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Abstract. Particulate pollutant exchanges between the
streets and the Planetary Boundary Layer (PBL), and their
daily evolution linked to human activity were studied in
the framework of the LIdar pour la Surveillance de l’AIR
(LISAIR) experiment. This program lasted from 10 to 30
May 2005. A synergetic approach combining dedicated ac-
tive (lidar) and passive (sunphotometer) remote sensors as
well as ground based in situ instrumentation (nephelometer,
aethalometer and particle sizers) was used to investigate ur-
ban aerosol optical properties within Paris. Aerosol complex
refractive indices were assessed to be 1.56–0.034 i at 355 nm
and 1.59–0.040 i at 532 nm, thus leading to single-scattering
albedo values between 0.80 and 0.88. These retrievals are
consistent with soot components in the aerosol arising from
traffic exhausts indicating that these pollutants have a radia-
tive impact on climate. We also discussed the influence of
relative humidity on aerosol properties. A good agreement
was found between vertical extinction profile derived from
lidar backscattering signal and retrieved from the coupling
between radiosounding and ground in situ measurements.

1 Introduction

It is now clearly recognized that anthropogenic aerosol par-
ticles play a substantial role in the radiative forcing of the
earth’s climate, as they influence the radiation balance of the
Earth, mostly through scattering and absorption processes on
both incoming and outgoing radiation and by acting as cloud
condensation nuclei (e.g. D’Almeida et al., 1991; Ackerman
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and Chung, 1992; Lenoble, 1993; Léon et al., 2002). Nev-
ertheless quantification of aerosol microphysical and optical
properties and their dependency on relative humidity (RH) is
needed to reduce the large associated uncertainty (e.g. Pen-
ner et al., 1994; IPCC, 2001; Carrico et al., 2003). The cor-
rect modelling of radiative forcing by aerosols as well as the
development of aerosol remote sensing techniques require a
full range of observations. They include measurements of
the aerosol chemical composition, number and/or mass size
distribution, and optical properties to retrieve key parameters
such as the spectral dependency of the aerosol complex re-
fractive index (ACRI) (e.g. Sokolik and Toon., 1999; Sokolik
et al., 2001). The determination of ACRI is often provided
from bulk chemical compositions and known values of the
refractive indices of pure compounds (e.g. Ouimette and Fla-
gan, 1982; Hitzenberger and Puxbaum, 1993; Bond et al.,
1998; Chazette and Liousse, 2001). The choice of this tradi-
tional approach is driven by the high dependency of ACRI on
the aerosol chemical composition. Several studies focused
on the determination of ACRI for dusts particles. Volz (1973)
reported his laboratory experiments on bulk dust samples in
the shortwave range and in the infrared spectral region. Pat-
terson et al. (1977) used Saharan dust samples and labora-
tory measurements to produce one of the most widely used
data sets of imaginary part of ACRI for mineral dust in the
range 300–700 nm. Ground based measurements in the spec-
tral range from 0.5 to 1.0µm have also given the imaginary
part of ACRI for desert dust (Sokolik et al., 1993; Carlson
and Caverly, 1977; Tomasi et al., 1983). Marley et al. (2001)
presented preliminary results for carbon soot samples gener-
ated in the laboratory and for standard diesel soot samples
in the UV/visible spectral range. Remote sensing retrievals
have been investigated by numerous authors (Kaufman et
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al., 2001; Dubovik et al., 2002; Sinyuk et al., 2003; Todd
et al, 2005). Ignatov et al. (1995) proposed refractive in-
dex values from a validation using sun photometer measure-
ments off the west coast of North Africa and in the Mediter-
ranean Sea. Moulin et al. (1997) compared Meteosat-derived
(0.7µ m) and sun photometer-derived aerosol optical thick-
nesses to retrieve desert aerosol refractive index. Multiwave-
length backscatter and extinction lidar measurements also
enable to retrieve ACRI: a detailed description of such an
inversion scheme has been given by Müller et al. (1999) and
applied to pollution plumes advected from the European con-
tinent out over the Atlantic Ocean (M̈uller et al., 2002).

On the other hand, pollutants emitted in industrialised re-
gions, particularly due to automobile traffic, are now clearly
recognized as one of the most important source of anthro-
pogenic aerosol particles and megacities emerge as an im-
portant research topic in atmospheric chemistry and effect
on climate. Several experimental campaigns were conducted
to document the atmospheric pollution in urban areas, for in-
stance in Athens (Kambezidis et al., 1995; Durieux et al.,
1998; Eleftheriadis et al., 1998), Los Angeles (Lurmann et
al., 1997), Paris (Menut et al., 2000; Chazette et al., 2005b),
Sao Paulo (Landulfo et al., 2003), Marseilles (Cros et al.,
2004; Cachier et al., 2005). Local experimental studies fo-
cused on the microphysical, chemical and optical aerosol
properties are clearly required to better characterize urban
particles. Except scarce studies, e.g. a partial molar frac-
tion approach (Stelson, 1990), little was known about urban
ACRI. This work therefore focuses on their determination in
the framework of an intensive one-month field campaign.

In this paper we present a retrieval method to infer ur-
ban aerosol optical properties in Paris PBL, particularly the
complex refractive index at 355 and 532 nm. This method-
ology relies on a synergetic approach using in situ and ac-
tive/passive optical measurements. A field campaign has
been used: the Lidar pour la Surveillance de l’AIR (LI-
SAIR) experiment devoted to a better understanding of the
exchanges of particulate pollutants between surface (streets)
and the planetary boundary layer (PBL) took place in Paris
during May 2005.

2 Instrumental set-up

LISAIR experiment was scheduled between 10 and 30 May
2005 and was located in Paris above town hall place. The ge-
ographic location of Paris, far from the coast, with a low to-
pography, and far (about 200 km) from other populated areas,
makes this region an ideal place to study the respective con-
tributions of dynamical and chemical processes to the photo-
chemistry and to identify interactions between dynamics and
air pollution. Two lidar systems were used and in situ in-
struments devoted to aerosol measurements (nephelometer,
particle sizer, aethalometer) were simultaneously operated in
a ground based mobile experimental station.

2.1 Active remote sensing instruments

Two lidar systems were used during LISAIR experiment.
The lidar equation gives the range-corrected signal for the
emitted wavelength as a function of the range, the total
backscatter and extinction coefficients, a constant that char-
acterizes the lidar system, the background sky radiance and
the overlap function (Measures, 1984). The signal in the
upper clear air is normalized on the molecular contribution
that we derived from an ancillary climatic radiosounding
database as in Chazette et al. (1995). The signal is corrected
from the background sky radiance, which is simultaneously
measured with the lidar profile. The overlap factor is a cor-
recting factor for short-range heights where the field of view
of the telescope does not overlap the laser beam. The over-
lap factor is measured as the difference at short range be-
tween the raw lidar measurements and the calculated lidar
signal considering a homogeneous aerosol layer (Sicard et
al., 2002; Chazette, 2003).

