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Abstract. This study investigates the connections between
atmospheric sulphuric acid and new particle formation dur-
ing QUEST III and BACCI/QUEST IV campaigns. The
campaigns have been conducted in Heidelberg (2004) and
Hyytiälä (2005), the first representing a polluted site sur-
rounded by deciduous forest, and the second a rural site in
a boreal forest environment. We have studied the role of sul-
phuric acid in particle formation and growth by determin-
ing 1) the power-law dependencies between sulphuric acid
([H2SO4]), and particle concentrations (N3−6) or formation
rates at 1 nm and 3 nm (J1 andJ3); 2) the time delays be-
tween [H2SO4] andN3−6 or J3, and the growth rates for 1–
3 nm particles; 3) the empirical nucleation coefficientsA and
K in relationsJ1=A[H2SO4] and J1=K[H2SO4]2, respec-
tively; 4) theoretical predictions forJ1 andJ3 for the days
when no significant particle formation is observed, based
on the observed sulphuric acid concentrations and conden-
sation sinks. In both environments,N3−6 or J3 and [H2SO4]
were linked via a power-law relation with exponents typi-
cally ranging from 1 to 2. The result suggests that the clus-
ter activation theory and kinetic nucleation have the potential
to explain the observed particle formation. However, some
differences between the sites existed: The nucleation coeffi-
cients were about an order of magnitude greater in Heidel-
berg than in Hyytïalä conditions. The time lags betweenJ3
and [H2SO4] were consistently lower than the corresponding
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delays betweenN3−6 and [H2SO4]. The exponents in the
J3∝[H2SO4]

nJ3-connection were consistently higher than or
equal to the exponents in the relationN3−6∝[H2SO4]

nN36. In
theJ1 values, no significant differences were found between
the observed rates on particle formation event days and the
predictions on non-event days. TheJ3 values predicted by
the cluster activation or kinetic nucleation hypotheses, on the
other hand, were considerably lower on non-event days than
the rates observed on particle formation event days. This
study provides clear evidence implying that the main process
limiting the observable particle formation is the competition
between the growth of the freshly formed particles and their
loss by scavenging, rather than the initial particle produc-
tion by nucleation of sulphuric acid. In general, it can be
concluded that the simple models based on sulphuric acid
concentrations and particle formation by cluster activation or
kinetic nucleation can predict the occurence of atmospheric
particle formation and growth well, if the particle scavenging
is accurately accounted for.

1 Introduction

The formation of new secondary atmospheric aerosol par-
ticles and their subsequent growth has been observed at
various locations around the world (Kulmala et al., 2001a,
2004a). These particles can affect the climate in two dis-
tinct ways: first, by directly scattering the solar radiation
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and second, indirectly by acting as cloud condensation nu-
clei and therefore influencing the optical properties of clouds
(Ramanathan et al., 2001; Lohmann and Feichter, 2005). On
more local scales, the aerosol particles can affect the human
health (e.g. Donaldson, 1998; Stieb et al., 2002) and deteri-
orate visibility (Cabada et al., 2004), particularly in polluted
environments. To accurately quantify and model the regional
and global effects of the formed particles, the mechanisms
leading to their formation and growth need to be known.

Sulphuric acid has been identified as a key component in
aerosol formation and growth (see e.g. Berndt et al., 2005;
Korhonen et al., 1999; Kulmala, 2003; Kulmala et al., 2004b;
Laakso et al., 2004a). The exact role of sulphuric acid, as
well as the processes limiting the observed new particle for-
mation, however, are still under discussion. Several studies
such as Weber et al. (1995, 1997), Fiedler et al. (2005) and
Sihto et al. (2006) report a close connection between mea-
sured atmospheric sulphuric acid and new particle formation
at different locations.

Recently Kulmala et al. (2006) have proposed the activa-
tion of stable clusters (Kulmala et al., 2000) to be one of the
possible mechanisms governing the observed atmospheric
particle formation. The theory predicts a reservoir of stable
clusters which are activated for growth at favourable condi-
tions. In relation to this, Kulmala (2003) speculates that the
limiting factor for the detected new particle formation and
growth might not be the production of the initial particles but
rather the competition between scavenging to the background
particles and the particle growth to detectable sizes. The pro-
posed activation processes involve sulphuric acid either as
the activating vapour or as a constituent of the activated clus-
ters. This theory is supported by the recent study by Sihto
et al. (2006), which reports the cluster activation as a po-
tential formation mechanism, along with kinetic nucleation
(McMurry and Friedlander, 1979; Lushnikov and Kulmala,
1998). Spracklen et al. (2006) have implemented the clus-
ter activation scheme as the particle formation mechanism
in a global aerosol microphysics model. The model repro-
duces the observed secondary aerosol concentrations and the
occurence of new particle formation with good accuracy.

In this paper we expand the work by Sihto et al. (2006),
which studied the connections of new particle formation and
sulphuric acid during the QUEST II campaign (March–April
2003) in Hyytïalä, Southern Finland. Sihto et al. (2006) ob-
served that the nucleation mode particle concentration typ-
ically dependends on the sulphuric acid concentration via a
power-law relation, the exponent being 1 or 2. The proposed
theory of atmospheric nucleation by cluster activation or ki-
netic nucleation could be used to explain the observed be-
haviour. Related to this, Sihto et al. (2006) investigated the
strength of the coupling between the atmospheric nucleation
rate and sulphuric acid concentrations by determining empir-
ical nucleation coefficients based on the QUEST II data. In
this work we do a similar analysis for the data collected dur-
ing QUEST III and BACCI/QUEST IV campaigns in Hei-

delberg (2004) and Hyytiälä (2005), in order to find out how
broadly the results reported by Sihto et al. (2006) are valid.
On one hand, we compare the conditions at the two dif-
ferent sites, Heidelberg representing a polluted environment
surrounded by deciduous forest, and Hyytiälä a remote bo-
real forest site. On the other hand, the QUEST II and IV
data allow for a comparison between two different springs in
Hyytiälä: spring 2003 has the most particle formation event
days so far, whereas the particle formation events in spring
2005 are much fewer in number. We study the dependence of
the particle concentrations and formation rates on sulphuric
acid with a computer-based fitting routine, and investigate
the magnitude of the empirical nucleation coefficients in both
locations and compare them to the results obtained by Sihto
et al. (2006). We also study the days without new particle for-
mation and investigate the relative importance of sulphuric
acid concentrations and the condensation/coagulation sinks
in the initial steps of particle formation and growth to de-
tectable sizes, in order to find out the limiting factors for the
observed new particle formation.

2 Materials and methods

2.1 The utilised data sets

In this work we used the data sets collected during the
QUEST III and BACCI/QUEST IV campaigns. The
QUEST III campaign has been carried out 28 February–3
April 2004 at the Max Plack Institute for Nuclear Physics
in Heidelberg (49◦23′ N, 08◦41′ E, 350 m a.s.l.), Germany,
and the BACCI/QUEST IV campaign 5 April–16 May 2005
at the SMEAR II station in Hyytïalä (61◦51′ N, 24◦17′ E,
181 m a.s.l.), Finland. The Heidelberg station is situated at a
polluted site surrounded by deciduous forest (beech, maple,
chestnut, birch, oak), whereas the SMEAR II station repre-
sents a typical rural site with extensive areas of Scots pine
dominated forests surrounding it. For detailed descriptions
of the measurement sites and the measurement equipment,
see e.g. Fiedler et al. (2005), Hari and Kulmala (2005), Sihto
et al. (2006), andhttp://www.atm.helsinki.fi/SMEAR/. The
used data included particle size distributions measured with
Twin-DMPS systems, sulphuric acid concentration measured
with chemical ionization mass spectrometers (CIMS, see e.g.
Hanke et al., 2002) and meteorological data, such as tem-
perature and relative humidity. The time resolution was 10–
15 min for the DMPS measurements and less than 1 s for the
sulphuric acid data. In the analysis, however, the sulphuric
acid data were averaged over 10–30 min time intervals to
make it comparable with the particle concentration data. For
comparison, we also utilised the data collected during the
QUEST II campaign at the SMEAR II station in Hyytiälä
(March–April 2003, see Sihto et al., 2006, for details).

