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Abstract. In this paper we present an approach for the sta-
tistical analysis of multi-model ensemble results. The mod-
els considered here are operational long-range transport and
dispersion models, also used for the real-time simulation of
pollutant dispersion or the accidental release of radioactive
nuclides.

We first introduce the theoretical basis (with its roots sink-
ing into the Bayes theorem) and then apply this approach to
the analysis of model results obtained during the ETEX-1
exercise. We recover some interesting results, supporting the
heuristic approach called “median model”, originally intro-
duced in Galmarini et al. (2004a, b).

This approach also provides a way to systematically re-
duce (and quantify) model uncertainties, thus supporting the
decision-making process and/or regulatory-purpose activities
in a very effective manner.

1 Introduction

Standard meteorological/air quality practice, such as the pre-
diction of the future state of the atmosphere, typically pro-
ceeds conditionally on one assumed model. The model is the
result of the work of many area-expert scientists, e.g. meteo-
rologists, computational scientists, statisticians, and others.

Nowadays, several models are available for the forecast of
variables of meteorological and/or air quality interest, but,
even when using the same ancillary (e.g. initial and bound-
ary) data, they could give different answers to the scientific
question at hand. This is a source of uncertainty in drawing
conclusions, and the typical approach, that is of condition-
ing on a single model deemed to be “the best”, ignores this
source of uncertainty and underestimates the possible effects
of a false forecast.
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Ensemble prediction aims at reducing this uncertainty by
means of techniques designed to strategically sample the
forecast pdf, e.g. the breeding of growing modes (Toth and
Kalnay, 1993) or singular vectors (Molteni et al., 1996) in the
weather forecasting field.

Recently, a number of works in air quality modeling (Delle
Monache and Stull, 2003; Pagowski et al., 2005, 2006a;
Pagowski and Grell, 2006b; Mallet and Sportisse, 2006;
Delle Monache et al., 2006a, b, c; Zhang et al., 2007) suc-
cessfully applied different techniques to demonstrate the ad-
vantage of deterministic ensemble forecasts compared with
forecasts provided by individual models.

The advantages of ensemble prediction are twofold:

– ensemble estimates average out non-predictable compo-
nents, and,

– provide reliable information on uncertainties of pre-
dicted parameters from the diversity amongst ensemble
members.

Recently, the multi-model ensemble prediction system
(Krishnamurti et al., 1999) has been introduced. Instead of
conditioning on a single (ensemble) modeling system, the re-
sults from different climate forecasting models are combined
together. The so-called “superensemble” system demon-
strated to be far superior, in terms of forecasts, to any en-
semble mean.

The multimodel approach has been successfully applied
also to atmospheric dispersion predictions (Galmarini et al.,
2001, 2004a, b) where the uncertainty of weather forecast
sums and mixes with that stemming from the description of
the dispersion process. The methodology relies on the anal-
ysis of the forecasts of several models used operationally by
national meteorological services and environmental protec-
tion agencies worldwide to forecast the evolution of acciden-
tal releases of harmful materials. The objectives are clear:
after the release of hazardous material into the atmosphere, it
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is extremely important to support the decision-making pro-
cess with any relevant information and to provide a com-
prehensive analysis of the uncertainties and the confidence
that can be put into the the dispersion forecast. Galmarini et
al. (2004a) showed how the intrinsic differences among the
models can become a useful asset to be exploited for the sake
of a more educated support to decision making by means
of the definition of ad-hoc parameters and treatments of the
model predictions. Among them the definition of the the so-
called Median Model defined as a new set of model results
constructed from the distribution of the model predictions.
The Median Model was shown to be able of outperforming
the results of any single deterministic model in reproducing
the cloud measured during the ETEX experiment (Girardi et
al., 1998).

At the end of their paper Galmarini et al. (2004b) mention:
“At present we are not in the position of providing a rigorous
explanation on why the median model should perform bet-
ter than the single models.”. . .“Furthermore the conclusions
presented in this paper should be generalized and placed in a
more rigorous theoretical framework”.

This work moves its steps from the above mentioned sen-
tences. In particular we will focus on the second statement as
the first seems to fish deep in the conundrums of theoretical
statistics. More explicitly the questions tackled here are:

1. is it possible to place the multimodel ensemble approach
within a sound theoretical framework?

2. how to quantify the discrepancies between each ensem-
ble member and observations?

3. And between ensemble-based predictions and observa-
tions?

4. In the case of ensemble-based simulations, predictions
are obtained by merging results from each member. It
is reasonable to suppose that ensemble member predic-
tions are correlated. Even in the case of multimodel
simulations, it is expected that results from different
models are correlated, since they often share similar an-
cillary data, e.g. input data, physics parameterizations,
numerical approaches, and so on. In the case of “cor-
related models”, we expect that data are “clustered”,
thus biasing the ensemble-based results and producing
too much optimistic confidence intervals. How to work
around these problems?

5. Can some of the parameters described in Galmarini et
al. (2004a) be presented in a coherent theoretical frame-
work?

In this work we used a well-known statistical approach
to multimodel data analysis, i.e. Bayesian Model Averaging
(BMA), which is a standard method for combining predictive
distributions from different sources. The BMA predictive
probability density function (pdf) of any quantity of interest

is a weighted average of pdfs centered on the individual bias-
corrected forecasts, where the weights are equal to posterior
probabilities of the models generating the forecasts.

More specifically the objectives of this work consist in the:

– evaluation of the BMA weights, in order to sort the pre-
dictive skill of models;

– quantification of the systematic bias of each model;

– estimation of some useful statistical indexes introduced
in Galmarini et al. (2004a; 2004b),

– exploration of similarities and differences between our
approach and the “median model”,

– quantification of the correlations between models, as a
measure of interdependency.

First, we introduce the theoretical context (the Bayesian
framework), under which ensemble modeling, and much
other, can be placed. In Sect.3 the BMA approach is
described; this approach provides the way to interpret the
weights used to combine the ensemble members results.
Next (Sect.4), we introduce the notion of independence and
advance some suggestions about how to take into account the
relations among models. In Sect.5 a Bayesian hierarchical
model, implementing the procedure to calculate the weights
and the bias of each model, is derived and applied to the test
case of the ETEX-1 experiment. The results are analyzed
and discussed, bringing the “median model” heuristically in-
troduced by Galmarini et al. (2004a, 2b) into a theoretical
framework.

2 Bayes theorem and ensemble prediction

The Bayes theorem plays a fundamental role in the fields of
ensemble modeling, data assimilation, sensitivity and uncer-
tainty analysis. The Bayesian view has been acknowledged
to be the most natural approach for combining various infor-
mation sources while managing their associated uncertainties
in a statistically consistent manner (Berliner, 2003).

The optimal combination of ensemble members has its
roots in the Bayes theorem. Essentially, the Bayes theorem
may be expressed as

p(final analysis|ens data) ∝ p(ens data|final analysis)

×p(final analysis).

The power of the Bayes theorem relies on the fact that it
relates the quantity of interest, the probability that the ‘fi-
nal analysis’ is true given the data from the ensemble, to the
probability that we would have observed the data if the final
analysis were true, that is to the likelihood function. The last
term on the right side,p(final analysis), the prior probabil-
ity, represents our state of knowledge (or ignorance) about
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the “true state” (the final analysis) before data have been an-
alyzed;p(ens data|final analysis) is the likelihood function;
the product of the two yields the posterior probability func-
tion, that is our state of knowledge about the truth in the light
of the data. In a sense, the Bayes theorem can be seen as
a learning process, updating the prior information using the
data from the ensemble predictions.

