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Abstract. We have studied the spatial and temporal varia-
tion of the surface longwave radiation (downwelling and net)
over a 21-year period in the tropical and subtropical Pacific
Ocean (40 S–40 N, 90 E-75 W). The fluxes were computed
using a deterministic model for atmospheric radiation trans-
fer, along with satellite data from the ISCCP-D2 database
and reanalysis data from NCEP/NCAR (acronyms explained
in main text), for the key atmospheric and surface input pa-
rameters. An excellent correlation was found between the
downwelling longwave radiation (DLR) anomaly and the
Niño-3.4 index time-series, over the Niño-3.4 region located
in the central Pacific. A high anti-correlation was also found
over the western Pacific (15–0 S, 105–130 E). There is con-
vincing evidence that the time series of the mean down-
welling longwave radiation anomaly in the western Pacific
precedes that in the Niño-3.4 region by 3–4 months. Thus,
the downwelling longwave radiation anomaly is a comple-
mentary index to the SST anomaly for the study of ENSO
events and can be used to asses whether or not El Niño
or La Niña conditions prevail. Over the Niño-3.4 region,
the mean DLR anomaly values range from +20 Wm−2 dur-
ing El Niño episodes to−20 Wm−2 during La Nĩna events,
while over the western Pacific (15–0 S, 105–130 E) these val-
ues range from−15 Wm−2 to +10 Wm−2, respectively. The
long- term average (1984–2004) distribution of the net down-
welling longwave radiation at the surface over the tropical
and subtropical Pacific for the three month period November-
December-January shows a net thermal cooling of the ocean
surface. When El Nĩno conditions prevail, the thermal radia-
tive cooling in the central and south-eastern tropical Pacific
becomes weaker by 10 Wm−2 south of the equator in the cen-
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tral Pacific (7–0 S, 160–120 W) for the three-month period of
NDJ, because the DLR increase is larger than the increase in
surface thermal emission. In contrast, the thermal radiative
cooling over Indonesia is enhanced by 10 Wm−2 during the
early (August–September–October) El Niño phase.

1 Introduction

The El Niño Southern Oscillation (ENSO) is a natural cy-
cle that couples the ocean-atmosphere system over the trop-
ical Pacific and operates on a timescale of 2–7 years. Once
developed, it causes a shift in the seasonal temperature and
precipitation patterns in many different regions of the world,
since heating of the tropical atmosphere creates changes in
the global atmospheric circulation. Thus, ENSO is a dom-
inant source of inter-annual climate variability around the
world. Following the early work of Bjerknes (1966, 1969)
who attributed ENSO to coupled Pacific ocean-atmosphere
interactions, the dynamics of this pattern of climate variabil-
ity was extensively studied by many workers (e.g. Philander,
1990; McCreary and Anderson, 1991; Neelin et al., 1998).
Normally, the equatorial Pacific Ocean is characterized by
warm waters in the west and cold waters in the east. The
ENSO warm phase (El Niño) is associated with an unusual
warming of the eastern and central equatorial Pacific accom-
panied by a shift in the deep atmospheric convection from
the western Pacific to the equatorial central Pacific. La Niña,
the ENSO cold phase, is the counterpart to El Niño, often
following it. It is characterised by cooler than normal sea
surface temperatures across the equatorial eastern Pacific and
a strengthening of near ocean-surface winds travelling from
east to west. Thus ENSO is an oscillation between warm
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and cold events with a peak that typically occurs late in the
calendar year (late December-early January). Both El Niño
and La Nĩna events last for about a year, but they can last
for as long as 18 months (see the recent review by Wang and
Fiedler, 2006). Over the past two decades a large number of
studies have appeared, attempting to explain the mechanism
of the oscillation between the two phases of the ENSO phe-
nomenon and many models have been proposed (e.g. Suarez
and Schopf, 1988; Cane et al., 1990; Jin, 1997a, b; Picaut et
al., 1997; Wang et al., 1999; Wang, 2001). A recent short
review summarizing theories and mechanisms about El Niño
variability is given by Dijkstra (2006).

During ENSO, a feedback between atmospheric and ocean
properties is observed. Sea surface temperature (SST)
anomalies induce wind stress anomaly patterns that in turn
produce a positive feedback on the SST. Variation of the
above properties cause significant changes in other oceanic
and atmospheric variables, e.g. the mean depth of the ther-
mocline, the water vapour content of the atmosphere and the
relative distributions of low, middle and high clouds. Wa-
ter vapour and clouds are the main regulators of the radia-
tive heating of the planet since changes in these parameters
modulate the variability in the radiation fluxes that regulate
the heating or cooling of the Earth’s surface and atmosphere
(Tian and Ramanathan, 2002). The radiation field in turn, in-
fluences SST and atmospheric water vapour. Thus ENSO in-
volves complex climatic processes and feedbacks that make
its onset time, duration, strength and spatial structure dif-
ficult to predict (see Fedorov et al., 2003, and references
therein). International monitoring programmes of the cou-
pled atmosphere-ocean system started in the Pacific around
1985 and led to the TAO/TRITON (Tropical Atmosphere
Ocean project/Triangle Trans Ocean Buoy Network) array
of moored buoys. The aim of this programme is to provide
real-time measurements of winds, sea surface temperature,
subsurface temperature, sea level and ocean flow that help in
the understanding of the physical processes responsible for
ENSO (McPhaden et al., 1998).