In the case of BACCI/QUEST IV campaign in Hyytiälä,
we also studied data on ammonia concentrations measured
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with a refluxing mist chamber. The device strips ammonia
from the atmosphere and concentrates ammonium ions in
the aqueous phase (Talbot et al., 1990). The sample flow
in the system was 5 l/min. Due to the low mass concentra-
tion of ammonia in the air, the sampling duration varied from
2 to 10 h. The analysis of ammonium ions was conducted
with a Dionex-500 ion chromatograph (Dionex, Sunnyvale,
USA; columns CG12A + CS12A, electrochemical suppres-
sion CSRS, 20 mM methanesulphonic acid eluent).

The data set collected at the Heidelberg station consisted
of 38 days in total. According to the criteria presented by Dal
Maso et al. (2005), clear new particle formation and growth
was seen on 11 days (later often referred to as event days),
whereas on 5 days, no indications of new particle formation
were observed (non-event days). The rest of the days (22)
were classified as “undefined” days. The Hyytiälä data set
contained 22 days with new particle formation, 11 days with
clearly no new particle formation, and 9 undefined days.

2.2 Data analysis

2.2.1 Connections between sulphuric acid, particle concen-
trations and formation rates

In order to investigate the connection between sulphuric acid
concentrations and new particle formation and growth, we
studied the correlations

N3−6(t + 1tN36) ∝ [H2SO4]nN36 ,

J3(t + 1tJ3) ∝ [H2SO4]nJ3 ,

J1(t) ∝ [H2SO4]nJ1 ,

(1)

whereN3−6 refers to the 3–6 nm particle concentration (cor-
responding to the four lowest channels of the DMPS) and
J3 to the formation rate of the 3 nm particles. The time de-
lays1tN36 and1tJ3 are the intervals after which the effect
of a change in the sulphuric acid concentration is shown in
3–6 nm particle concentration or formation rate.J1 is the
particle formation rate at 1 nm, corresponding to the size re-
gion at which the atmospheric nucleation is assumed to take
place. In particular, the valuesnJ1=1 ornJ1=2 in the corre-
lation betweenJ1 and[H2SO4]nJ1 could imply the activation
of pre-existing clusters (nJ1=1) or kinetic nucleation of sul-
phuric acid (nJ1=2) to be the dominating mechanisms for
atmospheric new particle formation. In these cases the new
particle formation rate (i.e. the atmospheric nucleation rate)
can be simply written as

J1 = A [H2SO4] (2)

or

J1 = K [H2SO4]2 , (3)

whereA andK are coefficients containing the details of the
nucleation processes. According to our previous study (Si-
hto et al., 2006) these nucleation mechanisms seem to be
the best candidates for the atmospheric nucleation observed

in Hyytiälä. Exponents larger than 2, on the other hand,
could indicate that the atmospheric nucleation is thermody-
namically limited (Kulmala et al., 2006): for instance, clas-
sical ternary nucleation theories predict the exponent to be
well over 2 (see e.g. Napari et al., 2002 and Anttila et al.,
2005). In our previous study we concentrated only on ex-
ponents and time delays related to sulphuric acid andN3−6.
In this work we expanded the analysis to the exponents and
time delays related to sulphuric acid and particle formation
rates, to be able to draw more sound conclusions on the nu-
cleation mechanism and the processes governing the evolu-
tion of N3−6 andJ3.

We studied the exponents and time delays relating the sul-
phuric acid and particle concentrations and formation rates,
as well as the magnitude of the coefficientsA andK at both
measurement sites. We fitted the values for the exponents,
time delays and nucleation coefficients for each new particle
formation event day by maximizing the correlation coeffi-
cients for the relations presented in Eq. (1).

Assuming1tN36 as the time that particles spend growing
from 1 to 3 nm, the growth rate from 1 to 3 nm can be ex-
pressed as

GR1−3 =
2 nm

1tN36
. (4)

We could thus estimate the 1–3 nm particle growth rates from
the time delays obtained from the fits. Similar methods have
been used by e.g. Weber et al. (1997); Fiedler et al. (2005)
and Sihto et al. (2006).

We obtained theN3−6 values directly from the measure-
ment data, whereasJ3 andJ1 were calculated from the data
as described below. The non-event and undefined days were
also analysed in order to check the possible connection be-
tweenN3−6 and [H2SO4], and to make a comparison be-
tween the days with and without clear new particle formation
and growth.

2.2.2 Particle formation rates at 3 nm (J3) and 1 nm (J1)

The time evolution ofN3−6 is described with a balance equa-
tion

dN3−6

dt
= GR3 · n3 − GR6 · n6 − CoagS3−6 · N3−6, (5)

including terms for the growth into the 3–6 nm range over
the 3 nm limit (the first term), out of the range over the 6 nm
limit (the second term) and the loss by coagulation scaveng-
ing (the third term). The growth by intermodal coagulation
is assumed to be negligible compared to condensation. Here,
GR6 denotes the particle growth rate at 6 nm, andnd is a par-
ticle size distribution function, defined asnd=dNd/ddp, with
dp = particle diameter. CoagS3−6 denotes the average coag-
ulation sink for the 3–6 nm range (Kulmala et al., 2001b).
By rearranging the terms, and denoting the first term on the
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right hand side of Eq. (5) byJ3, the following equation for
the particle formation rate at 3 nm is obtained:

J3 =
dN3−6

dt
+ CoagS4 · N3−6 +

1

3 nm
GR6 · N3−6. (6)

Here the coagulation loss for the interval 3–6 nm has been
approximated by a term representing the loss of 4 nm sized
particles, with hygroscopicity effects estimated as in Laakso
et al. (2004b). The third term representing the condensation
loss out of the size range 3–6 nm is obtained by approximat-
ing n6 by N3−6/(6 nm–3 nm). TheGR6 value used in the
calculations was obtained from lognormal fits to DMPS data
in the size range 3–7 nm. If the fits were not available, the
growth rate determined from1tN36 (Eq. 4) was used.

When calculating the time derivative ofN3−6 from the
measurement data by a simple approximation1N3−6/1t ,
where the time interval1t=10 min, the effect of noise re-
sults in big fluctuations inJ3 data. To filter out this noise, we
applied a parabolic differentiation algorithm with a window
size of 5 data points (50 min), which implies only a slight
smoothing to ensure that we do not lose data significantly in
the differentiation process. The differentiation algorithm sig-
nificantly improved the quality ofJ3-data, enabling us to dis-
tinguish peaks and other characteristics from the background
level more reliably.

The atmospheric nucleation rateJ1 at timet = t ’–1t was
estimated from theJ3 data using the method presented by
Kerminen and Kulmala (2002):

J1(t) = J3(t
′) exp

[
γ

CS′

GR1−3

(
1

1 nm
−

1

3 nm

)]
. (7)

HereCS′ is the reduced condensation sink (in units m−2),
GR1−3 is the 1–3 nm growth rate (in nm/h) andγ is a coef-
ficient with a value of approximately 0.23 m2 nm2 h−1. The
times t and t ′ are related ast = t ’–1t , where1t=2 nm
GR1−3. This equation was applied in a running window [t ,
t+1t ] throughout each analysed day. ForGR1−3 andt ′ we
utilized the fitted time delay betweenN3−6 and the sulphuric
acid data, and for theCS′ the median value from the inter-
val [t , t+1t ]. The formula can be applied also in the other
direction to calculateJ3 from J1.