For sake of clarity, it is useful to briefly review the key
equations in an ensemble prediction system. The practical
implementation of Bayes theorem requires the specification
of a suitable probability model for each ensemble member.
For example, consider two ensemble members. If eachp×1
ensemble member state,x{1,2}, is (multivariate) normally dis-
tributed{

x1 = x + ε1
x2 = x + ε2

(1)

where thep×1 vectorx is the “true” (final analysis) state and
ε1 andε2 are (multivariate) normally distributed errors with
mean zero and covariances61 and62, respectively, then the
Bayesian posterior solution equals to

x|x1, x2 ∼ N (xa, 6)

with the final analysisxa , and corresponding error covariance
6, given by{

6−1xa = 6−1
1 x1 + 6−1

2 x2

6−1
= 6−1

1 + 6−1
2 .

(2)

The notation “∼ N (µ, R)” means distributed as a multivari-
ate normal distribution with meanµ and covarianceR.

Therefore, the data from the two ensemble members,x1
and x2, can be merged into an optimal estimate, the final
analysis,xa , provided that the linearity and gaussianity as-
sumptions in (1) are a realistic representation of the process
and one can estimate the matrices61 and62. Moreover, the
combination of the two members is optimal in the log score
sense, i.e.

−E
[
logp (xa)

]
≤ −E

[
logp

(
x{1,2}

)]
since the precision (i.e. the inverse of the covariance matrix)
of the final analysis is the sum of the precision of each mem-
ber. In other words, the optimal combination makes the pos-
terior distribution sharper and the MAP (maximum a poste-
riori) estimate less uncertain.

We can put a step forward this analysis, by using the
Bayes theorem to combine the results of a multimodel en-
semble prediction system into a skillful and well-calibrated
final analysis. Krishnamurti et al. (2000) has defined this en-
tity a “superensemble approach”.

3 The BMA approach

Consider the following scenario: instead of relying on
one assumed model, a researcher gathered data concern-

ing the state of the atmosphere from different meteoro-
logical centers. The advantages of comparing different
models are evident: each model is an imperfect represen-
tation of the real world and contains several approxima-
tions/parameterizations/lack of physics representations, etc..
Inferences obtained from a single model is risky, since they
do not take into account for the model uncertainties. On
the other hand, the comparison among several models may
highlight the models’ deficiencies, since it is highly unlikely
that each physical phenomenon is equally represented by all
models. The drawbacks of ignoring model uncertainties have
been recognized by many authors a long time ago (e.g., see
the collection of papers in Dijkstra, 1988), but little attention
has been devoted until now.

The problem is how to combine the results from differ-
ent models in a skillful summary. In the statistical litera-
ture the problem of comparing/combining results from dif-
ferent models is a long-standing approach. In his seminal
book, Theory of Probability, Jeffreys (1961) developed a
methodology for quantifying the evidence in favor of a given
model/hypothesis. He introduced the Bayes factor which is
the posterior odds of two hypotheses when their prior proba-
bilities are equal.

In order to introduce the Bayes factor, assume that
datax have arisen from two competing hypotheses/models,
M1 and M2, according to a likelihood functionp(x|M1)

and p(x|M2). Given a priori probabilitiesp(M1) and
p(M2)=1−p(M1), the data produce a posteriori probabili-
ties p(M1|x) andp(M2|x)=1−p(M1|x). From the Bayes
theorem, we obtain

p(Mk|x) =
p(x|Mk)p(Mk)

p(x|M1)p(M1) + p(x|M2)p(M2)
for k =1, 2 ,

(3)

so that,

p(M1|x)

p(M2|x)
=

p(x|M1)

p(x|M2)

p(M1)

p(M2)
,

and the transformation from prior to posterior odds is simply
the multiplication by the Bayes factor

B12 =
p(x|M1)

p(x|M2)
.

In other words,

posterior odds= Bayes factor× prior odds.

If the two models are equally probable a priori, the Bayes
factor immediately provides the evidence for the first model
with respect to the second one, by transforming the prior
opinion through considerations on the data.

In the case of multiple competing models, Eq. (3) can be
easily generalized to

p(Mk|x) =
p(x|Mk)p(Mk)∑K

k=1 p(x|Mk)p(Mk)
for k=1, 2, . . . , K , (4)
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and, as usual in any Bayesian analysis, the posterior infer-
ence of a quantity of interest, sayθ , e.g. a future observation
or a model parameter, can be obtained from its ppd (posterior
predictive distribution), i.e.

p(θ |x) =

K∑
k=1

p(θ |Mk, x)p(Mk|x) . (5)

In this case, the ppd is the average of the posterior distribu-
tion over all models, each weighted by their posterior proba-
bilities. The weights come from (4) and can be used to assess
the usefulness of ensemble members, i.e. as a basis for select-
ing the most skillful model ensemble members: high (close
to one) posterior model probability,p(Mk|x), provides the
quantitative basis to estimate the usefulness of modelk in
predicting the parameter of interest, thus playing the same
role as Bayes factors for multiple competing models.

Model (5) is known as BMA (Bayesian Model Average)
in the statistical literature. BMA works around the problem
of conditioning on a single model, taking into account for the
information from different models.

Recently, Raftery and Zheng (2003) reviewed the proper-
ties of BMA. There also several realistic simulation studies
on the performance of BMA in different contexts, e.g. in lin-
ear regression (Raftery et al., 1997), loglinear models (Clyde,
1999), logistic regression (Viallefont et al., 2001), wavelets
(Clyde and George, 2000) and medium-range weather fore-
casting models (Raftery et al., 2005).

3.1 The properties of BMA

In their paper, Raftery et al. (2005) developed an EM-based
(Expectation Maximization) algorithm to estimate the pa-
rameters in Eq. (5). They were interested in the calibration
of the University of Washington mesoscale short-range mul-
timodel ensemble system (Grimit and Mass, 2002). They
used normal distributions to model the uncertainty of each
ensemble member, but different distributions may be used,
as well. A plug-in implementing BMA is freely available for
the R statistical software.

Apart from implementation details, several analytical re-
sults can be derived. It can be shown that the posterior BMA
mean and variance are:

E [θ |x] =
∑K

k=1 θ̂kp (Mk|x)

Var[θ |x] =
∑K

k=1

{(
θ̂k −

∑K
i=1 θ̂ip(Mi |x)

)2
+

+Var[θk|Mk, x]

}
p (Mk|x) ,

(6)

where θ̂k=E [θ |Mk, x], i.e. the expected value ofθ condi-
tional on modelk alone, i.e. having assumedp (Mk|x) = 1.