The variability and the spatial distribution of the ocean and
atmospheric variables are not the same for all ENSO events.
Thus a definition of ENSO is necessary for the study of this
phenomenon (Trenberth, 1997). The phase and strength of
ENSO events are defined by an index. Several different in-
dices have been used in the literature, mostly based on SST,
although there is one index, the Southern Oscillation index,
which is related to air pressure differences at sea level, be-
tween Darwin (Australia) in the west and Tahiti in the east.
The SST based indices are obtained from the SST anomalies
with respect to average values over some specified region of
the ocean (see for example, Trenberth and Stepaniak, 2000;
Hanley et al., 2003). There has been also an effort to combine
several atmospheric-oceanic variables into a single index like
the multivariate ENSO index (Wolter and Timlin, 1998). Av-
erages of 850 mb wind, outgoing longwave radiation (OLR)
at the top of the atmosphere as well as precipitation over spe-

cific regions (Curtis and Adler, 2000) are also used, although
not often, to monitor ENSO.

The Earth’s climate system is driven by the radiative en-
ergy balance between the solar shortwave radiation (SW) ab-
sorbed by the atmosphere and the surface of the Earth and
the thermal longwave radiation (LW) emitted by the Earth to
space. In this respect, ENSO events are expected to be asso-
ciated with the spatial and temporal variability of the radia-
tive energy balance over the tropical and subtropical Pacific.
The net heat flux into the ocean plays a key role in ENSO
evolution and is a significant variable in the models that have
been developed to make ENSO predictions (Dijkstra, 2006).
The variation of the net heat flux during ENSO events is of
paramount importance to the dynamics of the system (Har-
rison et al., 2002; Chou et al., 2004). The net heat flux into
the ocean is a small residual of four terms, the downward
shortwave radiation at the surface (DSR), the latent heat loss,
the sensible heat transfer and the net downwelling longwave
radiation at the Earth’s surface (NSL). The NSL is the dif-
ference between the downward longwave radiation (DLR) at
the Earth’s surface and the Earth’s surface thermal emission.
The DLR at the Earth’s surface is a very important compo-
nent of the surface radiation budget with variations arising
from increases in greenhouse gases or from changes in other
atmospheric properties that occur during ENSO events (In-
tergovernmental Panel on Climate Change, IPCC, 2001). In
this work we shall focus on the behaviour of the DLR and
NSL during warm and cold ENSO events over the tropical
and subtropical Pacific Ocean. The DLR depends mainly on
the vertical distributions of temperature and water vapour in
the lower troposphere, as well as on the cloud amounts and
cloud radiative properties. We shall show that the DLR is a
very useful index for the description of the phase and evolu-
tion of ENSO events.

We present DLR and NSL data generated by a determinis-
tic radiation transfer model for the period 1984–2004 for the
tropical and subtropical Pacific Ocean and examine their spa-
tial and temporal variability during ENSO events. In addi-
tion, we investigate the correlation of DLR and NSL anoma-
lies with the Nĩno 3.4 index. In Sect. 2 we describe the radi-
ation model and the input data used. In Sect. 3, the surface
longwave radiation distribution and its variation during warm
and cold ENSO phases are presented. In Sect. 4, the DLR
and NSL variation during ENSO evolution is examined. In
Sect. 5, the correlation of the Niño 3.4 index and surface ra-
diation parameters are presented while in Sect. 6 a more de-
tailed analysis of radiation parameters in the western Pacific
is presented. In Sect. 7, we discuss our results and in Sect. 8
we present our conclusions. Table 1 lists the symbol defini-
tions of the radiation parameters that are most often used in
this paper.
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2 Radiation model and data description

We use the FORTH deterministic model (Pavlakis et al.,
2004) for the radiation transfer of terrestrial infrared ra-
diation, to compute the downward longwave radiation at
the surface of the Earth (DLR). This model is based on a
detailed radiative-convective model developed for climate
change studies (Vardavas and Carver 1984), but modified in
order to model the longwave atmospheric radiation fluxes at
the Earth’s surface and at top of atmosphere (TOA), on a
2.5◦

×2.5◦ grid for the entire globe.

The model DLR has a temporal resolution of one month,
and a vertical resolution (from the surface up to 50 mb) of
5 mb, to ensure that the atmospheric layers are optically thin
with respect to the Planck mean longwave opacity. The at-
mospheric molecules considered are; H2O, CO2, CH4, O3,
and N2O. The sky is divided into clear and cloudy frac-
tions. The cloudy fraction includes three non-overlapping
layers of low, mid and high-level clouds. Expressions for the
fluxes for clear and cloudy sky can be found in Hatzianas-
tassiou et al. (1999). The model input data include cloud
amounts (for low, mid, high-level clouds), cloud absorption
optical depth, cloud-top pressure and temperature (for each
cloud type), cloud geometrical thickness and vertical temper-
ature and specific humidity profiles. For the total amount of
ozone, carbon dioxide, methane, and nitrous oxide in the at-
mosphere, we used the same values as in Hatzianastassiou
and Vardavas (2001).

All of the cloud climatological data for our radiation
transfer model were taken from the International Satellite
Cloud Climatology Project (ISCCP-D2) data set (Rossow
and Schiffer, 1999), which provides monthly means for
72 climatological variables in 2.5-degree equal-angle grid-
boxes for the period 1984–2004. The vertical distributions
of the temperature and water vapour as well as the sur-
face temperature, were taken from the National Center for
Environmental Prediction/National Centers for Atmospheric
Research (NCEP/NCAR) reanalysis project (Kistler et al.,
2001), corrected for topography as in Hatzianastassiou et
al. (2001). These data are also on a 2.5-degree resolution,
monthly averaged and cover the same 21-year period as the
ISCCP-D2 data.

