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Abstract. Wildland fires in boreal regions have the poten-
tial to initiate deep convection, so-called pyro-convection,
due to their release of sensible heat. Under favorable atmo-
spheric conditions, large fires can result in pyro-convection
that transports the emissions into the upper troposphere and
the lower stratosphere. Here, we present three-dimensional
model simulations of the injection of fire emissions into
the lower stratosphere by pyro-convection. These model
simulations are constrained and evaluated with observa-
tions obtained from the Chisholm fire in Alberta, Canada,
in 2001. The active tracer high resolution atmospheric
model (ATHAM) is initialized with observations obtained
by radiosonde. Information on the fire forcing is obtained
from ground-based observations of the mass and moisture
of the burned fuel. Based on radar observations, the pyro-
convection reached an altitude of about 13 km, well above the
tropopause, which was located at about 11.2 km. The model
simulation yields a similarly strong convection with an over-
shoot of the convection above the tropopause. The main out-
flow from the pyro-convection occurs at about 10.6 km, but
a significant fraction (about 8%) of the emitted mass of the
smoke aerosol is transported above the tropopause. In con-
trast to regular convection, the region with maximum updraft
velocity in the pyro-convection is located close to the sur-
face above the fire. This results in high updraft velocities
>10 m s−1 at cloud base. The temperature anomaly in the
plume decreases rapidly with height from values above 50 K
at the fire to about 5 K at about 3000 m above the fire. While
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the sensible heat released from the fire is responsible for the
initiation of convection in the model, the release of latent heat
from condensation and freezing dominates the overall energy
budget. Emissions of water vapor from the fire do not signif-
icantly contribute to the energy budget of the convection.

1 Introduction

Emissions from wildland fires contribute significantly to the
budgets of numerous atmospheric trace gases and aerosol
particles (Crutzen and Andreae, 1990; Andreae and Merlet,
2001). In contrast to most other surface emissions (e.g., com-
bustion of fossil fuel, dust) emissions from wildland fires are
typically colocated with atmospheric convection, so-called
pyro-convection, induced by the emission of sensible heat
from the fire. The intensity of pyro-convection and there-
fore the vertical lifting of the fire emissions depends on the
size and type of the wildland fire and the convective poten-
tial of the atmosphere. Especially in boreal regions, large,
intense crown fires combined with conditionally unstable at-
mospheric conditions can lead to extreme convection with
the potential to transport fire emissions into the upper tropo-
sphere (UT) and even into the lower stratosphere (LS).

Emissions from boreal biomass burning have regularly
been observed in the UT/LS region using remote sensing
(satellite and ground based) and in situ instrumentation.
Waibel et al. (1999) measured enhanced concentrations of
carbon monoxide (CO) from boreal fires in Canada in the
UT/LS region over Europe in the summer of 1994. In the
summer of 2002, Jost et al. (2004) found particulate and
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gaseous emissions from a Canadian fire in the stratosphere
close to Florida, USA. Also above Florida, enhanced con-
centrations of methyl cyanide (CH3CN) from fires in Idaho
were detected by the Microwave Limb Sounder (MLS) in the
lower stratosphere in 1992 (Livesey et al., 2004). Siebert
et al. (2000) report LIDAR measurements of a stratospheric
aerosol layer over Sweden, likely originating from a Cana-
dian wildfire in 1998. Satellite measurements demonstrated
that this smoke layer extended over large areas (Fromm et al.,
2000, 2005). Enhanced CO concentrations in the UT/LS
region originating from Siberian fires in 2003 were found
over Asia and over Europe (Nedelec et al., 2005; Immler
et al., 2005). LIDAR measurements over Wisconsin, USA,
in 2004 showed an upper tropospheric smoke layer resulting
from fires in Alaska and the Yukon Territory (Damoah et al.,
2006).

To understand the processes associated with intense pyro-
convection, detailed information on the fire emissions and
the atmospheric conditions is required. Some observational
studies of pyro-convection events from prescribed fires are
available. These studies often focussed on processes asso-
ciated with the fires themselves (e.g., the Bor fire, FIRES-
CAN Science Team, 1996). Other studies provide insights
into pyro-convection, but not much information about the
fire behavior is available (e.g., the Battersby and the Hardi-
man fires, Radke et al., 1988, 1991; Banta et al., 1992).
More comprehensive datasets are available for the Quin-
ault fire at the U.S. West Coast (Hobbs et al., 1996; Gassó
and Hegg, 1998), the Timbavati fire in South Africa (Hobbs
et al., 2003), and from the International Crown Fire Mod-
eling Experiment (ICFME) in Canada’s Northwestern Terri-
tories (Stocks et al., 2004). None of these prescribed fires,
however, resulted in cloud formation and deep convection.

There are few documented wildland fires that provide ev-
idence for direct injection of smoke into the UT/LS region
by pyro-convection leading to long-time and large-scale pol-
lution. Satellite imagery provided evidence that direct emis-
sion by Canadian forest fires through pyro-convection was
responsible for enhanced stratospheric aerosol optical depth
in the summer of 1998 (Fromm et al., 2000, 2005). In May
2001, the Chisholm Fire, Alberta, Canada, induced a pyro-
convection that led to the formation of a deep convective
cloud, which penetrated the tropopause, and deposited smoke
into the boreal stratosphere (Fromm and Servranckx, 2003;
Rosenfeld et al., 2006). Extensive fires near Canberra, Aus-
tralia, in 2003 lead to a fire-induced cumulonimbus (Cb), a
so-called pyroCb, that reached up to an altitude of 14 km,
i.e., well into the stratosphere (Mitchell et al., 2006; Fromm
et al., 2006a).

