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Abstract. Number concentrations and size distributions of
traffic related aerosol particles were measured at a road-
side in Helsinki during two winter campaigns (10–26 Febru-
ary 2003, 28 January–12 February 2004) and two summer
campaigns (12–27 August 2003, 6–20 August 2004). The
measurements were performed simultaneously at distances
of 9 m and 65 m from the highway. Total number concen-
trations were measured by a condensation particle counter
(CPC) and particle size distributions by a scanning mobility
particle sizer (SMPS) and an electrical low pressure impactor
(ELPI). This study concentrates on data that were measured
when the wind direction was from the road to the measure-
ment site. The total concentrations in the wintertime were
2–3 times higher than in the summertime and the concen-
trations were dominated by nucleation mode particles. The
particles smaller than 63 nm (aerodynamic diameter) con-
stituted∼90% of all particles in the wintertime and∼80%
of particles in the summer time. The particle total con-
centration increased with increasing traffic rate. The effect
of traffic rate on particles smaller than 63 nm was stronger
than on the larger particles. The particle distributions at the
roadside consisted of two distinguishable modes. The geo-
metric mean diameter (GMD) of nucleation mode (Mode 1)
was 20.3 nm in summer and 18.9 nm in winter. The GMD
of the larger mode consisting mostly of traffic related soot
particles (Mode 2) was 72.0 nm in summer and 75.1 nm in
winter. The GMD values of the modes did not depend
on the traffic rate. The average particle density for each
mode was determined by a parallel density fitting method
based on the size distribution measurement made by ELPI
and SMPS. The average density value for Mode 1 particles
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was 1.0±0.13 g/cm3 and 1.0±0.07 g/cm3 both in summer
and winter respectively, while the average density value for
Mode 2 was 1.5±0.1 g/cm3 and 1.8±0.3 g/cm3 for summer
and winter, respectively.

1 Introduction

Traffic is one of the most significant sources of fine parti-
cles in an urban environment. This has been shown earlier in
many studies mostly based on measurements of the particle
mass concentration. Recently, also the number concentration
of fine particles measured at an urban background has been
related to the traffic rate (Van Dingenen et al., 2004; Hussein
et al., 2004). The size and concentrations of traffic related
particles at roadsides have been widely studied during recent
years.

Based on results obtained from number distribution mea-
surements in engine or vehicle test laboratories, the fine parti-
cles in a vehicle exhaust are often distributed into two modes.
The larger particle mode (number based geometric mean di-
ameter 40–100 nm) in the vehicle exhaust consists of soot
particles and volatile materials condensed on them (Kittel-
son et al., 2000; Harris and Maricq, 2001). These soot parti-
cles are agglomerates formed in the engine during the com-
bustion process. The soot particles are emitted mainly from
diesel vehicles, whereas gasoline engines emit less soot (Har-
ris and Maricq, 2001). Additionally, soot particles have been
observed to be emitted from new technology gasoline direct
injection vehicles (e.g. Harris and Maricq, 2001). The nu-
cleation mode particles (<30 nm in size) are liquid particles
consisting mainly of hydrocarbons, water and sulphates (Kit-
telson, 1998; Khalek et al., 2000). The nucleation mode par-
ticles form during dilution and cooling of the exhaust which
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happen both in the laboratory and in the atmosphere (Abdul-
Khalek, 1999; Kittelson et al., 2000).

Chase studies of individual vehicles form a link between
laboratory emission and roadside concentration measure-
ments. Chase studies of diesel vehicles have been reported
by Kittelson et al. (2000, 2004); Vogt et al. (2003); Giechask-
iel et al. (2005); and R̈onkkö et al. (2006). According to
Kittelson et al. (2000) and Giechaskiel et al. (2005) the soot
particle mode shows good agreement between the laboratory
and on-road measurements. In the study of particle emissions
of the diesel passenger car (Giechaskiel et al., 2005) the ap-
pearance of nucleation mode in the laboratory was similar to
the on-road measurements, but the size of the particles were
larger in the laboratory due to the lower dilution ratios. For
a heavy duty vehicle, R̈onkkö et al. (2006) found higher nu-
cleation mode concentrations during the chase than in the
laboratory, but reported similar behavior as a function of en-
gine load. The nucleation mode formation takes place im-
mediately after the exhaust has been emitted from tail pipe.
According to R̈onkkö et al. (2006) the nucleation mode was
completely formed within 0.5 s of the emission into the at-
mosphere. The nucleation process is at present qualitatively
understood, but the details are not known.