A full presentation and discussion of the model and DLR
distribution can be found in Pavlakis et al. (2004). There, a
series of sensitivity tests were performed to investigate how
much uncertainty is introduced in the model DLR by uncer-
tainties in the input parameters, such as air temperature, skin
temperature, low, middle or high cloud amount as well as
the cloud physical thickness, cloud overlap schemes, and the
use of daily-mean instead of monthly-mean input data. The
model DLR was also validated against BSRN station mea-
surements for the entire globe (Pavlakis et al., 2004; Mat-
soukas et al., 2005).
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Figure 1. The distribution of downward longwave radiation (DLR), over tropical and 

subtropical Pacific for the three month period November, December, January (NDJ); (a) long-

term average (1984-2004), (b) average for five El Niño years, (c) average for five La Niña 

years. 

Fig. 1. The distribution of downward longwave radiation (DLR),
over tropical and subtropical Pacific for the three month pe-
riod November, December, January (NDJ);(a) long-term average
(1984–2004),(b) average for five El Nĩno years,(c) average for five
La Niña years.

3 Long-term surface longwave radiation

The geographical distribution of the 21-year average (1984–
2004) DLR at the surface, over the tropical and subtrop-
ical Pacific Ocean (40 S–40 N, 90 E–75 W), with a spatial
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Table 1. Definition of symbols used to represent radiation parameters.

Symbol Definition

DLR Downward longwave radiation at surface
NSL Net downwelling longwave radiation at the surface defined as DLR –εσT4 where

the second term is the surface longwave emission
DLREN , DLRLN , DLRNE Mean DLR when El Nĩno, La Nĩna, or neutral conditions prevail, respectively
NSLEN , NSLLN , NSLNE Mean NSL when El Nĩno, La Nĩna, or neutral conditions prevail, respectively
DLR-ALN El Niño DLR anomaly with respect to the mean DLR for the La Niña years equal to

DLREN -DLRLN

DLR-A DLR anomaly with respect to all years DLR

resolution of 2.5◦(latitude)×2.5◦(longitude), is shown in
Fig. 1 top panel (a), for the 3-month period November, De-
cember and January (NDJ). The three month period NDJ is
selected as best representing the mature phase of ENSO evo-
lution, as the ENSO peak typically occurs late in the calen-
dar year (December–January). It is within this period that the
strongest changes in the DLR occur (see Sect. 4).

The five significant El Nĩno events in our 21-year study
period, 1984–2004, were during 1986–1987, 1991–1992,
1994–1995, 1997–1998 and 2002–2003. In the same period,
the more significant La Niña events were during 1984–1985,
1988–1989, 1998–1999, 1999–2000, 2000–2001 (Trenberth,
1997; Wang and Fiedler, 2006). We have calculated, for each
grid-box, the mean monthly DLR averaged over the 11 neu-
tral years (DLRNE), i.e. the years when no significant El
Niño or La Nĩna events occurred for the period NDJ. Both
the long-term mean DLR and the DLRNE for NDJ show
similar spatial patterns and their values have differences less
than 5 Wm−2. Thus only the long-term mean DLR is shown,
which is representative of normal conditions. As expected,
the maxima in DLR, reaching about 430 Wm−2, occur over
the western Pacific, where the Western Pacific Warm Pool is
located. The highest open ocean water temperatures on Earth
are observed there. Because of these high temperatures, the
atmosphere is supplied with large amounts of water vapour,
the most important greenhouse gas, resulting in high DLR
values.

We also computed, for each grid-box, the average DLR
over the five years1 when El Nĩno (DLREN ) conditions pre-
vailed (Fig. 1, middle panel b) and the corresponding average
DLR over the five years when La Niña (DLRLN ) conditions
prevailed (Fig. 1, bottom panel c), for the three month pe-
riod of NDJ. It is evident from these figures that high values
of DLR are observed over much more extended areas of the
central and eastern Pacific, during the El Niño years com-
pared to the La Nĩna average.

In Fig. 2, top panel (a) we show the geographical distri-
bution of the 21-year average (1984–2004) net downwelling

1An “El Ni ño year” is defined, for our purposes, as starting in
July and ending in June of the next year.

longwave radiation at the surface (NSL) for the three-month
period NDJ. The NSL is defined as NSL=DLR–εσT4, where
εσT4 is the surface longwave emission,ε is the ocean sur-
face emissivity taken to be 0.95 and T is the SST. The sur-
face emissivity for non-oceanic areas was computed by us-
ing surface-type cover fractions from the ISCCP-D2 database
and the land surface emissivity set to 0.9. We have also cal-
culated, for each grid-box, the mean monthly NSL for NDJ
averaged over the 11 neutral years (NSLNE). The NSL and
NSLNE show similar values over the tropical and subtropi-
cal Pacific thus only the long-term NSL is presented in Fig. 2,
which is representative of normal conditions. Clearly, NSL
is negative over most of the region. The highest negative val-
ues, reaching 40–45 Wm−2, occur in the central and south-
eastern Pacific.

In Fig. 2 are also shown the average NSL over the five
years when El Nĩno (NSLEN ) conditions prevailed for NDJ
(middle panel b), and the corresponding average NSL over
the five years when La Niña (NSLLN ) conditions prevailed
(bottom panel c). It is clear from these figures that when El
Niño conditions prevail, the thermal radiative cooling in the
central and south-eastern tropical Pacific becomes weaker.