Whereas there is some observational information on pyro-
convection, very limited research has been conducted us-
ing numerical models. Most of the previous approaches to
simulate convection induced by a fire or other surface heat
sources have been performed with simplified models. Based
on observations, Lavoué et al. (2000) derive a linear cor-

relation between the injection height and the fire intensity.
Buoyant plume and parcel models are used to estimate the
height of the pyro-convection (e.g., Morton et al., 1956; Ma-
nis, 1985; Jenkins, 2004). Two-dimensional axis-symmetric
models including simple cloud parameterizations were used
for a more detailed description of the transport and entrain-
ment (e.g., Small and Heikes, 1988; Gostintesev et al., 1991).
The first three-dimensional model simulations of fire plumes
were presented by Penner et al. (1986) for rather idealized
scenarios and for the pyro-convection induced by the Hardi-
man Fire (Penner et al., 1991). Results from the latter simu-
lation were combined with a parcel model to investigate the
scavenging of smoke aerosol and cloud formation (Chuang
et al., 1992). Recently, Cunningham et al. (2005) presented
results from detailed simulations of the small scale dynam-
ical interaction between the fire-induced buoyancy and the
atmospheric wind.

In parallel to these models, which focus on the pyro-
convection, numerical models that include the interaction be-
tween the atmosphere and fire have been developed and ap-
plied (e.g., Clark et al., 1996, 2004; Linn et al., 2005). These
kinds of models, however, do not resolve the full dynami-
cal evolution of deep pyro-convection involving cloud for-
mation, and are not easily applicable to atmospheric studies.

The first detailed comparison of model results with field
observations from a young biomass burning plume was pre-
sented by Trentmann et al. (2002). They used observed atmo-
spheric profiles of temperature, moisture and wind combined
with information on the fire emissions to simulate the pyro-
convection induced by the prescribed Quinault fire (Hobbs
et al., 1996). Chemical processes leading to the formation of
tropospheric ozone were also investigated (Trentmann et al.,
2003a). In the case of the Quinault fire, the convection was
not particularly intense, no cloud was formed, and the smoke
aerosol remained in the boundary layer.

Here, we will present model simulations for the pyro-
convection induced by the Chisholm fire (Fromm and
Servranckx, 2003; Rosenfeld et al., 2006). This pyro-
convection transported the fire emissions into the upper tro-
pospheric region and into the stratosphere. The pyroCb-
convection and the resulting stratospheric aerosol plume have
been observed by radar and satellite (Fromm and Servranckx,
2003; Rosenfeld et al., 2006). This paper presents relevant
information on the model and its initialization. Results from
model simulations using the best-available data for the me-
teorological conditions and the fire emissions are shown and
evaluated with field observations. Some dynamical features
of the simulated pyroCb are discussed. In a companion pa-
per, (Luderer et al., 2006a) present results from sensitivity
studies exploring the impact of the fire emissions (sensible
heat, water vapor, and CCN) and the ambient background
profiles on the simulated pyroCb.
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Fig. 1. Temperature (color scale), geopotential height (m, black
contours), and wind field (arrows) at 500 hPa from ECMWF analy-
sis data for 29 May 2001, 00:00 UTC. The location of the Chisholm
fire is depicted by the black cross at 55◦ N, 114◦ W.

2 Observations

A wealth of information is available for the Chisholm fire.
This includes extensive documentation of the fire behavior
(ASRD, 2001) and remote sensing information of the fire
and the pyroCb that developed atop of the fire (Fromm and
Servranckx, 2003; Rosenfeld et al., 2006). Here, we focus
on the information relevant for the present study.

2.1 Fire observations

The Chisholm Fire (tagged LWF-063), a man-caused forest
fire, was ignited on 23 May 2001 at about 55◦ N, 114◦ W, ap-
prox. 160 km north of Edmonton, Alberta, Canada (ASRD,
2001). In the afternoon of 28 May, a second fire was
started (LWF-073) and later merged with Fire 063. Favor-
able weather conditions, in particular a strong low-level jet,
and dry fuel led to erratic fire behavior and intense convec-
tion on 28 May, especially in the late afternoon and early
evening. Fire intensity maximized on this day between about
17:00 and 24:00 MDT (Mountain Daylight Time), i.e., be-
tween 23:00 UTC and 06:00 UTC. During this time span, a
total area of more than 50 000 ha was impacted by the fire.
The average rate of spread was observed to be 5.4 km h−1

(=1.5 m s−1). The main types of fuel burned (according to
the Canadian Forest Fire Behavior Prediction (FBP) Sys-
tem) were boreal spruce and grass, which include substan-
tial amounts of soil and duff. The fuel density in the area
that burned during the time of peak fire activity is rather in-
homogeneous. In its southern part, it is dominated by dense
coniferous vegetation, while there are extended patches of
grasslands in the northern part of the burnt area. Field sam-
pling conducted after the fire yielded a fuel consumption of

Fig. 2. Equivalent potential temperature, θe, (color scale), normal-
ized surface pressure (hPa, white contours), and wind field (arrows)
at the 9th level of the vertical hybrid coordinate system (approx.
930 hPa) from ECMWF analysis data for 29 May 2001, 00:00 UTC.
The location of the Chisholm fire is depicted by the black cross at
55◦ N, 114◦ W.

9.4 kg m−2 for the spruce forest (ASRD, 2001). Averaged
over the entire area burned, the estimated fuel consumption
at the time of the peak intensity is 7.6 kg m−2. The Fine Fuel
Moisture Code (FFMC) and the Duff Moisture Code (DMC)
of the Canadian Forest Service, which are measures of the
moisture content of the fine fuel and the duff, respectively,
were estimated to be 92.8 and 99, respectively. These val-
ues correspond to moisture contents of fine fuel and duff of
8% and 49% of the dry fuel mass, respectively (Van Wagner,
1987). Considering the large consumption of duff of up to
about 90% (ASRD, 2001), we employ an overall fuel mois-
ture content of the burned biomass of 40% of the dry fuel
mass.