The size distribution characteristics measured at the road-
side locations differ somewhat from those measured for sin-
gle vehicles. According to Imhof et al. (2005a); Janhäll et
al. (2004); Ketzel et al. (2004) and W̊ahlin et al. (2001) the
size distributions measured at the roadside were dominated
by nucleation mode particles with a relatively constant peak
size of 20 nm. In laboratory and chase measurements the nu-
cleation mode existence and peak diameter show great varia-
tion (Kittelson et al., 2004; Vaaraslahti et al., 2004; Rönkkö
et al., 2006). The geometric standard deviation (GSD) of
the nucleation mode measured in the engine laboratory is
typically around 1.3–1.7. The roadside nucleation modes
represent typically the broader end of the range. Imhof et
al. (2005b) measured particle size distributions in two differ-
ent road tunnels in Graz and Liverpool. They found a nucle-
ation mode with GMD around 15–20 nm in Graz and 25 nm
in Liverpool and GSDs approximately 1.8 and 1.5, respec-
tively.

Particle density is a physical property that carries infor-
mation about particle composition and therefore about the
origin of the particles and the processes they have experi-
enced. Diesel soot particles are agglomerates with a size de-
pendent density which is below 1 g/cm3 for particles larger
than∼60 nm (Park et al., 2003; Virtanen et al., 2004b; Mar-
icq et al., 2004). According to authors’ knowledge, there
are no density values available from roadside measurements,
and only very limited amount from urban measurement sites.
For particles≤100 nm, Stein et al. (1994) report values be-
tween 1.60 and 1.79 g/cm3 and McMurry et al. (2002) be-
tween 1.35 and 1.7 g/cm3. According to authors’ knowledge,
density values for urban aerosol particles in the size range of
nucleation mode have not been reported.

As fine particle sources, different individual vehicles
(heavy-duty vehicles, diesel cars, petrol cars etc.) running
on different kinds of fuel have a variety of emission pro-
files. The particulate matter emitted from traffic is a mixture
of primary particles directly from different vehicle sources
and secondary particles formed after gas phase emission via
gas-to-particle conversion. The relationship between primary
(or secondary) particulate emissions from individual vehicles
and the particulate emissions from the whole road is not ex-
tremely well understood. The number distributions measured
at these two cases seem to slightly differ from each other.
This is partly because a mixture of sources is observed at the
roadside, but also partly because several fundamental pro-
cesses such as nucleation, evaporation/condensation, coagu-
lation, internal conversion in the particle phase etc. take place
under real conditions. Especially the nucleation process in
the atmosphere may not be exactly identical with the process
observed in laboratory. Due to the external mixing process,
also the characteristics of the particle modes and also par-
ticle density may differ from those measured for individual
vehicles. We believe that there is still need for detailed par-
ticle characterization at the roadside as well as for detailed
analysis of the whole particulate emissions from the traffic
source.

In this paper, we present results of a roadside measure-
ment campaign. The concentration of different sized parti-
cles as well as the median sizes of modes measured at the
roadside is related to the traffic rate. This is important, when
the dependence of the concentration of different sized par-
ticles or mode characteristics on source parameters, such as
traffic rate, need to be known. Also the differences between
the emissions during the winter and summer time are stud-
ied. Especially, the characteristics of modes appearing in
measured particle size distributions at the roadside are inves-
tigated. In addition, the average density of particles in modes
will be estimated, including the nucleation mode.

2 Description of measurement campaign

2.1 Measurement site description

The measurement site was located in the Herttoniemi district
of Helsinki, some 6 km east from the city centre. The inves-
tigated highway (Iẗaväylä) is the main road towards north-
east from city centre (Fig. 1). The highway consists of 3
lanes in both directions. The measurements were part of the
Finnish project LIPIKA (“Relationship of traffic related fine
particle emissions to engine laboratory measurements”) and
they were performed during 4 campaigns. Two winter cam-
paigns took place in 10–26 February 2003 and 28 January–
12 February 2004, and two summer campaigns in 12–27 Au-
gust 2003 and 6–20 August 2004. Simultaneous measure-
ments were made at distances of 9 m and 65 m from the near-
est edge of the highway. The instruments were stationed in
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two similar cabins, sampling at 5.7 m above ground level.
The sampling lines were identical in both cabins. A sample
flow of 16 liters per minute was fed through cabin roof with
a 3 m long sampling tube, 25 mm in diameter. A Minnesota
type pre-cutting separator with 10µm cut diameter was used
as a pre-cutter. The sampling lines included two 90◦ bends,
but the inertial losses caused by them are regarded insignifi-
cant for the sub micrometer particle measurements reported
in this paper. The diffusion losses in sampling lines were
calculated for the investigated size range. Losses for parti-
cles larger than 10 nm in diameter were less than 5%. Diffu-
sion losses for particles larger than 100 nm were negligible:
less than 1%. Due to the similarity of the sampling lines the
results gained at 9 m and 65 m distance from the road are be-
lieved to be comparable.

