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Abstract. The formation of new aerosol from the gas phase
is commonly represented in atmospheric modeling with pa-
rameterizations of the steady state nucleation rate. Present
parameterizations are based on classical nucleation theory
or on nucleation rates calculated with a numerical aerosol
model. These parameterizations reproduce aerosol nucle-
ation rates calculated with a numerical aerosol model only
imprecisely. Additional errors can arise when the nucleation
rate is used as a surrogate for the production rate of particles
of a given size. We discuss these errors and present a method
which allows a more precise calculation of steady state sul-
fate aerosol formation rates. The method is based on the
semi-analytical solution of an aerosol system in steady state
and on parameterized rate coefficients for H2SO4 uptake and
loss by sulfate aerosol particles, calculated from laboratory
and theoretical thermodynamic data.

1 Introduction

Aerosol particles play an important role in the Earth’s atmo-
sphere and in the climate system: Aerosols scatter and absorb
solar radiation (e.g.Haywood and Boucher, 2000), facili-
tate heterogeneous and multiphase chemistry (Ravishankara,
1997), and change cloud characteristics in many ways (e.g.
Lohmann and Feichter, 2005). Aerosol particles can either
be directly emitted from surface sources (primary aerosol)
or form from the gas phase (secondary aerosol). The pro-
cesses and compounds involved in secondary aerosol forma-
tion and growth, as well as their relative importance, and
the spatial and temporal distribution thereof are the subject
of ongoing research. The chemical species of interest in-
clude inorganic acids, ammonia, and organic molecules (see,
e.g.Heintzenberg, 1989; Heintzenberg et al., 2000; Jacobson
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et al., 2000; Kulmala et al., 2004a, and references therein).
Among these, sulfuric acid stands out due to its very low
vapor pressure, its numerous sources, and its ubiquity. In
clean areas, such as over oceans, sulfuric acid appears as the
driving force of secondary aerosol formation (Clarke, 1992;
Brock et al., 1995), while over continents and in particular
in the continental boundary layer, recently formed aerosol
particles contain in addition to sulfate substantial amounts of
ammonia (Smith et al., 2005) or organic matter (Allan et al.,
2006; Cavalli et al., 2006), which may be involved in their
formation process (Coffman and Hegg, 1995; Kulmala et al.,
2004b). Secondary aerosol formation can significantly in-
crease concentrations of aerosol particles and cloud conden-
sation nuclei, and therefore requires dependable representa-
tions in atmospheric models (Kulmala et al., 2004a).

2 Representing secondary aerosol formation in atmo-
spheric models

Detailed representations of secondary aerosol formation,
with a molecular size resolution of the involved processes,
are numerically expensive and presently used in box (Lehti-
nen and Kulmala, 2003; Lovejoy et al., 2004) or parcel mod-
els (Kazil et al., 2007). In medium- and large scale atmo-
spheric models, numerically less costly parameterizations of
the steady state aerosol nucleation rate are used (e.g.Lauer
et al., 2005; Ma and von Salzen, 2006). Aerosol nucleation
is the process by which supercritical molecular clusters, par-
ticles larger than the critical cluster, form from the gas phase.
The critical cluster is the smallest particle whose growth due
to uptake of gas phase molecules is uninhibited by a thermo-
dynamic barrier.

Different parameterizations of steady state aerosol nucle-
ation rates have been developed:Vehkam̈aki et al. (2002)
andNapari et al.(2002) parameterized nucleation rates cal-
culated using classical nucleation theory, which rests upon
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the determination of the surface tension of small molecular
clusters of a given composition, and on the vapor pressures
of the involved molecules above the corresponding bulk solu-
tion. Modgil et al.(2005) parameterized nucleation rates that
were calculated with a numerical aerosol model that resolves
the initial steps of cluster formation molecule by molecule.

These parameterizations reproduce aerosol formation rates
calculated with numerical aerosol models only imprecisely,
for different reasons: On the one hand, the concepts of sur-
face tension and bulk solution break down in the context
of small molecular clusters. On the other hand, nucleation
rates are highly non-linear and vary by many orders of mag-
nitude over the atmospherically relevant ranges of ambient
conditions. A precise parameterization of the nucleation rate
may therefore require a large set of basis functions, with a
corresponding number of coefficients, that need to be deter-
mined from a sufficiently large nucleation rates table. How-
ever, generating a large nucleation rates table with a detailed
aerosol model may be numerically prohibitive.

Independently of the intrinsic errors of nucleation rate pa-
rameterizations, errors can arise when the nucleation rate is
used as a surrogate for the production rate of particles of a
given size. We have therefore chosen a different approach for
calculating secondary aerosol formation rates. The method
is based on the semi-analytical solution of an aerosol sys-
tem in steady state, and on parameterized rate coefficients for
the uptake and loss of gas phase molecules by aerosol parti-
cles. The thermodynamic parameters (entropy and enthalpy
change) for the uptake and loss of gas phase molecules by
small molecular clusters, which are needed for the calcula-
tion of dependable particle formation rates, have been deter-
mined in the laboratory only for few atmospherically rele-
vant systems:Curtius et al.(2001) andFroyd and Lovejoy
(2003a,b) measured the thermodynamic parameters for the
formation of charged sulfuric acid and water clusters, while
Hanson and Lovejoy(2006) measured the thermodynamic
parameters for their neutral counterparts. We therefore fo-
cus in the following on the formation of sulfate aerosol from
nucleation of neutral and negative sulfuric acid/water parti-
cles. The nucleation of positive sulfuric acid/water particles
is thought to be less important for aerosol formation at least
at temperatures of the lower troposphere (Froyd and Lovejoy,
2003a), and is not considered here.

