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Abstract. Measurements of relative humidity (RH) and
aerosol parameters (scattering cross section, size distribu-
tions and chemical composition), performed in ambient at-
mospheric conditions, have been used to study the influence
of relative humidity on aerosol properties. The data were
acquired in a suburban area south of Paris, between 18 and
24 July 2000, in the framework of the “Etude et Simulation
de la Qualit́e de l’air en Ile-de-France” (ESQUIF) program.
According to the origin of the air masses arriving over the
Paris area, the aerosol hygroscopicity is more or less pro-
nounced. The aerosol chemical composition data were used
as input of a thermodynamic model to simulate the varia-
tion of the aerosol water mass content with ambientRH and
to determine the main inorganic salt compounds. The cou-
pling of observations and modelling reveals the presence of
deliquescence processes with hysteresis phenomenon in the
hygroscopic growth cycle. Based on the Hänel model, pa-
rameterisations of the scattering cross section, the modal ra-
dius of the accumulation mode of the size distribution and
the aerosol water mass content, as a function of increasing
RH, have been assessed. For the first time, a crosscheck of
these parameterisations has been performed and shows that
the hygroscopic behaviour of the accumulation mode can be
coherently characterized by combined optical, size distribu-
tion and chemical measurements.
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(patrick.chazette@cea.fr)

1 Introduction

Water is the main solvent for constituents of atmospheric
aerosol particles. The affinity of these aerosol particles to
water, via the ambient relative humidity RH, plays an im-
portant role in several processes. It may influence the vis-
ibility reduction in the atmosphere (e.g. Tang et al., 1981),
the aerosol gas chemistry through multiphase reactions (e.g.
Larson and Taylor, 1983; Rood et al., 1987) and the particles
ability to act as cloud condensation nuclei (e.g. Kulmala et
al., 1993).

Moreover, aerosol hydration has important consequences
on the Earth’s radiation budget (Covert et al., 1979; Tang
et al., 1981; Boucher and Anderson, 1995; Hobbs et al.,
1997). To date, this aspect is poorly or not parameterised
in climate and photochemical models and it still constitutes
one of the largest sources of uncertainties in aerosol radia-
tive impacts modelling (IPCC, 2001). Haywood et al. (1997)
demonstrated that the spatial resolution of the atmospheric
RH field can lead to significant biases in the radiative forc-
ing estimates. Adams et al. (1999) found that the large
amount of water taken up by the aerosol above 95% ofRH

might increase the total aerosol radiative forcing by about
60%. Hence, it is a factor to be kept in mind when at-
tempting to verify model estimates with observations. Van
Dorland et al. (1997) estimated also that global and an-
nual average direct radiative forcing from sulphate aerosols
is −0.36 W.m−2, when assuming a uniform relative humid-
ity RH∼80% and is only−0.32 W.m−2 when local varia-
tions inRH are considered. Studies led by Kotchenruther et
al. (1999) showed as well that an aerosol particle present in
the East coast of United States atRH∼80% is at least twice
more efficient in radiative forcing than when the aerosol is at
RH∼30%.
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An aerosol particle reacts differently in presence of humid-
ity, ranging from a hydrophobic behaviour to a hygroscopic
one. There are two types of hygroscopic properties: mono-
tonic when the particle reacts continuously for allRH val-
ues, and deliquescent when the particle remains practically
dry up to a certainRH value, called the deliquescence point,
where a phase transition occurs from solid to liquid. More-
over, the aerosol properties (size distribution, optical param-
eters) can evolve differently whenRH increases then de-
creases over time, describing a hysteresis cycle (e.g. Rood et
al., 1987, Santarpia et al., 2004). Such a phenomenon can af-
fect the assessment of the aerosol radiative impact. Boucher
and Anderson (1995) have performed simulations with an-
thropogenic sulphate aerosols and have shown that if optical
properties are taken from the metastable leg of the hysteresis
curve, the global forcing may be about 20% larger than if the
stable leg of the cycle is used.