2.2.3 Fittings of the exponents and time delays

In our previous study (Sihto et al., 2006) the exponents and
time delays relating sulphuric acid concentration and nucle-
ation mode particle concentrations were determined visually
from the data. In this work we used a slightly more sophis-
ticated method: we determined the values for the exponents
nN36 andnJ3, as well as the time delays1tN36 and1tJ3 for
each analysed day with a two-parameter fitting procedure,
where the combination (n, 1t) maximizing the correlation
coefficient between [H2SO4] andN3−6 or J3 was chosen. In
the fittings, the exponent was varied in the steps of 0.01 and
the time delay in 10 min. intervals, corresponding to the time

resolution of the particle measurements. In the case ofJ1, no
time delay with respect to [H2SO4] was assumed and only
the exponentnJ1 was fitted, assuming it to have a discrete
value 1, 2 or 3, consistently with the nucleation theories. An
important advantage of this method compared to e.g. least-
squares fitting is that it gives more statistical weight to the
temporal evolution of the data, rather than the magnitude of
the correlated points: the correlation analysis gives the max-
imum correlation in the case where the shape of the curves is
the most similar, whereas in the least squares fitting the abso-
lute differences of the magnitudes of the compared curves are
minimised. The correlation analysis is more suitable for our
pourpose, as we want to find the exponents that best repro-
duce the shapes of the curves. However, we made a compar-
ison with a least squares fit and in most of the studied cases,
the results agreed well. We also re-analysed the data from
the QUEST II campaign presented in our previous paper, to
check the consistency of the two approaches, and the results
obtained with the visual inspection are essentially the same
as obtained with our fittings.

2.2.4 Determining the nucleation coefficientsA andK

In order to investigate the applicability of the proposed atmo-
spheric nucleation schemes – particularly cluster activation
and kinetic nucleation – we calculated the formation rate of
1 nm particles (J1) from the particle measurements (Eqs. 6
and 7). The obtainedJ1 was compared with theJ1 calcu-
lated from the sulphuric acid data according to Eqs. (2) and
(3). The nucleation coefficientsA andK were kept as free
parameters which were determined with least squares fits to
theJ1 estimated from the particle measurements. To double-
check the values ofA andK we performed the fitting also
to J3-data: J1 calculated from sulphuric acid was scaled to
the formation rate of 3 nm particles using Eq. (7) in the oppo-
site direction, and the obtained estimate forJ3 was compared
with theJ3 calculated from the particle measurements.

2.2.5 Analytical approach connecting the exponentsnN36
andnJ3

The actual connections betweenN3−6, J3 andJ1 are com-
plicated, and the relations between the exponents connect-
ing them to the sulphuric acid are affected by, for instance,
changes in the particle growth rates as well as the conden-
sation and coagulation sinks (see Eqs. 6 and 7). To have a
simple theoretical reference with which to compare the re-
sults obtained from the experimental data, we derived an
analytical expression forJ3 that links the exponentsnN36
andnJ3. The detailed derivation of the expression is pre-
sented in Appendix A. Using the relation betweenN3−6 and
[H2SO4]nN36 and assuming a simple sinusoidal production
term for [H2SO4] we obtained an expression forJ3 as a func-
tion of [H2SO4] andnN36:
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Fig. 1a. The particle number concentrations in the 3–6 nm size
range (red) and sulphuric acid concentration (blue) measured dur-
ing the QUEST III campaign in Heidelberg. The data is presented
in two-week -periods. The particle formation event days are pre-
sented on white background. Non-event days are shaded with dark
and undefined days with light gray.

J3 = B · [H2SO4]nN36−1
+

D · [H2SO4]nN36 + E · [H2SO4]nN36+1 , (8)

where the coefficientsB, D and E depend on e.g.
CoagS3−6, CS (condensation sink),GR1−3 andnN36 (see
Appendix A for details). By comparing the magnitude of the
terms in Eq. (8), we get a theoretical estimate for the domi-
nating power of [H2SO4] in the J3 expression. We chose to
use thenN36 as the reference (instead ofnJ3), since it can
be directly and reliably determined from the measurement
data. Even though desirable, linking the exponentsnJ3 and
nJ1 is considerably more difficult because of the exponential
relation betweenJ1 andJ3, containing theGR1−3 (which is
presumably a function of [H2SO4]) in the exponential term
(Eq. 7).

3 Results and discussion

3.1 Correlations of sulphuric acid and freshly nucleated
particles

3.1.1 Correlation of sulphuric acid andN3−6 during new
particle formation

The exponentsnN36 and the time delays1tN36 were deter-
mined for all new particle formation days for which sulphuric
acid data were available. In Heidelberg (QUEST III) this cor-
responded to 10 days, and in Hyytiälä (BACCI/QUEST IV)
18 days in total. Figure 1a shows the sulphuric acid and
3–6 nm particle concentrations for the QUEST III cam-
paign, and Fig. 1b shows the corresponding plot for the
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Fig. 1b. The particle number concentrations in the 3–6 nm size
range (red) and sulphuric acid concentration (blue) measured dur-
ing the BACCI/QUEST IV campaign in Hyytiälä. The data is pre-
sented in two-week -periods. The particle formation event days are
presented on white background. Non-event days are shaded with
dark and undefined days with light gray.
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Fig. 1c. The particle number concentrations in the 3–6 nm size
range (red) and the ammonia concentration (black) during the
BACCI/QUEST IV campaign in Hyytïalä. The particle formation
event days are presented on white background. Non-event days are
shaded with dark and undefined days with light gray.

BACCI/QUEST IV. From these figures the clear correlation
betweenN3−6 and [H2SO4] can be observed on particle for-
mation event days (white background), whereas on the non-
event days (dark gray) this correlation seems to be absent.
The latter applies also for most of the undefined days (light
gray), particularly in Hyytïalä. In Heidelberg the undefined
days resemble the event days with a clearer correlation be-
tween the particle concentrations and sulphuric acid. Gener-
ally, the correlation patterns are not as clear for the more pol-
luted Heidelberg data as for Hyytiälä. In Fig. 1c we present
the ammonia data available for the Hyytiälä campaign. No
significant relation between the particle concentrations and
ammonia is observed in Hyytiälä, meaning that the possible
contribution of ammonia to the particle formation is not vis-
ible in this data set.
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Fig. 2a. A surface plot of the particle size distribution data mea-
sured by a DMPS system 22 March 2003 (day 82) in Heidelberg.
New particle formation and growth of the nucleation mode is ob-
served during the day.
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Figures 2a and 3a show typical new particle formation
events observed in Heidelberg (22 March 2004) and Hyytiälä
(27 April 2005), respectively. In both cases a clear new
nucleation mode is formed around noon, and a continu-
ous growth of the mode is seen during the day. As can
be seen from the Figs. 1, 2 and 3, the background parti-
cle concentration and thus the condensation sink (see Kul-
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Fig. 3a. A surface plot of the particle size distribution data mea-
sured by a DMPS system 27 April 2005 (day 117) in Hyytiälä. New
particle formation and growth of the nucleation mode is observed
during the day.
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Fig. 3b. Upper panel: The number concentration of 3–6 nm parti-
cles (red curve) and the sulphuric acid concentration (blue curve) on
27 April 2005 in Hyytïalä. Lower panel: The number concentration
of 3–6 nm particles (red curve) and the sulphuric acid concentra-
tion (blue curve) delayed with the fitted time lag (1tN36=0.3 h) and
raised to the fitted power (nN36=2.4), corresponding to the maxi-
mum correlation (R=0.96).

mala et al., 2001b) in Heidelberg is typically significantly
higher (meanCS=1.4×10−2 s−1) than in Hyytïalä (mean
CS=4.2×10−3 s−1).