A factory is located next to the measurement site (35 m
to north from the 65 m cabin). Its emissions were clearly
distinguishable from traffic emissions (strong concentration
peak at 30 nm). Based on the measured wind direction, the
data with wind direction directly from the factory towards
the measurement site were omitted.

2.2 Instrumentation

The total number concentrations at the roadside were mea-
sured with a condensation particle counter (CPC, TSI,
model 3025). The detection limit of CPC 3025 is 3 nm. Be-
cause of high particle concentrations especially during the
rush hours, a passive diluter with a dilution ratio of∼1:4–
1:6 was used in CPC measurements. The average and max-
imum and minimum values for particle number concentra-
tion, measured by CPC, were recorded every five seconds.
During the campaigns in 2004 a Scanning Mobility Particle
Sizer designed for nano particles (referred further as “nano-
SMPS”) equipped with nano-DMA (TSI, model 3085) and
CPC 3025 was used in the 9 m cabin (measurement range
3 nm–57 nm). Scanning Mobility Particle Sizer (referred fur-
ther as “long-SMPS”) with DMA model 3071 and CPC 3025
was used in the 65 m cabin during all campaigns. The “long-
SMPS“ measurement range covered the particles from 5 nm
to 160 nm. An Electrical Low Pressure Impactor (ELPI,
Dekati Ltd) with filter stage was used in both cabins, cov-
ering the particle size range of 7 nm–6.6µm. It should be
noted that ELPI measures the aerodynamic size of the parti-
cles. Particle number concentrations discussed below were
measured at 9 m. The data measured in the 65 m cabin are
used only to study the evolution of size distribution and par-
ticle density.

In addition to stationary measurement sites, a mobile mea-
surement unit, “Sniffer” (Pirjola et al., 2004), was used in the
background concentration measurements. The urban back-
ground concentrations were measured at Saunalahti, 600 m
northwest from the measurement site. The background par-
ticle concentrations were measured using SMPS and ELPI.

Fig. 1. Map of the measurement site. Studied wind sectors (255◦–
345◦) marked with dashed lines.

2.3 Traffic count

A traffic count was performed at the Itäväylä highway by
the City of Helsinki and the Finnish Road Administration by
an automatic traffic measurement system, located some 3 km
from the measurement site towards city centre. The continu-
ous long-term traffic rate measurement provides hourly aver-
ages. Traffic in both directions was calculated separately. In
addition, the number of heavy-duty vehicles was determined
by the measurement system. We made occasional short-term
(three-minute) vehicle counts to check the correlation with
the continuous measurements. As reported earlier, the agree-
ment was excellent, indicating that the continuous measure-
ment is representative also to the traffic at the measurement
location (Pirjola et al., 2006).

2.4 Meteorological conditions

Meteorological data (wind speed, wind direction, tempera-
ture and relative humidity) were measured at the 9 m cabin
with a Vaisala weather station (Milos500, Vaisala). The max-
imum, minimum and average values for temperature and rel-
ative humidity values are shown in Table 1, together with
average values for the day-time (i.e. 06:00–20:00). The me-
teorological conditions during the summer and winter cam-
paigns are typical for summer and winter seasons in Helsinki.

The data were classified according to wind direction, sim-
ilar to the method by Pirjola et al. (2006). This paper con-
centrates on the results of wind sector S1, which consists of
wind directions 255◦–345◦ (wind blowing from the road to
the measurement cabins). The wind sector is marked in Fig. 1
with dashed lines.
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Table 1. Maximum, minimum and average values of temperature and relative humidity during the winter and summer campaigns.

T (◦C) Average RH (%) Average
max min all day max min all day

Summer 2003 22.0 7.0 15.7 16.4 98 43 79.0 76.1
Summer 2004 22.0 7.0 15.4 16.0 98 42 78.7 74.7
Winter 2003 5.1 −15.2 −3.3 −2.8 98 51 85.6 84.0
Winter 2004 3 −17.8 −4.9 −4.9 98 55 86.9 86.3

3 Method for estimating particle density

Particle density was estimated using the parallel measure-
ment method described by Ristimäki et al. (2002) and Vir-
tanen et al. (2004a). The method is based on simultaneous
(“parallel”) distribution measurement with ELPI and SMPS
and further on the relationship between particle aerodynamic
size, mobility size and effective density. The basic idea is
to minimize the difference of the measured ELPI currents
and currents simulated by using SMPS number distribution
and ELPI response functions (i.e. the charger efficiency and
impactor kernel functions). The minimization is made by al-
tering the particle density. It should be noted that number
distribution is not calculated from measured currents at any
point, but instead a mathematical model of ELPI is used. The
complete set of information required to construct the math-
ematical model of ELPI, can be found from Marjamäki et
al. (2000, 2005) and Virtanen et al. (2001).