Aerosol hydration is studied through the behaviour of its
optical properties and size characteristics as a function of
RH . In most of the literature, such studies are performed
in a controlled environment, for example by using specific
instruments as an Hygroscopicity Tandem Differential Mo-
bility Analyser (H-TDMA) to controlRH (Sekigawa, 1983;
McMurry and Stolzenburg, 1989; Zhang et al., 1993; Berg
et al., 1998; Swietlicki et al., 2000), with either pure com-
ponents generated from laboratories or standardized aerosol
samples. The aim is to obtain observations at differentRH

values and at dry conditions (RH<30%). Another method
consists in running two instruments side-by-side, one at dry
conditions and the other at controlled RH (e.g. Malm and
Kreidenweis, 1997; Carrico et al., 2000, 2003). Detailed
ambient aerosol hydration measurements are very sparse and
concern mainly size growth studies (e.g. Ferron et al, 2005,
Santarpia et al., 2004).

In the present paper, we study the effect of RH, over a wide
range, on various aerosol parameters with the particularity to
work entirely with measurements performed in ambient at-
mosphere, without major modification of the aerosol prop-
erties. We used data measured at Saclay, a suburban area
25 km south of Paris. In Sect. 2, the instruments and the
measured parameters are presented. Section 3 focuses on the
direct observations of theRH effect on the measured aerosol
cross-section and the retrieved aerosol size distribution. In
some cases under study, the sensitivity of the data toRH

suggests a hysteresis phenomenon. To further understand the
data, the aerosol chemical composition is analysed in Sect. 4.
A modelling approach has also been performed to simulate
the salts contained in the aerosols as well as to retrieve their
aerosol water content evolution withRH . Following Hänel
(1976), parameterisations of the growth withRH of the scat-
tering cross-section, the modal radius of the accumulation
mode and the water content of the aerosol are proposed in
Sect. 5. The coherence of these different parameterisations
is analysed and the existence of the hysteresis phenomenon
is established.

2 Experimental set-up

Measurements of aerosol parameters were conducted at
Saclay, between 18 and 24 July 2000, in the framework of
the ESQUIF (Etude et Simulation de la Qualité de l’air en
région Ile de France) program. This program’s aim was to
better understand the processes leading to air pollution peaks
in Paris area by combining experimental and modelling ap-
proaches (Menut et al., 2000; Vautard et al., 2003a). Saclay
(48.73◦ N, 2.17◦ E) is located at∼25 km south of Paris city
and is mainly influenced by anthropogenic pollutant sources
from automobile traffic in the Paris area (Menut et al., 2000).
To assess the impact ofRH on the aerosols, different in situ
measurements (scattering coefficient, the size distribution,
and the chemical composition of the aerosols) were simul-
taneously performed.

2.1 Aerosol scattering coefficient

A mono-wavelength (550 nm) nephelometer (MRI integrat-
ing nephelometer model 1550B) was used to measure the
aerosol scattering coefficientαscatt in a 7–170◦ range of scat-
tering angles. The principle of this instrument is similar
to the nephelometer manufactured by TSI (Bodhaine et al.,
1991), except that it is not heated and thus operates in am-
bient relative humidity. We measured differences<5% be-
tween the relative humidity outside and the relative humidity
inside the instrument. To take into account the non-observed
scattering angles, a correction factor has been assessed from
Mie computations (Chazette et al., 2005) to be close to 1.035
for urban aerosols. The mean relative uncertainty of the
nephelometer is considered to be less than 10% (Bodhaine
et al., 1991) mainly due to the variability of the insideRH .
In dry conditions, the relative uncertainty, after calibration,
is of a few percent (evaluated from the reproducibility of lab-
oratory measurements).