3 Neutral and negative sulfate aerosol formation

The scheme of neutral and negative H2SO4/H2O aerosol for-
mation from the gas phase is shown in Fig.1: The ionization
rateq is the rate at which the anions A−

0 and the cations A+

are produced. Here we assume that A−

0 =NO−

3 (HNO3). The
neutral and negative clusters Ai and A−

i are defined as

Ai = (H2SO4)i(H2O)x(i)

A−

i = HSO−

4 (H2SO4)i−1(H2O)y(i)

, i = 1, ..., n. (1)

x(i) andy(i) are the average H2O contents of the clusters
in equilibrium with respect to H2O uptake and loss. A1 is,
as a matter of course, gas phase sulfuric acid, which we will
denote in the following simply with H2SO4. The clusters
grow and evaporate with the first order rate coefficients

κi = kai
· [H2SO4] , λi = kdi

,

κ−

i = k−
ai

· [H2SO4] , λ−

i = k−

di
.

(2)

kai
andkdi

are the H2SO4 uptake and evaporation rate coef-
ficients of the Ai , k−

ai
andk−

di
the H2SO4 uptake and evap-

oration rate coefficients of the A−i , averaged over the equi-
librium H2O distribution of the clusters. Theωi andω−

i in
Fig. 1 are the pseudo first order rate coefficients for loss of
the Ai and A−

i by coagulation among each other and onto
preexisting aerosol. Thepi andp−

i are production rates of
the Ai and A−

i by coagulation of smaller clusters. Theαi are
pseudo first order rate coefficients for the recombination of
the A−

i with the cations A+. The rate coefficients and their
calculation are explained in more detail in Sect.4.

We denote the net steady state formation rate of the Ai

and A−

i with i>n from the Ai and A−

i with i≤n with
J (n, p, q, r, s, t, [H2SO4]). J is a function of pressurep,
ionization rateq, relative humidityr, H2SO4 condensational
sink s, temperaturet , and of the sulfuric acid gas phase con-
centration [H2SO4]. The pressure dependence ofJ is weak
if the clusters Ai and A−

i with i≤n are much smaller than the
mean free path of gas phase molecules (typically>100 nm in
atmospheric conditions), when their H2SO4 uptake and loss
as well as their coagulation take place in the free molecular
regime.J can be broken down into three contributions,

J (n, p, q, r, s, t, [H2SO4]) = Jcond+ Jevap+ Jcoag , (3)

where

Jcond = kan [H2SO4][An] + k−
an

[H2SO4][A
−
n ] (4)

represents for the formation of clusters by condensation of
sulfuric acid,

Jevap= −kdn+1[An+1] − k−

dn+1
[A−

n+1] (5)

the loss of clusters by evaporation of sulfuric acid, and

Jcoag=

n∑
i=2

n∑
j=max(i,n+1−i)

kci,j
[Ai][Aj ]

+

n∑
i=2

n∑
j=n+1−i

k−
ci,j

[Ai][A
−

j ]

(6)

the formation of clusters due to coagulation. The calculation
of the coagulation rate coefficientskci,j

andk−
ci,j

is explained
in Sect.4.

The smallest neutral cluster whose sulfuric acid contentc

satisfies

kac · [H2SO4] ≥ kdc

∧ kai
· [H2SO4] > kdi

∀ i > c
(7)

Atmos. Chem. Phys., 7, 3447–3459, 2007 www.atmos-chem-phys.net/7/3447/2007/



J. Kazil and E. R. Lovejoy: Sulfate aerosol formation rate calculations 3449

p1

��
p2

��
pn

��
A

+ ... A1

ω1

OO

κ1 //
A2

ω2

OO

κ2 //
λ2

oo ...

λ3

oo
κn−1 //

An

ωn

OO

κn //
λn

oo

q
//

q

OO

A
−

0

α0

OO

κ
−

0 //

ω
−

0

��

A
−

1

α1

OO

κ
−

1 //
λ
−

1

oo

ω
−

1

��

A
−

2

α2

OO

κ
−

2 //
λ
−

2

oo

ω
−

2

��

...

κ
−

n−1 //
λ
−

3

oo A
−

n

αn

OO

κ−
n //

λ−
n

oo

ω−
n

��

p
−

1

OO

p
−

2

OO

p−
n

OO

Fig. 1. Reaction scheme of a coupled neutral and negative aerosol system.

is the neutral critical cluster. Forn�c, the particles An+1
and A−

n+1 evaporate only very slowly, andJevap≈0.
Atmospheric models which account for H2SO4/H2O par-

ticles containing more thann H2SO4 molecules need to be
supplied only with the formation rate

J (n, p, q, r, s, t, [H2SO4]) = Jcond+ Jcoag (8)

of these particles, since they can either neglectJevap if n�c,
or otherwise calculate it from the concentrations of the parti-
cles they account for. We therefore focus in the following on
the particle formation rateJ (n, p, q, r, s, t, [H2SO4]), which
we will refer to as nucleation rate forn=c.

4 Rate coefficients

The rate coefficients for sulfuric acid uptake by the neu-
tral and negative H2SO4/H2O aerosol particles are calculated
with the Fuchs formula for Brownian coagulation (Fuchs,
1964). The effect of particle charge is accounted for as de-
scribed byLovejoy et al.(2004). The rate coefficients for
sulfuric acid evaporation from the aerosol particles are cal-
culated from the uptake rate coefficients and from the ther-
modynamic parameters for H2SO4 uptake/loss by the parti-
cles, described in Sect.5. The resulting H2SO4 uptake and
loss rate coefficients are averaged over the equilibrium prob-
ability distributions of the particle H2O content, giving the
rate coefficientskai

, kdi
, k−

ai
, andk−

di
. The equilibrium prob-

ability distributions of the particle H2O content and the cor-
responding averages are calculated from the thermodynamic
parameters for H2O uptake/loss by the particles, described in
Sect.5.