The lidar “Lidar pour l’Etude et le Suivi de l’A érosol
Atmosphérique” (LESAA) has been developed by the
Commissariat̀a l’Energie Atomique (CEA) to document the
atmospheric reflectivity at 532 nm in the lower troposphere
over polluted areas. LESAA uses sub-micron aerosols as
a tracer to document the lower troposphere structure with
a vertical resolution of 7.5 m (Chazette et al., 2005a). The
sky background radiance is measured from the lidar signal
at high altitude (45 to 55 km) where the laser beam could be
considered to be negligible. The lidar measurement is asso-
ciated with an overlap factor close to 1 at 200 m above the
ground level (a.g.l.). After correction, we retrieved the lidar
signal until∼50 m a.g.l. within a relative error close to 20%
(Chazette et al., 2005b). Lidar signal is proportional to parti-
cle concentration so that lidar-derived atmospheric backscat-
tering is generally observed to be large in the atmospheric
boundary layer and in elevated aerosol layers inside the free
troposphere (residual aerosol or dust aerosol layers). An ex-
ample of the temporal evolution of LESAA aerosol extinc-
tion coefficient profiles is given on Fig. 1 for the 18 May
2005. The different sources of uncertainty are well described
by Chazette et al. (1995). The mean relative error for the
extinction coefficient is generally less than 10% when the in-
version of lidar profiles is constrained using a sun photometer
(Chazette, 2003) and when the relative humidity stays lower
than 75%, as it was the case here. The PBL height can be also
retrieved from lidar measurements considering the radius of
curvature of the profiles following Menut et al. (1999).

The lidar “Lidar A érosol Ultra-Violet (Aéroporté)”
(LAUV(A)) has been developed by the Commissariatà
l’Energie Atomique (CEA) and the Centre National de la
Recherche Scientifique (CNRS) to follow the aerosol disper-
sion in the street and through the PBL. It is compact, em-
barquable and eye safe and operates at the wavelength of
355 nm with a resolution along the line of sight of 1.5 m.
The lidar is associated with an overlap factor close to 1 at
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100 m a.g.l. Further description of this instrument can be
found on the website: (http://www.leosphere.fr.) It was used
for the first time, in its operational mode during LISAIR ex-
periment. The inversion of the LAUV(A) measurements is
similar to those of LESAA measurements.

2.2 Passive remote sensing instrument

Optical thickness data were obtained from the AErosol
RObotic NETwork (AERONET: http://aeronet.gsfc.nasa.
gov/), from a station based in Pierre et Marie Curie Uni-
versity.The sunphotometerinstrument performs integrated
measurements of solar light extinction to retrieved aerosol
optical properties (optical thickness and ACRI, at several
wavelengths, and Angström exponent) (Holben et al., 1998).
The channels used for this study are centred at 440 nm and
675 nm. The AERONET database gives a maximal absolute
uncertainty of 0.02 for the optical thickness, independent of
the aerosol loading. The optical thicknessτ at the lidar wave-
lengthλ has been assessed using the Angström exponenta
and the aerosol optical thickness at 440 nmτ440 according to
the Angstr̈om relation (Angstr̈om, 1964):

τ = τ440 ·

(
λ

440

)−a

where a =

ln
(

τ675
τ440

)
ln

(
440
675

) (1)

The complex refractive index retrieval, following Dubovik
et al. (2000), can be obtained for aerosol optical thicknesses
larger than 0.4 at 440 nm and is associated with an abso-
lute error of 0.04 for the real part and a relative uncertainty
of about 30% for the imaginary part (strongly absorbing
aerosol). Optical thicknesses observed above Paris are how-
ever generally lower than 0.4 at 440 nm: the accuracy on
complex refractive index is thus not guaranteed. The uncer-
tainty on the Angstr̈om exponent has been shown to be 0.03
for aerosol optical thickness of 0.2 (Hamonou et al., 1999).
Figure 2 shows optical thickness from AERONET data of
level 2 and Angstr̈om exponent used in the following for 18
May .

2.3 In situ measurements

The three-wavelength (450, 550 and 700 nm) nephelome-
ter (manufactured by TSI) was installed onboard the Mobile
Aerosol Station (MAS). It measures the aerosol-scattering
coefficient in a 7–170 ˚ scattering angle range through a
PM10 inlet head. To take into account the non-observed scat-
tering angles, a correction factor has been assessed from Mie
computations to be close to 1.020 for Paris urban aerosols.
This assessment was done using the retrieved aerosol mean
size number distribution and the mean complex refractive
index on the 18 May 2005 (see Sect. 4 and Fig. 4). The
three wavelength instrument scattering chamber was main-
tained at about 35–40% relative humidity (dry aerosol con-
ditions). The mean relative uncertainty on the measurements

Fig. 1. Temporal evolution of the vertical profile of aerosol extinc-
tion coefficient at 532 nm above Paris on 18 May 2005 between
03:00 and 20:00 UTC. The upper part of the figure represents the
corresponding total aerosol optical thickness. Both the PBL and the
residual layer heights are given in a black curve. Daytime evolution
of the BER at 532 nm is given in white.

is less than 10% and mainly due to the variability of the rel-
ative humidity inside the instrument (Bodhaine et al., 1991).
In dry conditions, the relative uncertainty after calibration is
around a few per cent (evaluated from the reproductibility
of laboratory measurements). Angström exponent calculated
from 450 and 550 nm channels is represented on Fig. 2. The
difference observed with the sun photometer is mainly due
to the spectral variability of the absorbing part of aerosols.
Altitude dependence can also explain the different values of
Angstr̈om parameter in Fig. 2 derived from the instruments.