To be able to apply the parallel method in roadside parti-
cle studies the method was modified to be suitable for multi-
modal distributions. In the multimodal modification, the log-
normal distributions are fitted into the measured SMPS data.
These fitted lognormal distributions are then used in ELPI
current simulation instead of measured SMPS distributions.
The fitting is done by assuming a maximum 3 modes in the
SMPS measurement range (5 nm–160 nm). To limit the de-
grees of freedom in the density search procedure, a constant
density is assumed within each mode. The main difference
to the single mode case (Ristimäki et al., 2002) is that in-
stead of one effective density, the effective density for each
sub-mode is searched. This means that the search algorithm
has to operate in multi-dimensional space and the result may
be more sensitive to the start point than with the single mode
case. We have initialized the effective densities with an ad
hoc method where the initial effective densities are suggested
in a sequence starting from the mode producing the high-
est simulated ELPI current. The actual initialisation of each
sub-distribution is performed by choosing from a set of pre-
selected densities ranging from 0.1 to 10 g/cm3. After the ini-
tialisation the search algorithm minimises the difference be-
tween the measured and simulated ELPI currents by chang-
ing the effective densities of each sub-distribution. As a re-
sult, the average density of each mode is found. We have

utilised the “fminsearch“ function of Matlab® to perform
the minimisation. The method can be used for the ELPI and
SMPS data at hand if the impactor individual and charger as
well as DMA are carefully calibrated.

The method was tested in the laboratory for bimodal
size distribution using two test oils as the particle mate-
rial: Fomblin (perfluorinated polyether inert fluid, Ausimont
Ltd) and di-octyl sebacate (DOS). The density of Fomblin
is 1.9 g/cm3 and the density of DOS is 0.91 g/cm3. Bi-
modal distributions with one mode consisting of Fomblin and
the other of DOS were generated using a tube furnace for
Fomblin and a nebulizer with condensation-evaporation cy-
cle for DOS. The geometric mean diameters of DOS distribu-
tions were varied between 40–50 nm and of the Fomblin dis-
tributions between 90–150 nm. The method produced den-
sity estimates of 0.8±0.08 g/cm3 and 1.8±0.26 g/cm3 for
DOS and Fomblin, respectively. These values are within
15% of the true bulk densities.

4 Results

4.1 Correlation of particle emissions and traffic rate

All the results concerning traffic rate and particle concentra-
tions presented in this section were obtained at wind direc-
tions S1 during the weekdays (Monday–Friday). Although
both winter and summer measurement periods were rela-
tively short, the meteorological conditions and traffic rates
were typical for the season. Therefore the results are be-
lieved to represent typical particle population at the roadside
of Itäväylä.

In comparison to the Finnish average values, the traffic
rate at Iẗaväylä is high. The day-time (06:00–20:00) average
traffic rate was 3290 vehicles/hour during the summer cam-
paigns and 2910 vehicles/hour during the winter campaigns.
These values represent well the long-term average values for
the traffic rate at Iẗaväylä. The average values for traffic rate
measured during the campaigns are presented in Fig. 2b. The
traffic rate peaked during the morning and evening rush hours
i.e. 06:00–10:00 and 15:00–18:00. During the rush hours, the
traffic rate reached∼4000 vehicles/hour but the traffic was
fluent, not jamming. There was no remarkable difference
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between the traffic rates during the winter and summer cam-
paigns or between the morning and evening rush hours.

Figure 2a shows the particle concentrations at the 9 m dis-
tance from the road, measured with CPC. The roadside con-
centrations followed the same temporal pattern as the traffic
rate. Hussein et al. (2004) give the same hours for the min-
imum (03:00) and maximum (07:00) concentrations mea-
sured at the urban background stations located at Kumpula
and Siltavuori in Helsinki. The minimum concentration val-
ues at the roadside were of the same order as the urban back-
ground values. No continuous background data were avail-
able. Instead, the average background concentration was cal-
culated from several short-time measurements made by the
mobile laboratory. The number of background measurement
days was 17 during the summer campaigns and 11 during
the winter campaigns. The time periods during which the
background measurements took place were between 07:00–
10:00 and 14:00–20:00. The average nighttime background
concentrations, calculated using short-time measurements,
were∼6000 #/cm3 and 10 000 #/cm3 for summer and win-
ter, respectively. Hussein et al. (2004) reported rather simi-
lar nighttime background concentration values of 8000 #/cm3

and 10 000 #/cm3 during the summer and winter seasons, re-
spectively. The average daytime background concentrations
are shown by the dashed lines in Fig. 2a.