The total energy release due to combustion has been cal-
culated from the average fuel burned, the affected area, and
the standard heat of combustion (18 700 kJ kg−1, ASRD,
2001). For the 7 h of maximum intensity this yields an over-
all energy release of about 71×109 MJ. This value can be
converted into a TNT equivalent (1 kT TNT=4.2×106 MJ),
which gives an energy release of the Chisholm fire corre-
sponding to 17 000 kT TNT, corresponding to about 1200
times the energy release of the nuclear bomb that destroyed
Hiroshima in August 1945 with a TNT equivalent of 12–
15 kT TNT.

2.2 Meteorological situation and observations of the Py-
roCb

The meteorological situation on 28 May 2001 over Canada
was characterized by a strong 500 mb ridge with its west-
ern edge extending from about 45◦ N to 60◦ N along about
115◦ W (Fig. 1).
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Fig. 3. Vertical profiles of temperature and dew point temperature
used for the initialization of the model simulations.

Southerly winds were present along the ridge at all lev-
els. The low level winds transported warm and moist air-
masses towards the Chisholm area inducing unstable atmo-
spheric conditions (Fig. 2).

West of the Chisholm area a local low pressure area
formed with an associated trough and cold front that moved
towards the fire area (ASRD, 2001). Based on radar and
satellite observations (Rosenfeld et al., 2006), a first convec-
tive line of isolated cumulonimbus, associated with the upper
trough, reached the fire plume at 20:30 UTC (=14:30 MDT).
Strong south-easterly surface wind prevailed after the pas-
sage of this first convective line. The maximum surface tem-
perature reached 28◦C with a minimum relative humidity of
25% indicating high fire risk (ASRD, 2001). As a result of
the unstable airmass behind the first line of Cb, a second line
of intense convection approached the fire area from southerly
directions at about 23:00 UTC (=17:00 MDT). This convec-
tive line was more intense with maximum altitudes of radar
reflectivity of about 10 km and widespread thunderstorm ac-
tivity. A peak wind gust, influenced by downdrafts of the
passing thunderstorm at the surface, of 92 km h−1 was mea-
sured at 00:00 UTC (ASRD, 2001).

During the passage of the first convective line, the fire-
induced convection started to veer, but did not intensify.
The fire-induced convection was substantially intensified be-
tween 23:30 UTC and 02:30 UTC, when the second con-
vective line approached the fire (Rosenfeld et al., 2006).
Two distinctive intense pyroCbs (blow-ups) were observed
in this time frame. The first occurred between 23:30 UTC

and 00:30 UTC with maximum echotop heights measured
by the radar of about 12 km. The second blow-up occurred
between 01:20 UTC and 02:30 UTC with the arrival of the
second line of convection at the fire location. Radar obser-
vations yield maximum heights for this pyro-convection be-
tween 13 km and 14 km. Satellite observations at 02:00 UTC
on 29 May 2001 show a well developed convective cloud
anvil covering an area of about 50 km×100 km (Rosenfeld
et al., 2006). An overshooting region slightly north of the
fire on top of the anvil and gravity wave-like structures in the
anvil are also visible. Other features of this pyro-convection
include an anomalously high number of positive lightning
strikes (Rosenfeld et al., 2006). In the present work, we focus
on the second of this pair of intense pyro-convection events.

With the help of GOES-8 satellite observations, the trans-
port of the fire smoke in the upper troposphere/lower strato-
sphere was traced (Fromm and Servranckx, 2003). It was
transported by the upper level wind fields towards the north
and, at about 15:00 UTC on 29 May 2001, turned east-
ward, north of 60◦ N. On 29 May 2001, 18:40 UTC, the
Moderate Resolution Imaging Spectroradiometer (MODIS)
and the Multi-angle Imaging SpectroRadiometer (MISR),
both aboard the TERRA satellite, observed the smoke plume
about 1200 km north of Chisholm. Using the informa-
tion from MISR’s different viewing angles, the maximum
height of the smoke layer was determined to be about 13 km,
i.e, well in the stratosphere (http://eosweb.larc.nasa.gov/
HPDOCS/misr/misr html/chisholm forest fire.html, Fromm
et al. (2006b)1).

Figure 3 presents measurements taken from a radiosonde
launched near Edmonton, Alberta (WMO Station Identifier
71119; 53.55◦ N, 114.10◦ W) on 29 May 2001 at 00:00 UTC
(available at http://raob.fsl.noaa.gov/). These measurements,
taken approx. 150 km south of the Chisholm fire, are repre-
sentative of the conditions before the second line of convec-
tion has reached Chisholm. While the atmospheric bound-
ary layer was not particularly moist (absolute humidity
qv=6 g kg−1), the middle troposphere above 700 hPa (corre-
sponding to 3000 m above sea level (asl)) was almost sat-
urated. Below 700 hPa the temperature approximately fol-
lowed a dry adiabatic decrease with altitude, above 700 hPa
the lapse rate was slightly larger than the moist-adiabatic
lapse rate.

With its rather low convective available potential energy
(CAPE) of 131 J kg−1, this profile does not indicate the po-
tential for significant convection, whereas the value for the
convective inhibition (CIN) of 26 J kg−1 suggests easy initia-
tion of convection. The lifting condensation level (LCL), the
level of free convection (LFC), and the level of neutral buoy-
ancy (LNB) of the background profile are located at 3250 m,

1Fromm, M., Shettle, E., Torres O., Diner, D., Khan, R.,
Servranckx, R., and Vant Hull, B., The stratospheric impact of
the Chisholm pyrocumulonimbus, Part I: the nadir-viewer story
(TOMS, MODIS, MISR), in preparation, 2006b.