Figures 2b and 3b show exemplary plots of the diur-
nal variation ofN3−6 and sulphuric acid concentration (up-
per panel in both figures), and plots illustrating the (nN36,
1tN36)-fitting procedures (lower panel) for Heidelberg and
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Hyytiälä. On the exemplary day, the optimal fitting parame-
ters for Heidelberg data werenN36=0.7 and1tN36=1.7 h, the
maximum correlation coefficient being 0.67 (see Fig. 2b).
For Hyytiälä data (see Fig. 3b), the corresponding values
werenN36=2.4,1tN36=0.3 h andRmax=0.96.

Clear positive correlation betweenN3−6 and sulphuric
acid was observed during all new particle formation events
at both locations. The mean value of the correlation coeffi-
cient betweenN3−6 and sulphuric acid raised to the power
nN36 is 0.75 (R in the range 0.57–0.90) for Heidelberg, and
0.82 (R in the range 0.54–0.97) for Hyytiälä. Compared to
the Hyytïalä conditions, the high and fluctuating background
particle concentrations in Heidelberg made accurate corre-
lation analysis often challenging. Also, in Heidelberg, the
sulphuric acid data were available only from 08:00 a.m. to
06:00 p.m. for each day, which naturally affected the analy-
sis as well.

In the fittings, the exponentsnN36, were allowed to vary in
the range 0.7–5. Based on the fittings, the investigated days
could be separated to four categories: days withnN36∼1,
nN36∼1.5, nN36∼2.0 and days withnN36∼2.5–3. A more
detailed division would not be appropriate, because in a
much denser scale the differences in the correlation coeffi-
cients (i.e. in the quality of the fits) would be negligible. The
distribution of the exponents for both measurement sites is
summarized in Table 1. The exponents are similar to those
found by Sihto et al. (2006) for the QUEST II campaign in
Hyytiälä and Weber et al. (1995, 1997) at Mauna Loa and
Idaho Hill.

A summary of the fitted time delays1tN36 and the cor-
responding 1–3 nm growth rates is presented in Table 2 for
Heidelberg and Hyytïalä, and the results from QUEST II are
shown for comparison. In Heidelberg, the growth rates are
in the range 0.9–2.7 nm/h, the mean and median values be-
ing 1.5 nm/h and 1.3 nm/h. In Hyytiälä the growth rates are
0.6–10 nm/h, having their mean at 3.1 nm/h and median at
1.1 nm/h. The day 123 in the BACCI/QUEST IV campaign
was left out of the statistics as no clear time delay1tN36
could be observed. The observations from Hyytiälä are sim-
ilar first with the growth rates reported in our previous paper
(mean 1.2 nm/h, median 1.2 nm/h, Sihto et al., 2006), and
second with theGR1−3 values determined from ion mea-
surements by Hirsikko et al. (2005). The higher maximum
growth rates during BACCI/QUEST IV (10 nm/ h) compared
to QUEST II (4.1 nm/ h) could be explained by a more pro-
nounced contribution of organics, as the QUEST IV took
place later in spring. TheGR1−3 values obtained for the Hei-
delberg data set are significantly lower than those reported
by Fiedler et al. (2005) (meanGR1−3 7.7 nm/ h, median
6.3 nm/ h). One reason for the large differences in the growth
rates is the different analysis methods: Fiedler et al. (2005)
determine1tN36 by comparingN3−6 and [H2SO4] directly,
whereas we take into account the possible power-law depen-
dence of the two curves and fit the time delay numerically.
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Fig. 4. A plot illustrating the fitting procedure forJ3 and [H2SO4].
Upper panel: The sulphuric acid concentration (blue curve) and
the 3 nm particle formation rate (red curve) on 13 April 2005
in Hyytiälä. Lower panel: Fitting of sulphuric acid data toJ3
data, with sulphuric acid raised to the powernJ3=1.5 and delayed
by 1tJ3=0.3 h. The correlation coefficient between the curves is
R=0.83.

In the present study one value fornN36 as well as for
1tN36 was assumed to be valid throughout the day. This,
however, might not be the case if the aerosol dynamic condi-
tions, for instance the nucleation processes or the amount of
condensable vapours, vary during the day.

3.1.2 Correlation of sulphuric acid andJ3 during new par-
ticle formation

On all the studied new particle formation days, the forma-
tion rate of 3 nm particles (J3) was observed to correlate with
the sulphuric acid concentration. We performed a similar fit-
ting procedure for theJ3 data as we did for theN3−6, and
searched the combination of the exponentnJ3 and time de-
lay 1tJ3 that gave the maximum correlation coefficient for
the relationJ3∝[H2SO4(t–1tJ3)]nJ3. Figure 4 shows the fit
to theJ3-data on 13 April 2005 in Hyytïalä, when the best
agreement between the curves was obtained with an expo-
nentnJ3=1.5 and time delay1tJ3=0.3 h. The general agree-
ment of the curves is satisfying.

The exponentsnJ3 typically varied between 1 and 3 in
both locations. In Heidelberg, on 2 days (20% of all anal-
ysed days) the exponent was approximately 1, on 5 (50%)
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Table 1 A classification of the particle formation event days during QUEST II–IV campaigns according to the exponent in the correlation
N3−6∝

[
H2SO4

]nN36. R refers to the correlation coefficient.

Hyytiälä
QUEST II

Heidelberg
QUEST III

Hyytiälä
BACCI/QUEST IV

Total

n≈1 6 (38%) 6 (60%) 9 (45%) 21 (46%)
n≈1.5 4 (25%) 3 (30%) 2 (10% 9 (20%)
n≈2 5 (31%) 1 (10%) 6 (30%) 12 (26%)
n≈2.5–3 1 (6%) – 3 (15%) 4 (9%)

meanR 0.85 0.75 0.82

Table 2The time delays and corresponding growth rates from 1 to 3 nm (GR1−3) for the three QUEST campaigns.

Hyytiälä QUEST II Heidelberg QUEST III Hyytiälä BACCI/QUEST IV
1tN36 GR1−3 1tN36 GR1−3 1tN36 GR1−3
[h] [nm/h] [h] [nm/h] [h] [nm/h]

Mean 2 1.2 1.5 1.5 1.4 3.1
Median 1.7 1.2 1.5 1.3 1.5 1.2
Min 1.0 0.5 0.7 0.9 0.0 0.6
Max 4.1 2.1 2.3 2.7 3.5 10
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Fig. 5a. The formation rateJ3 estimated from particle measure-
ments versus the sulphuric acid concentration during the QUEST III
campaign in Heidelberg. Sulphuric acid concentrations have been
delayed by the fitted time lags. Lines with slopes 1 and 2 (corre-
sponding to values 1 and 2 in the exponentnJ3) are indicated to
guide the eye.

days the exponent was 1.5, and on 2 (20%) daysnJ3 had
the value of 2. On one day the exponent corresponding to the
best correlation was approximately 3. In Hyytiälä, the results
were similar, on 3 days (17%)nJ3 was approximately 1, on
2 (11%) daysnJ3 had the value 1.5, and on 8 (44%) days the
exponent was 2. On 5 (28%) daysnJ3 was 2.5. The time
delays1tJ3 had a mean value of 0.8 h and a median 0.7 h in
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Fig. 5b. The formation rateJ3 estimated from particle mea-
surements versus the sulphuric acid concentration during the
BACCI/QUEST IV campaign in Hyytïalä. Sulphuric acid con-
centrations have been delayed by the fitted time lags. Lines with
slopes 1 and 2 (corresponding to values 1 and 2 in the exponent
nJ3) are indicated to guide the eye.