Hussein et al. (2004) reported maximum morning rush
hour concentrations of approximately 25 000 #/cm3 and
17 500 #/cm3, during the summer and winter seasons, cor-
respondingly. As expected, the roadside concentrations dur-
ing the morning rush hours at Itäväylä were much higher,
averaging approximately 100 000 #/cm3 in the winter and
50 000 #/cm3 in the summer. In the winter time the concen-
tration peaking was a bit stronger during the morning rush
hours than during evening rush hours. Williams et al. (2000),
Molnár et al. (2002), Wehner et al. (2002), Charron and Har-
rison (2003), and Janhäll et al. (2004) observed stronger con-
centration peaks during the morning rush hour. Wehner et al.
associated the higher morning concentrations with the higher
truck traffic rate. Molńar et al. attributed their results to
higher wind speeds and more effective vertical mixing during
the afternoons. In the case of Itäväylä, there was no differ-
ence in portion of heavy duty traffic during the morning and
evening rush hours. Neither was there any remarkable dif-
ference in wind speed (in winter). We assume that the effect
can be explained mostly by reduced vertical mixing in winter
mornings.

The winter concentrations were approximately double
compared to the summer concentrations. This can be seen
in Fig. 3, where particle concentrations are presented as a
function of traffic rate. The daytime background concentra-
tions are again marked with dashed gray lines. All data points
with traffic rate less than 1000 vehicles/hour were measured
during nighttime. Both the summer and wintertime total con-
centrations increased with increasing traffic rate. A best fit to
the data points was found to obey the formy∼xa , wherey is

(a)

(b)

Fig. 2. (a)Measured particle concentrations (9 m distance from the
road edge) and(b) traffic rates in summer and wintertime. Dashed
lines in (a) represent the daytime averages for urban background
(dark line for winter and light line for summer).

particle concentration andx is traffic rate. The exponent “a”
has value 0.62 and 0.69 for summer and wintertime results,
respectively (Table 2.). We believe that the non-linear depen-
dence of the concentration on traffic rate can be explained by
a combination of linear source term and time dependent ur-
ban background.

To find out the relationship between different particle size
fractions and traffic rate the particles were separated into two
size classes based on the cut-point of the impactor stage 2
of ELPI, 63 nm (in aerodynamic size). The concentration
of the particles in the size fraction of 63 nm–6.6µm was
calculated from ELPI distribution by integrating the parti-
cle concentrations measured on stages 2–11. This size range
is referred further as “dp>63 nm“. The concentrations of
particles smaller than 63 nm were calculated by subtract-
ing the concentrations of 63 nm–6.6µm particles from the
total number concentrations measured by CPC. The CPC
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Table 2. The “a” values of the functiony∼xa , wherey is parti-
cle concentration andx is traffic flow. The “a” and R2 values for
total concentration and concentration of two size fractions for the
summer and wintertime data are presented in the table.

y∼xa a R2

Total concentration summer 0.62 0.70
winter 0.69 0.81

7 nm≤dp<63 nm summer 0.60 0.63
winter 0.71 0.83

63 nm≤dp<6.6µm summer 0.49 0.60
winter 0.50 0.60

Fig. 3. Particle concentrations as a function of traffic rate. (9 m
distance from the road edge).

detection limit (∼3 nm) gives the lower size limit of this
smaller size fraction. This size fraction is referred further
as “dp<63 nm”.

In Figs. 4a and b, the concentrations of the two particle
size classes (dp<63 nm and dp>63 nm) are presented as a
function of traffic rate. In Fig. 4a, the summer and winter
concentrations for dp<63 nm particles are presented. These
particles are mostly nucleation mode particles formed during
the dilution process in the exhaust plume. In addition, part of
the traffic related soot particles belongs to this size fraction.
Also a part of the Aitken mode, which is characteristic to
urban background, is in this size range (Hussein et al., 2004).
In Fig. 4b the concentration of particles larger than 63 nm is
presented. These larger particles contain the traffic related
soot particles with volatile materials condensed on them. In
addition, this size range contains Aitken mode particles and
aged, non-traffic related accumulation mode particles (Long-
ley et al., 2004; Molńar et al., 2002). The fraction of aged
accumulation mode particles can be remarkable especially
when the traffic rate is low.