2.2 Aerosol size distribution

Three complementary types of optical particle counter/sizers
instruments were used: a 3022A CPC (TSI model),
a KC18 (RION Co, Ltd. Japon) and a MET-ONE
(http://www.metone.com). The CPC detects all particles
with a radius ranging from 0.005 to 1.5µm, with 100% ef-
ficiency for 0.01µm. A relative uncertainty of 5% has been
calculated for retrieved aerosol concentrations (Chazette and
Liousse, 2001). The KC18 gives access to the partition
function of the aerosol in five radii classes:>0.05µm,
>0.075µm, >0.1µm, >0.15µm, >0.25µm. The light
source is a He-Ne laser and the measurement is per-
formed at a 90◦ scattering angle with an inlet air flux
rate of 0.30 l.mn−1. The MET-ONE instrument gives the
aerosol partition function in six radii classes:>0.15µm,
>0.25µm, >0.35µm, >0.5µm, >1µm, >1.5µm and uses
a diode laser source, with an inlet flow rate of 2.83 l.mn−1.
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Particles with radius∼0.15µm are detected within 50% effi-
ciency. The efficiency reaches 100% for particles larger than
0.25µm. After correction of the counting efficiency, the rel-
ative error on the measurements from KC18 and MET-ONE
is∼5 to 10%. Such an error is mainly a function of the differ-
ence between the aerosol refractive index considered for the
manufacture calibration and the one of the ambient particles
as shown by Hand and Kreidenweis (2002).

A standard method using a proximity recognition ap-
proach (e.g. Chazette et al., 2005) was used to retrieve the
aerosol size distributionρN (r), assuming 3 modes (nucle-
ation, accumulation and coarse) with a lognormal distribu-
tion. The method consists in best fitting the particle numbers
in the nine classes deduced from the KC18, the MET-ONE
and the CPC measurements. The distributionρN (r) is char-
acterized by the modal radius (rN1, rN2, rN3), the geometric
standard deviations (σN1, σN2, σN3) and the fractional num-
ber concentrations (xN1, xN2, xN3, with

∑3
i=1 xNi=1,xNi is

the proportion of particles in the modei, xNi<1).

2.3 Aerosol chemical composition

Ten aerosol samples devoted to carbonaceous analyses were
collected during the period under study (18–24 July, 2000),
using a low volume sampler (3 m3.h−1) on pre-cleaned
Whatman GF/F glass-fibber filters. The carbon mass was
determined through a thermal protocol, defined by Cachier
et al. (1989), which separates the black carbon (BC) and the
organic carbon (OC) masses. The precision of the results
is estimated to be of the order of 10%. The accuracy of
the method linked to the thermal separation of both carbonic
components is close to 20% (Brémond et al., 1989). Partic-
ulate organic matter (POM) dry mass concentration is calcu-
lated from the relationship given by Countess et al. (1980)
and adapted by Liousse et al. (1996):

POM=1.3 OC. (1)

The value of the OC to POM factor could significantly
vary. Values between 1.2 and 1.7 are generally used (Hegg
et al., 1997; Turpin et al., 2000). The relative uncertainty on
this factor is∼31% as given by Turpin and Lim (2001).

Ten nuclepore membranes were also mounted on a stack
filter unit in order to separate the coarse and the fine fraction
of the inorganic water soluble (WS) portion of the aerosols.
The size cut of the membrane is of the order of 1µm in ra-
dius (Liu and Lee, 1976). These filters were used to measure
the major soluble inorganic ions in the particle by ion chro-
matography. The precision on ion chromatography analysis
has been evaluated to be 5–10% (Jaffrezo et al., 1994). To-
tal particulate matter (TPM) was obtained with an accuracy
of 5µg in a controlled environment with aRH less than
30%. Since no aluminium nor silicon measurements were
performed, which could have led to dust concentration, we

estimated the aerosol residual fraction, including dust, using
the following relationship:

Residual=TPM−(BC + POM+ WS). (2)

Such an equation assumes no water is associated with the
aerosol atRH=30%. This point will be considered in the
next sections. In order to assess a mass size distribution
of the aerosol, we disposed of integrated ground measure-
ments performed between 18 July 09:15 GMT and 21 July
09:40 GMT in inner Paris with a 13 stage DEKATI cascade
impactor (http://www.dekati.com). This instrument samples
the particles with diameter between 0.03µm and 10µm.
Losses within the impactor is less than 0.5% for particles
larger than 0.1µm and relatively stable throughout the size
range. For particles smaller than 0.1µm, losses start to in-
crease rapidly. Each filter for the 13 stages has been analysed
by ion chromatography and X-Ray fluorescence, providing
mass size distributions of WS and elementary species, re-
spectively. The BC and OC concentrations have also been
extracted from Whatman GF/F glass-fibber filters.