The rate coefficientskci,j
for coagulation of the neutral

particles among each other, the rate coefficientsk−
ci,j

for the
coagulation of neutral and negative particles, and the rate co-
efficientskpre,i and k−

pre,i for their coagulation with preex-
isting aerosol are calculated with the Fuchs formula. The
masses and diameters of the particles used in the calculation
are determined from their H2SO4 and average H2O contents.
The effect of the particle charge is accounted for as described
by Lovejoy et al.(2004). Charging of the preexisting aerosol
particles is neglected.

The pseudo first order rate coefficientsωi andω−

i (Fig. 1)
for loss of the particles by coagulation with each other and
with preexisting aerosol are calculated with

ωi =

n∑
j=2

(1 + δi,j )kci,j
[Aj ]

+

n∑
j=0

k−
ci,j

[A−

j ] +
kpre,i

kpre,1
s , i = 1, ..., n ,

(9)

and

ω−

i =

n∑
j=2

k−
cj,i

[Aj ] +
k−

pre,i

kpre,1
s , i = 0, ..., n , (10)

with the preexisting aerosol H2SO4 condensational sinks.
The summation over the neutral cluster concentrations[Aj ]

starts withj=2, because coagulation with A1 is equivalent
to uptake of gas phase H2SO4, which is accounted for by the
H2SO4 uptake rate coefficients.
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The production ratespi of neutral clusters due to coagula-
tion read

pi = 0 , i = 1, ..., 3 ,

pi =

i−2∑
j=2

1 + δj,i−j

2
kcj,i−j

[Aj ][Ai−j ] ,

i = 4, ..., n .

(11)

p1 equals zero because A1 is gas phase H2SO4. Thepi=2,3
equal zero, and the summation giving thepi=4,...,n starts with
2 and ends withi−2 because coagulation with A1 is equiv-
alent to uptake of gas phase H2SO4, which is accounted for
by the H2SO4 uptake rate coefficients.

The production ratesp−

i of negative clusters due to coag-
ulation read

p−

1 = 0 ,

p−

i =

i−2∑
j=0

k−
ci−j,j

[Ai−j ][A
−

j ] , i = 2, ..., n .
(12)

p−

1 equals zero and the summation giving thep−

i=2,...,n ends
with i−2 because coagulation with A1 is equivalent to uptake
of gas phase H2SO4, which is accounted for by the H2SO4
uptake rate coefficients.

The pseudo first order rate coefficientsαi=kri [A
+
] de-

scribe the recombination of the A−

i with cations A+, where
the kri are the rate coefficients for recombination of the an-
ions with the cation population. A mass and size independent
recombination rate coefficientkri

.
=kr=1.6×10−6 cm3 s−1

(Bates, 1982) is assumed for all anions/cations in this work.
In atmospheric conditions, the mean free path of gas phase

molecules is typically>100 nm. H2SO4 uptake and loss as
well as the coagulation of particles much smaller than this
size take place in the free molecular regime, where the cor-
responding rate coefficients are essentially independent of
pressure. All rate coefficients were therefore calculated at
1013.25 hPa.

5 Thermodynamic parameters for H2SO4 and H2O up-
take and loss

The thermodynamic parameters (entropy and enthalpy
change) for uptake and loss of H2SO4 and H2O by the
small negative clusters are based on the laboratory measure-
ments ofCurtius et al.(2001) and of Froyd and Lovejoy
(2003b). The thermodynamic parameters for the formation
of (H2SO4)2(H2O)x(2) and of (H2SO4)3(H2O)x(3) due to up-
take of sulfuric acid from the gas phase are calculated explic-
itly from fits to the laboratory measurements byHanson and
Lovejoy (2006). These fits read, with RH over water in %,

dS(kcal mol−1 K−1) = −0.04

dH(kcal mol−1) = −18.32− 4.55× 10−3
· RH

(13)

for the dimer formation and

dS(kcal mol−1 K−1) = −0.045

dH(kcal mol−1) = −21.41− 2.63× 10−2
· RH

(14)

for the trimer formation.
The thermodynamic parameters for large aerosol particles

are based on the the liquid drop model and on H2SO4 and
H2O vapor pressures over bulk solutions, calculated with a
computer code (S. L. Clegg, personal communication, 2007)
that uses data fromGiauque et al.(1960) and Clegg et al.
(1994). It is assumed that charging of large aerosol has a neg-
ligible effect on the uptake and loss of gas phase molecules.
The thermodynamic parameters for intermediate size parti-
cles are a smooth interpolation of the thermodynamic param-
eters for the small and large particles. For the negative par-
ticles, the interpolation scheme byFroyd (2002) is used. In
the case of the neutral particles, exponential correction terms
as introduced byLovejoy et al.(2004) are added to the liq-
uid drop model Gibbs free energies. The correction terms
used here are adjusted to match the dimer and trimer data in
Eqs. (13) and (14): The term 3 e−(m+n)/5 kcal/mol is added
to the liquid drop Gibbs free energies for the addition of a
sulfuric acid molecule to a (H2SO4)m−1(H2O)n cluster and
for the addition of a water molecule to a (H2SO4)m(H2O)n−1
cluster. The water vapor saturation pressure formulation by
Goff (1957) was used in all calculations to transform relative
humidity over water to water vapor concentration and vice
versa.