The aethalometer instrument(manufactured by Magee
Scientific Company) permitted the assessment of black car-
bon concentration (BC) within an average time of 2 min. The
atmospheric samplings were performed through a PM10 in-
let head. The instrument, calibrated with a constant value
of 19 m2 g−1, is sensitive to the light absorbent part of the
aerosols (Hansen and Novakov, 1990). This specific cross-
section is established for material trapped on the filter and is
not valid for particles in the ambient atmosphere. Moreover,
an artificial enhancement of the absorption coefficient by a
factor≈2 could be found due to multiple scattering into the
filter fibers (Bodhaine, 1995). During the LISAIR campaign
the aethalometer measurements were calibrated using simul-
taneous black carbon concentration retrieved from coulome-
ter analyses of filter samplings as described in Randriami-
arisoa et al. (2006). According to Fig. 3, the calibration co-
efficient is 1.5, which gives a final specific cross-section of
28.5 m2 g−1. The calibration of the aethalometer instrument
on chemical filters has been carried out for mass concen-
trations averaged over the whole spectrum of aethalometer
wavelengths, i.e. from 370 to 950 nm. Relative uncertainty
on the BC measurements performed with this instrument is
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Fig. 2. Temporal evolution of aerosol properties retrieved from both AERONET and nephelometer data in Paris on 18 May 2005. On the
top (a), evolution of optical thickness at 355 nm and 532 nm. On the bottom(b), evolution of the Angstr̈om exponent using 440 and 675 nm
channels. Angström exponent deduced from nephelometer measurements is also represented. Vertical bars (b) indicate the standard deviation
on hourly averaged data.

Fig. 3. Calibration curve of black carbon concentration measured
by aethalometer (BCa) against the black carbon concentration mea-
sured on filters (BCf ). Vertical bars indicate standard deviations on
aethalometer measurements. The correlation ratio of this fitting is
close to 0.96 for a linear law given by BCa=1.5 BCf + 0.54.

close to 10% (Chazette et al., 2003). According to Bond et
al. (1999), the instrument is found to interpret about 2% of
the scattering as absorption; the measured absorption is about
22% higher than the reference absorption. This correction
has been taken into account in this paper.

The Electrical Low Pressure Impactor (ELPI) is a real-
time particle size spectrometer designed at the Tampere Uni-
versity of Technology (Delkati, Ltd., (http://www.dekati.
com/elpi.shtml) for real-time monitoring of aerosol particle
size distribution (Keskinen et al., 1992). The ELPI measures
airborne particle size distribution in the size range from 0.028

to 10.03µm within 12 channels. The principle is based on
charging, inertial classification, and electrical detection of
the aerosol particles. The instrument consists primarily of
a corona charger, low pressure cascade impactor and multi-
channel electrometer. It is used to retrieve the aerosol num-
ber size distribution at the surface level. The accuracy on
the aerosol number concentration measurement is about 5%,
following manufacturer user manual.

3 Backscatter-to-extinction ratio retrieval

This part describes the contribution of our observations to a
synergy between lidar, sun photometer and in situ measure-
ments to retrieve the aerosol optical properties: scattering
and extinction coefficients, ACRI, single-scattering albedo
and backscatter-to-extinction ratio (BER), inverse of the so
called lidar ratio. The procedure we used is shown on Fig. 4
and fully described below.

Lidar data have been inverted using a well-known method,
based on Bernoulli’s differential form of the propagation
equation (Klett, 1981). The backscatter lidar equation is un-
derdetermined due to its dependence on the two unknowns,
backscatter coefficient and extinction coefficient (e.g. Klett,
1981, 1985; Hughes et al., 1985; Sasano et al., 1985; Bis-
sonnette, 1986; Kovalev, 1993; Chazette et al., 1995). Sun
photometer measurements were then used to constrain the
lidar inversion. It was thus possible to determine an equiv-
alent BER of the entire aerosol vertical column with an it-
erative procedure (Chazette, 2003), while varying BER be-
tween 0.005 and 0.055 sr−1, which includes the most prob-
able values for aerosols in an urban area. This procedure is
considered convergent when the variation between sun pho-
tometer and lidar derived aerosol optical thicknesses is lower
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Figure 4: Schema of the synergetic approach to retrieved aerosol optical properties: 

backscatter-to-extinction ratio BER (a), complex refractive index (real rn  (b) and imaginary 

in  parts), single-scattering albedo 0ω  from optical thicknesses ( photτ  for sunphotometer and 

lidarτ  for lidar , integrating extinction coefficient ( )zextα ), number size distribution ( )rρ  and 

scattering-cross section scatσ . Scattering cross-section is the ratio between scattering 

coefficient scatα , obtained from nephelometer scattering coefficient nephα  and phase function 
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Fig. 4. Schema of the synergetic approach to retrieved aerosol optical properties: backscatter-to-extinction ratio BER(a), complex refractive
index (realnr (b) and imaginaryni parts), single-scattering albedoω0 from optical thicknesses (τphot for sunphotometer andτlidar for
lidar , integrating extinction coefficientαext (z)), number size distributionρ (r) and scattering-cross sectionσscat . Scattering cross-section
is the ratio between scattering coefficientαscat , obtained from nephelometer scattering coefficientαneph and phase functionP (θ), and the
total number of particlesNtot .

than 10−4 (Fig. 4). The result is not dependant of this ini-
tial value chosen to be 0.014 sr−1. The iterative method
is determined by a dichotomist approach where BER is in-
creased (decreased) if the lidar-derived optical thickness is
larger (lower) than the sun photometer-derived optical thick-
ness (see Fig. 4a).

The histogram of the aerosol backscatter-to-extinction ra-
tio assessed from daytime lidar measurements is reported in
Fig. 5. Optical thickness values used to constrain each li-
dar profile inversion have been averaged on a one-hour ba-
sis. BER values are distributed following an almost Gaus-
sian curve. The mean value calculated for the significant
values (low rate of relative humidity) of BER is close to
0.014 sr−1 (respectively 0.012 sr−1) with a standard devia-
tion of 0.002 sr−1 (respectively 0.003 sr−1) at 532 nm (re-
spectively 355 nm). The BER temporal evolution at 532 nm
is also given in Fig. 1 and its variability can be likely ascribed
to convective movements in the PBL whose oscillations stem
from thermal phenomena. Figure 6 gives the hourly average
of the BER at 355 and 532 nm retrieved from the synergy
between lidar and sunphotometer, and from the sunphotome-
ter alone on 18 May. Uncertainties on BER retrieval will be
discussed in Sect. 5.

According to other measurements reported in literature,
BER values lie between 0.010 and 0.018 sr−1 in a polluted
boundary layer over Leipzig in Germany and between 0.014
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Figure 5: Histogram of the aerosol backscatter-to-extinction ratio (BER) assessed from the 

synergy between lidar and sunphotometer measurements at 355 nm on May 18, 2005. 
Fig. 5. Histogram of the aerosol backscatter-to-extinction ratio
(BER) assessed from the synergy between lidar and sunphotome-
ter measurements at 355 nm on 18 May 2005.

and 0.030 sr−1 in the polluted centre of the United States.
Those results are referred by Anderson (2000). Cattrall et
al. (2005) employed ground based retrievals of aerosol prop-
erties from the global aerosol network AERONET for sev-
eral urban and industrial locations and found lidar ratios
(1/BER) at 550 nm: 74 sr in Aire Adour (France), 74 sr in

www.atmos-chem-phys.net/7/2797/2007/ Atmos. Chem. Phys., 7, 2797–2815, 2007



2802 J.-C. Raut and P. Chazette: Retrieval of urban aerosol complex refractive index

Table 1. Mean complex refractive index determined on the ground and with AERONET station in Paris. The temporal variability is given
under brackets and the uncertainties under parenthesis. Both have been calculated as standard deviations.