During ENSO warm (El Nĩno) or cold (La Nĩna) phases,
the equatorial Pacific warms or cools, respectively, by as
much as 3◦C. This warming or cooling of the Pacific ocean
is accompanied by significant changes in DLR and NSL, as
shown in Figs. 1 and 2, indicating a significant change in the
longwave radiation budget of the region.

In Fig. 3a we show the distribution of the difference
DLREN–DLRLN , over the tropical and subtropical Pacific.
This difference will be referred to as the El Niño DLR
anomaly (DLR-ALN ) with respect to La Nĩna DLR. In the
same figure, the rectangles designate the regions most com-
monly used to define El Niño indices, based on sea surface
temperature, for monitoring and identifying El Niño and La
Niña events (Hanley et al., 2003). The Niño-1+2 region,
(0–10 S, 80–90 W) is the region that warms first in most El
Niños, especially before 1976. For some time, the Niño-3
region (5 S–5 N, 150–90 W) was used for the monitoring of
El Niño, but in recent years the Niño-3.4 region (5 S–5 N,
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170–120 W), somewhat further to the west of the Niño-3 re-
gion is used widely as a region with high SST anomalies and
with a proximity with the main deep-convection centers dur-
ing ENSO events. As can be seen in Fig. 3a the DLR-ALN

obtains the highest values, reaching a maximum of about
+30 Wm−2, in a broad swath in the Central Pacific extending
to the coast of South America. This region almost coincides
with Niño-3.4. In the western Pacific, on the other hand, the
sign of the DLR-ALN is reversed, with the DLREN being
lower by 5–10 Wm−2 than DLRLN .

In Fig. 3b we also show the corresponding El Niño NSL
anomaly with respect to La Niña years (NSL-ALN ). It
is evident, the NSL-ALN values are much lower than the
DLR-ALN values, ranging between about –10 Wm−2 and
+15 Wm−2. The highest values of NSL-ALN appear south of
Niño-3 and Nĩno-3.4 regions. Generally, a net thermal radia-
tive heating of the central and eastern Pacific occurs during
El Niño with respect to the La Niña years, and a net cooling
of the western Pacific, that includes Indonesia and Northern
Australia.

4 DLR variation during ENSO evolution

In this section, we investigate the evolution of ENSO related
changes in the distribution and values of DLR over the trop-
ical and subtropical Pacific.

First, we investigate the evolution of each El Niño or La
Niña event, in the representative Niño-3.4 region, in order to
define the time-span of the early, mature and decay phases
of the phenomenon with respect to DLR. We thus calculate
the mean monthly DLR in the Niño-3.4 region averaged over
the 11 neutral years (DLR[3.4]

NE ), i.e. the years when no signif-
icant El Niño or La Nĩna events occurred. We then defined
the parameter1(DLR)3.4=DLR

[3.4]

EN −DLR[3.4]

NE , which gives
the difference between the mean monthly DLR in the Niño-
3.4 region (DLR[3.4]

EN ) for each El Nĩno event and the average

neutral year DLR (DLR[3.4]

NE ) for the same month.
In Fig. 4a, we show the time evolution of1(DLR)3.4 for

each El Nĩno event. The same procedure is followed for the
La Niña events, and the corresponding plots for the individ-
ual La Niñas are shown in Fig. 4b. In order to facilitate the
interpretation of these figures and to show clearly the begin-
ning and end of an event, we present 24-month time-series.

It is evident from Fig. 4 that the maximum DLR change
during warm (El Nĩno) or cold (La Nĩna) ENSO events oc-
curs between November and January, except for the 1986–
1987 El Nĩno, which displays a double peak behaviour
(see also Wang and Fiedler, 2006), with a second maxi-
mum around August 1987. Usually the highest value of
1(DLR)3.4 occurs within the 3-month period from Novem-
ber to January. Consequently, in our subsequent analysis we
use the three month period of November, December and Jan-
uary (NDJ) to study the mature phase of El Niño or La Nĩna
events, August, September and October (ASO) for the earlier
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Figure 2.  The distribution of net surface longwave radiation (NSL), over tropical and 

subtropical Pacific for the three month period November, December, January (NDJ); (a)  

long-term average (1984-2004), (b) average for five El Niño years, (c) average for five La 

Niña years. 

Fig. 2. The distribution of net surface longwave radiation (NSL),
over tropical and subtropical Pacific for the three month pe-
riod November, December, January (NDJ);(a) long-term average
(1984–2004),(b) average for five El Nĩno years,(c) average for five
La Niña years.

stages of ENSO development and February, March and April
(FMA) for the decay phase of ENSO. Thus, in spite of the
significant differences in the onset and evolution of individ-
ual ENSO events, the ASO, NDJ, and FMA periods provide
a frame of reference for studying in broad terms the evolution
of ENSO.
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Figure 3. (a): Differences in the mean downward longwave radiation (DLR), between the El 

Niño and La Niña years, over tropical and subtropical Pacific for the period of November, 

December and January (NDJ), (b): The same but for NSL. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a): Differences in the mean downward longwave radiation (DLR), between the El Niño and La Nĩna years, over tropical and
subtropical Pacific for the period of November, December and January (NDJ),(b): The same but for NSL. 25
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Figure 4.  DLR differences between the warm ENSO phase and neutral years; (a) in the Niño-

3.4 region (5S-5N, 170-120W) from January of each ENSO development to December of the 

following year, (b) the same but for the cold ENSO phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. DLR differences between the warm ENSO phase and neutral years;(a) in the Niño-3.4 region (5 S–5 N, 170–120 W) from January of
each ENSO development to December of the following year,(b) the same but for the cold ENSO phase.