2.4 Meteorological parameters

A humidity sensor (Vaisala, Campbell Scientific Model
HMP45A) measuredRH values with uncertainties of±2%
for RH values between 0% and 90% and±3% for RH

values between 90% and 100%. The wind characteris-
tics were provided by a bi-dimensional sonic anemometer
(R. M. Young Model 05103 Wind Monitor) with a precision
of 0.01 ms−1 for the intensity and 0.1◦ for the direction.

3 Evidence ofRH effect on urban aerosol properties

3.1 Direct observations

In order to counteract the time variability of the total aerosol
number concentrationNt , the aerosol scattering cross section
σscatt(σscatt=αscatt/Nt ) is hereafter considered rather than us-
ing the scattering coefficientαscattgiven by the nephelometer.
The time evolution between 18 and 24 July 2000 ofRH (%)
andσscatt(cm2) is shown in Fig. 1.

For the following studies, we decided to split the observa-
tion period into 5 separate time periods: from 18 July at 20 h
GMT to 19 July at 9 h GMT (18.9–19.4) noted P1, from 20
July at 0 h GMT to 20 July at 14 h GMT (20–20.6) noted P2,
from 20 July at 14 h GMT to 21 July at 19 h GMT (20.6–
21.8) noted P3, from 21 July at 19 h GMT to 22 July at 18 h
GMT (21.8–22.8) noted P4, and from 22 July at 18 h GMT
to 23 July at 17 h GMT (22.8–23.7) noted P5. Each period
corresponds to a diurnal cycle of increasing then decreasing
RH, except for P1 where only the increasingRH part of the
measurements were available.

During the timeframe under study,RH varies between
∼40 and>90% with a noticeable diurnal cycle. The lowest
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Fig. 1. Time evolution ofRH (%) (open circles) and of the scatter-
ing cross sectionσscatt(cm2) (dots) measured at Saclay between 18
and 24 July, 2000. The grey areas highlight the 5 time periods (P1,
P2, P3, P4, and P5) considered in the text.

values are observed in mid afternoon (close to 50%), while
the highest values occur in early morning (close to 95%).The
σscattvalues for the whole timeframe ranged from 2.10−12 to
1.2.10−9 cm2, with particularly high values during the day-
time of P4. Theσscattvalues recorded for P1 and P3, at max-
imum RH, are significantly lower than for the P2, P4, and P5
periods.

3.2 Effect ofRH on the aerosol scattering cross section

The aerosol scattering cross sectionσscatt as a function of
RH is given in Fig. 2 for the 5 time periods P1 to P5. Filled
(open) symbols indicate thatRH increases (decreases) con-
tinuously over the time period of the sampling. Each colour
corresponds to one of the ten chemical filters performed dur-
ing the whole period (see Sect. 4.1). The circle, diamond and
star symbols respectively indicate a salt mixture of Type 1,
Type 2 and Type 3, as defined in Sect. 4.2.2.

For P1,σscatt is approximately constant except whenRH

is greater than 90%. For P3, whenRH increases or de-
creases,σscatt follows the same pattern, suggesting a mono-
tonic hygroscopicity of the aerosols. For P2, P4 and P5,σscatt
reacts more distinctly withRH and the observed patterns are
quite different whenRH increases and then decreases. Such
behaviour looks like a hysteresis effect and may suppose the
presence of hygroscopic and deliquescent compounds in the
aerosols. Many authors such as Orr et al. (1958), Junge
(1963), Tang (1980b), Rood et al. (1987), Nenes et al. (1998),
Gasso et al. (2000) have already observed such a complex at-
mospheric aerosol process. For these three casesσscatt, at
highRH (>85–90%), is a factor of 4 to 10 times larger than
for P1 and P3 at the sameRH values.