Wavelength Real part of index Imaginary part of index Single-scattering albedo

355 nm 1.561 (0.017)
{0.111}

0.028 (0.009)
{0.013}

0.879 (0.036)
{0.063}

532 nm 1.587 (0.009)
{0.112}

0.044 (0.004)
{0.026}

0.797 (0.015)
{0.097}

441 nm (Aeronet) 1.424 (0.04)
{0.099}

0.041 (0.012)
{0.026}

0.774 (0.030)
{0.072}

673 nm (Aeronet) 1.397 (0.04)
{0.055}

0.036 (0.010)
{(0.022}

0.739 (0.030)
{0.081}

Fig. 6. Daytime evolution of BER on 18 May retrieved from the synergy between lidar and sun photometer at 355 nm (left) and 532 nm
(right) and from AERONET data (channels 441 nm and 673 nm) using Mie calculation based on AERONET size distribution and complex
refractive index given in Table 1. Vertical bars are the standard deviation on hourly averaged data.

Créteil (France), 76 sr in Lille (France), 72 sr in GISS (USA),
73 sr in GSFC (USA) and 70 sr in Mexico City (Mexico).
These values are in very good agreement with our lidar ra-
tio at 532 nm (71 sr). A BER close to 0.014 sr−1 for anthro-
pogenic aerosols at 532 nm as retrieved in our study, reminds
the presence of a predominant fine mode in size distribution
mainly due to automobile traffic sources. This BER is consis-
tent with the value of about 0.014 sr−1 found in Paris area at
532 nm within the framework of the ESQUIF program where
airborne lidar measurements were performed (Chazette et al.,
2005b). The BER value associated to prevailing automobile
traffic pollution is in the range 0.013–0.018 sr−1 as shown by
Chazette et al. (2002) from summertime measurements over
Paris. It mainly corresponds to aerosols constituted of car-
bonaceous core coated with non-absorbent material.

4 Aerosol complex refractive index (ACRI) and single-
scattering albedo retrievals

Despite its relative importance, there have been only a few
attempts to estimate ACRI from aerosol optical properties.
Takamura et al. (1994) obtained an estimate of the imagi-
nary part for tropospheric aerosols after assuming a real part,
whereas Ferrare et al. (1998) focused on the retrieval of the
real part of ACRI from a combination of scanning Raman
lidar with simultaneous airborne aerosol in situ distribution
measurements. In the following we present our approach to
retrieve the ACRI using the synergy between remote sensing
and in situ measurements.

4.1 Real part of the refractive index

The real part of ACRI has been assessed using both in situ
particle sizer and nephelometer measurements. We have used
the nephelometer measurements at 450 and 550 nm to re-
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trieve the scattering coefficient at the lidar wavelength of 355
and 532 nm following the Angström law. Various real parts
nr between 1.3 and 1.9 and imaginary partsni between 10−8

and 0.2 have been considered as input values of a look-up
table. This table contains scattering cross-sections deduced
from Mie theory that will be compared to the measured cross-
section, as described on Fig. 4. Calculations have been per-
formed considering spherical aerosols. Such an aspect could
be validated when regarding the lidar depolarized ratio that
has been found to be close to 4% in the PBL. The lognor-
mal aerosol size distribution has been fitted using an ap-
proach well described in Randriamiarisoa et al. (2006) from
the measurements of the particles sizers. Mainly a bimodal
size distribution has been retrieved including the nucleation
and accumulation modes. The contribution of a coarse mode
was not significantly observed. We neglected the nucleation
mode in optical computations since its contribution to scat-
tering efficiency is smaller than 5%, which is lower than un-
certainties calculated on scattering-cross sections (Chazette
et al., 2005b). An example of the comparison between the
look-up table and the aerosol cross-section derived from the
measurements is given in Fig. 7 for 18 May between 12:00
and 13:00 UTC for the lidar wavelength of 532 nm. Note that
18 May is representative of the mean daily conditions of the
LISAIR campaign. In the likely range of the imaginary part
of the complex refractive index (between 10−8 and 5.10−2),
the real part can be assessed to be close to 1.533 with a stan-
dard deviation of∼0.008. Indeed, the observed dispersion
is very weak for imaginary parts lower than 0.05, which is
a plausible domain for anthropogenic aerosols from automo-
bile traffic (Chazette et al., 2005b). Such an approach has
been generalized to follow the temporal evolution of the real
part of ACRI for 18 May given in Fig. 8.

4.2 Imaginary part of the refractive index and single-
scattering albedo

The determination of the imaginary part of ACRI and the
single-scattering albedo relies on a comparison between the
previous BER used to invert lidar data and different values
of BER calculated from size distribution with the real part
retrieved from the look-up table (Fig. 9). This comparison
requires a second use of Mie model (Fig. 4). The repre-
sentativeness of in situ measurements of the aerosol aloft is
ensured if the relative humidity does not significantly vary
between the surface layer and the mixed layer: the humid-
ity rate is low on the surface (≈ 28%) and following the ra-
diosoundings of Trappes (located at the Southwestern part of
Paris suburb) does not exceed 60 % on the top of the bound-
ary layer. From lidar measurements, neither clouds nor dust
layers have been observed over the PBL on 18 May 2005.

As a result on 18 May between 12:00 and 13:00 UTC, the
imaginary part of the complex refractive index has been as-
sessed to be 0.032±0.003, and the single-scattering albedo is
0.82±0.01. The temporal evolution of the imaginary part of

Fig. 7. Aerosol scattering cross-sections calculated for various real
and imaginary parts of the complex refractive index (colour bar as-
sociated to the look-up table) at the wavelength of 532 nm. The
mean value of the scattering cross section retrieved from in situ
measurements (3.37 10−11cm2) is also given in white for 18 May
between 12:00 and 13:00 UTC.

ACRI is also given in Fig. 10. The associated single scatter-
ing albedos are given in Fig. 11. The single scattering albedo
generally decreases when the wavelength increases for pollu-
tion aerosols as shown by Randriamiarisoa et al. (2004), with
mean values of 0.88 at 355 nm and 0.80 at 532 nm (Table 1).