As can be seen from Eq. (6), the expected value is the
weighted average over all models, and the variance is de-
composed into two terms: the first term takes into account

the between-models ensemble variance, i.e. the spread of
the ensemble prediction, while the second term the within-
models ensemble variance, i.e. the internal uncertainty of
each model. Verbally,

Predictive variance = between ens. variance

+withinens. variance

It can be presumed that within-ensemble variance does not
capture all the sources of uncertainty. In an ensemble ap-
proach, the estimation of confidence intervals, based only
on the ensemble spread, may be optimistic, because they do
not properly take into account the internal variability of the
model, so that the output of any predicted variable may be
not calibrated. By calibrated we mean simply that intervals
or events that we claim to have probabilityp happen a pro-
portionp of the time on average in the long run. For example,
a 90% prediction interval veryfing at a given time and place
is defined so that 90% of verification observations effectively
lay between the 90% upper and lower bounds. Uncalibrated
ensemble predictions tend to be under-dispersive, and this
behavior has often been observed (see Coelho et al., 2004, as
an example of an application of a model ensemble approach
to a climatological problem). Of course, BMA is well cali-
brated on the training dataset, but it has been shown that it
also gives satisfactory results for the predicted observations
(Raftery et al., 2005).

Another interesting result is the correlation of the model
ensemble error with the ensemble spread. Equation (6) pro-
vides a theoretical basis for this finding, since it relates the
predictive model ensemble variance to the between-model
ensemble variance. Whitaker and Loughe (1998) provide
several examples from real-world meteorological ensemble
data, showing the relationship between error and spread; see
also Raftery et al. (2005) for a more-in-depth discussion of
error-spread correlation in BMA modeling.

4 Independence and correlation

If different models are used to simulate the same phe-
nomenon, e.g. weather, climate or the dispersion of radioac-
tive material, they probably will give similar responses. Now,
suppose that all model results agree in giving a wrong predic-
tion; without any observational support, this situation can-
not be discerned. Potentially, model ensemble results may
lead to erroneous interpretations, and this is more probable
if models are strongly dependent (i.e. all biased toward the
wrong answer). We can say that a dependent model does
not convey “newly fresh information”, but it replicates the
(wrong/right) answer given by the previous models.

Technically, independence can be defined by the
joint/marginal probability densities. Let us denote by
p(y1, y2) the joint pdf of two random variables,y1 andy2;
denote byp1(y1) the marginal pdf ofy1, and similarly fory2.
Theny1 andy2 are independent if, and only if, the joint pdf
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is factorizable in the product of the corresponding marginal
pdfs, i.e.

p(y1, y2) = p1(y1)p2(y2) . (7)

The extension to any numberK of random variables can be
straightforwardly defined, in which case the joint density is
the product ofK terms.

This definition can be used to derive an important property
of independent random variables. Given two functions,f1
andf2, we have

E[f1(y1)f2(y2)] = E[f1(y1)]E[f2(y2)] . (8)

This can be easily proved by applying (7).

E[f1(y1)f2(y2)] (9)

=

∫ ∫
f1(y1)f2(y2)p(y1, y2)dy1dy2

=

∫
f1(y1)p(y1)dy1

∫
f2(y2)p(y2)dy2

= E[f1(y1)]E[f2(y2)] .

Equality in Eq. (7) means that the statistical properties of
any random variable cannot be predicted from the others; for
example, if a relationship such asy2=f (y1) holds, the joint
pdf is not factorizable becausep(y2| y1) 6= p(y2).

In the case of independent random variables the interpre-
tation of BMA weights is meaningful. For example, if we
have three independent models, then

E[π1y1 + π2y2 + π3y3]

= π1E[y1] + π2E[y2] + π3E[y3] . (10)

But, if we suppose that the third model is linearly related to
the others, i.e.y3=a31y1+a32y2, it is straightforward to show
that

E[π1y1 + π2y2 + π3y3]

= (π1 + a31π3)E[y1] + (π2 + a32π3)E[y2] . (11)

This example shows the difficulties in the interpretation of
BMA weights: if models are linearly dependent, they cannot
be strictly identified.

The concept of independence is central in information
theory, and several measures of independence has been de-
veloped, as for example mutual information or negentropy,
e.g. see Cover and Thomas (1991) or Papoulis (1991).

Usually variables are not independent, but it is possi-
ble to find a proper transformation, sayz1=g1(y1, y2) and
z2=g2(y1, y2), so that the transformed variables are inde-
pendent. Unfortunately, there is no general way to select the
proper transformation, nor the mutual information or negen-
tropy can be easily calculated, but, if the definition of inde-
pendence is relaxed, some general and interesting results can
be obtained.

A weaker form of independence is uncorrelatedness. Two
random variables are uncorrelated if their covariance is zero:

E[y1y2] = E[y1]E[y2] , (12)

which follows directly from (8), taking f1(y1)=y1 and
f2(y2)=y2. On the other hand, uncorrelatedness does not
imply independence. For example, as shown by Hyvarinen
and Oja (2000), assume that(y1, y2) are discrete-valued vari-
ables and follow such a distribution that the pairs are, with
probability 1/4, equal to any of the following values: (0,1),
(0,−1), (1,0), (−1,0). Theny1 andy2 are uncorrelated, as
can be simply calculated, but

E[y2
1y2

2] = 0 6=
1

4
= E[y2

1]E[y2
2] .

Because the condition in Eq. (8) is violated,y1 andy2 are not
independent.

In some special cases, uncorrelatedness implies indepen-
dence. This is the case for normally (or lognormally) dis-
tributed data. For example, denote by6 the covariance ma-
trix of K-dimensional normally distributed data, then

p(y) ∝ exp

{
−

1

2
(y − ȳ)T 6−1(y − ȳ)

}
. (13)

If the ys are uncorrelated,6−1 is a diagonal matrix. Then,
by the properties of the exponential function, Eq. (13) can
be written as the product ofK functions, each dependent on
only one component, i.e.:

exp

{
−

1

2
(y − ȳ)T 6−1(y − ȳ)

}
=

=

K∏
k=1

exp

{
−

1

2
(yk − ȳk)

T 6−1
k (yk − ȳk)

}
(14)

satisfying the definition of independence in Eq. (7). Even if
variables are correlated, they can be made uncorrelated if the
frame of reference is properly roto-translated. LetU3UT

=6

the eigendecomposition of the covariance matrix. The pro-
jection of the original variables onto the directions repre-
sented by the eigenvectors of6, i.e. (z − z̄)=UT (y − ȳ),
allows to obtain independently distributed variables, as can
be easily proved:

exp

{
−

1

2
(y − ȳ)T 6−1(y − ȳ)

}
(15)

= exp

{
−

1

2
(y − ȳ)T U3−1UT (y − ȳ)

}
= exp

{
−

1

2
(z − z̄)T 3−1(z − z̄)

}
.

See Fig. 1 for a fictitious example of bivariate, normally dis-
tributed, data.
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Fig. 1. An example of bivariate normally distributed data. On the left the data in the original frame

of reference; on the right the same data, projected onto the eigenvectors of the covariance matrix, so

that the two new directions are uncorrelated. The arrows indicate the axes of the ellipsoid.

29

Fig. 1. An example of bivariate normally distributed data. On the
left the data in the original frame of reference; on the right the same
data, projected onto the eigenvectors of the covariance matrix, so
that the two new directions are uncorrelated. The arrows indicate
the axes of the ellipsoid.

Other measures, such as mutual information or negen-
tropy, are much more difficult to calculate than correlations;
so the eigendecomposition of the covariance matrix may be
seen as a viable approximation to explore dependences be-
tween data or highlight the role of systematic deficiencies of
model results, as will be shown in Sect.6.