Heidelberg. In Hyytïalä, the corresponding values were 0.7 h
and 0.3 h.

The formation rateJ3 is plotted versus the sulphuric acid
concentration in Figs. 5a and b for Heidelberg and Hyytiälä,
respectively. The plots include all data points between
06:00 a.m. and 06:00 p.m. for all event days during the
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campaigns. Lines with slopes 1 and 2 (corresponding to the
values 1 and 2 for the exponentnJ3) are also indicated in the
figures to guide the eye. Similar result has been reported by
Weber et al. (1996) for measurements at a marine and a con-
tinental site, where the exponentnJ3 was also between 1 and
2.

When calculating theJ3 with Eq. (6), the numerical differ-
entiation of theN3−6 data results in relatively large fluctua-
tions inJ3, despite the applied smoothing algorithm. TheJ3
data therefore includes negative values, which must be left
out from the analysis. The reasoning for this is that if we as-
sume particles to be lost only due to coagulation, and not due
to evaporation (i.e.GR3 in Eq. (6) is assumed to be positive),
J3 should be positive. Due to the resulting gaps inJ3 data,
the correlation coefficients betweenJ3 and [H2SO4]nJ3 are
not as high as in case ofN3−6. However, the correlation be-
tweenJ3 and [H2SO4]nJ3 is clear, the correlation coefficients
being 0.37–0.85 in Heidelberg, and 0.54–0.98 in Hyytiälä. In
J3 there were often distinct peaks that corresponded clearly
to peaks in [H2SO4] data. It should be noted that these peaks
do not necessarily coincide with peaks inN3−6, because the
J3 is derived fromN3−6 using Eq. (6). This observation gives
us further confidence that there is a fundamental connection
between the new particle formation rates and sulphuric acid,
which can be formulated e.g. according to Eqs. (2) and (3).

3.1.3 Comparison of the exponents and time delays for
N3−6 andJ3

The time delays1t and exponents for bothN3−6 and J3-
fittings are listed in Tables 3a (Heidelberg) and 3b (Hyytiälä).
It can be observed that the time delays betweenJ3 and sul-
phuric acid are consistently smaller than the time delays for
N3−6. The mean time delays forJ3 in Hyytiälä and Hei-
delberg are 0.7 h and 0.8 h, respectively, while the values for
N3−6 are 1.4 h and 1.5 h, respectively. The difference in time
delays1tN36 and1tJ3 is on average 0.7 h. The result is rea-
sonable, since the formation rateJ3 is essentially the differ-
ential ofN3−6. This implies that a rise in theN3−6 is always
preceded by a rise inJ3.

In this study we have used the time delay1tN36 instead of
1tJ3 for estimating the mean growth rates for 1–3 nm par-
ticles during new particle formation (see Tables 3a and b).
There are several reasonings for this choice. First,1tN36 can
be determined directly and reliably from the data, whereas
J3 needs to be calculated using the measured data. Second,
using1tN36 makes our results comparable with the available
literature, where similar methods have been used (Weber et
al., 1997; Fiedler et al., 2005; Sihto et al., 2006). Addi-
tionally, preliminary calculations with an aerosol dynamics
model (UHMA, see Korhonen et al., 2004) imply that the
growth rate determined from the time delay ofN3−6 is closer
to the real particle growth rates (which are not constant, ei-
ther in time or for all 1–3 nm particles) as compared with the
one calculated from the time delay ofJ3. It should be borne

in mind, however, that if the growth rate of 1–3 nm particles
would be constant, it would be directly obtained from the
time difference betweenJ1 andJ3, or if J1∝[H2SO4], be-
tween [H2SO4] andJ3. Also the 1–3 nm growth rates deter-
mined from ion measurements are close to the growth rates
obtained from1tN36.

The exponent in theJ3 correlation was observed to be
greater than or or equal to the exponent inN3−6 cor-
relation (nJ3≥nN36, see Tables 3a and b). In Hyytiälä
BACCI/QUEST IV data set, on 7 days of the total of 18 new
particle formation days the exponentnJ3 is higher by ap-
proximately 0.5 compared withnN36 and by 1.0 on 4 days.
Similar trend is observed in Heidelberg, where the exponent
increases by 0.5 on 4 days and by 1.0 on 3 days, staying the
same on 3 days. The change in the exponent when calculat-
ing back fromN3−6 toJ3 is again related to the fact thatN3−6
is an integral quantity ofJ3: N3−6 increases less steeply with
time compared toJ3, resulting in smaller exponent forN3−6
when fitted with sulphuric acid data.

To further investigate the relationship of the exponents
in the N3−6 and J3 correlations, we used the derived
analytical formula (Eq. 8, see also Appendix A) to estimate
the exponent ofJ3 correlation if the exponent forN3−6 is
known. We can now carry on an exemplary calculation for
one day, substituting typical ambient values in Hyytiälä
conditions for the condensation and coagulation sinks, for
instance, CS=1.0×10−3 s−1 and CoagS=0.6×10−4 s−1.
The coefficient for the sulphuric acid formation rate can
be set to e.g.Q0=1.0×107 cm−3 h−1 (corresponding to a
maximum sulphuric acid concentration of approximately
5.5×106 cm−3). The sulphuric acid concentration ob-
tained with this production rate (Eq. A8 in Appendix A)
is presented in Fig. 6a. First, we used the maximum
growth rate from BACCI/QUEST IV,GR1−3=10 nm/h.
According to Kulmala et al. (2001b) and Lehtinen and
Kulmala (2003) the factorα now has the value of ap-
proximately 1.8×10−7 nm/h· cm3. Thus the sulphuric
acid would explain at maximum a growth rate of about
1.0 nm/h, therefore leading toβ=9.0 nm/ h. The terms
B [H2SO4]nN36−1 , D [H2SO4]nN36 andE [H2SO4]nN36+1

normalized with the factorC (Eq. A2) and the total nor-
malized formation rate expressed with Eq. (8) are plotted
in Fig. 6b. Second, the total growth rate was assumed
to be 0.6 nm/ h, corresponding to the minimum growth
rate observed during the BACCI/QUEST IV. In this case,
the maximum sulphuric acid concentration could explain
the growth rate totally, and thereforeβ=0. The terms
B [H2SO4]nN36−1 , D [H2SO4]nN36 andE [H2SO4]nN36+1

and the totalJ3 for this case are presented in Fig. 6c. In these
calculations we assumednN36=2; the case withnN36=1
gives qualitatively similar results.

The calculations indicate that the term with the exponent
nN36 is clearly dominating in our first exemplary case, where
only about one tenth of the growth rate can be explained by
sulphuric acid. In the second case, on the other hand, when
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Table 3a.The fitted time delays and categorised exponents forN3−6 andJ3 correlations with sulphuric acid for each new particle formation
event day during QUEST III (Heidelberg). The exponents fitted toJ3 are consistently larger than the exponents fitted toN3−6. Correspond-
ingly the time delays ofJ3 are smaller than in the case ofN3−6. During some days (*) theJ1 data contained peaks corresponding to exponent
2 even though the general behaviour during the day would correspond tonJ1=1.