Aethalometer measurements can besides enable to inde-
pendently assess the mean value of the ACRI imaginary part
considering real parts calculated in the previous section. A
closure study, based on a comparison between the specific
absorption cross-section computed on the one hand through
a Mie model and given on the other hand by the aethalome-
ter (28.5 m2 g−1, Sect. 2.3), has been performed. The lat-
ter can be considered as an equivalent specific cross-section
for the equivalent wavelength of the aethalometer, which is
about 550 nm. The imaginary part retrieved from this ap-
proach (0.055±0.004) is found in accordance with results
given in Table 1 at 532 nm considering the natural variability
of ACRI imaginary part (Fig. 10). This high value is how-
ever very close to maximum values obtained in the synergy
presented in this article. No variability has been observed in
retrievals on average using aethalometer (see Fig. 3). Due to
calibration issues and problems regarding the overestimation
of absorption by parasitic scattering effects and the spectral
dependency, high uncertainties are expected when determin-
ing the imaginary part of ACRI by aethalometer.

4.3 Discussion

The AERONET website has provided data over Paris in May
2005 for ACRI. Averages and standard deviations are given
in Table 1. Retrievals at the lidar wavelength of 355 and
532 nm have been compared to the real part of ACRI ob-
tained from AERONET database (Fig. 8).nr does not signif-
icantly vary with the wavelength according to Table 2, where
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Fig. 8. Daytime evolution of the real part of ACRI (nr ) retrieved from the synergy between lidar, sun photometer and in-situ instruments at
355 nm (left) and 532 nm (right) and from AERONET data (channels 441 nm and 673 nm). Vertical bars are the standard deviation on hourly
averaged data.

Table 2. Real aerosol refractive index determined on the ground
level for different periods on 18 May 2005. The error on the resti-
tution of these values is 0.01.

Wavelength 05:00–06:00 12:00–13:00 15:00–16:00

450 nm 1.52 1.45 1.57
550 nm 1.54 1.46 1.58
700 nm 1.61 1.49 1.64

real parts have been calculated for the three wavelengths of
the nephelometer: 450, 550 and 700 nm for different peri-
ods. nr values provided by AERONET are markedly lower
(<1.43) than our results, and depart farther from data in the
reported literature (1.5–1.6). In addition, a higher value for
the real part is more common in the previous literature for
ambient soot, a crucial component of urban aerosols influ-
encing the real part of the total refractive index: a value of
1.75 is reported by d’Almeida et al. (1991) and 1.95 by Ack-
erman and Toon (1981) and Faxvog and Roessler (1978).
The discrepancy between our result and that of AERONET
is important before 09:00 UTC and after 14:00 UTC. The
discrepancy is larger for the imaginary part (Fig. 10) in the
same temporal period than for the real part. Nevertheless, the
assessments at the lidar wavelength of 532 nm seem to be in
a better agreement, with close average values in the visible
spectral range (Table 1).

The previous difference observed comparing to
AERONET data may be due to the fact that AERONET re-
trieval algorithm characterizes the column aerosol properties
using a fixed effective ACRI (Dubovik et al., 2002), i.e. the

Fig. 9. Imaginary part of the complex refractive index at 532 nm
retrieved from a mean value of BER between 12:00 and 13:00 UTC
on 18 May. The gray band wrapping the curve represents the uncer-
tainty on the retrieved value.

refractive index that would provide the same radiance on the
basis of particle size distribution for homogeneous, spherical
aerosols. Obviously, the ACRI derived from AERONET
are averaged through PBL and are therefore lower than
ACRI retrieved from in situ measurements that deal with
ground level measurements. This effective complex index of
refraction does not refer to any specific aerosol type but is
suitable to quantify the composite radiative properties of all
aerosols in an atmospheric column. Aerosols in urban areas
are however complex and are generally a mixture of several
chemical components including organic carbon, soot, water
soluble, dust and sea salt (e.g. Higurashi and Nakajima,
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Fig. 10. Daytime evolution ofni retrieved from the synergy between lidar, sun photometer and in-situ instruments at 355 nm (left) and
532 nm (right) and from AERONET data (channels 441 nm and 673 nm). Vertical bars are the standard deviation on hourly averaged data.

Fig. 11. Daytime evolution of single-scattering albedo on 18 May retrieved from the synergy between lidar and sun photometer at 355 nm
(left) and 532 nm (right) and from AERONET data (channels 441 nm and 673 nm) using Mie calculation based on AERONET size distribution
and complex refractive index given in Table 1. Vertical bars are the standard deviation on hourly averaged data.

2002). Depending on the chemical compositions of aerosols,
the ACRI is highly variable (d’Almeida et al., 1991). The
accuracy of AERONET is, moreover, not guaranteed in
this case since optical thicknesses are too low; version 2
derived inversion data need to be processed with a modified
algorithm.

In addition, ACRI determined in this study are coherent
to those retrieved by other authors. For instance, Kent et
al. (1983) concluded 1.60–0.15 i for urban aerosols. Most
traditional studies based on bulk chemical analyses turned
out to be reasonable approaches for approximation of the real
part of the particle refractive index (1.5–1.6), but large differ-

ences in reported imaginary parts, e.g. from 0.0007 to 0.0015
for desert dust and oceanic aerosols, exist even for the same
type of aerosol (d’Almeida, 1987; Sokolik et al., 1993; Kauf-
man et al,. 2001; Wang et al., 2003). The corresponding
values for calculation of the imaginary part are not as well
known as their real counterparts. On the other hand, compar-
ison with imaginary parts introduced in models may be am-
biguous since the measured values depart farther from calcu-
lated values if the chemical composition consists of mixtures
that are internal rather than external (Liousse et al. 1993).
A good agreement is also found with Ebert et al. (2004).
Thanks to his chemical analyses he found that urban influ-
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Fig. 12. Histogram of the aerosol backscatter-to-extinction ratio
(BER) retrieved from a Monte-Carlo method at 532 nm for the mean
lidar profile on 18 May between 12:00 and 13:00 UTC.

enced air masses are characterized by high real (1.60–1.73)
and imaginary parts (0.034–0.086) of the total ACRI. Ebert
et al. (2004) suggested that high real parts of polluted air
masses are predominantly caused by the high abundance of
metal oxide/hydroxide particles, the high imaginary parts by
high abundances of soot.