5 The estimation procedure

Now we have all the elements to proceed with the analysis
of the results of the multi-model ensemble that will consti-
tute our case study. The ensemble analysed in this work
is an extended version of that originally analysed by Gal-
marini et al. (2004b). To summarize we will be looking at 25
simulations of the ETEX-1 release (Girardi et al., 1998) per-
formed by independent groups world wide. Each simulation
and therefore each ensemble member is produced with differ-
ent atmospheric dispersion models and is based on weather
fields generated by (most of the time) different Global Circu-
lation Models (GCM). All the simulation relate to the same
release conditions. For details on the groups involved in
the exercise and the model characteristics refer to Galmarini
et al. (2004b). Nine additional sets are presently available
for this analysis. These include one set of results from the
Danish Meteorological office (DMI), one set from the Ko-
rean Atomic Energy Agency, three sets from the Finnish met
service (FMI), one set from UK-Metoffice, three sets from
Meteo-France. In this study we also took care to mask the
origin of the sets as we are not interested in ranking the model
results. However in order to allow for the inter-comparability
of the present results with those previously obtained by Gal-
marini et al. (2004b) we have kept the same coding for the
original 16 members (m1-m16) that were used therein and
added 9 additional codes (m17-m25) for the newly available
sets randomly associated to the new models listed above.

Using the Bayes’ theorem, model parameters can be esti-
mated from the posterior pdf. Hereafterzi denotes theith
observation andyik the corresponding predicted value from
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Fig. 2. Histogram of the differences between model results and corresponding observations for some

selected models. From left to right, and then from top to bottom: m20, m02, m19, m12, m04 and

m08. Logarithms were taken for both the model results and observations.
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Fig. 2. Histogram of the differences between model results and
corresponding observations for some selected models. From left
to right, and then from top to bottom: m20, m02, m19, m12, m04
and m08. Logarithms were taken for both the model results and
observations.

thekth model. The BMA posterior pdf reads

p(θ | π·, y··, z·) =

K∑
k=1

πkp(θk| y·k, z·) (16)

p(θk| y·k, z·) is the posterior pdf based on modelk alone, and
πk is the posterior probability (weight) of modelk being cor-
rect given the data, and reflects how well modelk fits the
data.θk is the vector of parameters charactering the posterior
pdf of modelk.

In BMA it is customary to choose the functionsp(·|·)

from the same family; in this work we selected log-normal
functions; so, prior to any analysis, we log-transformed
observations and model-predicted concentrations, originally
expressed as ng/m3. The motivation for this choice was
based on the consideration that “errors” appeared to be log-
normally distributed. In Fig. 2 the histogram of the dif-
ferences between (log-transformed) model results and ob-
servations is shown; as can be seen, some models behave
reasonably well, with data approximately log-normally dis-
tributed around the observations. Moreover, the choice
of log-normal distributions automatically avoids the prob-
lem of getting finite probabilities for negative concentration
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values. However, there are some models for which devia-
tions from log-normality are pronounced; for example, m08
is extremely diffusive, with a large fraction of results less
than observations (resulting in the negative skewness of the
empirical pdf). Also, note that all these distributions are not
exactly centered on zero, i.e. there is a model-dependent bias.
This is particularly relevant for m04, whose results are sys-
tematically higher than observations.

In order to avoid that a large number of small values exert
a disproportionate influence on BMA results, we discarded
all observations with values less than 10−2 ng/m3, close to
the threshold (10−3 ng/m3) of the analytical technique; more-
over, model values equal to zero were substituted with very
small values (in order to avoid “-Inf” warnings due to the
application of logarithms).

Markov chain Monte Carlo (McMC) simulation (Gilks et
al., 1996) was used to explore the posterior pdf. The basic
procedure of Monte Carlo simulation is to draw a large set of

samples
{
θ

(l)
k

}L

l=1
, from the target distribution (the posterior

pdf in this work). One can then approximate the expectation
of any functionf (θ) by the sample mean as follows:

E(f ) =

∫
p(θ |· )f (θ)dθ ≈

1

L

L∑
l=1

f (θ (l)) , (17)

L is the number of samples from the target distribution.

In this work we exploited a Gibbs sampler (Geman and
Geman, 1984) to explore the posterior pdf. The Gibbs sam-
pler alternates two major phases: obtaining draws for param-
eters from the posterior pdf of each model, and obtaining
draws for the weights given the model parameters.

In the first phase, we drew a sequence of samples{
(b

(l)
k , σ

(l)
k )

}L

l=1
for each modelk.

The Gibbs sampler was implemented as follows:

for k = 1 : K

Initialize b
(1)
k andσ

(1)
k

for l = 2 : L

drawb
(l)
k from p(bk|σ

(l−1)
k , y·k, z·)

drawσ
(l)
k from p(σk|b

(l)
k , y·k, z·)

end

end

By its construction (Gilks et al., 1996), the Gibbs sampler
algorithm guarantees that the chain generates a sequence of

values
{
(b

(l)
k , σ

(l)
k )

}L

l=1
which arep(bk, σk| ·) identically dis-

tributed.

Having assumed log-normal distributions and spatio-
temporally independent data, the posterior pdf for modelk

is

p(bk, σk| y·k, z·) ∼

n∏
i=1

N (yik − zi, σk) p(bk)p(σk) . (18)

p(bk) andp(σk) are the prior probabilities for the bias and
its covariance.

We placed the customary flat prior on the bias and assumed
a fairly vague prior for the variance, i.e. we assumed that the
prior variance was inverse-gamma distributed with a mean
of 9 and variance of 36. In this case Gibbs sampling is easy
to apply because it can be demonstrated that the conditional
posterior distributions of the Gibbs sampler in the previous
algorithm have canonical forms, i.e. a normal distribution for
the bias and an inverse-gamma for the variance; for a def-
inition of these functions, and how to draw from them, see
Gelman et al. (2003).

In a preliminary test we run three chains in parallel; the
Gelman and Rubin test (Gelman and Rubin, 1992) suggested
that convergence is reached almost immediately (after a few
iterations). We then run a single long (5500 iterations) chain
and conservatively discarded the first 500 iterations, well be-
yond the “burn-in” period suggested by the Gelman and Ru-
bin test. The sample means were estimated from the remain-
ing iterations using Eq. (17), and errors were computed by
batching, to account for the correlation in the Markov chain
(Roberts, 1996). Table1 shows the posterior values for the
bias and standard deviations, along with their errors (i.e. stan-
dard deviations calculated from the McMC sequence).

In the second phase, we sampled the posterior distribution
to get a sequence of model weights. If we look at Eq. (16) as
the mixture ofK competing models, the estimation process
can be simplified with the introduction of the binary random
variables,ζik, with

ζik =

1 if thekth model is the ‘best’ model in predicting
theith observation

0 otherwise.

If θ
(l)
k indicates a shorthand notation for(b(l)

k , σ
(l)
k ), and

ζi = (ζi1, . . . , ζiK), then the selection of the ‘best’ model in
explaining theith observation can be viewed as the outcome
of a multinomial random process (Gelman et al., 2003), i.e.

p(ζi) = Multin(ζi | pi1, . . . , piK)

=

(
1

ζi1ζi2 · · · ζiK

)
p

ζi1
i1 · · · p

ζiK

iK . (19)

The factorspiks in Eq. (19), are the posterior pdf values of
each model, re-normalized so that their sum over indexk is
equal to 1, i.e.

pik =
p(θ

(l)
k | yik, zi)∑K

k=1 p(θ
(l)
k | yik, zi)

, (20)

which coincides with the Bayes’ factor for thekth model in
explaining theith observation in Eq. (4).
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Fig. 3. Comparison between observations (left) and predictions (right) made by m04 at hours T0+12

and T0+24. Note that observed concentrations are expressed as ng/m 3, while m04 results as g/m3.
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Fig. 3. Comparison between observations (left) and predictions (right) made by m04 at hours T0+12 and T0+24. Note that observed
concentrations are expressed as ng/m3, while m04 results as g/m3.