Note that the effect of the convection between the surface
layer and the mixed layer on our observations is limited be-
cause the proximity of the aerosol sources in the urban and
suburban areas. Moreover, from airborne lidar measurements
(Chazette et al., 2005), we have not observed any correlation
between the aerosol optical properties close to the ground
and in the mixed layer. Hence, the increasing and decreasing
RH experienced by the particles in the mixed layer during
upward and downward motion influences the dispersion of
the measurements but not significantly the general form of
the aerosol property evolutions against RH.

3.3 Evidence of a deliquescence process

The Fig. 3a (from Rood et al., 1987) illustrates a deliques-
cence process with a hysteresis phenomenon for a single pure
deliquescent component. Solid arrows correspond to con-
tinuous increasing RH, while dashed arrows represent con-
tinuous decreasingRH . A particle, which is initially dry
(stage A), grows rapidly in size due to water condensation
at the deliquescence point, notedDRH (beginning of stage
B). This point corresponds to the equilibrium water vapour
pressure over a saturated aqueous solution formed with the
solute and to a phase change, from solid to liquid, of the par-
ticle. BeyondDRH (stage C), continuing increase inRH

results in further particle size growth, with a sub saturated
concentration of the particle solute. WhenRH decreases un-
der DRH (stage D), the amount of water on the aerosol de-
creases until the aerosol crystallizes. This typically occurs
at the end of stage E, corresponding to the crystallization
point notedCRH. Table 1 contains values ofDRH andCRH
for some pure salts at 298 K (McMurry and Stolzenburg,
1989; Tang and Munkelwitz, 1994; Dougle et al., 1998). At-
mospheric aerosols are generally a mixture of several salts
and contain more or less insoluble components. The pres-
ence of water soluble components in the particle, such as
inorganic ions (sulphate, nitrate, ammonium, sodium, chlo-
ride. . . ) or organic acids (malonic, glutaric, maleic. . . ) en-
hance the aerosol hydration, while the presence of insolu-
ble components, such as mineral dust and organic carbon
freshly emitted from the sources may inhibit such a process
(Charlson et al., 1984; Tang, 1980a; Rood et al., 1987; Sax-
ena et al., 1995; Andrews and Larson, 1993). Certain other
authors have not seen any measurable changes in the be-
haviour of a hygroscopic inorganic core with hydrophobic
organic coatings (Hansson et al., 1990; Hameri et al., 1992;
Cruz and Pandis, 1998; Kleindienst et al., 1999). In the lat-
ter case, we can suppose that a fraction of organic compo-
nents may be hygroscopic in an organic acid form. There
is nonetheless substantial disagreement among authors re-
garding how much aerosol water uptake may be attributed
to organic compounds. Based on thermodynamic calcula-
tions, some authors have reported that organics at rural lo-
cations may largely contribute to total water uptake (Saxena
et al., 1995; Dick et al., 2000). However, other authors have
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Fig. 2. Aerosol scattering cross sectionσscattas a function ofRH for the time periods P1, P2, P3, P4, and P5. Filled (open) symbols indicate
that RH increases (decreases) continuously during the time evolution of the sampling. The colours correspond to the different sampling
chemical filters (see Sect. 4.1). Circle, diamond and star symbols respectively indicate a salt mixture of Type 1, Type 2 and Type 3, according
to ISORROPIA results (see Sect. 4.2.2). Note the change of the ordinate scale for P4.
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Table 1. Deliquescence pointsDRH and crystallization pointsCRHof pure soluble salts at 298 K (a Tang and Munkelwitz, 1994;b Dougle
et al., 1998;c McMurry and Stolzenburg, 1989).

NH4HSOa
4 NH4NOb

3 (NH4)3H(SO4)a2 NaNOa
3 NaClc (NH4)2SOa

4 Na2SOa
4

DRH (%) 40 60 69 74.5 76.8 80 84
CRH (%) 20 – 45 30 40 40 60

Fig. 3. Diagrams exhibiting deliquescence processes with a hys-
teresis phenomenon(a) for a pure deliquescent salt and(b) for a
mixture of deliquescent salts. Arrows indicate the direction ofRH

variation.

reported that all of the measured size increases are attributed
to water uptake by inorganic species (Waggoner et al., 1983;
Malm and Day, 2001). Other authors also report that the
extent to which organics enhance or inhibit water uptake de-
pend on the inorganic salts and the fraction of organic mate-
rial present in the aerosol particle (Cruz and Pandis, 2000).