AERONET single-scattering albedo around 0.75 is low
compared with other results (Kilsby and Smith, 1987;
Moores, 1982; Kitchen and Squires, 1984): their results were
over 0.8. However a Mie computation using the ACRI re-
trieved from this work on the ground level and AERONET
number size distribution (Fig. 11) gives a single-scattering
albedo coherent with our value determined on the ground
(0.80–0.88). The ranges found in this present study with their
relative errors therefore include the values deduced from
AERONET size distribution at 355 and 532 nm. The agree-
ment between our result on single-scattering albedo and the
AERONET retrieval is of course better for the lidar visi-
ble wavelength of 532 nm. Note that for the assessment of
the optical thickness at 355 nm we have supposed that the
Angstr̈om exponent is constant between the visible domain
and this wavelength. This may affect our result because
Mie calculation shows a value of∼25% less between the
wavelength couple of (441, 673) and (355, 532) nm using
the aerosol model retrieved at the ground level. Then, the
ACRI at 355 nm may be underestimated. Mallet et al. (2003)
found 0.85±0.5 in South of France during Escompte cam-
paign, Bergin et al. (2001) reported 0.81 on Beijing. Our
results are also in very good agreement with Baumgardner
et al. (2000) who carried out a recent study in Mexico-City
using nephelometer and aethalometer indicating a value be-
tween 0.8 and 0.88. During the ESQUIF program in July
2000, Chazette et al. (2005b) found a single scattering albedo
at 550 nm exhibiting a mean value ranging from 0.85 to
0.92. This value was close to the mean AERONET value
of 0.87±0.068.

Following the work of Chazette et al. (2005a), we
have also used the synergy between in situ and li-
dar/sunphotometer measurements in the framework of the
Pollution dans les Vallées Alpines (POVA) experiment that
took place in the alpine valleys of Chamonix in summer
2003. The same in situ and remote sensing measurements
were performed during this campaign. The main aerosol
sources are similar as Paris traffic ones. Calculations have
given 1.48±0.05 and 0.042±0.01 for the real and the imag-
inary parts of the aerosol complex refractive index, respec-
tively. The single scattering albedo has been found between
0.75 and 0.85. These findings are consistent with carbona-
ceous (soot) components in the aerosol which is a very strong
absorber of solar radiation, arising from vehicle exhausts due
to the heavy traffic around the city.

5 Sensitivity study

The uncertainties on both the ACRI and the single-scattering
albedo are mainly due to those on both BER and on scatter-
ing cross-section. The relative uncertainty on the scattering
cross-section depends on the statistical fluctuation of num-
ber size distribution and scattering coefficient measured by
the nephelometer. It has been found to be close to 10%.

The uncertainty on BER retrieval has been characterized
by the resulting bias and standard deviations on both the
lidar-retrieved extinction coefficient and the sun photometer
optical thickness. Errors related to lidar signal are negligible
versus other errors because about 20 000 profiles are aver-
aged during an hour. The molecular model has been consid-
ered as inducing a relative uncertainty of 2% on the molecu-
lar backscatter coefficient. The bias and the standard devia-
tions on the BER have been calculated using a Monte Carlo
procedure illustrated in Fig. 4 as in the work of Chazette et
al. (2002). They have been obtained from 400 random real-
izations for each error source, which thus ensures a normal
distribution around the mean value. The uncertaintyσ (τ) on
the reference optical thickness valueτ at wavelengthλ has
been calculated using the following equation:

σ (τ) =τ ·


σ (τ1)

τ1
·

1+

ln
(

λ1
λ

)
ln

(
λ2
λ1

)
2

+

σ (τ2)

τ2
·

ln
(

λ1
λ

)
ln

(
λ2
λ1

)
2

1/2

(2)

whereσ (τi) (i=1;2) is the uncertainty on AERONET optical
thicknessτi at wavelengthλi(440 or 675 nm). This equation
can be written since error sources are independent thanks
to the different filter channels of the sun photometer. The
AERONET database gives a maximal absolute uncertainty
of 0.02 for the optical thickness and forn independent sun-
photometer measurements the uncertainty is then given by

σ (τi) =
0.02
√

n
. (3)

The resulting histogram of the 400 retrieved values of BER
is given on Fig. 12 for the LESAA mean profiles between
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Fig. 13.Evolution of both the real and the imaginary part of ACRI at 532 nm as functions of the relative humidity (RH) based on observation
performed between 12:00 and 13:00 UTC on 18 May . The dashed line represents the Hänel parametrisation curve and the filled circle shows
the value retrieved on the surface level. The shaded area corresponds to the uncertainties linked to the error on ground computation and on
RH.

12:00 and 13:00 UTC (Fig. 1). This procedure gives similar
results for the other periods and leads to a standard devia-
tion of BER as equal to 3.10−4 sr−1 (1.2 10−3 sr−1), at 532
(355) nm with a positive bias less than 3.10−5 (2 10−4) sr−1.

The resulting total uncertainties onnr , ni and ω0 have
been given in Table 1. As an illustration, the shaded area on
Fig. 9 represents the calculated uncertaintyni as a function
of the uncertainty on BER. Following the uncertainty study,
the diurnal variability of the previous retrievals appears to be
significant and may be due to the evolution of the aerosol
chemistry and size distribution during the day.

6 Water vapor effect

6.1 Parameterisation

The increase in light-scattering by aerosols with RH at a spe-
cific wavelength has been considered to be an important pa-
rameter to estimate aerosol radiative forcing (Charlson et al.,
1992; IPCC, 2001) and to understand the cause of visibil-
ity degradation due to aerosols (White and Roberts, 1977;
Tang et al., 1981; Malm et al., 2003). As the relative humid-
ity increases, condensation of water vapor may take place on
the aerosol scatterers depending on their chemical composi-
tion (e.g. Tang and Munkelwitz, 1993). This phenomenon
leads to an increase of the size of the particles (hygroscopic
growth of aerosols). Apart from the change in size, hygro-
scopic aerosols experience a change in their refractive index
and in several key optical properties (scattering and absorp-
tion coefficients, single scattering albedo, asymmetry param-
eter, and aerosol optical depth) that are relevant to aerosol

radiative forcing estimates. When using lidar to remotely
sense properties in the boundary layer, an accurate descrip-
tion of this effect becomes important where RH experiences
a significant diurnal cycle. On a short time scale, significant
changes in the lidar backscattering can be observed during
the morning or evening transitions due to rapid changes in
the boundary layer RH. This effect can lead to ambiguous
interpretation of lidar backscatter data. An increase in static
stability (less turbulent mixing) in the lower atmosphere or a
modification of the emissions leading to changes in aerosol
concentration can not be differentiated from an increase in
the measured backscatter coefficient due to RH effect with-
out an appropriate knowledge of the hygroscopic growth of
the aerosols present over the lidar station.