4.1 El Niño events

We now define the difference DLREN–DLR, as the El Nĩno
DLR anomaly with respect to the long-term average (El Niño
DLR-A). This quantity gives the change in DLR during El
Niño years with respect to normal condition. In Fig. 5 (left
side) we show the distribution of El Niño DLR-A for the
three month periods of ASO (top panel), NDJ (middle panel)
and FMA (bottom panel), at 2.5×2.5 spatial resolution.

The DLR-A during the early stage of El Niño development
is around +10 Wm−2 in the equatorial central Pacific and –
10 Wm−2 in the western Pacific over Indonesia and Northern
Australia. During the mature phase of El Niño, high values of
DLR-A are observed in a region confined around the equator,
between 10 S–5 N that extents from the central Pacific (near
the date line) to the coast of Peru. The values of the DLR-
A reach about +20 Wm−2 over most of the Nĩno-3.4 region.
During the decay phase of El Niño, values of DLR-A up to
+10 Wm−2 are observed roughly in the same equatorial cen-
tral Pacific region as during the mature ENSO phase, but in
the eastern Pacific this region now shifts north of the equator
up to the south coast of Mexico (15 N). In the western Pacific
DLR-A values of opposite sign are observed with values up
to –10 Wm−2 over the South China Sea.

In order to investigate and identify the regions that show
significant changes in the DLR during El Niño years with
respect to the long-term values, we performed for each grid-
box and for each 3-month period (ASO, NDJ, FMA) a two-
tailed Student’s t-test. Our two samples are the 3-monthly
DLR values for the period 1984–2004 and the correspond-
ing values for the 5 years when El Niño conditions prevailed.
The null hypothesis is that the mean values of the two sam-
ples are equal and the alternative hypothesis is that these val-
ues are different. On the right-hand side of Fig. 5 we show
the geographical distribution of the P-values for the ASO
(top panel), NDJ (middle panel) and FMA (bottom panel).
Grid-boxes with P-values smaller than 0.05 are considered
to have statistically significant El Niño DLR-A values. Dur-
ing the mature phase of ENSO, the statistical significance
of the anomalies is very high over the Niño-3.4 (the small-
est P-value is 0.004, observed in this region) and Niño-1+2
regions (P-values less than 0.02) as well as the region be-
tween them. P-values less than 0.01 are observed over two
regions: a sub-region of Niño-3.4, i.e. 5 N–5 S, 160–130 W
and a second region in the eastern Pacific between 0–5 S and
115–90 W. There is no significant DLR signal in the west-
ern Pacific during the mature phase of ENSO. On the other
hand, during the early phase (ASO), the anomalies appear to
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Figure 5.  Left: The distribution at 2.5x2.5 spatial resolution of El Niño DLR-A for ASO (top 

panel), NDJ (middle panel), and FMA (bottom panel). Right: The distribution of P-values 

from a Student’s t-test.  

 

 

Fig. 5. Left: The distribution at 2.5×2.5 spatial resolution of El Niño DLR-A for ASO (top panel), NDJ (middle panel), and FMA (bottom
panel). Right: The distribution of P-values from a Student’s t-test.

be significant over a region in the western Pacific, over In-
donesia (smallest P-value of about 0.02). The DLR change
in this region precedes the appearance of significant high val-
ues of DLR anomalies in the Niño-3.4 region. This will be
further discussed in Sect. 6. During the decay ENSO phase
P-values less than 0.02 are observed over two regions: a re-
gion in the central Pacific 10–0 S, 130–150 W and a region in
eastern Pacific 0–10 N, 80–100 W. Further, P-values around
0.03 are found over the South China Sea.

A similar analysis was conducted for the El Niño NSL
anomalies (not shown here). The various parameters are de-
fined in the same way as above but for NSL. The El Niño
NSL-A during the early stages (ASO period) of El Niño de-
velopment has a minimum value of about –10 Wm−2 over
central and eastern Indonesia with P-value less than 0.03. In
contrast, over the central Pacific the signal is not significant.
During the mature phase of El Niño (NDJ), the NSL-A is

around +10 Wm−2 south of the equator in the central Pacific
(10–0 S, 160–120 W) with P-values less than 0.02. During
the decay phase (FMA) there is a NSL-A of about –10 Wm−2

over the South China Sea with P-values of about 0.02.

4.2 La Nĩna events

A similar analysis was conducted for the DLR anomalies dur-
ing La Niña events. The various parameters are defined in the
same way as in Sect. 4.1, but for the La Niña years. Instead of
the suffix EN (El Nĩno), we use here the suffix LN (La Niña).
The resulting geographical distribution of the La Niña DLR
anomalies (DLR-A), with respect to the long-term average, is
shown on the left in Fig. 6 at the top panel for ASO, the mid-
dle panel for NDJ and the bottom panel for FMA. Large neg-
ative values (i.e. lower DLR for the La Niña years) of about
–20 Wm−2 are observed in the central equatorial Pacific, in
the region 2.5 S–2.5 N, 170–150 W during the mature ENSO
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Figure 6.  Left: The distribution at 2.5x2.5 spatial resolution of La Niña DLR-A for ASO (top 

panel), NDJ (middle panel), and FMA (bottom panel). Right: The distribution of P-values 

from a Student’s t-test.  

 

Fig. 6. Left: The distribution at 2.5×2.5 spatial resolution of La Niña DLR-A for ASO (top panel), NDJ (middle panel), and FMA (bottom
panel). Right: The distribution of P-values from a Student’s t-test.

phase (i.e. during NDJ). In the same region values of DLR-A
of about –10 Wm−2 are observed during both the early and
decay phases of La Niña.