From the properties of a multinomial random process, a
draw forζi from (19) is a vector withK−1 components equal
to zero, and one component (that corresponding to the “best”
model) equal to one, i.e.

∑K
k=1 ζik = 1 for anyi. Each model

has a probability to be selected as the ‘best’ model equal to
pik, given by Eq. (20).

The selection process was repeated for each observation
and iterated for eachθ (l)

k sample, as implemented in the fol-
lowing algorithm:

for l = 1 : L

Setθ (l)
k = (b

(l)
k , σ

(l)
k )

for i = 1 : N

setpik for anyk as in Eq. (20)

drawζ
(l)
i from p(ζi | pi1, . . . , piK)

end

end

Table1 shows the expected values (with their standard devi-
ations) of the fraction of times each model is selected as the
“best” model, averaged over all McMC iterations.

Computational costs are negligible; 100 iterations took
about 12 s (using Matlab as computing environment installed

on a PC with an Intel Centrino Core2 T7200@2GHz CPU
and 2048M of main memory), so that the whole estimation
process can be accomplished within a few minutes. This
makes this data analysis framework suitable for real-time ap-
plications, too.

6 Results

Essentially, the objectives of this work consist in the:

– evaluation of the BMA weights, in order to sort the pre-
dictive skill of models;

– quantification of the systematic bias of each model;

– estimation of some useful statistical indexes, e.g. APL
(Above Percentile Level) or ATL (Above Threshold
Level), introduced in Galmarini et al. (2004a, b),

– exploration of similarities and differences between our
approach and the “median model”,

– quantification of the correlations between models, as a
measure of interdependency.

Atmos. Chem. Phys., 7, 6085–6098, 2007 www.atmos-chem-phys.net/7/6085/2007/



Riccio et al.: Rational basis of the “median model” 6093

Fig. 3. (continued) Comparison between observations (left) and predictions (right) made by m04 at

hours T0+36, T0+48 and T0+60. Note that observed concentrations are expressed as ng/m 3, while

m04 results as g/m3.

32Fig. 3. (Continued.) Comparison between observations (left) and predictions (right) made by m04 at hours T0+36, T0+48 and T0+60. Note
that observed concentrations are expressed as ng/m3, while m04 results as g/m3.

We will show that the results of our theoretical framework
provides an answer to all these items. The results of the op-
timization procedure are reported in Table1.

As can be seen, the a posteriori values of the weights can
be clustered in several groups: the majority of model weights
are close to the a priori value (1/25=0.04); a second group
(models m04 and m08) present a below-average value. Cor-
respondingly, there is a group of three models: m02, m19
and m20 (and to a lesser extent model m12, too), for which
the weights are significantly higher than the a priori value.

The bias reported in Table1 is a measure of how much (on
the log-scale) the model predicted values should be shifted
so that their mean value coincide with the mean value of ob-
servations. It can be noted that model m04 largely overesti-
mates the observations, with a mean bias of about 11.6 on the
log scale (remember that an additive bias on the log-scale is
equivalent to a multiplicative bias on the linear scale). Also,

note that the standard deviation of this bias is considerably
larger than those of other models, suggesting that probably
something went wrong with this model. As Fig. 3 shows, the
physics of dispersion has been qualitatively captured, but,
during the first hours after release, the predicted values are
extremely high (with a concentration as high as 6 g/m3 close
to the site of release), due to a problem with the source emis-
sion strength as pointed out in Galmarini et al. (2004b). The
differences between model results and observations tend to
disappear during the day after the release, but the highest
concentration is predicted over Poland instead of Denmark,
as shown by Fig. 3.

Models tend to underestimate observations: the overall
mean bias, excluding model m04, is−0.91, corresponding to
a shrinking factor of about 0.4; even if m04 is included, the
overall mean bias remains negative, i.e.−0.32. It can also
be shown that the bias is not uniformly distributed over time:
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Fig. 4. 50th APL from equation (21) (left column), observations (middle column), and 50th APL

from the “Median Model” (right column) adapted from Galmarini et al. (2004b), at T0+24 (upper-

most row), T0+48 (middle row) and T0+60 (lowermost row).
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Fig. 4. 50th APL from Eq. (21) (left column), observations (middle column), and 50th APL from the Median Model (right column) adapted
from Galmarini et al. (2004b), at T0+24 (uppermost row), T0+48 (middle row) and T0+60 (lowermost row).

models generally tend to overestimate observations close to
time of release, and underestimate observations during the
day after. We can conjecture that the well-known deficien-
cies of Eulerian models in correctly representing the sub-
grid effects, and the extra-diffusion introduced by numer-
ical approaches, play an important role in determining the
time tendency of the bias. However, our statistical analysis
is not powerful enough to gain an insight into these physi-
cal/numerical aspects.

The sampled weights and parameters can be used to calcu-
late some useful statistics, e.g. APL (Above Percentile Level)
or ATL (Above Threshold Level).

In Galmarini et al. (2004a), the APLp(x, y, t) is defined as
thepth percentile from theK models at a specific timet and
spatial location(x, y). The APLp(·, ·, t) can be graphically
represented as a two-dimensional surface, e.g. see Fig. 6 in
Galmarini et al. (2004a).

The expected value of this index can be straightforwardly
estimated from the BMA results, too. For example, the ex-
pected APL50 is the concentrationc′ so that

K∑
k=1

πk

∫ log(c′)

−∞

p(bk, σk| yik, zi)d log(c) = 0.5 (21)

for any spatio-temporal location denoted by indexi.

It is worth noticing that this value coincides with the
APL50 index defined in Galmarini et al. (2004a) if a weight
equal to 1/K, a bias equal to zero and small standard devi-
ations equal for all models were used in Eq. (21), that is if
the a priori values for weights and parameters were used and
uncertainties were ignored.

Figure 4 shows the APL50 index calculated from Eq. (21),
compared with observations and the APL50 adapted from
Galmarini et al. (2004b). As can be seen, the APL50 index
from Eq. (21) substantially gives the same results as those
from Galmarini et al. (2004b); roughly speaking, this is due
to the fact that weights are approximately the same for the
majority of models, and there are largely compensating ef-
fects between the bias of the different models, so that this en-
semble analysis indicates a complementarity between model
results.

The evidence for complementarity of model results is also
supported by the following result. Figure 5 plots the contri-
bution of each model in determining the BMA median val-
ues. For each model, we calculated the following integral:

1

n

n∑
i=1

∫ log(c′)

−∞

πkp(bk, σk| yik, zi)d log(c) ,
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Table 1. Model weights, bias and standard deviations estimated by
the BMA optimization procedure. The corresponding uncertainties
(standard deviations) of each parameter are reported within paren-
thesis. The bias and standard deviations are estimated on the log-
scale. Each model is tagged with an integer number shown in the
first column.