Atmos. Chem. Phys., 6, 5247–5260, 2006 www.atmos-chem-phys.net/6/5247/2006/

http://eosweb.larc.nasa.gov/HPDOCS/misr/misr_html/chisholm_forest_fire.html
http://eosweb.larc.nasa.gov/HPDOCS/misr/misr_html/chisholm_forest_fire.html
http://raob.fsl.noaa.gov/


J. Trentmann et al.: Modeling pyro-convection 5251

3620 m, and 7410 m respectively. The 0◦C-level is at about
3400 m, i.e., close to the LCL. The thermal tropopause based
on the WMO-definition is located at 12.3 km, correspond-
ing to a pressure of 180 hPa and a potential temperature
of 345 K. Based on ECMWF analysis data, the dynamical
tropopause (PV>2 PVU) was located at a potential temper-
ature of θ=332 K, corresponding to an altitude of z=11.2 km
and a pressure of p=225 hPa. Here, we chose to use the
PV-definition of the tropopause, which is more meaningful
for studies of the troposphere-stratosphere exchange in mid-
latitudes (e.g., Holton et al. (1995); Stohl et al. (2003)).

3 Model description

The non-hydrostatic active tracer high resolution atmo-
spheric model (ATHAM) (Oberhuber et al., 1998; Herzog
et al., 2003) is used to simulate the pyro-convection induced
by the Chisholm fire. ATHAM was originally designed and
applied to simulate eruptive volcanic plumes (Graf et al.,
1999). It was used to investigate the particle aggregation
in an explosive volcanic eruption (Textor et al., 2006b), the
impact of latent heat release and environmental conditions
on the volcanic plume rise (Herzog et al., 1998; Graf et al.,
1999), and the stratospheric injection of trace gases by ex-
plosive volcanic eruptions (Textor et al., 2003). It was also
employed to simulate the transport of fire emissions (Trent-
mann et al., 2002) and the chemical processes leading to
photochemical production of tropospheric ozone (Trentmann
et al., 2003a). And, results obtained from ATHAM simu-
lations were used to investigate three-dimensional radiative
effects in a smoke plume (Trentmann et al., 2003b).

ATHAM is formulated with a modular structure that al-
lows the inclusion of independent modules. Existing mod-
ules treat the dynamics, turbulence, tracer transport, cloud
microphysics, gas scavenging, radiation, emissions, and
chemistry. In the present investigation, only the dynamics,
transport, turbulence, and cloud microphysics modules of
ATHAM are used. The dynamics part solves the Navier-
Stokes equation for a gas-particle mixture including the
transport of active tracers (Oberhuber et al., 1998). Active
tracers can occur in any concentrations. They modify the
density and heat capacity of the grid box average quantities,
and can have a strong impact on the dynamics of the system.
In the present study, the aerosol particles and all hydrome-
teor classes are considered as active tracers. The turbulence
scheme distinguishes between horizontal and vertical turbu-
lence exchange processes (Herzog et al., 2003). It is based on
a set of three coupled prognostic equations for the horizontal
and vertical turbulent kinetic energy and the turbulent length
scale.

Cloud microphysical processes are simulated using a two-
moment scheme that predicts the numbers and mass mixing
ratios of four classes of hydrometeors (cloud water, cloud
ice, rain, graupel) and water vapor (Textor et al., 2006a).

The size distribution of each mode is represented by a gen-
eralized gamma function. In total 13 processes that trans-
fer water between the five classes (four classes of hydrom-
eteors and water vapor) are included in the scheme. These
include water vapor transfer processes (i.e., condensation at
and evaporation of liquid droplets as well as deposition at
and sublimation on ice particles) based on the approach by
Byers (1965), autoconversion of cloud water/cloud ice into
the rain/graupel class, respectively, based on the approach by
Murakami (1990), accretion due to a differential fall velocity
between different hydrometeor classes (Textor et al., 2006a),
and freezing of supercooled water following the stochas-
tic approach of Bigg (1953). Within this approach, com-
monly used in microphysical parameterizations in convec-
tive cloud models (e.g., Reisin et al. (1996); Seifert and Be-
heng (2006)), the potential of the smoke particles to act as
ice nuclei (IN) is not explicitly taken into account. Observa-
tions suggest that smoke particles can act as IN (Hobbs and
Locatelli, 1969), but large uncertainties remain. Therefore
the stochastic hypothesis for freezing of droplets seems ap-
propriate for the present study. At temperatures below −36
◦C, homogeneous freezing is considered in the model simu-
lations (Pruppacher and Klett, 1997).

The activation of aerosol particles cannot be treated ex-
plicitly in parameterized microphysical schemes. Sensitiv-
ity studies were conducted using a cloud parcel model with
explicit treatment of aerosol activation (Simmel and Wur-
zler, 2006). The influence of the aerosol number concentra-
tion, the aerosol size distribution, the vertical velocity, and
the soluble fraction of the aerosol on the fraction of acti-
vated aerosol particles has been investigated (Martin Sim-
mel, personal communication, 2003). In these model sim-
ulations, the number of activated smoke particles, i.e., the
number of aerosol particles that act as cloud condensation
nuclei, was most sensitive to the aerosol number concen-
tration. For the high number concentration typically found
in pyro-convection (>80 000 cm−3), only a very small frac-
tion of the aerosol particles becomes activated. Based on the
cloud parcel model results, we assume in ATHAM that 5%
of the smoke aerosol particles act as CCN. The exact value
of the activated aerosol fraction used here for the conditions
in pyro-convection must be considered a rough estimate.

However, it was found that the microphysically induced
effect of the fire aerosols on dynamics is rather small (Lud-
erer et al., 2006a). This justifies the simplified approach used
here. The simplification limits, however, the use of ATHAM
for detailed microphysical studies on the aerosol effect on the
evolution and the precipitation efficiency of pyro-convection.
Work is in progress to implement a more complex cloud mi-
crophysical scheme that includes the activation of aerosol
(Khain et al., 2004).

ATHAM is three-dimensionally formulated with an im-
plicit time-stepping scheme. The solution of the Navier-
Stokes equation is computed on a cartesian grid. A grid
stretching allows the use of a higher spatial resolution in
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predefined regions of the model domain than at the model
boundaries. A mass-conservative form of the transport equa-
tion is employed for all tracers.