On the right side of Fig. 6 we present the geographical
distribution of P-values, which confirms that the region in
the Central Pacific indicated above, displays statistically sig-
nificant anomalies during all three, phases (i.e. ASO, NDJ,
FMA) of La Niña with P-values less than 0.02.

5 Correlation of Ni ño-3.4 index and DLR anomaly

The Niño-3.4 index based on sea surface temperature (SST)
is used extensively in recent years for identifying El Niño
or La Niña events. The strength of the events is quantified
as the three-month smoothed SST departures from normal
SST, in the Nĩno-3.4 region in the equatorial Pacific. For
the same region (Niño-3.4), we have calculated the 3-month
smoothed anomaly of the mean monthly DLR at the surface

with respect to the average monthly DLR for the whole study
period 1984–2004. This parameter will be denoted by DLR-
A[3.4] and will be called “DLR-A[3.4] index”.

Figure 7a shows the time-series of the DLR-A[3.4] in-
dex for the period 1984–2004 (black line). For compari-
son we have overlaid on the same diagram the time-series
of the Niño-3.4 SST index (red line). The agreement be-
tween the two time-series is excellent. In both time-series
there are clear peaks during El Niño events and minima for
the La Nĩna events. Moreover, the relative strengths of warm
and cold ENSO events are very similar. DLR-A[3.4] reaches
values as high as +20 Wm−2 (during the strong 1997–1998
El Niño), and as low as –20 Wm−2 (during the La Nĩna of
2000–2001).

Figure 7b shows the corresponding time-series of the
3-month smoothed anomaly (NSL-A[3.4]) of the mean
monthly NSL with respect to the average monthly NSL for
the whole study period 1984–2004 in the Niño-3.4 region.
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Figure 7. Time-series of downward longwave radiation (DLR-A[3.4]), and net downwelling 

longwave radiation at the surface (NSL-A[3.4]) anomaly (defined with respect to the average 

monthly DLR for the whole study period 1984-2004)  in the Niño-3.4 region (black line).  

Overlaid is the time-series of the Niño-3.4 index (red line). 

 

 

 

 

 

 

 

Fig. 7. Time-series of downward longwave radiation (DLR-A[3.4]), and net downwelling longwave radiation at the surface (NSL-A[3.4])
anomaly (defined with respect to the average monthly DLR for the whole study period 1984–2004) in the Niño-3.4 region (black line).
Overlaid is the time-series of the Niño-3.4 index (red line).

The NSL-A[3.4] shows lower variability than the DLR-
A[3.4] but this is at least partly due to the fact that the region
of the most significant NSL changes during the ENSO lies to
the south of the Nĩno-3.4 region (see Fig. 3b).

Linear regression between DLR-A[3.4] and the Niño-3.4
index yielded a correlation coefficient of r=0.91 and a slope
of 7.7±0.2 Wm−2/oC , as shown in Fig. 8a. The correspond-
ing plot for NSL-A[3.4] vs. the Nĩno-3.4 index is shown in
Fig. 8b. The correlation coefficient is 0.51 and the slope
equals 2.0±0.2 Wm−2/◦C. These values show that during El
Niño conditions in the Nĩno-3.4 region, the DLR increases
at a higher rate than the longwave emission from the surface
due to the increase in the sea surface temperature. Thus the
NSL in the Nĩno-3.4 region increases during the warm phase
of ENSO by roughly 2 Wm−2 for a 1 degree increase in SST.
This is consistent with the term “super greenhouse effect”
(Ramanathan and Collins 1991; Inamdar and Ramanathan
1994) whereby the trapping of longwave radiation in the at-
mosphere increases faster than the longwave emission from
the Earth’s surface as the temperature increases.

In Fig. 9a we show the geographical distribution of the
correlation coefficient given by linear regression of the time-
series of DLR-A in each 2.5×2.5 degree grid-box and the
Niño-3.4 index time-series. The maximum values of the cor-
relation coefficient are observed, expectedly, in the Niño-3.4
region itself although there are values higher than 0.5 all over
the central and eastern Pacific. In the western Pacific there is

an anti-correlation between the DLR-A and Niño-3.4 index
time-series, although in absolute terms the correlation coef-
ficients are not as high as in the eastern Pacific.

In Fig. 9b, we also show the distribution of the correlation
coefficient given by linear regression of the time-series of
NSL-A in each 2.5×2.5 degree grid-box and the Niño-3.4
index time-series. The maximum values of the correlation
coefficient here do not exceed 0.7 and they are observed over
a smaller region, to the south of the Niño-3.4 region, at (0–
10 S, 160–140 W).

6 Time lag between western and eastern Pacific DLR
Anomalies

There is a region in the western Pacific (central Indonesia)
which displays significant anomalies during the early phase
(ASO) of ENSO development. The DLR anomalies in this
region seem to precede the appearance of significant anoma-
lies in the Nĩno-3.4 region. In order to further investigate this,
we have produced correlation coefficients for each 2.5×2.5
grid-box, between the time-series of the DLR-A in each pixel
and the time-series of the DLR-A[3.4] index, after intro-
ducing in the latter a time shift of –1, –2 , . . . , –8 months.
We constructed geographical distributions of the correlation
coefficients, and compared them against the map with zero
time lag (Fig. 9a). In all cases but one, the correlation
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Figure 8. (a) Scatter plot between the DLR-A[3.4] and the Niño-3.4 index, (b) between the 

NSL-A[3.4] and the Niño-3.4 index . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. (a)Scatter plot between the DLR-A[3.4] and the Niño-3.4 index,(b) between the NSL-A[3.4] and the Niño-3.4 index. 30
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Figure 9. Geographical distribution of correlation coefficient between, (a) DLR-A and the 

Niño-3.4 index, (b) NSL-A and Niño-3.4 index .  