# Weight Bias Std.Dev.

m01 0.0387 (±0.0041) −0.15 (±0.04) 2.8 (±0.03)
m02 0.0642 (±0.0055) 0.53 (±0.03) 1.77 (±0.02)
m03 0.0365 (±0.0041) −0.73 (±0.05) 2.95 (±0.03)
m04 0.0109 (±0.0022) 11.63 (±0.17) 11 (±0.12)
m05 0.0398 (±0.0043) −2.65 (±0.05) 2.9 (±0.03)
m06 0.0415 (±0.0043) −2.10 (±0.04) 2.77 (±0.03)
m07 0.0375 (±0.0042) −0.64 (±0.05) 3.26 (±0.04)
m08 0.0162 (±0.0027) −2.38 (±0.14) 9.76 (±0.11)
m09 0.0353 (±0.0041) −1.01 (±0.05) 3.1 (±0.03)
m10 0.0413 (±0.0044) 0.59 (±0.04) 2.76 (±0.03)
m11 0.0359 (±0.0040) −0.57 (±0.05) 3.01 (±0.03)
m12 0.0503 (±0.0048) 0.37 (±0.04) 2.27 (±0.03)
m13 0.0425 (±0.0044) −0.61 (±0.04) 2.53 (±0.03)
m14 0.0358 (±0.0040) −1.50 (±0.05) 3.06 (±0.04)
m15 0.0393 (±0.0043) −2.45 (±0.05) 2.91 (±0.03)
m16 0.0430 (±0.0045) −0.52 (±0.04) 2.56 (±0.03)
m17 0.0294 (±0.0037) −0.59 (±0.07) 4.21 (±0.05)
m18 0.0410 (±0.0043) −0.11 (±0.04) 2.79 (±0.03)
m19 0.0538 (±0.0049) 0.73 (±0.03) 2.09 (±0.02)
m20 0.0694 (±0.0055) −2.00 (±0.03) 1.62 (±0.02)
m21 0.0399 (±0.0042) −2.04 (±0.04) 2.81 (±0.03)
m22 0.0462 (±0.0045) −0.95 (±0.03) 2.31 (±0.03)
m23 0.0357 (±0.0041) −1.35 (±0.05) 3.42 (±0.04)
m24 0.0397 (±0.0043) −1.87 (±0.04) 2.78 (±0.03)
m25 0.0360 (±0.0040) −3.15 (±0.05) 3.39 (±0.04)

wherec′ the the median concentration calculated from (21)
and n is the number of distinct spatio-temporal locations.
Apart from models m04 and m08 which contribute to a lesser
extent, and model m20 which contribute to a greater extent,
all other models contribute with similar proportions. There-
fore, at different times and/or spatial locations, models alter-
natively contribute to define the BMA median result, without
no clear dominant subset. This result reflects very closely
that found by Galmarini et al. (2004b).

Also, it should be stressed that the specific values of
weights may depend on the selected database, as well as
on the assumptions exploited in this work (e.g log-normal
deviations of model predictions from observations); differ-
ences in the relative performance are expected using differ-
ent databases and/or implicit assumptions. However, there is
no reason to assume that the ETEX-1 database acts as a ‘spe-
cial’ case, and we expect that models will continue to behave
in a well-balanced manner also using other databases. Re-
sults from the ENSEMBLE project (Galmarini et al., 2004a)
suggest this is indeed the case.
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Fig. 5. Contribution of each model to the determination of the BMA 50th percentile. Values are

normalized so that their sum is equal to one. The numbers of the x-axis indicate the model tags.
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Fig. 5. Contribution of each model to the determination of the BMA
50th percentile. Values are normalized so that their sum is equal to
one. The numbers of the x-axis indicate the model tags.

We can move a step forward the analysis of differences
and similarities between the BMA approach and the Median
Model, by exploring the distribution of the latent variables
ζik. As can be seen from Eq. (19), the vector of latent vari-
ables{ζi1, . . . , ζiK} is sampled from a multinomial distribu-
tion, where each member has a probability to be “extracted”
equal topik, given by Eq. (20). pik measures the “distance”
of the value predicted by thekth model from the correspond-
ing ith observation, so thekth model is selected with a low
probability if it is farther than other models from theith ob-
servation. We can explore the distribution of theζik to search
for any systematic structure.

This kind of analysis provides information analogous to
the ATL or Space Overlap index. In Galmarini et al. (2004b)
the ATL is defined as the surface given by the normalized
number of models that, at a given time, predict values above
a given thresholdct , namely

ATL(x, y, t)=
100

K

K∑
k=1

δk

where

{
δk=1 if ck(x, y, t) ≥ ct

δk=0 otherwise
(22)

An analogous information can be deduced from theζik vari-
ables, too. We define the PBS (Probability of Being Selected)
index as follow

PBSik = 1 −
1

L

L∑
l=1

ζ
(l)
ik , (23)

whereL is the total number of McMC iterations. This index
is close to 0 if modelk performs much better than the other
models in explaining theith observation, i.e if the mean value
of ζik tends to 1; conversely, it tends to 1 if modelk is one
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Fig. 6. The PBS index for m08. The areas for which PBS ≥ 0.985 have been contoured with black

solid lines.
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Fig. 6. The PBS index for m08. The areas for which PBS≥0.985
have been contoured with black solid lines.

of the worst model in explaining theith observation. Fig-
ure 6 shows the PBS index for m08. A PBS average value of
about 0.98(≈1.0−0.016) can be deduced for this model (see
Table1).

In Fig. 6 the areas for which PBS≥0.985 have been con-
toured with black lines; the result is a “leopardized” struc-
ture. The leopard-like spots are due to the fact that we
have not introduced any physical information is our sampling
strategy: obviously model’s results are spatio-temporally
correlated, so we could expect a smoothly varying surface
of the PBS index, but in Eq. (18) we implicitly assumed
that model results are independently distributed in space and
time. Notwithstanding this lack of physical coherence, there
are some remarkable structures: the “bump” protruding over
the Scandinavian region and that over Eastern Romania. It
can be shown that these spots are due to high model concen-
trations which are not represented, neither by observations
nor by the majority of other model results. This finding has
already been outlined by Galmarini et al. (2004b) using the
ATL index. They showed that the protrusion over the Scan-
dinavian area corresponds to ATL≈1, i.e. a characteristic
showed only by m08 (see Figs. 3 and 4 in Galmarini et al.,
2004b).

As a final example of the potentialities of this approach,
we analyze the information that can be gained from the
eigendecomposition of the covariance matrix. Each model
in (19) can be independently selected from all others; how-
ever, models cannot be completely independent since they
simulate the same phenomenon, described by well defined
physical laws. As explained in Sect.4, a viable approxima-
tion to quantify dependences among models is correlation.
To this aim, we changed model Eq. (18) to

p(b, 6| y··, z·) ∼

n∏
i=1

N (yi· − zi, 6) p(b)p(6) . (24)

Table 2. Components of some selected eigenvectors of the esti-
mated covariance matrix. Values greater than 0.35 have been re-
ported as bold. See the text for more details.