The focus of this study is the detailed description of the
impact of fire emissions on the atmosphere in the vicinity of
the fire on a horizontal scale of about 100 km. The fluxes
from the fire to the atmosphere are prescribed, and therefore
not modified by the meteorological conditions, e.g., the wind
speed and direction. The reduced requirements for computer
resources allow a detailed description of the atmospheric pro-
cesses related to fire-induced convection. Other numerical
models that include the interaction between the atmosphere
and fire result in a more realistic fire evolution and small
scale features of the atmospheric fields (Clark et al., 2004;
Linn et al., 2005). However, they do not consider all relevant
processes (e.g., cloud microphysics) to describe the evolution
of deep pyro-convection on the timescale considered here.

4 Model setup and initialization

For the present study, ATHAM is initialized to realistically
represent the conditions of the convective event induced by
the Chisholm fire.

The model domain was set to 84 km×65 km×26 km with
110×85×100 grid boxes in the x-, y-, and z-directions, re-
spectively. The minimum horizontal grid box size was set
to 500 m and 100 m in the x- and y-directions, respectively.
Due to the stretched grid, the size of the grid boxes increases
towards the borders of the model domain. The vertical grid
spacing at the surface and the tropopause was set to 50 m and
150 m, respectively. Outside these regions, slightly larger
vertical grid spacings were used. The lowest vertical model
level is located at 766 m a.s.l., corresponding to the lowest
elevation available in the radiosonde data used for the model
initialization, and close to the elevation of Chisholm of about
600 m (ASRD, 2001). Throughout the manuscript, model el-
evations are given in m asl. An adaptive dynamical timestep
between 1 sec and 3 sec was used, determined online by the
Courant-Friedrichs-Lewy (CFL) criterion (CFL≤0.8). The
model simulation was conducted for 40 min. Since flat to-
pography is employed in the model simulations, the model
spin-up time is substantially shorter than the simulation time.

The model domain was initialized horizontally homoge-
neously with measurements obtained from the radiosonde
presented in Sect. 2.2, Fig. 3. Open lateral boundaries were
used for the model simulations. The horizontal means of
the directional wind speed (u, v) and of the specific humid-
ity (qv) were nudged towards the initial profile at the lateral
boundaries. The initial atmospheric profile has some poten-
tial for convection (see Sect. 2.2), however, without the heat
flux from the fire the model would not produce such a deep
convective cloud, given a level of neutral buoyancy of 7.4 km
in the initial profile.

4.1 Representation of the fire emissions

The fire is represented in the model by time-constant fluxes
of sensible heat, water vapor, and aerosol mass into the low-
est vertical model layer. The fire front was approximately lin-
ear and extended from south-south-east to north-north-west
at an angle of approximately 165◦ to North. Note that the x-
axis of the model coordinate frame was aligned with the fire
front, such that the x-direction of the model domain is at an
angle of 165◦ to North.

The actual length of the fire front was about 25 km. Due to
computational constraints, however, we only accounted for
the southern 15 km of the fire front, which passed through
densely forested area. The width of the fire front was set to
500 m. The energy release from the fire was calculated based
on a fuel loading of 9.0 kg m−2 and a value of 18 700 kJ kg−1

for the heat of combustion. Based on the comparably high
fuel load in the southern part of the fire front, we choose
a higher-than-average fuel loading in the simulations. With
the observed rate of spread of the fire front of 1.5 m s−1, the
frontal intensity (Byram, 1959; Lavoué et al., 2000) of the
simulated fire is about 250 000 kW m−1. In the model, the
fire fluxes are held constant throughout the simulation. Not
enough information on the fire behavior is available to in-
clude a more realistic spatial and temporal distribution of
the fire emissions. As part of this study, test simulations
using a moving fire front have been conducted (not shown
here), which showed no impact of the moving fire front on
the model results.

There is significant uncertainty in the literature on how
much of the energy, released by combustion, contributes
to local heating of the atmosphere (sensible heat flux) and
is available for convection, and how much of the energy
is lost due to radiative processes. Commonly found esti-
mates for the radiative energy are between nearly zero per-
cent (Wooster, 2002; Wooster et al., 2005) and 50% (Mc-
Carter and Broido, 1965; Packham, 1969). These estimates
are based on laboratory studies or small scale fires and their
application to large scale crown fires resulting in pyroCb con-
vection remains highly uncertain. Additional uncertainty ex-
ists related to the fate of the radiative energy emitted by the
fire. In the thermal infrared, where most of the fire radiation
is emitted (Wooster, 2002), aerosols are rather inefficient ab-
sorbers. It is likely that most of the radiative energy from the
fire is absorbed by cloud droplets or gaseous absorption at
cloud base or in air masses that are entrained into the con-
vection. In both cases the radiative energy from the fire is
trapped in the lower part of the pyro-convection and there-
fore contributes to the convective energy. Considering these
radiative processes in detail is not possible in the present
model setup. Here, we assume that all energy released in the
combustion process becomes available for convection. This
assumption is consistent with the coupled fire-atmosphere
model of Clark et al. (1996). In the companion paper, we
present the sensitivity of the model results to assumptions of
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Fig. 4. Spatial distribution of the 150 µg m−3-isosurface of the
simulated aerosol mass distribution after 40 min of simulation time.
The color coding represents the potential temperature.

the release of sensible heat (Luderer et al., 2006a).
A small part of the energy released by the combustion of

fuel is used to evaporate the fuel moisture. In the present
study, a fuel moisture content of 40% was assumed (see
Sect. 2.1), which takes up about 5% of the total energy re-
leased by the combustion. Additional water vapor is released
directly from the combustion process itself. Assuming com-
plete combustion, 1 kg of fuel yields about 0.5 kg of combus-
tion water vapor (Byram, 1959). In our simulations, about
8 kg m−2 water vapor was released, with the main contribu-
tion (about 55%) coming from combustion moisture, leading
to a total release of 4.7×108 kg H2O. The particulate emis-
sions from the fire were calculated using the emission factor
of 17.6 g kg−1 from Andreae and Merlet (2001), assuming a
volume mean diameter of 300 nm (Reid et al., 2005).