Date DOY 1tN36 GR1−3 1tJ3 nN36 nJ3 nJ1
[h] [nm/h] [h]

14.3. 74 1.5 1.3 1.0 1.0 2.0 2.0
15.3. 75 0.7 2.9 0.3 1.0 1.0 –
16.3. 76 1.3 1.5 0.8 1.5 2.0 –
18.3. 78 1.5 1.3 1.0 2.0 3.0 –
19.3. 79 1.0 2.0 0.3 1.0 2.0 2.0
21.3. 81 1.7 1.2 0.7 1.0 1.0 1.0
22.3. 82 1.7 1.2 0.7 1.0 1.5 1.0*
27.3. 87 1.2 1.7 0.5 1.0 1.5 1.0*
30.3. 90 2.2 1.3 1.3 1.5 2.0 2.0
2.4. 93 2.3 0.9 1.8 1.5 1.5 –

Mean 1.5 1.5 0.8
Median 1.5 1.3 0.7
Min 0.7 0.9 0.3
Max 2.3 2.7 1.8

* Peaks with exponent 2

Table 3b. The fitted time delays and the categorised exponents forN3−6 andJ3 correlations with sulphuric acid for new particle formation
days during BACCI/QUEST IV campaign (Hyytiälä). Consistently with Heidelberg data, the exponentsnJ3 are larger than the exponents
nN36. Also the time delays ofJ3 are smaller than in the case ofN3−6. For the explanations of (*), see Table 3a.

Date DOY 1tN36 GR1−3 1tJ3 nN36 nJ3 nJ1
[h] [nm/h] [h]

12.4. 102 0.2 10 0 1.0 2.0 1.0*
13.4. 103 1.0 2.0 0.3 1.0 1.5 1.0*
16.4. 106 1.2 1.7 0.7 1.0 1.0 1.0*
17.4. 107 0.5 4.0 0 2.0 2.0 2.0
18.4. 108 2.3 0.9 1.3 2.0 2.5 2.0
24.4. 114 3.5 0.6 3.0 1.5 2.0 2.0
25.4. 115 2.0 1.0 0.7 1.0 2.0 2.0
26.4. 116 2.0 1.0 1.5 2.0 2.5 2.0
27.4. 117 0.3 6.7 0 2.0 2.0 2.0
30.4. 120 2.0 1.0 0.2 1.5 2.0 2.0
2.5. 122 2.3 0.9 2.0 1.0 1.5 2.0
3.5. 123 0 - 0 2.5 2.5 2.0
8.5. 128 0.3 6.7 0 1.0 1.0 1.0*
11.5. 131 2.0 1.0 1.5 1.0 2.0 2.0
12.5. 132 3.0 0.7 1.8 1.0 2.0 1.0*
13.5. 133 1.7 1.2 0 1.0 1.0 1.0*
14.5. 134 0.2 10 0 2.0 2.5 2.0
16.5. 136 0.7 2.9 0.2 2.5 2.5 2.0

Mean 1.4 3.1 0.7
Median 1.5 1.2 0.3
Min 0 0.6 0
Max 3.5 10 3.0

* Peaks with exponent 2
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all of the growth can be explained by the sulphuric acid con-
centration, thenN36+1–dependent term dominates. In both
cases thenN36–1 –dependent term is of minor importance.
Thus the simple analytical derivation suggests thatnN36–
1≤nJ3≤nN36+1. The same relation was observed from the
data: thenJ3 was always larger than or equal tonN36, with
a maximum difference of unity. The derived result indicates
that the difference between the exponentsnN36 andnJ3 is
clearly larger, the larger the contribution of sulphuric acid to
the 1–3 nm particle growth (see Fig. 6).

3.2 Nucleation coefficientsA and K during new particle
formation

The two atmospheric nucleation mechanisms – the activation
of stable clusters and kinetic nucleation by sulphuric acid –
were tested by comparing the formation ratesJ1 andJ3 cal-
culated from the sulphuric acid concentration according to
Eqs. (2) and (3) with those estimated from the particle mea-
surements. The actual values for the nucleation coefficients
A andK were determined with least squares fits. In the rela-
tionshipJ1∝ [H2SO4]nJ1 the exponent is expected to be dis-
crete, withnJ1=1 in the case of particle formation by cluster
activation, andnJ1=2 in the case of kinetic nucleation. We
also calculated the nucleation rate with the exponentnJ1=3
for each day as a representative of thermodynamically lim-
ited nucleation scheme.

The nucleation coefficientsA and K were determined
for all event days during QUEST III and IV campaings.
We determined both coefficients for every day, since there
were days when the exponents, time lags or kinetic coef-
ficients seemed to vary during the day. There are several
possible reasons for this, such as changes in the amount
of condensable vapours and particle growth rates, or dif-
ferent nucleation mechanisms taking place simultaneously.
The results are summarized in Table 4, where also values
for the QUEST II campaign are listed for comparison. In
Hyytiälä, during the QUEST IV campaign the activation co-
efficients varied from 3.3×10−8 s−1 to 2.0×10−6 s−1 with
a median value of 2.4×10−7 s−1. Kinetic coefficients were
in the range 2.4×10−15–1.8×10−13 cm3 s−1 with a median
of 3.2×10−14 cm3 s−1. These values are somewhat lower
compared to the QUEST II campaign, with a larger range
from the minimum to the maximum. In Heidelberg the
coefficients were significantly higher: the activation coef-
ficients varied from 2.6×10−6 s−1 to 3.5×10−4 s−1 with
a median of 1.1×10−5 s−1, and kinetic coefficients from
3.7×10−13 cm3 s−1 to 1.3×10−10 cm3 s−1 with a median of
2.3×10−11 cm3 s−1. These values are more than an order of
magnitude greater than the coefficients in Hyytiälä.

Possible reasons for the difference between the campaigns
could be for instance different concentration or composition
of the activated clusters, different variety or amount of con-
densable vapours, or other environmental factors related to
e.g. the meteorological conditions or the condensational sink.
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Fig. 6. The analytical estimations for the formation rate.(a) The
sulphuric acid concentration calculated from the sinusoidal produc-
tion rate;(b) The different terms in Eq. (8) and the total calculated
J3, using the growth rate of 10 nm/ h;(c) The same as (b) but with
the growth rate of 0.6 nm/ h.
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Table 4. The average values for the activation and kinetic coefficientsA andK during new particle formation in the QUEST II–IV campaigns.

Hyytiälä QUEST II Heidelberg QUEST III Hyytiälä BACCI/QUEST IV
A K A K A K

[1/s] [ cm3/s] [1/s] [ cm3/s] [1/s] [ cm3/s]

Mean 1.7E-06 5.7E-13 7.7E-05 2.3E-11 3.5E-07 5.5E-14
Median 1.0E-06 4.5E-13 1.1E-05 3.9E-12 2.4E-07 3.2E-14
25%-quartile 8.0E-07 3.0E-13 6.1E-06 1.5E-12 7.1E-08 1.7E-14
75%-quartile 2.8E-06 7.8E-13 6.7E-05 1.2E-11 2.8E-07 9.2E-14
Min 4.0E-07 2.0E-13 2.6E-06 3.7E-13 3.3E-08 2.4E-15
Max 6.0E-06 1.4E-12 3.5E-04 1.3E-10 2.0E-06 1.8E-13

To find explanations for this differences, we looked for corre-
lations between the nucleation coefficients and ambient vari-
ables such as temperature, relative humidity, condensation
sink, as well as sulphuric acid and ammonia concentrations.
The only statistically significant correlation we found for the
nucleation coefficients was with the condensation sink, for
which the correlation coefficient was 0.50 forA and 0.35 for
K. For instance, no clear temperature dependence was ob-
served. The correlations were calculated for the whole data
set containing data from the QUEST II-IV campaigns, and
medians from 09:00 a.m. to 15:00 p.m. were used for the
ambient variables. One aspect that might have some effect
on the results is that with the present method we can esti-
mate the values ofA andK only on the new particle forma-
tion event days, combined with the fact that we cannot detect
particles below 3 nm with the current instruments. Because
of the higher condensation sink in Heidelberg, there might
be more days when new particle formation starts but the par-
ticles do not grow to 3 nm before scavenging to pre-existing
particles. This means that compared to Hyytiälä, the particles
have to grow faster and/or the values of A and K need to be
higher in Heidelberg to really observe a typical new particle
formation event with continuous growth above the detection
limit of the DMPS.