To model the effect of water vapor on hydrophilic aerosols,
we used the following relationships set up by Hänel (1976),
describing aerosol growth and giving particle radius and re-
fractive index for wet particles:

rw = r · (1 − RH)−ε (4)

nw = nH2O +
(
n − nH2O

)
·

( rw

r

)−3
(5)

The suffixw refers to wet conditions and RH is the relative
humidity. r andn are the radius and the refractive index of
aerosol particles, respectively, andnH2O is the refractive in-
dex of pure water. The coefficientε depends on the consid-
ered type of aerosol and is taken as 0.26 according to Ran-
driamiarisoa et al. (2006) over Paris. Figure 13 gives the
evolution ofnr andni as a function of RH starting from our
ground computation at RH=28%. Given that the real part of
the refractive index of pure water (1.33) is lower than the one
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Fig. 14. Aerosol extinction cross section against the relative hu-
midity (RH) based on observation performed between 12:00 and
13:00 UTC on 18 May. Colored solid lines represent the Hänel
parametrisation curves with different scattering growth coefficients
γe, whereas the dashed line shows the evolution of the cross section
as calculated with Mie model and a size growth coefficient of 0.26.
The shaded area corresponds to the uncertainties.

associated to dry particles or measured on the ground and
its imaginary part is almost zero (10−8), nr andni tend to
decrease as the water uptake by the particles gets more and
more important. Ḧanel (1976) also proposed a parametri-
sation of the scattering growth factor. It has been used by
many investigators (Covert et al., 1972; Boucher and An-
derson, 1995; Ross and Hobbs, 1998; Kotchenruther et al.,
1999; Gasso et al., 2000; Randriamiarisoa et al., 2006) and
is generally applied to the increasing part of the hysterisis
cycle:

σscatt(RH)

σscatt(RHref)
=

(
(1 − RH)

(1 − RHref)

)−γ

(6)

whereσscatt is the scattering cross-section andγ is the scat-
tering growth coefficient. Gasso et al. (2000) reportedγ

between 0.27 and 0.6, Randriamiarisoa et al. (2006) found
values between 0.47 and 1.35 for urban aerosols over Paris.
In this study, an equivalent parameterisation focusing on ex-
tinction cross-sections has been used with an appropriate co-
efficient γe. A comparison between a computation of the
previous equation and a Mie model using size distribution
and refractive index with the associated size growth coeffi-
cientε=0.26 enabled to retrieveγe. A Monte-Carlo method
has been applied to assess the uncertainties considering the
variations of 3 parameters: size distribution, complex refrac-
tive index and humidity rate whose absolute error is about
0.5%. As shown in Fig. 14, the most convenient value forγe

is 0.55±0.05 in the RH range [50%–85%]. This result is in
agreement with values reported in the literature. Graphs of
BER andω0 are also given in Fig. 15. These results are in
agreement with experimental results obtained on the ground
with RH=28% and presented in Fig. 6. Consequently, sig-

nificant variations in the lidar backscatter signal are expected
when the hygroscopic growth of aerosols is pronounced.

6.2 Application to the PBL

Thanks to radiosounding data obtained in Trappes (48◦46 N,
2◦ E), we try to understand to what extent relative humidity
(RH) might influence the lidar-retrieved aerosol extinction
coefficient.

Assuming a vertically homogeneous aerosol composition,
optical properties obtained on 18 May have been used to sim-
ulate vertical extinction profiles for days where lidar pro-
files were simultaneously available (Figs. 16 and 17). The
decreasing values ofnr and ni with increasing RH would
suggest a decrease in aerosol backscattering and absorption.
But the size dependence dominates, leading to an increase in
backscattering as RH increases: variations in refractive in-
dex are not large enough to counteract the r2 dependence of
the variation in particles’s cross-section due to size increase.
Uncertainties on the simulated extinction profiles have been
determined thanks to the corresponding uncertainties onγe

(Monte-Carlo approach in Sect. 6.1) and are represented by
horizontal bars on Figs. 16 and 17. These bars are included
in shaded areas standing for the variability of lidar-derived
extinction profiles averaged over the corresponding day. A
good agreement is found between lidar profiles and extinc-
tion profiles calculated withγe coefficient. It is thus note-
worthy that the hypothesis linking the vertical variability of
extinction to RH in the atmospheric column is quite reliable.
According to Fig. 16, modifications in the aerosol extinc-
tion coefficient are thus mainly due to RH effect rather than
changes in aerosol concentration. On the 18 May (Fig. 16c),
the constant BER hypothesis we made is justified because
RH does not reach the deliquescence threshold in the column
(RH<60%). However, the shape of aerosol extinction pro-
files is not always perfectly reproduced despite the satisfying
overlapping between error bars and the lidar profile tempo-
ral variability. Hence, slight modifications in lidar profiles on
the 26 May (Fig. 17b) cannot be precisely observed when the
relative humidity is about constant in the PBL. The strongest
divergence is observed on the 27 May (Fig. 17c) when a dust
episode occurred. The accordance between profiles is fine
except in the dust layer between 2.3 km and 3.2 km where
the constant BER assumption in the atmospheric column is
no longer valid. Variations in the atmospheric column for
27 May can be mainly ascribed to modifications in aerosol
properties and concentration owing to air masses advection
carrying dusts. The most important error bars observed on
Fig. 17a are mainly due to the high variability of aerosol
number concentration for the 25 May.

An altitude-dependent BER would have been particularly
appreciated in this study but the lack of a Raman lidar leads
us to suppose a constant BER in the atmospheric column.
This hypothesis is not however to be discarded since simu-
lated extinction profiles are in agreement with lidar-derived
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Fig. 15. Evolution of BER (left) andω0(right) with increasing relative humidity (RH) at 532 nm(a) and 355 nm(b). The dashed line
represents Mie model computation with aerosol ground size distribution, complex refractive index and a size growth coefficient of 0.26. The
filled circle shows the value retrieved on the surface for measurements obtained between 12:00 and 13:00 UTC on 18 May. The vertical bars
represent the standard deviation associated with surface measurements in the same period.

extinction coefficient profiles. Flamant et al. (2000) assessed
uncertainties in the BER profile on the error in the extinction
profile. They derived the particulate BER from modal di-
ameters and refractive indices in literature introducing them
into a Mie code. They showed that errors on lidar-derived ex-
tinction coefficient values throughout the lower troposphere
are mainly due to the error on the reference extinction co-
efficient (about 20%) rather than the error on BER profile
(about 5% in the plume). Furthermore, BER does not rapidly
evolve with increasing RH. Calculations of the relative varia-
tion BER as a function of RH have been performed at 355 nm

for RH comprised between 30% and 80%. In this range, BER
shows variations lower than 10%.

On the other hand the same method has been applied
with AERONET-retrieved aerosol size distribution associ-
ated withε=0.26. Similar extinction profiles have been com-
puted according to RH profile and starting from a relative
humidity equivalent value RHeq given by
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Fig. 16. Profiles of the aerosol extinction coefficient obtained between 12:00 and 13:00 UTC by lidar (red), ground size distribution (black)
and Aeronet size distribution (green). Colored solid lines represent the mean profile obtained during the period and shaded areas or horizontal
lines show their respective standard deviation. The mean extinction value retrieved on the ground level is given with a circle and its standard
deviation with a horizontal bar. From left to right and top to bottom: 10 May at 532 nm(a), 12 May at 532 nm(b), 18 May at 532 nm(c), 22
May at 532 nm(d).