For both size fractions the dependence of concentration
(y) on traffic rate (x) is of form y∼xa as it was for the total

(a)

(b)

Fig. 4. Concentrations of two different size fractions as a function
of traffic rate: (a) particles smaller than 63 nm(b) particles larger
than 63 nm. (9 m distance from the road edge).

concentration. The “a” and R2 values are presented in Ta-
ble 2. The exponent “a” has the same value for total concen-
tration and dp<63 nm particle concentration. This is because
the concentration of dp <63 nm particles dominated the total
particle concentration: the dp<63 nm particles constituted
∼90% of particles in winter time and∼80% of particles in
summer time. The exponenta is higher for the smaller size
fraction, indicating a lower contribution of the urban back-
ground aerosol. The exponenta for dp<63 nm particles is
lower in the summer than in the winter. This is believed to
be caused by the lower concentrations during the summer
that leads to a higher relative contribution of the urban back-
ground. On the other hand, there is no seasonal difference in
the exponent for the larger size fraction. Although the role
of the background in this size fraction is higher, its relative
contribution has less seasonal variation.

Figures 4a and b indicate that the winter concentration of
dp<63 nm particles was approximately doubled compared to
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Fig. 5. The dependence of nucleation mode particle (dp=3–30 nm)
concentration on traffic rate.

the summer concentration while there was no clear seasonal
difference in the concentration of dp>63 nm particles. The
difference in seasonal behavior of these two sized fractions
is related to their formation mechanisms. The soot particles
are formed during the combustion. According the labora-
tory studies by Ristim̈aki et al. (2005), the temperature of the
engine intake air has only a minor effect on the soot parti-
cle concentration even if the intake air temperature is below
0◦C. Thus, the soot formation seems to be insensitive to the
temperature of the surrounding air. On the other hand, the
formation of nucleation mode particles is sensitive to dilu-
tion conditions, such as temperature and relative humidity of
the surrounding air. According to Kittelson et al. (2000), low
ambient temperatures favor nucleation in vehicle exhaust. In
the laboratory, Ristim̈aki et al. (2005) found that the effect
of dilution temperature depends on vehicle technology, but
in most cases reported modestly increased nucleation mode
formation by low dilution temperatures.

We assume that the lower temperature in the wintertime is
the main reason for the number concentration of dp<63 nm
particles being higher in winter than in summer time. The
smaller height of the mixing layer in winter time could, in
principle, result in higher particle concentration. However,
we believe that when measuring this close to the source, the
vertical mixing process has not yet affected that much and
the temperature plays a stronger role. It is not fully clear
how the vertical mixing process of planetary boundary layer
air actually affects different particle sizes. Somewhat sur-
prisingly, the number concentrations of dp>63 nm particles
were fairly equal when winter and summer times are com-
pared. This agrees with the result of Hussein at al. (2004)
who, in their urban measurement site in downtown Helsinki,
also observed rather equal accumulation number concentra-
tions in winter and in summer. We believe that the effect of

Fig. 6. Typical SMPS size distributions measured during rush hours
in the winter (black line) and summer (light line). Distributions in
log-log scale are presented in the upper corner. (65 m distance from
the road edge).

the vertical mixing process on the fine particle size distribu-
tion is a challenging topic, and should be studied in more de-
tail and in a larger context in forthcoming research on urban
aerosol.

The nano-SMPS data measured at 9 m could not be used in
the number concentration comparison for size fractions, be-
cause the nano-SMPS concentrations were much lower than
the CPC concentrations. The difference could not be ex-
plained by the narrow measurement range of nano-SMPS
(3–60 nm). Distributions measured with the “long-SMPS”
at 65 m (see Fig. 6) show that the total concentration should
be overwhelmingly dominated by particles within the nano-
SMPS range. This indicates a user error in the nano-SMPS
measurement. However, the nano-SMPS size distribution
compared nicely with the long-SMPS at 65 m. Therefore,
the nano-SMPS data were still used to study the dependence
of the nucleation mode (dp=3–30 nm) particle concentration
on traffic rate. The concentration relative to the maximum
measured concentration is plotted in Fig. 5. Because of the
low number of data points, no trend line was fitted, but the
concentration dependence on traffic rate was similar to that
of total concentration shown in Fig. 3.

4.2 Characteristics of road-side distributions

In Fig. 6, the average SMPS size distributions for winter
and summer time rush hours are shown. All the results pre-
sented in this chapter were calculated from the data mea-
sured at the 65 m cabin, because it was equipped with the
long-SMPS with a size range of 5–160 nm. Figure 6 shows
that both distributions were dominated by small, probably
nucleation originated particles with a peak size of approx-
imately 20 nm. Similar observation was also reported by
Wehner and Wiedensohler (2003) and Ketzel et al. (2004).
Multimodal lognormal distribution was fitted to the mea-
sured distributions to enable the particle density calculation
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Table 3. The daytime (06:00–20:00) summer and winter average values of distribution characteristics (geometric mean diameter GMD,
geometric standard deviation GSD and number concentration N) and average density (ρ) of particles in the modes. (Distance 65 m from the
road.)

