO
and global climate models. observations remain residually correlated with one another
even after many years (long-range dependence).

In an attempt to resolve the aforesaid problems, a mod-
ern method of statistical physics is herewith applied to the
CO;, observations that are collected at Mauna Loa, Hawaii.

A very important aspect of the climate problem consists in 1h€ necessity to employ a modern method of Céata
recognition of anthropogenically induced changes caused bnalysis stems from the fact that most of the atmospheric

increased C@emissions to the atmosphere, taking, however quantities obey non-linear laws, which usually generate non-

into account the complexity of all interactive processes in_’stationarities. These non-stationarities often conceal the ex-
isting correlations into the examined time series and there-

cluding chemistry and dynamics of the atmosphere and hy ) o . :
drosphere (Jacovides et al., 1994; Crutzen et al., 1999: Konfore, instead of the application of the conventional Fourier

dratyev and Varotsos, 2001a, b; Varotsos et al., 2001: SchulsPectral analysis on the atmospheric time series, new ana-
etal., 2001; Asher et al., 2004; Aziz et al., 2005). In this con-ytical techniques capable to eliminate the non-stationarities

nection, highly uncertain quantitative estimates of anthro-" the data should be utilized (Lovejoy, 1982; Schertzer and
Lovejoy 1985; Tuck and Hovde, 1999; Hu et al., 2001; Chen

Correspondence toC. Varotsos et al., 2002; Tuck et al., 2003; Grytsai et al., 2005).
(covar@phys.uoa.gr) Nowadays, the wavelet technique (e.g., Koscielny-Bunde
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et al.,, 1998) and the detrended fluctuation analysis (DFA) More precisely, the detrended fluctuation functk) is
(Peng et al.,, 1994) are among the most often used toolsalculated as follows:
along these lines. Experience gained from recent studies

testifies to the fact that DFA has already proved its useful-_, 1 KR 2 N
ness in several complex systems (e.g., Stanley et al., 1999 (T):; kZ:H [y@®)—z(®)]1%,k=0,1,2, ..., ?—1 1)
I=KT

Zhu and Liu, 2003; Syroka and Toumi, 2001; Varotsos et al.,

2002, 2003a, b, 2006¢, d; Chen et al., 2005). Very recentlyyherez(r)=at+b is the linear least-square fit to the data

DFA has been applied to the time series of the surface airpgints contained into a segment.

pollutants (Varotsos et al., 2005), the aerosol index (Varotsos \wjithout dwelling upon details, for scaling dynamics, the

et al., 2006b), the total ozone content (Varotsos 2005a,b) angveragesz(r) over theN/z intervals with lengthe is ex-

the tropospheric temperature (Varotsos and Kirk-Davidoff, pected to obey a power-law, notably:

2006). More information about the DFA method is given be-

low (Sect. 2). <F2(r)> o 2 @
The present paper examines the time scaling of the fluctu-

ations of the atmospheric GQoncentrations by using the and the power spectrum function scales withfA/ with

longest record of observations in the world (1958-2004). =24 —1 (Kantelhardt et al., 2002)

The results obtained, would help to the enhancement of thé8 N '

fidelity of the available climate models. We briefly mention that the slope of the line on a log-

log plot relating the average fluctuation and the segment size
indicates the plausible presence of power-law scaling. A
slopex#£0.5 implies the existence of long-range correlations,
while «=0.5 corresponds to the classical random (white)
2 Methodology and data analysis noise. If O<a<0.5, power-law anticorrelations are present
(antipersistence). If 05x<1.0, long-range power-law cor-

. . relations prevail; the case=1 corresponds to the so-called
As has been mentioned above, the data employed in th?[/f noise. In addition, when4a <1.5, then long-range cor-

present study have been continuously collected at Mauna I‘O'F’lelations are again present (but are stronger than in the previ-
Observatory, Hawaii (182 N, 15535 W), since 1958.

ous case) (e.g., Talkner and Weber, 2000; Chen et al. 2005).
Four air samples are collected each hour and are analyzed |t js worth to recall that a time-series is said to display
by infrared spectroscopy for G@@oncentrations. Ithasto be |ong-range correlations when some properties of the time-
pointed out that Mauna Loa site is considered one of the moseries at different times are correlated and its correlation
favorable locations for measuring undisturbed air becausgunction decays much slower than exponential decay (e.g.
possible local influences of vegetation or human activities onpower-law decay). It would be of interest to mention that
atmospheric C@concentrations are minimal and any influ- \avelet-based estimators of self-similarity or long-range de-
ences from volcanic vents may be excluded from the recordSpendence Sca"ng exponent lead to |arger (Sma”er) mean
In addition, the methods and equipment used to obtain thesgquared errors for short (long) time-series comparing with

measurements have remained essentially unchanged duringFA that is not wavelet-based (Audit et al., 2002; Chen et
the 47-year monitoring program (Keeling and Whorf, 2005). 3., 2005; Varotsos et al., 2006c).