No detailed information on the wind direction at the lo-
cation of the fire front at the time of the blow-up is avail-
able. Due to the complex meteorological situation (i.e., the
approaching line of convection) it is likely that the local wind
speed and wind direction were irregular and subject to rapid
change. These effects cannot be represented with the model
approach of this study. Therefore, we adopted the wind pro-
file measured by the Edmonton radiosonde. Its surface wind
direction is at an angle of about 30◦ to the fire front. In the
upper atmospheric levels, the ambient wind direction is par-
allel to the fire front. The angle between the wind field and
the fire front has some impact on the average time that indi-
vidual parcels are exposed to the fire.

5 Model results

In the following, results from the model simulations are pre-
sented. First, we will show the overall structure of the simu-
lated pyroCb, and then investigate some dynamical features
in more detail in Sect. 5.1.

Figure 4 shows the simulated extent of the 150 µg m−3-
isosurface of the aerosol mass distribution after 40 min of

Fig. 5. Spatial distribution of the 0.4 g kg−1-isosurfaces of the sim-
ulated (blue) cloud water, (purple) rain water, (yellow) cloud ice,
and (orange) graupel after 40 min of simulation time. Also indi-
cated is the fire front (red) by the 45 000 µg m−3-isosurface of the
simulated aerosol mass distribution.
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Fig. 6. Temporal evolution of the simulated integrated mass of the
four classes of the microphysical scheme and the sum of the hy-
drometeors.

simulation time. The color coding represents the potential
temperature. The assumed linear shape of the fire front is
clearly visible as the origin of the convection and the source
of the aerosol particles. The maximal height of the aerosol
plume of about 12.5 km is reached above the fire. The plume
reaches well into the stratosphere as can be inferred from the
values of the potential temperatures above 332 K. Large ar-
eas of the plume have a potential temperature of more than
340 K. Downwind of the overshooting region, a relatively
warm area develops in the anvil region with potential tem-
peratures above 350 K. This is consistent with the warm core
of the Chisholm pyroCb observed by satellite (Fromm and
Servranckx, 2003; Rosenfeld et al., 2006). A more detailed
investigation of the plume top structures including an evalu-
ation of the model results with satellite observations will be
presented in Luderer et al. (2006b)2.

2Luderer, G., Trentmann, J., Hungershöfer, K., et al.: The role of
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Fig. 7. Horizontally integrated aerosol mass as a function of (a) altitude and (b) potential temperature after 40 min of simulation. Note the
logarithmic scale of the x-axis in (b).

Figure 5 presents the spatial distribution of the 0.4 g kg−1-
isosurfaces of the four hydrometeor classes (cloud water,
rain, cloud ice, and graupel) at the end of the simulation.
Graupel is the main contributor to the hydrometeor mass in
the simulated pyroCb. It is interesting to note that cloud ice is
dominant in the upper part of the cloud due to the sedimenta-
tion of the large hydrometeors. The size of the hydrometeors
remains comparably small due to the high concentration of
smoke aerosol acting as CCN and the large updraft velocities
(Luderer et al., 2006a).

Figure 6 shows the temporal evolution of the spatially in-
tegrated mass of the four hydrometeor classes in the model
domain. The first cloud water condenses after about 4 min
of simulation time at an elevation of about 4.2 km. The en-
hanced temperature in the plume leads to delayed conden-
sation compared to the LCL derived from the initial back-
ground profile (3.25 km). After about 10 min, the graupel
class becomes the dominant class in the pyro-cloud. Cloud
ice has the second largest contribution to the total hydrome-
teor mass followed by cloud and rain water.

Figure 7 shows the horizontally integrated aerosol mass
as function of altitude and potential temperature after 40 min
of simulation time. The main outflow height (defined as the
height of the maximum of the vertically integrated aerosol
distribution) and the maximum penetration height (defined
as the height below which 99 % of the aerosol mass is lo-
cated) are 10.6 km and 12.1 km, respectively. The outflow
height is substantially higher than the level of neutral buoy-
ancy calculated based on the sounding (7410 m, Sect. 2.2),
due to the significant emissions of sensible heat from the
fire. A substantial amount of aerosol mass is located at
stratospheric potential temperature levels (θ>332 K). Over-
all, 710 t aerosol mass was deposited into the stratosphere,
corresponding to about 8% of the total emitted aerosol mass.
Whether the smoke aerosol will remain in the stratosphere

small scale processes in troposphere-stratosphere transport by pyro-
convection, Atmos. Phys. Chem. Discuss., in preparation, 2006b.

after the pyro-convection has deceased can not be evaluated
with the present model setup that only allows model simu-
lations for about 40 min. The present simulation, however,
does show that pyro-convection can be sufficiently intense to
transport smoke aerosol across the tropopause and into the
stratosphere.

To estimate the contribution of the latent heat release via
condensation and freezing to the release of sensible heat by
the fire, we calculate the total heat of condensation and freez-
ing based on the total mass of hydrometeors in the model do-
main (8.22×109 kg frozen hydrometeors, 1.4×109 kg liquid
hydrometeors) to be 26.8×109 MJ. This value can be consid-
ered a lower estimate of the total energy release by condensa-
tion/freezing, since deposition of hydrometeors is neglected
in this simplified estimate. This number can be compared to
the total amount of sensible heat emitted from the fire dur-
ing the simulation which sums up to 9×109 MJ. This esti-
mate yields that about 25% of the total energy results from
direct emission of sensible heat from the fire, while the dom-
inant part of the energy budget can be attributed to the release
of latent heat during condensation and freezing. Comparing
the total water mass released from the fire (4.7×108 kg, see
Sect. 4.1) to the total mass of liquid and frozen hydrometeors
in the plume (9.62×109 kg) yields a contribution of the latent
heat release from the fire of less than 5% to the total energy
released from condensation and freezing.