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Geographical distribution of correlation coefficient between,(a) DLR-A and the Nĩno-3.4 index,(b) NSL-A and Nĩno-3.4 index.

deteriorated over the entire area. The one exception is shown
in the map of the 3-month shift (Fig. 10a). There is a region
in the western Pacific, north of Australia (central Indone-
sia), indicated by a rectangle (0–15 S, 105–130 E), where
the (anti)correlation improves, and takes its highest abso-
lute value when the time-series of the DLR-A[3.4] index is
shifted by –3 months. The maximum value of the correlation
coefficient increases in absolute value from 0.42 with no time
shift, to 0.57 with a 3-month time shift.

We have, subsequently, calculated the correlation coeffi-
cient between the average DLR-A in the western Pacific rect-
angle shown in Fig. 10a and the DLR-A[3.4] index shifted by
0, –1, .., –8 months. In Fig. 10b we have plotted the value of
this correlation coefficient (the values are negative, because
the two DLR anomalies are anti-correlated) as a function of
the time lag introduced (in months). It is again obvious that
highest anti-correlation is observed when the DLR-A[3.4] in-
dex time-series is shifted by –3 to –4 months. This means
that DLR anomalies in the western Pacific rectangle precede
the anomalies in the Niño-3.4 region by 3–4 months. The
significance of the western Pacific for initializing El Niño
has already been noted by Wang (2002) who found that the
850-mb zonal wind anomalies in the western Pacific region
with coordinates 5 S–5 N, 120–170 E lead the Niño-3 SST
anomalies by 4 months (note the overlap of our western Pa-
cific region with that of Wang 2002).

In Fig. 11a, we show the mean DLR-A time-series in the
western Pacific rectangle (black line). For comparison we
have overlaid on the same diagram the DLR-A[3.4] index
time-series (red line). It is clear that the DLR-A in the west-
ern Pacific shows a minimum before the peak of the DLR-
A[3.4] index for each El Nĩno. The minimum value of the
DLR-A in the western Pacific is about –15 Wm−2 before the
intense 1997–1998 El Niño.

In Fig. 11b, we also show the mean NSL-A time-series
in our western Pacific rectangle (black line) and the DLR-
A[3.4] index time-series (red line). The behaviour of the
NSL-A time-series in the western Pacific rectangle is very
similar to that of DLR-A, although the variability is much
lower.

7 Effects of total precipitable water and cloud amount
variability on DLR during ENSO

The air temperature and the water vapour content of the at-
mosphere, especially of the lower atmospheric layer, play
the most important role in determining the DLR reaching the
Earth’s surface, followed in order of significance by the cloud
amount of low, middle and high cloud, respectively (Pavlakis
et al., 2004).

The time-series of the anomaly of the mean monthly DLR
in the Niño-3.4 region (DLR-A [3.4] index) with respect
to the average monthly DLR for the entire study period
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Figure 10. (a) Geographical distribution of correlation between the DLR-A and the DLR-A[3.4] in the 

Niño-3.4 region with a 3-month shift, (b) correlation coefficient of the DLR-A in the western Pacific 

and the DLR-A[3.4] as a function of the number of months shift of the DLR-A[3.4] . 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 10. (a)Geographical distribution of correlation between the DLR-A and the DLR-A[3.4] in the Niño-3.4 region with a 3-month shift,
(b) correlation coefficient of the DLR-A in the western Pacific and the DLR-A[3.4] as a function of the number of months shift of the
DLR-A[3.4].
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Figure 11. Downward longwave radiation (DLR), and net downwelling longwave radiation at 

the surface (NSL) anomaly time series in the western Pacific region 15S-15N, 120-140E 

(black line) compared with DLR anomaly in Niño-3.4 region (red line). 

 

 

 

 

 

 

 

 

 

Fig. 11. Downward longwave radiation (DLR), and net downwelling longwave radiation at the surface (NSL) anomaly time series in the
western Pacific region 15 S–15 N, 120–140 E (black line) compared with DLR anomaly in Niño-3.4 region (red line).

1984–2004, shows an excellent correlation with the Niño-
3.4 index. This is due to the fact that the Niño-3.4 index
is based on sea surface temperature (SST) which is linked
to the water vapour content of the atmosphere. We calcu-
lated the anomaly of the mean monthly total column wa-
ter vapour with respect to the average monthly total col-
umn water vapour from the NCEP/NCAR database for the
whole study period 1984–2004 in the Niño-3.4 region (Total
water–A[3.4]). Linear regression between the Total water–
A[3.4] and the Nĩno-3.4 index yielded a correlation coeffi-
cient of 0.84 and a slope of 0.31±0.01 g cm−2/◦C, as shown
in Fig. 12a.

We also calculated the anomaly of the mean monthly low,
middle and high-level cloud amount with respect to the cor-
responding values, for the whole study period 1984–2004 in
the Niño-3.4 region. We then created scatter plots between
these anomalies and the Niño-3.4 index. We found no corre-
lation between the low cloud amount anomaly and the Niño-
3.4 index (correlation coefficient r=0.1). We note that there
are uncertainties in ISCCP low cloud amount because from
the satellite point of view low clouds under optically thick
middle or high level clouds are not observed. Linear regres-
sion between the middle and high cloud amount anomalies
and the Nĩno-3.4 index yielded a correlation coefficient of
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Figure 12.  (a) Scatter plot between the total column water vapour anomaly in the Niño-3.4 

region and the Niño-3.4 index, (b) scatter plot between the middle cloud amount anomaly in 

the Niño-3.4 region and the Niño-3.4 index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. (a)Scatter plot between the total column water vapour anomaly in the Niño-3.4 region and the Niño-3.4 index,(b) scatter plot
between the middle cloud amount anomaly in the Niño-3.4 region and the Niño-3.4 index.