6 Parameterization

Calculating H2SO4 uptake and loss rate coefficients as de-
scribed in Sect.4 is numerically expensive due to the averag-
ing of the rate coefficients over the cluster water content. Us-
ing parameterized rate coefficients and average cluster water
contents can reduce the computational burden. We param-
eterize the rate coefficientskai

, kdi
, k−

ai
andk−

di
for H2SO4

uptake and loss by the neutral and negative clusters and the
average cluster H2O contentsx(i) andy(i) as functions of
temperaturet and relative humidityr with a series of Cheby-
shev polynomials of the first kindTu(t) andTv(r) up to de-
greesu′ andv′, respectively:

k(t, r) ≈ k̃u′,v′(t, r) =

u′∑
u=0

v′∑
v=0

αu,vTu

(
t(t)

)
Tv

(
r(r)

)
(15)

with t andr defined as

t(t) =
2t − (t0 + t1)

t1 − t0
,

r(r) =
2r − (r0 + r1)

r1 − r0
,

(16)
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on the temperature and relative humidity intervals

t ∈ [t0, t1] , t0 = 190 K , t1 = 300 K ,

r ∈ [r0, r1] , r0 = 0.5 % , r1 = 104 %.
(17)

We determine the coefficientsαu,v for u, v≤20 using an or-
thogonality property of the Chebyshev polynomials:

αu,v =
4

π2(1 + δu,0)(1 + δv,0)∫ 1

−1
dt

∫ 1

−1
dr k(t, r)

Tu(t) Tv(r)√
1 − (t)2

√
1 − (r)2

.

(18)

We then measure the error of the approximation (15) with

Eu′,v′ = max

∣∣∣∣∣ k̃u′,v′(t, r) − k(t, r)

k(t, r)

∣∣∣∣∣ (19)

and determine the cutoff ordersu′
≤ 20 andv′

≤ 20 which
minimizeEu′,v′ .

7 Semi-analytical solution for aerosol schemes in steady
state

7.1 Neutral aerosol

Here we give a semi-analytical solution for the steady
state concentrations of the particles Ai=2,...,n in the aerosol
scheme in Fig.2, at a given concentration of the gas phase
molecule A1. The particles are produced by sources at the
ratesqi and lost in sinks with the pseudo first order rate co-
efficientsρi . They grow by condensation of the gas phase
molecules A1 with the pseudo first order rate coefficientsκi

and decay by evaporation of those molecules with the pseudo
first order rate coefficientsλi . Let us start by assuming that
the aerosol particles do not interact with each other (no coag-
ulation). With the total pseudo first order rate coefficient for
loss of the Ai

σi
.
= κi + λi + ρi , i = 2, ..., n (20)

the system of differential equations for the concentrations
[Ai] reads

d[Ai]

dt
= qi − σi[Ai] + κi−1[Ai−1] + λi+1[Ai+1] ,

i = 2, ..., n − 1 ,

d[An]

dt
= qn − σn[An] + κn−1[An−1] .

(21)

The[Ai] in steady state (d[Ai]/dt=0) can be calculated from
this system of equations with

[Ai] = Ri−1[Ai−1] + Si−1 , i = 2, ..., n . (22)

A1

κ1
//

A2

ρ2

OO

κ2
//

λ2

oo ...

κn−1
//

λ3

oo An

ρn

OO

κn
//

λn

oo

q2

OO

qn

OO

Fig. 2. Reaction scheme of a neutral aerosol system.

The coefficientsRi andSi read

Rn−1 =
κn−1

σn

,

Ri =
κi

σi+1 − λi+2Ri+1
, i = n − 2, ..., 1 ,

Sn−1 =
qn

σn

,

Si =
qi+1 + λi+2Si+1

σi+1 − λi+2Ri+1
, i = n − 2, ..., 1 .

(23)

Loss of the particles by self-coagulation can be accounted for
by substituting theσi according to

σi → σi +

n∑
j=2

(1 + δi,j )kci,j
[Aj ] , i = 2, ..., n . (24)

Production of the particles due to self-coagulation can be ac-
counted for by substituting theqi according to

qi → qi +

i−2∑
j=2

1 + δj,i−j

2
kcj,i−j

[Aj ][Ai−j ] ,

i = 4, ..., n .

(25)

kci,j
is the rate coefficient for the coagulation of two parti-

cles Ai and Aj , which upon coagulation produce a particle
Ai+j . The[Ai] in steady state can then be obtained by iter-
ating the solution (22) and (23), starting e.g. with[Ai]=0 for
i=2, ..., n and updating the cluster concentrations after each
iteration. The[Ai] after the first iteration will be identical
with the[Ai] without coagulation.

7.2 Negative aerosol

A semi-analytical solution for the steady state concentrations
of the particles A−i=0,...,n in the aerosol scheme in Fig.3 is
given here. The particles are produced by sources at the rates
q−

i and lost in sinks with the pseudo first order rate coef-
ficients ρ−

i . They grow by condensation of the gas phase
molecules A1 with the pseudo first order rate coefficientsκ−

i

and decay by evaporation of those molecules with the pseudo
first order rate coefficientsλ−

i . Due to their mutual electro-
static repulsion it is safe to assume that the particles do not
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Fig. 3. Reaction scheme of a negative aerosol system.

coagulate. With the total pseudo first order rate coefficient
for loss of the A−i

σ−

i

.
= κ−

i + λ−

i + ρ−

i , i = 0, ..., n (26)

the system of differential equations for the concentrations
[A−

i ] reads

d[A−

0 ]

dt
= q−

0 − σ−

0 [A−

0 ] + λ−

1 [A−

1 ] ,

d[A−

i ]

dt
= q−

i − σ−

i [A−

i ] + κ−

i−1[A
−

i−1]λ
−

i+1[A
−

i+1] ,

i = 1, ..., n − 1 ,

d[A−
n ]

dt
= q−

n − σ−
n [A−

n ] + κ−

n−1[A
−

n−1] .