RHeq =

PBLtop∫
0

RH(z) · α (z) dz

PBLtop∫
0

α (z) dz

, (7)

which AERONET ACRI and size distribution have been de-
termined with.

The profiles calculated from AERONET data cannot con-
verge towards lidar-derived vertical extinction and the cor-
responding uncertainties lie apart from lidar variability. A
likely influence of size distribution on scattering cross-
sections has to be investigated to explain such divergent re-
sults with AERONET data.

Hence, we performed a sensitivity analysis on AERONET
size distribution so as to compare and discuss our results.
Starting from volume concentration values in each size bin,
we have converted the size distributiondV

d ln r
given by Al-

mucantar inversion in log-normal modes leading to the de-

termination of number size distribution parameters (Sein-
feld and Pandis, 1998). Large differences are observed be-
tween size distributions obtained on the ground level and
from AERONET retrieval. Such discrepancies on size dis-
tribution yield divergent optical efficiencies. On the ground
level, the accumulation mode centered at 0.1µm, represent-
ing only 8% of the total number of particles, is responsi-
ble for the extinction efficiency by 90%. The accumula-
tion mode with a modal radius close to 0.1µm is highly
predominant with Almucantar retrieval (80% of optical ef-
ficiency), which does not seem able to manage the detection
of very small particles with a radius lower than 50 nm. Be-
sides almost all aerosols measured in the atmospheric col-
umn seem to be shift towards the accumulation mode: this
mode contains indeed 98% of the total number of particles.
Conversely, no coarse mode was observed from in situ mea-
surements at the ground level. Coarse mode in AERONET
case is notwithstanding responsible for 20% of the aerosol
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Fig. 17.Profiles of the aerosol extinction coefficient at 532 nm obtained between 12:00 and 13:00 UTC by lidar (red), ground size distribution
(black) and Aeronet size distribution (green) in the case where divergence were observed. Colour solid lines represent the mean profile
obtained during the period and shaded areas or horizontal lines show their respective standard deviation. The mean extinction value retrieved
on the ground level is given with a circle and its standard deviation with a horizontal bar. From top to bottom: 25 May(a), 26 May(b), 27
May (c).

extinction. Quinn and Coffman (1998) underlined that the
sampling of coarse aerosols is often a limitation in computing
scattering from in situ data. As a consequence, AERONET
size distribution is much more optically efficient: a factor 5 is
observed on scattering cross-sections. It suggests divergent
results for the previous comparisons based on lidar aerosol
extinction profile retrieval, which are more favourable to the
aerosol size distribution retrieved from in situ measurements.
We should notice that the expected accuracy fordV

d ln r
is 15–

25% for 0.1µm<r<7µm and 25–100% for r<0.1µm and
r>7µm (Dubovik et al., 2000) and that the presence of low
optical thicknesses does not guarantee accurate Almucantar
retrievals (Sect. 2.2). Note that size distribution has a huge
impact on vertical extinction profiles but only slight influence
on optical ratios BER orω0 (Figs. 6 and 11).

7 Conclusion

Ground based in situ and active/passive remote sensor mea-
surements were performed in Paris to study the anthro-
pogenic aerosols in such a megacity. We have presented
an assessment of the aerosol complex refractive index at the
ground level using the synergy between lidar, sunphotome-
ter and in situ measurements. Our study based on the LI-
SAIR campaign reveals the important climatic impact re-
lated to a significant imaginary part of∼0.028 (0.044) at 355
(532) nm and thus to a single-scattering albedo lower than
0.9. This lead to heating rates close to 1K/day in Paris in-
tramuros PBL (evaluation with STREAMER (Key, 2001) al-
ready performed during INDOEX (Leon et al., 2002) and for
spaceborne active/passive coupling on dusts (Berthier et al.,
2006)) and thus to a change in dynamical equilibrium con-
ditions of the urban boundary layer which are bound to in-
fluence pollutant dispersion. This new approach using lidar
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measurements has appeared to be a relevant tool to assess
aerosol optical properties in urban areas and offers new per-
spectives for aerosol pollution studies above megacities. The
knowledge of the aerosols properties in the urban PBL will
be very useful to best understand the climate variability in
the big cities due to their pollutant emissions.
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Kaufman, Y. J., D. Tanŕe,Dubovik, O., Karnieli, A., and Remer,
L. A.: Absorption of sunlight by dust as inferred from satellite
and groundbased measurements, Geophys. Res. Lett., 28, 1479–
1482, 2001.

Kent, G. S., Yue, G. K., Farrukh, U. O., and Deepak, A.: Modelling
atmospheric aerosol backscatter at CO2 laser wavelengths. 1:
Aerosol properties, modelling techniques, and associated prob-
lems, Appl. Opt., 22, 1655–1665, 1983.

Keskinen, J., Pietarinen, K., and Lehtimäki, M.: Electrical Low
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the Bod́elé depression, Northern Chad during BoDEx 2005, J.
Geophys. Res.,(D), in press, 2007.

Tomasi, C., Vitale, V., and Caroli, E.: Sahara dust program – II. De-

Atmos. Chem. Phys., 7, 2797–2815, 2007 www.atmos-chem-phys.net/7/2797/2007/

http://www.atmos-chem-phys.net/6/1389/2006/


J.-C. Raut and P. Chazette: Retrieval of urban aerosol complex refractive index 2815

termination of the vertical particulate mass loading by using ex-
tinction models based on Junge-type size distributions, J. Aerosol
Sci., 14, 529–539, 1983.

Volz, F. E.: Infrared Optical Constants of Ammonium Sulfate, Sa-
hara Dust, Volcanic Pumice, and Fly ash, Appl. Opt., 12, 564–
568, 1973.

Wang, J., Christopher, S. A., Brechtel, F., Kim, J., Schmid,
B., Redemann, J., Russell, P. B., Quinn, P., and Holben,
B. N.: Geostationary Satellite Retrievals of Aerosol Optical
Thickness during ACE-Asia, J. Geophys. Res., 108(23), 8657,
doi:10.1029/2003JD003580, 2003.

White, W. H. and Roberts, P. T.: On the nature and origins of
visibility-reducing aerosols in the Los Angeles air basin, Atmos.
Environ., 11, 803–812, 1977.

www.atmos-chem-phys.net/7/2797/2007/ Atmos. Chem. Phys., 7, 2797–2815, 2007