Mode 1 GSD N (#/cm3) ρ (g/cm3) Mode 2 GSD N (#/cm3) ρ (g/cm3)

GMD (nm) GMD (nm)

Summer
Average 20.3 1.7 18 960 1.04 72.0 1.8 13 750 1.5
Stdev (%) 13.5 6.2 77.3 13.3 19.8 9.6 56.9 6.6

Winter
Average 18.9 1.7 61310 0.96 75.1 1.6 6810 1.8
Stdev (%) 9.4 4.9 44.7 7.2 19.5 12.6 72.6 16.2

procedure described above. At most of the cases, two lognor-
mal modes were found in the distributions. These are marked
as “Mode 1” and Mode 2” in Table 3 where the average val-
ues of daytime (i.e. 06:00–20:00) results are shown. Only
in a few cases was a third mode found, above 110 nm. It
should be noted here, that only the modes for which the den-
sity values were found are accepted as results. If the con-
centration of a certain mode is low compared to other found
modes, the simulated current caused by that mode is negli-
gible compared to the total current. In this case, the density
value cannot be found at all or its value can be unreasonable.
Hussein et al. (2004) found mostly 3 modes in Helsinki: av-
erage geometric mean diameter (GMD) of nucleation mode
was at∼10–15 nm, Aitken mode at 40–50 nm and accu-
mulation mode at∼150 nm. Their measurement sites were
at Kumpula and Siltavuori, representing background sites
rather than roadside sites. The concentration values were
significantly lower (approximately one fourth) than those re-
ported in this study and the traffic related particle emissions
were mixed into a more aged urban background. At the road-
side, the distribution is dominated by fresh traffic related par-
ticles i.e. fresh nucleation mode particles and soot particles.

As shown in Table 3, the average geometric mean diame-
ter (GMD) of traffic related nucleation mode (Mode 1) was
20.3±2.7 nm during the summer and 18.9±1.8 nm during the
winter. The geometric standard deviation (GSD) value for
the nucleation mode was 1.7 both for the summer and win-
ter. Imhof et al. (2005b) measured particle size distributions
in two different road tunnels in Graz and Liverpool. They
found nucleation mode with GMDs around 15–20 nm in Graz
and 25 nm in Liverpool and GSDs of approximately 1.8 and
1.5 respectively. These values are in good agreement with
our study. Ketzel et al. (2004) found that the traffic related
distributions peaked at 22 nm in the centre of Copenhagen. In
addition, Wehner and Wiedensohler (2003) reported the peak
in the urban number size distribution around 20 nm. They
also found the additional mode peaking at 10–15 nm during
the summer time. This mode was related to the new parti-
cle formation event that correlated with the amount of global

radiation. During our measurement campaigns we observed
only two similar formation event days during the summer
campaign 2004. This data were omitted from results. In the
laboratory and chase measurements the nucleation mode ex-
istence and peak diameter show great variation (Kittelson et
al., 2004; Vaaraslahti et al., 2004; Rönkkö et al., 2006). The
reported traffic related nucleation mode GMDs measured in
roadside or traffic tunnel have a surprisingly constant values
close to 20 nm.

The GMD of Mode 2 was 72.0±14.3 nm in the summer
and 75.1±14.6 nm in the winter, while the GSD was 1.8
and 1.6 in summer and in winter, respectively. Imhof et
al. (2005b) measured the road tunnel soot distributions peak-
ing at around 80–100 nm (GSD∼1.85) in the tunnel in Graz.
On the other hand, they reported that the soot mode mea-
sured in the traffic tunnel in Liverpool was not clearly distin-
guishable in the distribution and its GMD was around 45 nm
(GSD∼2.22). Rose et al. (2005) studied the soot particle
distribution in a street canyon in Leipzig. They observed
the soot distribution peaking at 65 nm and 70 nm during the
summer and winter. They also found that the soot particles
make up 50–60% of the number of 80 nm particles at the
roadside. In the urban background the corresponding per-
centile is 20–25%. In addition, the GMD values for the soot
mode of single vehicle emissions are reported to be typi-
cally 50–90 nm and GSD values around 1.8 (e.g. Harris and
Maricq, 2001). According to the above, the GMD and GSD
values of Mode 2 were controlled by the traffic related soot
particles. This is not necessarily so in a more polluted en-
vironment. M̈onkkönen et al. (2005) studied mode charac-
teristics in a polluted Asian mega city. The GMD of nu-
cleation mode was smaller, most of the time below 10 nm.
The distributions were dominated by Aitken and accumula-
tion modes with GMD values of 30–60 nm and 120–160 nm,
respectively. The different mode characteristics are probably
related to other particle sources than traffic.