ExponentsnJ1, which can be termed also as the exponents
of the nucleation, were determined simply by choosing the
curve (nJ1=1, 2 or 3) that gives the best correspondence to
theJ1 estimated from the particle measurements. The values
are listed in Table 3. Kulmala et al. (2006) have shown that
theoretically always appliesnJ1≤nJ3. This condition was al-
ways satisfied in this study as well (see Table 3). This result,
along with the fact thatnJ3 never exceeded 3, suggest that
the activation of stable clusters and/or kinetic nucleation are
possible nucleation mechanisms present in atmospheric par-
ticle formation. On some days in Heidelberg, when a clear
rise inJ3 was missing or the data were heavily scattered, we
were not able to specify the exponentnJ1.

3.3 Non-events and undefined days

During the BACCI/QUEST IV campaign in Hyytiälä there
were 17 days with no significant new particle formation
when also sulphuric acid measurements were performed; of
these 9 were classified as “non-event days” and 8 as “unde-
fined”. This data allows us to test the framework of activa-
tion and kinetic nucleation during days with no new parti-
cle formation using the determined nucleation coefficients.
We calculated the nucleation rateJ1 from the sulphuric acid
concentration according to activation hypothesis (Eq. 2) us-
ing the median value during BACCI/QUEST IV forA, thus
A=2.4×10−7 s−1. TheJ1 was scaled to the formation rate
J3 by Eq. (7) using the median value forGR1−3 (see Ta-
ble 3). The condensation sink was calculated for each day in
the same manner as for the event days from the background
aerosol distribution in a running window of [t–1t , t ]. The
calculations were repeated using the kinetic coefficientK,
yielding similar results.

The median values ofJ1 on days with no new particle
formation, calculated according to the activation hypothe-
sis, were similar to the values on the event days (approxi-
mately 0.2 cm−3 s−1). The maximum nucleation rates dur-
ing the day showed a clearer difference being approximately
0.9 cm−3 s−1 on non-event and undefined days compared to
3.4 cm−3 s−1 on event days. Thus on the days with no new
particle formation the peak value in sulphuric acid (i.e. in the
nucleation rate) was significantly smaller than on the event
days.

When considering the formation ratesJ3, the event days
differed clearly from the non-event days (see Fig. 7a for the
Hyytiälä data). On 6 non-event days out of 9, the median of
the calculatedJ3 was approximately an order of magnitude
lower compared to the medianJ3 on event days. The me-
dian ofJ3 on the event days was about 1.7×10−2 cm−3 s−1

but on non-event days only 2.0×10−3 cm−3 s−1. Also
the maximumJ3 values showed a difference of the same
magnitude, being 4.3×10−1 cm−3 s−1 on event days and
1.8×10−2 cm−3 s−1 on the non-event days. Since the dif-
ferences were not as clear in theJ1 values, the main rea-
son for the small predictedJ3:s on the nonevent days was
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Fig. 7a. The median particle formation rates at 3 nm for
BACCI/QUEST IV, Hyytiälä. The red squares refer to theJ3 values
calculated from the DMPS data for the particle formation events.
The blue triangles and the black diamonds show the values pre-
dicted for non-event and undefined days from the sulphuric acid
data according to cluster activation hypothesis.

most probably the condensation sink, which was taken into
account when scaling fromJ1 to J3 by the exponential for-
mula (Eq. 7). Also a slow growth rate could be a reason for
a smallJ3, but its effect cannot be studied in detail because
the growth rate naturally cannot be determined for the non-
event days. In any case, the effect of theCS is expected to be
more pronounced compared toGR1−3, because the variation
in CS is much larger than in the growth rate.

In contrast to the non-event days, theJ3:s on the undefined
days in Hyytïalä lie mostly in the same range as on the event
days, as seen in Fig. 7a. The median ofJ3 on undefined days
was 4.0×10−2 cm−3 s−1 whereas on the event days it was
1.7×10−2 cm−3 s−1. In the maximum values ofJ3 we see
a larger difference, with 8.5×10−2 cm−3 s−1 on the unde-
fined and 4.2×10−1 cm−3 s−1 on the event days. This might
indicate that the characteristics of the undefined days typi-
cally resemble more those of event days than non-event days.
There may be new particle formation taking place also on the
undefined days, but due to e.g. the meteorological situation,
lack of continuous growth or rapidly changing air masses
they are classified as undefined.

Similar analysis as described above for Hyytiälä was con-
ducted for the Heidelberg data as well. Due to the high back-
ground concentrations and the gaps in sulphuric acid data,
there were only two analysable non-event days. The atmo-
spheric nucleation ratesJ1 on these days were 4.7 cm−3 s−1

and 5.7 cm−3 s−1. On the undefined days, the medianJ1
was 5.5 cm−3 s−1, and the corresponding value for the event
days was 25.2 cm−3 s−1, resulting in a difference of approx-
imately factor 5. For theJ3 values the differences between
event and non-event or undefined days were again more pro-
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Fig. 7b. The median particle formation rates at 3 nm for QUEST III,
Heidelberg. The red squares refer to theJ3 values calculated from
the DMPS data for the particle formation events. The blue triangles
and the black diamonds show the values predicted for non-event
and undefined days from the sulphuric acid data according to cluster
activation hypothesis.

nounced (see Fig. 7b for the exact numbers), being typically
about two orders of magnitude. In Heidelberg, also the un-
defined days differ clearly from the days with new particle
formation.

As a summary, on most non-event days the formation rates
predicted according to activation or kinetic nucleation hy-
potheses are so low that they would not lead to a new particle
formation event. Thus in most cases the data from non-event
days is consistent with the framework of activation or kinetic
nucleation using the nucleation coefficients determined for
the particle formation event days. There are some undefined
days when the lack of new particle formation is probably due
to the low sulphuric acid concentration. However, most of-
ten the sulphuric acid is not the limiting factor, but the con-
densation sink and a slow growth rate prevent particles from
growing to sizes above 3–6 nm.

4 Conclusions

We have studied the role of sulphuric acid in new particle
formation and the initial particle growth during QUEST III
and IV campaigns in Heidelberg and Hyytiälä, the preceding
representing a polluted environment in Central Europe and
the latter a rural boreal site in Finland.