0.83 and 0.77, respectively. In Fig. 12b we show, as an ex-
ample, the scatter plot of the middle cloud amount anomaly
(CAmid–A[3.4]) versus the Nĩno-3.4 index. However, in the
tropics the middle and high clouds only marginally influ-
ence the DLR owing to the high moisture in the lower part
of the atmosphere (Tian and Ramanathan, 2002). This is
verified by inspection of the scatter plot between CAmid–
A[3.4] and Nĩno-3.4 index (Fig. 12b). The slope in the scat-
ter plot becomes steeper for values of Niño-3.4 index greater
than 1.5◦C. The same is true for the scatter plot between
high cloud amount anomaly and Niño-3.4 index (not shown
here). The steeper slope in these scatter plots is indicative of
the onset of deep convection in the region (Ramanathan and
Collins 1991). The onset of deep convection however does
not change the rate of increase of the DLR-A[3.4] for SST
anomalies greater than 1.5◦C (Fig. 8). In contrast other radi-
ation variables crucial for the development of an ENSO event
such as the downward shortwave radiation (DSR) at the sur-
face or the longwave radiation absorbed by the atmosphere
in the Niño-3.4 region are affected by the onset of deep con-
vection.

The time-series of the mean monthly DLR anomaly (DLR-
A) in the region north of Australia (15 S–0 S, 105 E–130 E),
exhibits an anti-correlation with the DLR-A [3.4] time-series
and precedes it by 3–4 months. We have found that only the
time-series of total water vapour anomaly (Total water–A)
leads the DLR-A [3.4] time-series by 3–4 months in contrast
with the time-series of the other parameters that influence the
DLR. Linear regression between the Total water–A and the
DLR-A [3.4] index yielded a correlation coefficient of –0.52
(anticorrelation). When the DLR-A[3.4] index was shifted
by –3 months the highest anti-correlation is observed, with a
value of –0.64. The reduction of atmospheric water vapour in
the western Pacific over the region of central Indonesia is in
agreement with the reduction of precipitation over the same
region that preceded the 1997/1998 El Niño, as observed by
Curtis et al. (2001). We found no correlation between the
low-level cloud amount anomaly and the DLR-A[3.4] index
but this may be due to uncertainties in the ISCCP data.

8 Conclusions

To summarize, our model calculations, which are based on
ISCCP-D2 cloud climatologies, and temperature and humid-
ity profile information from NCEP/NCAR reanalysis, show a
high variability in the downward longwave radiation (DLR)
at the surface of the Earth and the net downwelling longwave
radiation at the surface (NSL) over the tropical and subtrop-
ical Pacific Ocean during ENSO events. We have found that
the enhancement of DLR during warm ENSO phases, com-
pared with neutral years, is not confined to the Niño-3.4 re-
gion but extents over a much broader area in the central and
eastern Pacific. This enhancement of DLR (DLR-A), for the
three month period NDJ, is more than +10 Wm−2, in a broad
swath in the central Pacific extending to the coast of South
America. A maximum DLR-A, of about 20 Wm−2, is ob-
served within the Nĩno-3.4 region.

During the cold phases of ENSO, values of DLR-A less
than –10 Wm−2 are observed in a small sub-region of the
Niño-3.4 region (2.5 S–2.5 N, 170–150 W), for both ASO
and FMA periods. Minimum values of DLR-A, of about –
20 Wm−2, are observed in the central Pacific near the date-
line and within the Nĩno-3.4 region for the NDJ period, but
in a more confined region compared with the corresponding
values during the ENSO warm phases.

The absolute value of NSL shows less variability com-
pared with DLR. The highest values of the enhancement of
NSL during warm ENSO phases compared with cold ENSO
phases, appear south of the Niño-3 and Nĩno-3.4 regions and
are about 15 Wm−2.

The Niño-3.4 index is very often used to define the phase
and strength of ENSO events. We calculated the correlation
coefficient given by linear regression of the time-series of
the monthly DLR anomaly, referenced to the whole study
period 1984–2004, in each 2.5×2.5 degree grid-box and the
Niño-3.4 index, and found values higher than 0.5 over the
central and eastern tropical Pacific. Values higher than 0.85
are observed in the Niño-3.4 region. Thus, the average DLR
anomaly in the Nĩno-3.4 region (DLR-A [3.4] index), is a
very useful index to describe and study ENSO events and
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can be used to asses whether or not El Niño or La Nĩna con-
ditions prevail. It is important to note that DLR is an easily
measurable quantity using a pyrgeometer and contains infor-
mation both for oceanic (i.e. SST) and atmospheric (i.e. wa-
ter vapour) processes.

We further investigated the DLR anomaly time-series in
the western Pacific using the DLR-A [3.4] index time-series
as our reference. We found a significant anti-correlation be-
tween the two time-series over the ocean north of Australia
up to the equator. There is a region in the western Pacific
over Indonesia and western Java (15–0 S, 105–130 E) where
the DLR anomaly leads the corresponding anomaly in the
Niño-3.4 region by 3–4 months. Thus, DLR measurements
in this region will be very useful for the study of the time
evolution of El Nĩno events.
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