(27)

The [A−

i ] in steady state (d[A−

i ]/dt=0) can be calculated
from this system of equations with

[A−

0 ] =
q−

0 + λ−

1 S−

0

σ−

0 − λ−

1 R−

0

,

[A−

i ] = R−

i−1[A
−

i−1] + S−

i−1 , i = 1, ..., n .

(28)

The coefficientsR−

i andS−

i read

R−

n−1 =
κ−

n−1

σ−
n

,

R−

i =
κ−

i

σ−

i+1 − λ−

i+2R
−

i+1

, i = n − 2, ..., 0 ,

S−

n−1 =
q−
n

σ−
n

,

S−

i =
q−

i+1 + λ−

i+2S
−

i+1

σ−

i+1 − λ−

i+2R
−

i+1

, i = n − 2, ..., 0 .

(29)

Loss of the particles by recombination with cations can be
accounted for in the system of differential equations (27) by
substituting theσ−

i according to

σ−

i → σ−

i + kri

n∑
j=0

[A−

j ] , i = 0, ..., n , (30)

where
∑n

j=0[A
−

j ] is the cation concentration in charge equi-
librium, and thekri the rate coefficients for the recombination
of the A−

i with the cation population. The[A−

i ] in steady
state can then be obtained by iterating the solution (28) and
(29), starting e.g. with[A−

i ]=0∀ i and updating the cluster
concentrations after each iteration. The[A−

i ] after the first
iteration will be identical with the[A−

i ] without recombina-
tion.

7.3 Coupled neutral and negative aerosol

The semi-analytical approach can be used to solve the cou-
pled neutral/negative aerosol scheme in Fig.1 in steady
state at a fixed gas phase concentration of sulfuric acid
[A1]=[H2SO4]. The solutions for the neutral and negative
aerosol schemes are not iterated independently, but alternat-
ingly: The first iteration of the negative solution is applied to
the bottom portion of the scheme, giving the concentrations
of the negative clusters[A−

i ]. With these the production and
loss rates of the neutral clusters Ai are calculated, and the
first iteration of the neutral solution applied to the top part of
the scheme, giving the concentrations[Ai]. These are then
used to calculate the production and loss rates of the A−

i , and
the next iteration of the negative solution is applied to the
bottom of the scheme. Iterating the procedure until a sat-
isfactory degree of convergence is attained yields the cluster
concentrations[Ai] and[A−

i ] in steady state. The neutral and
negative cluster concentrations can then be used to calculate
J (n, p, q, r, s, t, [H2SO4]) from Eqs. (4), (6), and (8).

8 Numerical aerosol model

We use a numerical aerosol model to calculate reference
particle formation rates. The model integrates the system
of differential equations for the concentrations of the neu-
tral and negative aerosol particles Ai=2,...,n and A−

i=0,...,n in
Fig. 1 for a given set of constant parameters (pressurep,
ionization rateq, temperaturet , relative humidityr, preex-
isting aerosol H2SO4 condensational sinks, and gas phase
sulfuric acid concentration[H2SO4]=[A1]) until the time
derivative of the aerosol concentrations falls below a given
threshold. The aerosol concentrations and the formation rate
J (n, p, q, r, s, t, [H2SO4]) are then assumed to be good ap-
proximations of their steady state values. Alternatively, the
model can be run for a given period of time, e.g. 1200 s, a
common time step in large scale atmospheric modeling.

9 Comparison of different particle formation rates

In this section we compare steady state particle forma-
tion ratesJ (n, p, q, r, s, t, [H2SO4]) calculated with differ-
ent methods and using varied assumptions, given in Ta-
ble 1. The comparisons are performed for particle forma-
tion rates exceeding 10−6 cm−3 s−1, as smaller formation
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Table 1. Details of the steady state particle formation rate calculations.

Particle formation rate J1 J2 J3 J4 J5 J6 J7 J8

Solution numerical numerical numerical numerical numerical numerical semi- semi-
integration integration integration integration integration integration analytical analytical

Size of particles super- >2.5 nm super- >2.5 nm super- >2.5 nm super- >2.5 nm
formed critical critical critical critical

Self-coagulation on on off off on on on on

Coagulation with on on on on on on on on
preexisting aerosol

H2SO4 uptake/loss no no no no yes yes yes yes
rate coefficients
parameterized

rates can in general be neglected in the context of atmo-
spheric aerosol formation. The particle formation rates
are sampled on a grid of parameters covering the inter-
vals [2, 35] cm−3 s−1 (ionization rateq), [25, 104]% (rela-
tive humidity r), [0, 0.01] s−1 (preexisting aerosol H2SO4
condensational sinks), [190, 285] K (temperaturet), and
[106, 2×108

] cm−3 (sulfuric acid gas phase concentration
[H2SO4]), with 7 equidistant grid points on each interval.
While this parameter grid covers typical tropospheric condi-
tions, the resulting samples will produce an incomplete pic-
ture of the differences between the particle formation rates:
The extent and resolution of the grid introduce a sampling
uncertainty. Moreover, the deviations between the particle
formation rates are not a representative measure of their per-
formance when used in an atmospheric model, as the joint
probability distribution of the parameters controlling aerosol
formation needs not to be uniform in the atmosphere.