# Eig. 1 Eig. 2 Eig. 22 Eig. 23 Eig. 24 Eig. 25

m01 −0.090 0.013 −0.001 0.129 −0.025 −0.011
m09 −0.050 −0.032 0.035 −0.003 0.032 0.037
m18 −0.067 −0.035 −0.024 -0.010 0.007 0.010
m02 −0.040 −0.037 0.070 −0.150 0.834 −0.372
m23 −0.047 −0.064 −0.000 0.040 −0.028 −0.013
m13 −0.065 −0.014 0.110 0.160 0.016 −0.040
m14 −0.090 0.011 0.018 −0.062 0.034 −0.017
m03 −0.032 −0.036 0.040 −0.022 −0.009 0.030
m17 −0.107 −0.004 −0.026 −0.025 −0.005 0.028
m04 −0.818 0.532 −0.003 −0.010 0.002 0.010
m05 −0.001 −0.041 −0.044 −0.021 −0.011 −0.020
m10 −0.092 −0.014 0.186 −0.023 −0.012 −0.001
m12 −0.052 −0.040 0.124 0.620 −0.198 0.014
m06 −0.021 −0.018 0.148 0.019 −0.000 −0.024
m19 −0.050 −0.038 −0.028 −0.671 −0.454 −0.261
m11 −0.065 −0.027 0.031 −0.013 0.019 0.020
m15 −0.066 0.013 0.029 −0.044 0.000 0.003
m07 −0.064 −0.014 −0.016 0.027 −0.041 −0.008
m20 −0.018 −0.019 −0.004 −0.249 0.217 0.884
m16 −0.076 −0.003 0.186 0.035 −0.007 −0.021
m08 −0.498 −0.836 −0.004 0.003 −0.009 0.014
m21 −0.036 −0.018 0.083 −0.099 0.000 0.031
m22 −0.054 −0.016 −0.924 0.107 0.052 −0.028
m24 −0.037 −0.017 0.045 0.064 −0.028 −0.030
m25 −0.035 0.010 −0.064 0.026 −0.045 −0.039

where now6 is theK−dimensional matrix of covariances
between models.p(6) is the prior pdf for6, for which we
chose a non-informative inv-Wishart distribution.

The analysis of the expected values of the covariance ma-
trix says what models show correlated deviations from the
observations.

As shown in Eq. (15) and Fig. 1, the eigenvectors of
the covariance matrix correspond to the directions of inde-
pendent components if data are normally (or log-normally)
distributed. The magnitudes of the components of each
eigenvector immediately say to what extent each model con-
tributes to that independent component.

In Table2 we report the eigenvectors corresponding to the
two largest eigenvalues (Eig. 1 and Eig. 2) and to the three
smallest eigenvalues (Eig. 23, Eig. 24 and Eig. 25). As can
be seen, the first two eigenvectors are dominated by the com-
ponents corresponding to m04 and m08, and all other models
have negligible projections on these two vectors.

The first two eigenvalues (data not shown) explain about
61% of the total variance; of course this is not surprising,
since, as can be seen from table1, m04 and m08 are asso-
ciated with the largest variances. This means that, not only
m04 and m08 are associated with a great bias, but they also
significantly co-vary (i.e. the spatio-temporal pattern of their
bias is similar) and are not significantly correlated with all
other models, because their projection over the successive
eigenvectors is negligible.
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It is worth noticing that, while models m04 and m08 are
positively correlated along the direction of the first eigenvec-
tor (components with the same sign), they are negatively cor-
related along the direction of the second eigenvector. This is
due to the fact that model m08 is extremely diffusive, so that
it predicts positive concentrations even where model m04
shows zero values (remember that model m04 predicts ex-
tremely high values on the mean); the first set of data is clus-
tered along the first eigenvector, and the second set along the
second eigenvector.

There are also significant correlations between models
m02 and m19 and models m02 and m20; Eig. 23 also shows
that model m19 is significantly correlated with model m12.
Remember that these models show the highest BMA weights
(see Table1). The data from all other models are projected
more uniformly among the remaining eigenvectors.

We conjecture that models m02, m19 and m20 perform
better than the others because their data share a similar
spatio-temporal pattern, and this similarity is highlighted by
the significant correlations between their bias.

In a model selection perspective, the analysis of the co-
variance matrix can be used to pick those models showing
independent features. If a model would be sacrificed, it is
better to discard a model with a low BMA weight and well
correlated with other models.

7 Conclusions and final considerations

The results presented in the previous section highlight the
advantages of the BMA framework:

1. the weights provide the quantitative basis to judge if
there is an “outlier model”, but, instead of disregard-
ing its values, they are bias-corrected, weighted and
included in the final analysis satisfying an optimality
criterion, i.e. so that the posterior probability is maxi-
mized;

2. the McMC approach provides the way to quantify the
uncertainties of each estimated parameter, so that any
decision making or regulatory-purpose activity, can be
supported by an adequate uncertainty analysis;

3. a deeper analysis, based on the distribution of un-
observed indicators,ζik, allows to detect the outliers
among the model-predicted values, i.e. a very low mean
value ofζik indicates that theith observation is very dif-
ferent from thekth model-predicted value. This analy-
sis can be projected onto the physical space/time, thus
playing a role similar to several other statistical indexes,
e.g. the Agreement in Threshold Level or Space Over-
lap, originally introduced in Galmarini et al. (2004a;
2004b);

4. the analysis of the covariance matrix can be used to in-
spect the similarities and/or differences between model

results. We can look at the values projected onto the
eigenvectors of the covariance matrix as “orthogonal”
data, i.e. data forecast by independent models, whose
variations cannot be explained by the other components.
In a model selection perspective, the number of inde-
pendent model can be selected as those associated with
the most “interesting” (uncorrelated) directions.

As outlined in Galmarini et al. (2004b), the “Median
Model” results provide an estimate that is superior to any
single deterministic model simulation, with obvious benefits
for regulatory-purpose applications or for the support to
decision making. We can look at our ensemble analysis as
the a posteriori justification of the Median Model results.

Edited by: R. Vautard

References

Berliner, L. M.: Physical-statistical modeling in geophysics, J. Geo-
phys. Res., 108, 8776, doi:10.1029/2002JD002865, 2003.

Clyde, M. A.: Bayesian model averaging and model search strate-
gies (with Discussion), in: Bayesian Statistics 6, edited by:
Bernardo, J. M. et al., 157–185, Oxford University Press, Ox-
ford, 1999.

Clyde, M. A. and George, E. I.: Flexible empirical Bayes estimation
for wavelets, J. R. Stat. Soc. Ser. A–G, 62, 681–698, 2000.

Coelho, C. A. S., Pezzulli, S., Balmaseda, M., Doblas-Reyes, F. J.,
and Stephenson, D. B.: Forecast Calibration and Combination:
A Simple Bayesian Approach for ENSO, J. Climate, 17, 1504–
1516, 2004.

Cover, T. M. and Thomas, J. A.: Elements of Information Theory,
Wiley, 1991.

Delle Monache, L. and Stull, R. B.: An ensemble air-quality fore-
cast over western Europe during an ozone episode, Atmos. Env-
iron., 37, 3469–3474, 2003.

Delle Monache, L., Deng, X., Zhou, Y., and Stull, R.: Ozone en-
semble forecasts: 1. A new ensemble design, J. Geophys. Res.,
111, D05307, doi:10.1029/2005JD006310, 2006a.

Delle Monache, L., Nipen, T., Deng, X., Zhou, Y., and
Stull, R. B.: Ozone ensemble forecasts: 2. A Kalman fil-
ter predictor bias correction, J. Geophys. Res., 111, D05308,
doi:10.1029/2005JD006311, 2006b

Delle Monache, L., Hacker, J. P., Zhou, Y., Deng, X., and Stull,
R. B.: Probabilistic aspects of meteorological and ozone re-
gional ensemble forecasts, J. Geophys. Res., 111, D24307,
doi:10.1029/2005JD006917, 2006c.