Another difficulty is thatDRH andCRHvalues depend as
much on the chemical composition and on the size of the par-
ticles, as on their mixture state (internal/external) and their
mixing ratios (Berg et al., 1998; McInnes et al., 1998; Bal-
tensperger et al., 2002). They also vary with the ambient
temperature (T ), with a decrease ofDRH values whenT in-
creases (Stelson and Seinfeld, 1982; Tang and Munkelwitz,
1993; Tabazadeh and Toon, 1998). Such a variation is given,
at the first order (Tang and Munkelwitz, 1993; Seinfeld and

Pandis, 1998) by:∣∣∣∣1DRH

DRH

∣∣∣∣ = n
1HS

RT

1T

T
(3)

whereR is the perfect gas constant,1HS the solution en-
thalpy and n the solubility of the aerosol salt.

For the whole period under study, the temperature
(T ) presents a maximum of variation1T ∼10◦C dur-
ing the diurnal cycle that leads to a1DRH/RH∼3%
for NH4NO3(1HS∼16.27 kJ.mol−1 andn∼0.475 at 298 K)
and only 0.3% for (NH4)2SO4(1HS∼6.32 kJ.mol−1 and n
∼0.104 at 298 K). Among the four salts which possibly com-
pose our aerosols (see Sect. 4.2.1), only those1HS val-
ues of NH4NO3 and (NH4)2SO4 have been found in the
literature (Seinfeld and Pandis, 1998). According to such
1DRH/RH values, the temperature variations observed
here should not have a noticeable influence on theDRH val-
ues of the aerosols.

TheDRH of a mixed-salt is not necessarily a unique value.
Both theoretical and experimental works show that the first
deliquescence of a mixture occurs at anRH value lower
than the minimumDRH for each salt, taken separately (Tang,
1980b; Spann and Richardson, 1985; Tang and Munkelwitz,
1993; Potukuchi and Wexler, 1995a, 1995b). Figure 3b illus-
trates the case of a mixed-salt particle deliquescence, where
two steps in the phase-change of the aerosol water content are
observed whenRH increases. The first abrupt increase in the
particle size is a result of a phase change from a solid crys-
tal to a heterogeneous droplet, still containing a solid core.
The second abrupt increase in particle size occurs when the
particle becomes a homogeneous droplet resulting from the
dissolution of the droplet’s solid core. The minimumDRH
of the salts mixture is known as the Mutual Deliquescence
Relative Humidity (MDRH) and the crystallization point of
the mixed salts is accordingly noted MCRH. A deliques-
cence process as previously described seems to be observed
in the σscatt(RH ) data (Fig. 2), particularly for P4 and P5,
with likely MDRH values close to 50–60%. However, at this
stage of the data interpretation, we must remain prudent as it
is possible that the aerosol chemical composition may have
changed between the increasing and the decreasing part of
theRH cycle.

Wexler and Seinfeld (1991) proposed a formula to es-
timate MDRH values for multiple salt solutions, depend-
ing on the ambient temperature, the molarity of each salt
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Table 2. Mutual deliquescence pointsMDRH of mixed salts at
298 K (Potukuchi and Wexler, 1995a, 1995b).

Salts mixture MDRH (%)

(NH4)2SO4,NH4NO3 60
(NH4)2SO4, NH4NO3, Na2SO4, NH4Cl 50
(NH4)3H(SO4)2, Na2SO4, (NH4)2SO4 68
(NH4)3H(SO4)2, (NH4)2SO4 68

and its fusion latent heat from a saturated solution and the
molar mass of the water. Results clearly show that mix-
tures composed of completely different components under
the same thermodynamic conditions can have very close
MDRH values. For example at 303 K, NH4NO3+(NH4)2SO4
present aMDRH∼60% and under the same conditions,
NaNO3+NaCl presents aMDRH∼68% and NaNO3+NH4Cl
a MDRH∼60%. Table 2 presentsMDRH values for some
salt-mixtures at 298 K. To our knowledge, little information
is available in literature about the MCRHof mixed salts.