Relative humidities below 25%, sulfuric acid concentra-
tions below 106 cm−3, and temperatures above 285 K were
excluded from the comparison: The numerical model de-
scribed in Sect.8 is unable reach the steady state criterion for
unfavorable combinations of these parameters, when the par-
ticle formation rates are extremely small (�10−6 cm−3 s−1),
possibly due to numerical errors. The pressurep is set
to 1013.25 hPa in all calculations, as the considered parti-
cles are much smaller than the mean free path of gas phase
molecules, and their processes take place in the free molecu-
lar regime, with a negligible pressure dependence.

9.1 Nucleation rate as a surrogate for the formation rate of
particles of a given size

In large scale atmospheric models treating sulfate aerosol,
particle formation rates are usually calculated with nucle-
ation rate parameterizations. The smallest represented par-

ticles in these models (e.g.Lauer et al., 2005; Ma and von
Salzen, 2006) may be larger (2–10 nm) than the neutral criti-
cal cluster, which contains only a few sulfuric acid molecules
in conditions favorable for nucleation. The loss of supercrit-
ical particles smaller than the smallest represented particles
due to coagulation among each other and with larger aerosol
is then neglected, leading to an overestimation of particle for-
mation rates. The resulting errors add to the intrinsic errors
of aerosol nucleation parameterizations, which may exceed a
factor of 2 (Vehkam̈aki et al., 2002; Modgil et al., 2005).

Figure4a compares nucleation rates with formation rates
of particles exceeding 2.5 nm in diameter, and illustrates the
errors which may arise when the aerosol nucleation rate is
used in lieu of the formation rate of larger particles: The
nucleation rates markedly overestimate the>2.5 nm particle
formation rates, in some cases by many orders of magnitude.

A modified approach of calculating the formation rates of
particles exceeding a given diameterD is the scaling of the
nucleation rates with the factor(d ′/D′)3, whered ′ is the di-
ameter of the smallest supercritical particle in given condi-
tions, andD′ the diameter of the smallest particle exceeding
the diameterD. This is equivalent to the assumption that
the particles exceeding the diameterD form solely by co-
agulation, which entails conservation of the total volume of
the particles. In reality, growth by condensation of vapor
molecules contributes significantly to the formation of larger
particles, and the scaled nucleation rates will tend to under-
estimate the formation rates of particles exceeding a given
diameter. This is illustrated in Fig.4b, which compares nu-
cleation rates scaled with(d ′/D′)3 with the formation rates
of particles exceeding 2.5 nm in diameter: The majority of
the scaled nucleation rates underestimate the>2.5 nm parti-
cle formation rates by up to one order of magnitude, while
overestimation occurs in some cases by many orders of mag-
nitude.
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Fig. 4. (a)Comparison of the nucleation rateJ1 with the formation rateJ2 of particles exceeding 2.5 nm in diameter.(b) Comparison of the
nucleation rateJ1, scaled with the factor(d ′/D′)3, with the formation rateJ2 of particles exceeding 2.5 nm in diameter.d ′ is the diameter
of the smallest supercritical particle in given conditions,D′ the diameter of the smallest particle exceeding 2.5 nm. The particle formation
rate calculations are described in more detail in Table1.

In both cases (Figs.4a and b) the largest differences be-
tween the nucleation rate and the> 2.5 nm particle forma-
tion rate occur at the lowest H2SO4 concentrations and at the
lowest temperatures (not shown). This can be explained as
follows: At very low temperatures the neutral critical cluster
contains very few H2SO4 molecules, and even comparably
low H2SO4 concentrations can sustain non-negligible nucle-
ation rates. However, at low H2SO4 concentrations, particles
grow slowly, and a given nucleation rate may result in a much
smaller formation rate of>2.5 nm particles, owing to loss of
particles due to coagulation among each other and with pre-
existing aerosol.

9.2 Self-coagulation and particle formation

Kerminen and Kulmala(2002) have developed an analytical
method to calculate the formation rate of particles of a given
size from the formation rate of particles of a smaller size. The
method accounts for coagulation with preexisting aerosol,
but neglects self-coagulation. Self-coagulation is the coagu-
lation of the forming particles among each other, as opposed
to coagulation with preexisting, typically larger aerosol par-
ticles. Unlike coagulation with preexisting aerosol, self-
coagulation acts not only as a particle sink, but also con-
tributes to the formation of new particles.

Figure5a compares the nucleation rate calculated with and
without self-coagulation of the nucleating particles. 99%
of the nucleation rates calculated without self-coagulation
lie within 29% of the nucleation rates calculated with self-
coagulation. Figure5b shows the errors encountered when
calculating the formation rate of particles exceeding 2.5 nm
in diameter without self-coagulation: Here, 31% of the parti-

cle formation rates calculated without self-coagulation devi-
ate 99% or more from the particle formation rates calculated
with self-coagulation. In both cases the largest deviations
occur at the low end of the considered temperature range
(≤206 K for the nucleation and≤238 K for the>2.5 nm par-
ticle formation rate). Hence neglecting self-coagulation is
a reasonable approximation in the calculation of the steady
state formation rate for small particles or at sufficiently high
temperatures.

9.3 Semi-analytical versus numerical particle formation
rate calculation

Here we compare the particle formation rates calculated with
the semi-analytical method (described in Sect.7) with par-
ticle formation rates calculated with the numerical aerosol
model (described in Sect.8). Both methods employ parame-
terized H2SO4 uptake and loss rate coefficients and average
particle H2O contents (Sect.6). The rate coefficients for co-
agulation of the particles among each other and with preex-
isting aerosol are calculated as described in Sect.4.