Dijkstra, T. K.: On Model Uncertainty and its Statistical Implica-
tions, Springer Verlag, Berlin, 1988.

Fritch, J. M., Hilliker, J., Ross, J., and Vislocky, R. L.: Model con-
sensus, Weather Forecast, 15, 571–582, 2000.

Galmarini, S., Bianconi, R., Bellasio, R., and Graziani, G.: Fore-
casting consequences of accidental releases from ensemble dis-
persion modelling, J. Environ. Radioactiv., 57, 203–219, 2001.

Galmarini, S., Bianconi, R., Klug, W., Mikkelsen, T., Addis, R., An-
dronopoulos, S., Astrup, P., Baklanov, A., Bartniki, J., Bartzis, J.
C., Bellasio, R., Bompay, F., Buckley, R., Bouzom, M., Cham-
pion, H., D’Amours, R., Davakis, E., Eleveld, H., Geertsema, G.

www.atmos-chem-phys.net/7/6085/2007/ Atmos. Chem. Phys., 7, 6085–6098, 2007



6098 Riccio et al.: Rational basis of the “median model”

T., Glaab, H., Kollax, M., Ilvonen, M., Manning, A., Pechinger,
U., Persson, C., Polreich, E., Potemski, S., Prodanova, M., Salt-
bones, J., Slaper, H.,Sofief, M. A., Syrakov, D., Sorensen, J. H.,
Van der Auwera, L., Valkama, I., and Zelazny, R.: Ensemble
dispersion forecasting–Part I: concept, approach and indicators,
Atmos. Environ., 38, 4607–4617, 2004a.

Galmarini, S., Bianconi, R., Addis, R., Andronopoulos, S., Astrup,
P., Bartzis, J. C., Bellasio, R., Buckley, R.,Champion, H., Chino,
M., D’Amours, R., Davakis, E., Eleveld, H., Glaab, H., Man-
ning, A., Mikkelsen, T., Pechinger, U., Polreich, E., Prodanova,
M., Slaper, H., Syrakov, D., Terada, H., and Van der Auwera, L.:
Ensemble dispersion forecasting–Part II: application and evalua-
tion, Atmos. Environ., 38, 4619–4632, 2004b.

Gelman, A. and Rubin, D. B.: Inference from iterative simulation
using multiple sequences, Stat. Sci., 7, 457–472, 1992.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.: Bayesian
Data Analysis, Chapman and Hall/CRC, Boca Raton, Florida,
2003.

Geman, S. and Geman, D.: Stochastic relaxation, Gibbs distribu-
tions and the Bayesian restoration of images, Transactions on
Pattern Analysis and Machine Intelligence, 6(6), 721–741, 1984.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J.: Markov
Chain Monte Carlo in Practice, Chapman and Hall/CRC, Boca
Raton, Florida, 1996.

Girardi, F., Graziani, G., van Veltzen, D., Galmarini, S., Mosca,
S., Bianconi, R., Bellasio, R., and Klug, W.: The ETEX project.
EUR Report 181-43 EN. Office for official publications of the
European Communities, Luxembourg, 108pp., 1998.

Grimit, E. P. and Mass, C. F.: Initial results of a mesoscale short-
range ensemble forecasting system over the Pacific Northwest,
Weather Forecast, 17, 192–205,http://isis.apl.washington.edu/
bma/index.jsp, 2002.

Hyvärinen, A. and Oja, E.: Independent Component Analysis:
Algorithms and Applications, Neural Networks, 13, 411–430,
2000.

Hou, D., Kalnay, E., and Droegemeier, K. K.: Objective verification
of the SAMEX‘98 ensemble forecast, Mon. Weather Rev., 129,
73–91, 2001.

Jeffreys, H.: Theory of Probability, 3rd Edition, Oxford University
Press, 1961.

Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Ba-
chiochi, D., Williford, E., Gadgil, S., and Surendran, S.: Mul-
timodel ensemble forecasts for weather and seasonal climate.
Mon. Weather Rev., 116, 907–920, 2000.

Mallet, V. and Sportisse, B: Ensemble-based air quality forecasts:
A multimodel approach applied to ozone, J. Geophys. Res., 111,
D18302, doi:10.1029/2005JD006675, 2006.

Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.: The
ECMWF ensemble system: Methodology and validation, Q. J.
Roy. Meteor. Soc., 122, 73–119, 1996.

Pagowski, M., Grell, G. A., McLeen, S. A., et al., 2005: A simple
method to improve ensemble-based ozone forecasts, Geophys.
Res. Lett., 32, L07814, doi:10.1029/2004GL022305

Pagowski, M., Grell, G. A., Devenyi, D., Peckham, S. E., McKeen,
S. A., Gong, W., Delle Monache, L., McHenry, J. N., McQueen,
J., and Lee, P.: Application of dynamic linear regression to im-
prove the skill of ensemble-based deterministic ozone forecasts,
Atmos. Environ., 40, 3240–3250, 2006a

Pagowski, M. and Grell, G. A.: Ensemble-based ozone forecasts:
Skill and economic value, J. Geophys. Res., 111, D23S30,
doi:10.1029/2006JD007124, 2006b.

Papoulis, A.: Probability, Random Variables, and Stochastic Pro-
cesses, Mc-Graw-Hill, 1991.

Raftery, A. E., Madigan, D. and Hoeting, J. A.: Model selection and
accounting for model uncertainty in linear regression models, J.
Am. Stat. Assoc., 92, 179–191, 1997.

Raftery, A. E.and Zheng, Y.: Long-run performance of Bayesian
model averaging, J. Am. Stat. Assoc., 98, 931–938, 2003.

Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M.:
Using Bayesian Model Averaging to Calibrate Forecast Ensem-
bles, Mon. Weather Rev., 133, 1155–1174, 2005.

Roberts, W. R.: Markov chain concepts related to sampling algo-
rithms, in: Markov Chain Monte Carlo in Practice, edited by:
Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., Chapman
and Hall, 45–57, 1996.

Toth, Z. and Kalnay, E.: Ensemble forecasting at the NMC: The
generation of perturbations, B. Am. Meteorol. Soc., 74, 2317–
2330, 1993.

Viallefont, V., Raftery, A. E., and Richardson, S.: Variable selection
and Bayesian model averaging in case-control studies, Statistics
in Medicine, 20, 3215–3230, 2001.

Whitaker, J. S. and Loughe, A. F.: The relationship between En-
semble Spread and Ensemble Mean Skill, Mon. Weather Rev.,
126, 3292–3302, 1998.

Zhang, F., Bei, N., Nielsen-Gammon, J. W., Li, G., Zhang, R., Stu-
art, A., and Aksoy, A.: Impacts of meteorological uncertainties
on ozone pollution predictability estimated through meteorolog-
ical and photochemical ensemble forecasts, J. Geophys. Res.,
112, D04304, doi:10.1029/2006JD007429, 2007.

Atmos. Chem. Phys., 7, 6085–6098, 2007 www.atmos-chem-phys.net/7/6085/2007/

http://isis.apl.washington.edu/bma/index.jsp
http://isis.apl.washington.edu/bma/index.jsp