Due to the fact that in the first year (1958) of the available

time series 4 months of data were missing, this year was en-

tirely |gnored in our anaIyS|_s. In a(_jdmon, the (a_X|§t|ng very 3 Application of DFA to the CO> time-series

few gaps in the data were filled using polynomial interpola-

tion. The averaged monthly mean values of the;€@ncen- | order to analyze the time series (shown in Fig. 1) it is im-

trations are herewith analyzed by employing the DFA methOdportant to investigate whether the €@oncentration at dif-

(detailed information is given in Varotsos and Kirk-Davidoff, ferent times is actually correlated. The motivation for this

2006 and in references therein), which is briefly describediyyestigation stems from the observation that many environ-

below. mental quantities have values which remain residually cor-
In DFA, the nonstationary time seriggr) is first inte-  related with one another even after many years (long-range

grated and then it is divided into segments of equal lengthdependence).

At. In each segment, a least squares line (or polynomial Itis a truism that the standard tool to address this question

curve of ordetd, DFA-]) is then fitted, in order to detrend the is to derive the correlation function and the corresponding

integrated time series by subtracting the locally fitted trendpower spectrum (or frequency spectrum — spectral density)

in each segment. The root-mean-square fluctuatiynar) of the time series, which is simply the Fourier transform of

of this integrated and detrended time series is calculated ovethe autocorrelation function. Usually, the short-range corre-

all time scales (segment sizes). lations are described by the autocorrelation function, which
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Fig. 1. Time series of CQ concentration observed at Mauna Loa

Observatory, during 1958—2004. o6 08 1 1z 14 16 18 2 22

log(A t)

declines exponentially with a certain decav time. In o O_Fig. 2. Log-log plot of the DFA? versus temporal intervakt (in
P y y ) PP months) for detrended (by using the 10th order polynomial trend)

site, the long-range correlations imply that the autocorrela-, 4 yeseasonalized (by applying the Wiener filteringy@@ncen-

tion function declines as a power-law in time rather than eX-y-ations, during 1959-2004. Thevalues for DFA-1, DFA-2, DFA-
ponentially. However, the direct calculation of the autocorre-3, pra-4, DFA-5 are 1.104£0.02), 1.13 £0.02), 1.09 £0.02),
lation function is usually not appropriate due to noise super-1.06 ¢0.02), 1.06 £0.03), respectively.

imposed on the collected data and due to underlying trends

of unknown origin. Furthermore, in practice, we do not know

the appropriate scaling transformation factors, in advance, or Bgﬁ:g +

if one does exist. DFA3  * e
To quantify the fluctuations of the measured £fncen- 05 i 1

trations we analyze the data following the steps of DFA (de-

scribed in Sect. 2). However, as it is evident from Fig. 1, the 0 1

CO, time series is characterized by strong long-term trend &
and seasonality, which can both be removed (detrending and®
deseasonalization, respectively) by using various statistical
tools. For instance, the detrending may be simply achieved
by applying polynomial best fit (e.g., 10th order polynomial -1
trend) to the whole C®time series, while the deseasonali-

sation can be implemented by applying the classical Wiener ;5. ‘ ‘ ‘ ‘ ‘ ‘
method (e.qg., filtering out the seasonal — 3 months, terannual 66 08 1 12 14 16 18 2 22

— 4 months, semiannual — 6 months, annual — 12 months and log(an

southern oscillation — almost here 44 months). Another filter- ) )

ing tool to deseasonalise the data is to employ the moving avF'9- 3 L0g-log plot of the DFA# versus temporal intervaht (in
erage filtering (e.g., 13-month moving average, thus cuttin months) for detrended (treated as in Fig. 2) and deseasonalized (us-

LS . . Qng the deviations of the monthly mean values from their normal
out the periodicities with periods lower than 13 months). Al- values) CQ concentrations, during 1959-2004. The derived

ternatively, a commonly used method for deseasonalization ;s for DEA-1 DFA-2. DFA-3. DFA-4. DFA-5 are 1.120.02)

is to subtract the 46-year average of the,Gfionthly mean 1 o9 @0.02), 1.21 £0.02), 1.20 £0.02), 1.21 £0.03), respec-
values from those in each year (deviations from the normal) tively.

In the following, the results obtained from the application
of DFA to the detrended and deseasonalised @@e series
are presented and interpreted. as in the previous case. Then thevalues of DFA! have a
Assuming that the best deseasonalisation of the e mean 1.20 and standard deviation 0.03 (Fig. 3).
series (shown in Fig. 1) is effectively achieved by applying It should be stressed thatvalues obtained, at the afore-
the Wiener filtering (as described above) and its detrendingsaid two cases, are in close agreement, to those reported in
is accomplished by using the 10th order polynomial trend,the comment by Sarlis and Skordas (2006b). It is also worth-
then the resultinge-values of DFAZ have a mean 1.08 and while to mention that a second comment by Sarlis and Sko-
standard deviation 0.03 (Fig. 2). rdas (2006a) demonstrated that removing the seasonality by
Next, let us treat the deseasonalisation using the deviationthe conventional “deviations from the normal” method, then
from the normal values, while the detrending accomplishedx-values vary between 0.91-1.03. The latter verifiesothe