Figure 6a shows the relative deviations of the semi-
analytical nucleation rates with respect to the numerical nu-
cleation rates. The deviations are minuscule: The maximum
error amounts to 0.41%. Figure6b shows the relative devi-
ation of the semi-analytical formation rates of particles ex-
ceeding 2.5 nm in diameter with respect to the correspond-
ing numerical particle formation rates. These deviations are
small: The maximum error amounts to 2.0%.

The semi-analytical method is faster than the numerical
model when run for a time period of 1200 s instead into
steady state roughly by a factor of 50 in the case of the
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Fig. 5. (a)Comparison of the nucleation rateJ3, calculated with self-coagulation of the nucleating particles switched off, with the nucleation
rateJ1, calculated with self-coagulation acting both as a particle sink as well as a contribution to the nucleation rate.(b) Comparison of
the formation rateJ4 of particles exceeding 2.5 nm in diameter, calculated with self-coagulation switched off, with the formation rateJ2 of
particles exceeding 2.5 nm in diameter, calculated with self-coagulation acting both as a particle sink as well as a contribution to the particle
formation rate. The particle formation rate calculations are described in more detail in Table1.

10-6 10-4 10-2 100 102 104 106

J5 (cm-3 s-1)

-0.1
0.0

0.1

0.2

0.3

0.4
0.5

(J
7-J

5)/
J 5

 (%
)

(a)

2⋅106 cm-3
3.5⋅107 cm-3
6.8⋅107 cm-3
1⋅108 cm-3
1.3⋅108 cm-3
1.7⋅108 cm-3
2⋅108 cm-3

[H2SO4] :

10-6 10-4 10-2 100 102 104 106

J6 (cm-3 s-1)

-2.0
-1.5

-1.0

-0.5

0.0

0.5

(J
8-J

6)/
J 6

 (%
)

(b)

2⋅106 cm-3
3.5⋅107 cm-3
6.8⋅107 cm-3
1⋅108 cm-3
1.3⋅108 cm-3
1.7⋅108 cm-3
2⋅108 cm-3

[H2SO4] :

Fig. 6. (a) Comparison of the nucleation rateJ7, calculated with our semi-analytical method, with the nucleation rateJ5 calculated with
a numerical aerosol model.(b) Comparison of the formation rateJ8 of aerosol particles exceeding 2.5 nm in diameter, calculated with our
semi-analytical method, with the particle formation rateJ6 of particles exceeding 2.5 nm in diameter, calculated with a numerical aerosol
model. Here, both the semi-analytical method and the numerical model use parameterized rate coefficients for the uptake and loss of H2SO4
by the aerosol particles, as well as parameterized average particle H2O contents. The particle formation rate calculations are described in
more detail in Table1.

>2.5 nm particle formation rates. A further acceleration can
be achieved when requirements on precision are relaxed, e.g.
by reducing the number of iterations in the semi-analytical
method. The time for calculating the rate coefficients has
been excluded from this comparison.

9.4 Semi-analytical particle formation rates using parame-
terized rate coefficients versus numerical particle for-
mation rates using calculated rate coefficients

Here we compare particle formation rates calculated with
the semi-analytical method of Sect.7, using parameterized
H2SO4 uptake and loss rate coefficients and average particle
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Fig. 7. (a)Comparison of the nucleation rateJ7, calculated with our semi-analytical method, with the nucleation rateJ1, calculated with
a numerical aerosol model.(b) Comparison of the formation rateJ8 of aerosol particles exceeding 2.5 nm in diameter, calculated with our
semi-analytical method, with the particle formation rateJ2, calculated with a numerical aerosol model. The semi-analytical method uses
parameterized rate coefficients for the uptake and loss of H2SO4 by the aerosol particles and parameterized average particle H2O contents,
while the numerical model calculates the rate coefficients and average particle H2O contents from scratch. The particle formation rate
calculations are described in more detail in Table1.

H2O contents (Sect.6), with particle formation rates calcu-
lated with the numerical aerosol model described in Sect.8,
which uses H2SO4 uptake and loss rate coefficients and
and average particle H2O contents calculated from scratch
(Sect.4). The rate coefficients for coagulation of the particles
among each other and with preexisting aerosol are calculated
as described in Sect.4 by both methods.

Figure 7a shows the relative deviation of the semi-
analytical nucleation rates with respect to the numerical nu-
cleation rates. The maximum error amounts to 18%. Larger
deviations are possible (but do not appear on the used pa-
rameter grid) when errors in the parameterized rate coeffi-
cients lead to an erroneous determination of the neutral crit-
ical cluster H2SO4 content. Figure7b shows the relative de-
viation of the semi-analytical formation rates of particles ex-
ceeding 2.5 nm in diameter with respect to the corresponding
numerical particle formation rates. Here the maximum error
amounts to 20%. In both cases, the deviations are mainly
due to errors in the parameterization of the rate coefficients
for uptake and loss of H2SO4 by the aerosol particles.

Figure8 shows the cumulative error occurrence (fraction
of errors exceeding a given value) of the semi-analytical par-
ticle formation rates with respect to the numerical particle
formation rates. For both the semi-analytical nucleation rate
and the>2.5 nm particle formation rate the cumulative error
occurrence falls off quickly, signifying the rare occurrence
of large deviations. The cumulative error occurrences are
based on particular samples of particle formation rates, and
are therefore subject to a sampling uncertainty.