We have quantitatively studied the dependencies of newly
formed atmospheric particle concentrations and formation
rates on sulphuric acid concentrations, using a computer-
based fitting method. We have observed that both 3–
6 nm particle concentrations and their formation rates have
a power-law dependence on sulphuric acid concentrations
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(delayed with time lag1tN36 or 1tJ3), the typical powers
being between 1 and 2. This observation holds for both lo-
cations and is consistent with the results reported by Sihto
et al. (2006) for QUEST II campaign in Hyytiälä. The ex-
ponents 1–2, particularly in the relation between sulphuric
acid and the 1 and 3 nm formation rates, strongly suggest that
the activation of stable clusters and/or kinetic nucleation are
probable mechanisms behind the observed atmospheric par-
ticle formation. Our analysis has concentrated on the role of
sulphuric acid in the particle formation, and does not give di-
rect information on what other compounds might be involved
in the nucleation and growth processes. Possible candidates
for these compounds are, for instance, ammonia and some
organic molecules. However, the classical nucleation theo-
ries, such as the ternary nucleation theory involving water,
sulphuric acid and ammonia, would predict exponents well
above 2 and therefore do not seem as likely candidates to
explain the atmospheric nucleation at the investigated sites.
Also, no correlation between the measured ammonia con-
centration and new particle formation was observed. Or-
ganics play a significant role at least in the particle growth
processes, the effect being encanced during the spring and
summertime (see e.g. Kulmala et al., 2004b; Hirskko et al.,
2005). However, further studies on the role of organics in
particle formation are needed.

The time lags between sulphuric acid concentration and
3–6 nm particle concentrations and formation rates are rather
similar at both locations and during all campaigns. However,
the time lags observed earlier during the QUEST II campaign
in Hyytiälä are slightly higher than the time lags observed in
this study in both Hyytïalä (BACCI/QUEST IV) and Hei-
delberg (QUEST III), which indicates higher growth rates
during BACCI/QUEST IV (mean 3.1 nm/ h) and QUEST III
(mean 1.5 nm/ h) compared to QUEST II (mean 1.2 nm/ h).
The difference between the two springs in Hyytiälä is prob-
ably related to the fact that the BACCI/QUEST IV cam-
paign was conducted later in spring (April–May) than the
QUEST II campaign (March–April): the average growth
rates of particles typically increase towards summer, presum-
ably because the organics emitted by the forest start to con-
tribute to the growth (see e.g. Dal Maso et al., 2005). The
difference between QUEST II and QUEST III, even though
both have been conducted in early spring, may be related to
the higher background particle concentrations in Heidelberg:
due to the higher coagulation sink, the particles have to grow
faster to survive to detectable sizes.

In both places we have observed similar relations between
the time lags and exponents in the sulphuric acid dependen-
cies of the particle concentrations and formation rates: the
time delay between sulphuric acid and particle formation rate
tends to be shorter and the exponents higher than the corre-
sponding variables for particle concentrations. The differ-
ence in the time delays can be explained by the differential
relation between the formation rates and the concentrations.
For the difference in the exponentsnN36 andnJ3 we have

derived a simple analytical formula, which, if applied in typ-
ical ambient conditions produces similar relation as observed
from the data. The main reason for the difference in the ex-
ponents is the significant participation of sulphuric acid in
the initial particle growth.

The empirical nucleation coefficientsA (cluster activa-
tion) andK (kinetic nucleation) have been determined for
QUEST III and BACCI/QUEST IV data. The results have
been compared with the values reported by Sihto et al. (2006)
for Hyytiälä (QUEST II). Both coefficients are somewhat
lower for BACCI/QUEST IV compared to QUEST II. The
values forA and K in Heidelberg, on the other hand, are
more than an order of magnitude higher than in Hyytiälä.
The result is probably due to the different conditions at the
measurement sites, such as the background particle concen-
trations, variety of condensable vapours or meteorological
conditions. However, future studies are needed firstly to in-
vestigate the magnitude of the nucleation coefficients in dif-
ferent environments and secondly to pin down the physical
reasons behind the variation. It is noteworthy that the kinetic
coefficients in both locations are typically 2–4 orders of mag-
nitude lower than the collision rate of [H2SO4] molecules in
atmospheric conditions (3×10−10 cm3 s−1). The result in-
dicates that probability of a stable cluster formation upon
the collision of two sulphuric acid molecules is significantly
smaller than unity.

Theoretical predictions for atmospheric nucleation rates
J1 and particle formation rates at 3 nmJ3 have been calcu-
lated for the days when no significant new particle forma-
tion and growth is observed. No significant difference be-
tween theJ1 values on particle formation event days and non-
event or undefined days is observed, which implies that the
observed new particle formation and growth typically can-
not be predicted from sulphuric acid concentrations alone.
However, when the predictedJ3 values on non-event days
are compared to the rates observed on particle formation
event days, a much clearer difference (usually about an order
of magnitude) is observed. Interestingly in Heidelberg, the
same applies also for the undefined days, whereas in Hyytiälä
the formation rates on undefined days are close to those of the
event days. The results suggest that the main process limiting
the particle formation and growth to detectable sizes is not
the initial particle production by atmospheric nucleation of
sulphuric acid, but rather the competition between the initial
growth of the particles and the loss by scavenging to larger
particles, as also speculated by e.g. Kulmala (2003). Our ob-
servations support the ideas of Kulmala et al. (2000, 2004b),
where the atmospheric particle formation is proposed to be
a two-step process consisting of 1) the nucleation forming
thermodynamically stable clusters present all the time, and
2) the activation and growth of these clusters via vapour con-
densation.

In general, it can be concluded that the introduced sim-
ple models based on the cluster activation and kinetic nu-
cleation mechanisms are able to predict the occurence of
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atmospheric particle formation events reasonably well, if the
particle scavenging and growth are accounted for.

Appendix A

Derivation of the analytical expression connecting
J3 and nN36

According to Eq. (6) the formation rate of 3 nm particles can
be written

J3 =
dN3−6

dt
+ CoagS· N3−6 +

GR1−3

3 nm
· N3−6. (A1)

According to observations, the particle concentration can be
expressed as

N3−6 = C [H2SO4]nN36 . (A2)

If we now assume that the particle growth is partly by sul-
phuric acid, partly by some other condensing vapour (e.g.
organics), the growth rate can be written as

GR1−3 = α [H2SO4] + β. (A3)

Substituting Eqs. (A2) and (A3) to Eq. (A1), we get

J3 = C

[
nN36 [H2SO4]nN36−1

·
d[H2SO4]

dt
+

CoagS· [H2SO4]nN36 +

β

3 nm
· [H2SO4]nN36 +

α

3 nm
· [H2SO4]nN36+1

]
(A4)

On the other hand, we can write a balance equation for the
[H2SO4]l:

d [H2SO4]

dt
= Q − CS · [H2SO4] , (A5)

whereQ is the production rate of sulphuric acid. Let us now
simply assume a sinusoidal production

Q = Q0[sin(ωt + k) + 1], (A6)

so that the production has a maximum at noon and a mini-
mum at midnight. Thus we can setω=π /12 andk=−π /12 (as
t is in hours). Equation (A6) can be substituted to Eq. (A5)
to get a differential equation

d[H2SO4]

dt
= Q0[sin(ωt + k) + 1] − CS · [H2SO4] , (A7)

which can be solved for [H2SO4], yielding:

[H2SO4] = Q0

{
CS

ω2 + CS2
sin(ωt + k)−

ω

ω2 + CS2
cos(ωt + k)−[

1

CS
−

CS

ω2 + CS2

]
e−CS×t

+
1

CS

}
. (A8)

Combining Eqs. (A4), (A7) and (A8) and we can writeJ3
as a function of [H2SO4]:

J3 = B · [H2SO4]nN36−1
+

D · [H2SO4]nN36 + E · [H2SO4]nN36+1 , (A9)

where now

B = C · nN36Q0

[
ω

CS
cos(ωt + k) +

ω2

CS2

(
e−CS×t

− 1
)]

D = C ·

[
nN36 ·

ω2
+ CS2

CS
− nN36CS + CoagS+ β ·

1

3 nm

]

E = C · α ·
1

3 nm
. (A10)
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