A similar estimate is obtained, when we consider an indi-
vidual parcel in the upper part of the plume with an average
aerosol mass concentration of 3000 µg m−3 and a hydrom-
eteor concentration of about 5 g kg−1. Based on the emis-
sion ratios for sensible heat, water vapor, and particles, this
parcel gained about 6 K of sensible heat and 0.3 g kg−1 H2O
from the fire. The hydrometeor concentration corresponds
to a release of latent heat from condensation of about 12 K.
This parcel-based estimate yields a slightly larger contribu-
tion of the sensible heat flux from the fire to the parcel energy
than the previous estimate based on the energy budget for the
whole pyroCb. Both estimates highlight the importance of
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Fig. 8. Simulated wind field after 40 min of simulation time at
1000 m altitude. Streamlines indicate the horizontal wind, the ver-
tical wind speed is indicated by the color coding.

the availability of ambient moisture for the evolution of the
pyro-convection.

It must be noted, however, that a positive feedback exists
between the sensible heat flux from the fire and the latent heat
released in the plume (Luderer et al., 2006a). Enhancing the
sensible heat flux enhances also the total latent heat release
in the plume, probably because of enhanced entrainment of
humid air at low levels and reduced entrainment of dry air
at higher levels. Even though the latent heat dominates the
overall energy budget of the plume, the sensible heat input is
a critical parameter to determine the evolution of the pyro-
convection (Luderer et al., 2006a).

In the following, some aspects of the evolution of the pyro-
convection are discussed.

5.1 Convection dynamics

After the onset of the heat flux from the fire, convection im-
mediately develops in the model simulations due to the posi-
tive temperature anomaly of the air in the lowest model layer
above the fire.

Figure 8 presents streamlines of the horizontal wind and
the vertical wind velocity at 1000 m a.s.l. (i.e., about
200 m a.g.l.) after 40 min of simulation. The fire clearly
has a strong impact on the ambient wind field. The emis-
sion of sensible heat leads to high updraft velocities of up to
20 m s−1. The updraft results in the formation of a conver-
gence of the horizontal wind. The simulated updraft veloci-
ties at the surface are signifcantly higher than those expected
for regular convection. In the case of pyro-convection, the
updraft initiates the convergence of the low-level horizontal
wind, while regular convection often starts from low level
wind convergence.

This wind modification is expected to significantly impact
the evolution of the fire itself as has been shown in coupled
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Fig. 9. Temporal evolution of the simulated maximum updraft ve-
locity, wmax, the simulated mean updraft velocity, w, and the simu-
lated integrated buoyancy, IB.

atmosphere-fire simulations (Clark et al., 2004; Coen, 2005).
Since the focus of this work is the investigation of the vertical
transport of fire emissions, this feedback mechanism is not
included here and the shape of the fire and the fire emissions
are kept constant throughout the simulation.

Figure 9 shows the temporal evolution of some quantities
used to characterize the dynamical evolution of the convec-
tion. Shown are the maximum vertical velocity, wmax, the
aerosol-mass-weighted mean vertical velocity, w, and the in-
tegrated buoyancy, IB. w is defined by

w =
1∫

ca dV

∫
w ca dV. (1)

ca is the aerosol mass concentration. The highest vertical ve-
locities and aerosol loadings are located directly above the
fire. To investigate processes in the pyroCb and compare dif-
ferent model simulations, this region, which is dominated by
the fire emissions, needs to be excluded from the calcula-
tions. Therefore, we limit the calculation of the mean veloc-
ity to grid boxes with a hydrometeor content of more than
0.05 g kg−1. By including only grid boxes with a vertical ve-
locity w ≥ 5 m s−1 we limit this estimate to strong updrafts.
IB is defined by

IB =

ZLNB∫
Z0

b(z) dz, (2)

where the integration is performed from ground level z0 to
the level of neutral buoyancy zLNB with b(zLNB)=0. b(z)

is the average buoyancy in the updraft calculated using the
vertical aerosol flux as the weight function (see Luderer et al.,
2006a for a full description of these quantities).

After about 20 min of simulation time, all quantities shown
in Fig. 9 remain relatively constant, indicating that at least
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Fig. 10. Simulated updraft velocity (color coding) and aerosol mass
concentration (contour lines) after 40 min along the cross section at
y=0.

the dynamics of the updraft region reaches a steady state.
The maximum updraft velocity still oscillates at the end of
the simulation indicating the complex dynamical coupling
of the sensible heat flux from the fire with the atmospheric
flow. At the end of the simulation, the maximum updraft,
wmax, the mean updraft velocity, w, and the integrated buoy-
ancy, IB, are 38 m s−1, 17.5 m s−1, and 1800 J kg−1, respec-
tively. The difference between the CAPE of the ambient
profile (131 J kg−1) and the calculated IB can mainly be at-
tributed to the emissions of sensible heat from the fire.

Figure 10 shows a cross section of the vertical velocity
along the y-axis after 40 min. The maximum vertical velocity
is reached right above the fire, below the 2000 m level. At
the tropopause, a region with downward vertical motions of
about 6 m s−1 is simulated downwind of the fire. One has
to note, that the interpretation of individual cross sections is
complex, especially due to the asymmetric ambient flow.

In contrast to simulations of mid-latitude convection, the
maximum vertical velocity is reached at lower levels in the
case of fire-induced convection (between 1 km and 3 km
compared to about 9 km in Wang, 2003 and Mullendore et al.,
2005). This is explained by the significant acceleration by
the heat flux from the fire. A second local maximum of
the updraft velocity can be found at about 8 km (Fig. 10),
which corresponds to the maximum of the updraft velocity
in simulations of regular mid-latitude convection due to the
release of latent heat. The different vertical profiles in the
updraft velocity, in particular at cloud base, between regular
mid-latitude convection and fire-induced convection poten-
tially lead to differences in the cloud microphysical evolution
in addition to the high number of smoke particles acting as
CCN.