The semi-analytical method using parameterized rate co-
efficients and average particle water contents is faster than
the numerical model using rate coefficients and average par-
ticle water contents calculated from scratch when run for a
time period of 1200 s by a factor of several hundred in the
case of the>2.5 nm particle formation rates. A further accel-
eration can be achieved when requirements on precision are
relaxed, e.g. by reducing the number of iterations in the semi-
analytical method, or the maximum order of the Chebyshev
polynomial expansion used in the rate coefficient parameter-
ization.

10 Summary, discussion, and outlook

Secondary aerosol formation can significantly increase the
concentrations of aerosol particles and cloud condensation
nuclei in the atmosphere, and therefore requires dependable
representations in atmospheric models. However, available
representations reproduce aerosol nucleation rates calculated
with detailed numerical models only imprecisely. In addi-
tion, substantial errors, exceeding an order of magnitude in
some cases, can arise when the steady state nucleation rate
is used as a surrogate for the steady state formation rate of
particles of a given size. To overcome these limitations we
have developed a new, semi-analytical method to calculate
secondary aerosol formation rates in steady state. The ad-
vantages of our method are:

– the use of laboratory thermodynamic parameters for the
initial steps of molecular cluster formation from the gas
phase,
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Fig. 8. Cumulative error occurrence (fraction of errors exceeding a given value) of particle formation rates calculated with our semi-analytical
method, relative to the particle formation rates calculated with a numerical aerosol model:(a) nucleation rate,(b) formation rate of particles
exceeding 2.5 nm in diameter. See Table1 for details of the particle formation rate calculations.

– its detailed representation of the physical processes
leading to new aerosol formation,

– its ability to calculate nucleation rates as well as the for-
mation rates of particles of a given size,

– the good agreement of the resulting particle forma-
tion rates with those calculated by a numerical aerosol
model.

Disadvantages of our method include

– its higher complexity compared to aerosol formation
rate parameterizations, resulting in a higher numerical
cost,

– the limited number of aerosol formation mechanisms
accounted for: Potentially important mechanisms such
as ternary nucleation of ammonia, sulfuric acid, and wa-
ter, or nucleation involving organic molecules are not
included.

How do we proceed from here with respect to representing
aerosol formation from the gas phase in atmospheric mod-
eling? Let us muse about possible developments that may
advance the field:

First of all, a procedure for assessing and evaluating the
various available and future aerosol formation representa-
tions needs to be devised. Simply comparing the output of
the different representations is not enough: On the one hand,
none of the methods can be considered a standard a priori.
On the other hand, the flaws in a given representation may
not matter when it is used in an atmospheric model: As an
example, the joint probability distribution of the parameters
controlling aerosol formation needs not to be uniform in the

atmosphere. Then errors of a representation would matter lit-
tle if they were confined to conditions that occur infrequently,
or that contribute little to overall aerosol production. Conse-
quently, assessing and evaluating different implementations
should be done using an atmospheric model and comparing
its output to observations. In this, it should be noted that
large scale models often rely on highly simplified representa-
tions of many processes and have a limited spatial resolution.
Large scale models may therefore produce good results with
a relatively simple but efficient representation of aerosol for-
mation. Smaller scale models, which resolve many processes
in detail and on smaller spatial scales may require more so-
phisticated representations of aerosol formation to produce a
good agreement of model results and observations.

The question when steady state representations of aerosol
formation are indeed applicable should be addressed: Vig-
orous nucleation events for example, such as observed in
the upper troposphere in connection with tropical convection
may not be well captured by steady state methods.

Computer power will continue to grow in the future, and
increasingly detailed atmospheric models will become nu-
merically affordable. This situation will require but also en-
able more complex and detailed representations of secondary
aerosol formation. However, before aerosol formation from
the gas phase can be represented with a molecular size reso-
lution in large scale atmospheric models, the available meth-
ods may have to be further developed. Improvements could
be achieved by identifying better sets of basis functions for
parameterizing particle formation rates, so that more com-
plex yet precise parameterizations could be constructed with
a limited number of terms. In analogy, the method presented
in this work would benefit from efficient basis functions for
the parameterization of the rate coefficients it uses. It could
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also be accelerated by finding algorithms that reduce the
number of iterations required for convergence towards steady
state. Another promising approach for representing aerosol
formation rates that has not been widely explored yet is the
interpolation of lookup tables.

However, the most severe limitation on modeling sec-
ondary aerosol formation in the atmosphere is our lack of
understanding of the processes that lead to the formation
of stable molecular clusters from the gas phase. Labora-
tory studies investigating the structure of such clusters and
measuring their thermodynamic formation parameters have
therefore the greatest potential to advance the field.

11 Conclusions

Secondary aerosol formation can significantly increase con-
centrations of aerosol particles and cloud condensation nu-
clei in the atmosphere, and therefore requires dependable
representations in atmospheric models. However, the avail-
able representations reproduce aerosol nucleation rates cal-
culated with detailed numerical models only imprecisely. In
addition, substantial errors, exceeding an order of magnitude
in some cases, can arise when the steady state nucleation rate
is used as a surrogate for the steady state formation rate of
particles of a given size. To overcome these limitations, we
have developed a semi-analytical method to calculate steady
state formation rates of sulfate aerosol which uses parameter-
ized rate coefficients for sulfuric acid uptake and loss by the
aerosol particles. The method reproduces aerosol formation
rates calculated with a numerical aerosol model better than
other available methods, but is numerically more complex.
The method can calculate the steady state formation rates of
particles of a given size, and therefore supersedes the use of
nucleation rates in lieu of formation rates of larger particles.
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