Theσscatt(RH ) response whenRH increases and then de-
creases are significantly different for the P4 and P5 periods.
Such observations may support the existence of a hystere-
sis phenomenon. Moreover, theMDRH values here do not
significantly change with the temperature during theRH cy-
cle and thus the temperature variation should not impact on
the hysteresis phenomenon. For P2, due to the lack of data
betweenRH∼55% andRH∼80% whenRH increases, it
is difficult to draw any conclusions. However, according to
the deliquescence process described above, theCRH should
reach the dry state of the cycle close toRH∼50%.

3.4 TheRH effect on the aerosol size distribution

3.4.1 Number size distribution

The mean characteristics of the aerosol number distribution
ρN (r), for the whole period under study, are summarized in
Table 3 with the associated temporal variability in brackets
and the uncertainties in parenthesis (both explained in the
form of standard deviation). The uncertainties due to the re-
trieval procedure have been assessed using a Monte Carlo
approach (Chazette et al., 2005).

Given theRH diurnal cycle, certain parameters ofρN (r)
may evolve significantly with time if the aerosol is hygro-
scopic. The time evolution of the modal radiusrN1 (nucle-
ation mode) presented no variation withRH . This mode can
thus be considered as hydrophobic. This could be chemistry
or size effects as these are the particles that will not pick
up water because of the curvature term in the Kohler equa-
tion (Seinfeld and Pandis, 1998). The time evolution of the
second modal radiusrN2 (accumulation mode), considering
the uncertainties of 0.02µm (Table 3), is plotted in Fig. 4 to-
gether withRH (scaled by 1000). TherN2 values display ev-

Fig. 4. Time evolution of the modal radiusrN2 (grey areas represent
the standard deviation around the mean value ofrN2), the effective
radiusreff2 andRH /1000. The colours correspond to the different
sampling chemical filters (see Sect. 4.1).

identRH effects, as already observed forσscatt(RH ). How-
ever, it is difficult to interpret therN2(RH ) evolution, partic-
ularly for P3, because it does not at all follow the variation of
RH . For this P3 period, theσscatt values, which depend on
bothrN2 andσN2, are weakly but clearly correlated withRH

(Fig. 1). A more appropriate radius parameter, which takes
into account both of these size distribution parameters, is the
effective radiusreff2 (Chazette et al., 1995; Lenoble, 1993):

reff2 = rN2 exp
(
2.5 · ln2 σN2

)
(4)

For the periods P1 and P3,reff2 shows a not significant vari-
ability with RH , in agreement withσscatt(RH ). The effect
of RH on reff2 is well highlighted for P4 and P5, with the
same observed trends as for rN2(RH ) andσscatt(RH ). The
similarity of behaviour betweenσscatt andrN2 could still be
an artefact due to a variation over time of either the aerosol
chemical components or the occupation ratex2. However,
the occupation ratexN2 stays roughly constant with a stan-
dard deviation of 10% which leads to an effect onσscattlower
than 15% and is thus insufficient in explaining the existence
of a hysteresis pattern (Figs. 2d, e). The partition of hygro-
scopic components inside each mode is thus important to es-
tablish. The evolution of the coarse mode radiusrN3 as a
function ofRH was not performed due to the difficulty to as-
sess precisely this mode from number size distributions. It is
nonetheless important to determine if this third mode is also
hygroscopic and the knowledge of the mass size distribution
of the aerosol chemical compounds would then be helpful.
Unfortunately, such measurements were not performed at the
Saclay location during this observation period but they were
performed in inner Paris between 18 and 21 July 2000. We
may nonetheless reasonably suppose that the type of aerosol
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Table 3. Mean number size distributionρN (r) retrieved from measurements at Saclay (Chazette et al., 2005) and mean mass size distribution
ρM (r) from measurements in inner Paris. The number size distribution parameters assessed from the mass size distribution are also given.
The mean optical contribution of each mode is indicated for 550 nm. The temporal variability is given in brackets and the uncertainties in
parenthesis. Both have been calculated as standard deviations.

