References

- Grooss, J.-U., and Russell, J. M. III: Technical note: A stratospheric climatology for O_3 , H_2O , CH_4 , NO_x , HCl and HF derived from HALOE measurements, Atmos. Chem. Phys., 5, 2797–2807, 2005.
- Randel, W. J., Wu, F., Russell, J. M. III, Roche, A., and Waters, J. W.: Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data J. Atmos. Sci., 55, 163–185, 1998.

Figure 1: Evolution of the daily global total ozone column for various experiments completed with MOCAGE-Climat (see text).

Figure 2: MOCAGE-Climat zonal monthly mixing ratios of CH_4 (ppmv) against the Grooss and Russel (2005) climatology, and relative differences $(100 \times ((Model - Obs)/Obs))$, between 100 and 0.1 hPa, in March (left panels) and September (right panels). MOCAGE-Climat has been driven by the outputs of the ARPEGE-Climat GCM. 3

Figure 3: MOCAGE-Climat T42 zonal monthly mixing ratios of CH_4 (ppmv) against the Grooss and Russel (2005) climatology, and relative differences $(100 \times ((Model - Obs)/Obs))$, between 100 and 0.1 hPa, in March (left panels) and September (right panels).

Figure 4: MOCAGE-Climat zonal monthly mixing ratios of H_2O (ppmv) against the Grooss and Russel (2005) climatology, and relative differences $(100 \times ((Model - Obs)/Obs))$, between 100 and 0.1 hPa, in March (left panels) and September (right panels). MOCAGE-Climat has been driven by the outputs of the ARPEGE-Climat GCM. 5

Figure 5: MOCAGE-Climat T42 zonal monthly mixing ratios of H_2O (ppmv) against the Grooss and Russel (2005) climatology, and relative differences $(100 \times ((Model - Obs)/Obs))$, between 100 and 0.1 hPa, in March (left panels) and September (right panels).

Figure 6: MOCAGE-Climat zonal monthly mixing ratios of N_2O (ppmv) against the Randel et al. (1998) climatology, and relative differences ($100 \times ((Model - Obs)/Obs$)), between 100 and 0.1 hPa, in March (left panels) and September (right panels). MOCAGE-Climat has been driven by the outputs of the ARPEGE-Climat GCM. 7

Figure 7: MOCAGE-Climat T42 zonal monthly mixing ratios of N_2O (ppmv) against the Randel et al. (1998) climatology, and relative differences $(100 \times ((Model - Obs)/Obs))$, between 100 and 0.1 hPa, in March (left panels) and September (right panels).

Figure 8: MOCAGE-Climat monthly mean mixing ratios of O_3 (ppmv), ClO (pptv), HNO_3 (ppbv), NO_2 (ppbv), $ClONO_2$ (ppbv) and H_2O (ppmv) at 50 hPa from July to October 2005. Data are averages from the South Pole to 70 S. Note that the vertical axis is logarithmic.

Figure 9: Vertical profiles of NO_2 photolysis according to four values of the surface albedo for January with a zenithal angle of 40 degrees, and a total ozone column of 300 DU.