Shown in Fig. 11 is the simulated temperature anomaly
after 40 min along the cross section at y=0 km. The fire-
released heat flux induces a temperature anomaly in the lower

Fig. 11. Simulated temperature anomaly after 40 min along the
cross section at y=0. Shown is the difference between the simu-
lated and the initialized ambient temperature. Negative (positive)
temperature anomalies are shown in blue (red).

2 km of the rising plume with maximum values in the layer
above the fire. About 1 km above the fire, the temperature
anomaly has decreased to values smaller than 20 K, at about
3 km it is only about 8 K. In the upper part of the plume, a
dipole-like structure of the temperature anomaly can be seen.
This is associated with a gravity wave at the tropopause and
will be presented in detail in Luderer et al. (2006b)2.

For photochemical reactions occurring in the smoke
plume, this temperature enhancement can be regarded as
small and can be neglected in photochemical models of
young biomass burning plumes (Mason et al., 2001; Trent-
mann et al., 2005). The modification of the ambient temper-
ature is, however, significant for the condensation of water
vapor and the level of cloud base (see Sect. 5). The increased
temperature leads to a delayed onset of condensation and a
higher cloud base, thereby counteracting the effect of the wa-
ter vapor emissions from the fire on the cloud base.

The contribution of the water vapor emitted by the fire to
the total water vapor is shown in Fig. 12. The emitted water
dominates the atmospheric water vapor concentration right
above the fire, but due to mixing of the plume with environ-
mental air masses, the contribution of the water vapor from
the fire rapidly decreases at higher altitude. Above about
4000 m, the contribution of water from the fire is less than
10% of the total water available in the plume. This analy-
sis and a sensitivity study presented in Luderer et al. (2006a)
shows that in the case of the Chisholm fire, the water vapor
emitted from the fire does not have a significant impact on the
evolution of the cloud and atmospheric dynamics. This result
is consistent with the findings from previous model studies
(Penner et al., 1986; Small and Heikes, 1988).

Entrainment of ambient air into the plume significantly re-
duces the contribution of the water vapor from the fire to the
total water vapor in the plume. To investigate the amount of
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Fig. 12. Contribution of the water emitted from the fire to the total
water in the plume from the Chisholm Fire along the cross section
at y=0 km.

mixing, six tracers were initialized within six separate layers
of identical mass. The lower boundaries of the layers are the
surface, 2.25 km, 4 km, 6.1 km, 8.9 km, and 12.9 km. The rel-
ative contribution of the different tracer masses in the smoke
plume after 40 min of simulation is shown in Fig. 13. The
air masses in the main outflow of the plume mainly originate
from the two lower levels (Tracer I and Tracer II), each con-
tributing about 30% to the total air mass in the plume. The
significant contribution of the mid-level Tracer II indicates
significant entrainment of ambient airmasses into the plume
between 2.25 km and 4 km. Additional contributions to the
air in the outflow come from Tracers III, IV, and Tracer V.
These findings are consistent with the modeling results from
Mullendore et al. (2005), who also found significant entrain-
ment of ambient air from the middle troposphere into the
updraft and the outflow of convective systems. The signif-
icant contribution of mid-level air masses in the plume point
to the potential importance of the background conditions,
e.g. the humidity, for the evolution of the pyro-convection.
The high amounts of entrainment also limit the use of the
CAPE concept, which usually neglects entrainment, to char-
acterize pyro-convection events. The non-negligible contri-
butions of tracers V and VI in the smoke plume especially
at elevations above 12 km give evidence for the occurrence
of mixing processes and downward transport of stratospheric
air at the tropopause level.

6 Conclusions and outlook

We presented three-dimensional model simulations of the
pyro-convection associated with the Chisholm fire in Alberta,
May 2001. During its most intense phase, the Chisholm fire
burned 50 000 ha of forested land within a few hours, result-
ing in the formation of an intense fire-induced cumulonimbus

Fig. 13. Relative contribution of tracer airmasses in the plume from
different atmospheric levels. Red: Tracer I, released between the
surface and 2.25 km; dark blue: Tracer II, 2.25 km–4 km; light blue:
Tracer III, 4 km–6.1 km; purple: Tracer IV, 6.1 km–8.9 km; yellow:
Tracer V, 8.9 km–12.9 km; orange: Tracer VI, above 12.9 km. Also
indicated is the horizontally integrated aerosol mass (black line).

(pyroCb). Using fire emissions based on available estimates
for the amount of fuel burned and measurements obtained by
a radiosonde at a distance of about 100 km, the model is able
to realistically simulate the formation and the evolution of
the pyro-convection. In particular, the maximum penetration
height of the pyro-convection (about 12.1 km) compares well
with radar observations, and the injection of smoke aerosol
into the stratosphere is simulated in accordance with satellite
observations. The character of the pyro-convection is differ-
ent from regular mid-latitude convection. Mainly owing to
the sensible heat emissions from the fire, the main outflow is
significantly higher than the level of neutral buoyancy of the
background atmosphere.

More modeling studies of this kind are required to fully
understand the nature of pyro-convection. The intensity of
pyro-convection determines the injection height of fire emis-
sions, which is important for their atmospheric lifetime and
impact. Injection of smoke from fires at high altitude into the
atmosphere increases its lifetime compared to injection in the
boundary layer and may result in hemispheric and seasonal
effects of the smoke from a single pyroCb event on the atmo-
sphere. PyroCb studies of the kind presented here, using dif-
ferent scenarios for the fire emissions and atmospheric condi-
tions, will lead to a more realistic representation of fire emis-
sions in larger scale models. Studies such as the present one
also make it possible to take into account the small-scale pro-
cesses in pyro-clouds that lead to a modification of the pri-
mary fire emissions (e.g., photochemistry, scavenging of sol-
uble gases and particles). The investigation of these and other
processes (e.g., aerosol-cloud interaction) using a combina-
tion of model simulations and field observations will lead to
an improved representation of fire emissions in larger scale
models and will also advance our understanding of these fun-
damental processes in regular convective clouds.
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