In Fig. 7, the GMD values of fitted distributions are shown
as a function of traffic rate. The GMD of nucleation mode
and accumulation mode seems to be rather independent on
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traffic rate. At traffic rate values<500 vehicles/hour (i.e.
night time measurements), the GMD of both modes seem to
increase. This is caused by the diminishing portion of traffic
related particles in the particle population. In this case the
urban background i.e. Aitken and accumulation modes be-
come dominant modes in the measured distribution. In fact,
the fitted GMD values at low traffic rates were 30–40 nm and
80–140 nm, in accordance with the values measured both at
the urban and rural background stations (e.g. Tunved et al.,
2003; Hussein et al., 2004).

4.3 Particle density

Table 3 also shows the density values corresponding to the
two modes. The density of “Mode 1”, i.e. nucleation mode,
is 1.04±0.14 g/cm3 and 0.96±0.07 g/cm3 during the summer
and winter time, respectively. There are no published data
for the density of traffic related nucleation mode particles.
Sakurai et al. (2003a) analyzed the composition of nucleation
particles emitted from heavy-duty diesel engine without any
after-treatment systems. They found that the particles con-
sist of organic compounds with a carbon number of 24–32.
Sakurai et al. (2003b) estimated a density of 0.8 g/cm3 for
these compounds. In addition, the nucleation mode forma-
tion is connected to the sulphate formation, especially when
oxidation catalyst is used (Lepperhof, 2001; Maricq et al.,
2002; Vaaraslahti et al., 2004). According to studies of Vogt
et al.(2003); Gieshaskiel et al. (2005) the sulphuric acid -
water nucleation seems to have an important role in the nu-
cleation mode formation. This would produce particles with
a density somewhere below that of sulphuric acid, 1.8 g/cm3.
The present density values fit nicely into this general scheme.

The found effective density value for “Mode 2” was
1.45±0.10 g/cm3 and 1.87±0.30 g/cm3 for summer and win-
tertime, respectively. The results are in good agreement with
the study of McMurry et al. (2002). They found that the
density of∼0.1µm urban aerosol particles measured in At-
lanta, USA, varied between∼1.4–1.7 g/cm3. The density
values found in this and previous studies are high compared
to the reported values for soot particle densities. According
to the laboratory studies of Park et al. (2003); Virtanen et
al. (2004b) and Maricq et al. (2004) the density of the porous
diesel soot agglomerates is close to 1 g/cm3 at ∼60 nm and
below∼0.6 g/cm3 at ∼100 nm. If the voids in the agglom-
erated particles get filled with condensable materials, parti-
cle density increases. It is still unlikely that the condensa-
tion of volatiles could increase the density of soot particles
in “Mode 2” up to 1.4–1.8 g/cm3. It is more probable that
the mode is an external mix of soot particles and urban back-
ground particles of other materials. The found density for
“Mode 2” is the average density for the mixed aerosol. In
fact the relatively low increase of concentration of particles
larger than 63 nm with increasing traffic rate (see Fig. 4 and
Table 2) and the results of Rose et al. (2005) discussed above

Fig. 7. Geometric mean diameters of “Mode 1” and “Mode 2” as a
function of traffic rate. (65 m distance from the road edge).

supports the assumption that a significant portion of particles
in “Mode 2” are not fresh vehicle emitted particles.

5 Conclusions

The total concentrations at roadside were dominated by nu-
cleation mode particles. The concentrations were 2–3 times
higher in the wintertime than in the summer time. Particles
smaller than 63 nm in aerodynamic diameter made up∼90%
of particles in the winter and∼80% of particles in summer.
The number concentrations of particles increased with in-
creasing traffic rate. The effect of traffic rate on particles
smaller than 63 nm was stronger than on the larger particles.

Particle size distribution at the roadside consisted of two
distinguishable modes. The GMD of the nucleation mode
(Mode 1) at 65 m distance from the road was 20.3 nm in the
summer and 18.9 nm in winter. The GMD of the nucleation
mode was independent of the traffic rate. The average den-
sity value for Mode 1 particles was∼1.0 g/cm3 both in the
summer and winter. All these values are close to those ex-
pected from exhaust measurements for the nucleation mode.
It is concluded that this mode is totally controlled by the fresh
vehicle emissions.

The GMD of the larger mode (Mode 2) was 72.0 nm in
the summer and 75.1 nm in the winter. These values corre-
spond to soot mode emissions. However, the average den-
sity value for Mode 2 was 1.5±0.1 g/cm3 in the summer and
1.8±0.3 g/cm3 in winter, which is considerably higher than
expected from the soot mode exhaust studies. This indicates
a higher contribution of the urban background to this exter-
nally mixed mode.
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