-0.5
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values obtained in Varotsos et al. (2006a), where the deseavolution. With this aim in view, the deseasonalized and de-
sonalization and detrending methods employed were a bitrended CQ concentrations were randomly shuffled. If the
different (described above). shuffled CQ values follow the random (white) noise, then
The main conclusion drawn from the above-mentionedthe persistence found above does not come from the data,
multiple analyses is that the value of DFA ranges between but from their time evolution (e.g., Varotsos et al., 2006a,
(0.91, 1.21), independently of the deseasonalisation and de3, d). Indeed the application of the DFA-1 to the shuffled
trending tool employed. Therefore, the fluctuations of the CO, data givesw=0.494+0.02, which reveals that the shuf-
CO, concentrations exhibit long-range persistence (almosfled deseasonalized and detrended,@@ta are practically
1/f — type). The strong persistence found signifies that theuncorrelated.
fluctuations in CQ concentration, from small time intervals  Therefore, the power-law relationship derived from the
to larger ones (up to 11 years) are positively correlated inreal measurements of the @@oncentrations eventually
a power-law fashion. In other words, persistence refers tastems from their time evolution (temporal correlations). The
the “long memory” or internal correlation within the GO Ilatter could also be used to test the scaling performance of the
concentration time-series. For example, there is a tendencglimate prediction models under different scenarios 0b,CO
an increase in the CQOconcentration to be followed by an- levels (Ebel, 2001; Govindan et al., 2002).
other increase in the CQCconcentration at a different time
in a power-law fashion. The latter conclusion suggests that
the correlations between the fluctuations inG@ncentra- 4 Conclusions
tion do not obey the classical Markov-type stochastic behav-
ior (exponential decrease with time), but display more slowly Long-range correlations of the fluctuations of £€ncen-
decaying correlations. trations measured at Mauna Loa, Hawaii during 1958-2004
One fact that attracts attention is that the persistence fountavere investigated by applying the DFA method. The main
above provides, in principle, a forecast for the O&ncen-  finding is that the fluctuations of the GQroncentrations
tration, which assumes that the value of the;@Oncentra-  exhibit strong long-range persistence (almost 1/f — type),
tion in the “following time interval” (up to 11 years) will be  which signifies that the fluctuations in G@oncentrations,
the same as in the corresponding “current time interval”. Infrom small time intervals to larger ones (up to 11 years) are
reality, it apparently has a different meaning from the con-positively correlated in a power-law fashion. This scaling
ventional forecast in climatology, which assumes that thecomes from the time evolution and not from the values of
value of CQ concentration in the “following” e.g., 11 years the CQ data. Therefore the long-range correlations in the
will be the same as the “overall climatological” GGoncen-  atmospheric C@that deduced from the present analysis can
tration mean. help in recognition of anthropogenically induced changes
It should be emphasized that the data analyzed above resaused by increased GOemissions to the atmosphere
fer to CQp time series of around>610? data points. It was on the background of natural atmosphere changes. More
preferred to use DFA and not, for example, wavelet based esspecifically, the scaling property detected in the real ob-
timators of self-similarity because recent studies, e.g., Auditservations of C@ concentrations could be used to test the
et al. (2002), demonstrate that the wavelet transform moduscaling performance of the leading global climate models
lus maxima (WTMM) estimator leads to larger mean squaredunder different scenarios of GQevels and to improve the
errors when analyzing short time series of lengtk @@ta  performance of the atmospheric chemistry-transport models.
points. In other words, Audit et al. (2002) showed that for The latter is currently under investigation by employing
time series of the aforementioned length, the DFA exponentlaily CO, observations and the relevant results will appear
is the best estimator. elsewhere, soon.
In addition, an attempt has been made to compare the
DFA-results of Mauna Loa data against South Pole, Antarc-Edited by: W. E. Asher
tica (8959 S, 2448 W) CO, observation 1973-2004 time
series (showing much less seasonal dependence). This
time series is available atttp:/cdiac.esd.ornl.gov/trends/ References
co2/sio-spl.htm The DFA-1 applied to the detrended (with
9th order polynomial fitting) and deaseasonalized (using de
;lza;loznzs f/:/?l?clftlhricggg?fll)act:?;gggritliggfrazgfgfr\r/glg;i{:lotns transfer velocities of _heat and gases, J. Geophys. Res.-Oceans,
o . . 109(C8), C08S12, doi:10.1029/2003JC001862, 2004.
are again present (as in the case of Mauna Loa rnent'oneg\udit, B., Bacry, E., Muzy, J. F., and Arneodo, A.: Wavelets based

above). . . ' estimators of scaling behaviour IEEE, Trans. Information Theory
Finally, we investigate whether the strong persistence 48 11, 2938-2954, 2002.

found in CG concentration time series stems from the valuesAziz, M. A., Reising, S. C., Asher, W. E., Rose, L. A., Gaiser, P.
of CO, concentrations themselves and not from their time W., and Horgan, K. A.: Effects of air-sea interaction parameters

Asher, W. E., Jessup, A. T., and Atmane, M. A.: Oceanic applica-
tion of the active controlled flux technique for measuring air-sea
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