r1 (µm) σ1 x1 (%) r2 (µm) σ2 x2 (%) r3 (µm) σ3

MeasuredρN (r) 0.03
{0.01}
(0.01)

1.4
{0.2}
(0.01)

87.94
{9}

(3)

0.09
{0.02}
(0.015)

1.5
{0.1}
(0.02)

12
{5}

(3)

0.45
{0.03}
(0.1)

1.2
{0.4}
(0.02)

MeasuredρM (r) – – – 0.22
(0.02)

1.5
(0.1)

69
(5)

3.5
(0.02)

1.3
(0.1)

Assessedρ’N (r)
from ρM (r)

– – – 0.13
(0.05)

1.5
(0.1)

53
(7)

2.5
(0.06)

1.3
(0.1)

Contribution
to σscatt

∼4% ∼77% ∼19%

emission in inner Paris area is the same than around Saclay
since the main aerosol source is the automobile traffic (Menut
et al., 2000).

3.4.2 Mass size distribution

The aerosol sampled in Paris by the DEKATI instrument pro-
vided mass size distributions of the WS fraction, notedρM

(Fig. 5a), and the elementary species, notedρM,E (Fig. 5b),
using respectively ion chromatography and X-ray fluores-
cence analysis.

The nucleation mode, previously identified in the number
size distributionρN (r), is poorly constrained with mass con-
centration measurements because this mode contributes very
little to the total aerosol mass. Thus, the two modes well
identified byρM andρM,E correspond to the accumulation
mode with a modal radiusrM2∼0.22µm and to the coarse
mode with a modal radiusrM3∼3.5µm.

The main chemical composition of each mode is deter-
mined by the combination of both distributions. When
the common components of Figs. 5a and b are compared,
there are agreements between molar concentrations of SO2−

4
and S for the mode close torM2∼0.22µm, and between
molar concentrations of Na+ and Na for the mode close
to rM3∼3.5µm. Such results indicate that sulphur and
sodium exist essentially in respective ionic forms as SO2−

4
and Na+. As for the Cl, Mg and K components, present
in the coarse mode close torM3∼3.5µm, they are essen-
tially in solid forms. Note that these three components rep-
resent less than 2% of the aerosol total mass. The mode
close torM2∼0.22µm thus contains mainly soluble compo-
nents while the mode close torM3∼3.5µm contains princi-
pally insoluble components. Traffic emission is more likely
to be in the nucleation and accumulation modes. Neverthe-
less, cars inject also in the atmosphere particles by friction
on surface in the coarse mode. Using the same approach

than Bates et al. (2004), the dust mass concentration in the
coarse mode has been found∼3.9µg m−3. Nitrate concen-
tration observed in the coarse mode may be due to reaction
of calcium carbonate with nitric acid onto mineral dust parti-
cles.

It is important to ascertain that the two modes highlighted
by the mass size distributionsρM (r) andρM,E(r) correspond
to the last two modes of the number size distributionρN (r).
For lognormal distributions, there are well defined relation-
ships between the number and the mass modal radii in one
hand, and between their fractional number concentrations in
the other hand:

rN = rM exp(−3 log2(σM)) (5)

xN = (3/4πddry)xM102r−3
N ′ exp(−9 log2(σN )/2) (6)

whereddry (g.cm3) is the dry particle density. SubscriptsM

andN respectively correspond to mass and number distri-
butions. For the same mode, standard deviationsσN and
σM should have the same value. An independant number
size distribution, notedρ′

N (r), can then be assessed from the
characteristics ofρM (r). According to the previous chemi-
cal composition given for each mode,ddry can be assumed
to be equal, for the moderM2∼0.22µm to the WS frac-
tion dWS∼.7 g.cm−3 (Sloane, 1984; Boucher and Anderson,
1995) and for the moderM3∼3.5µm to the residual par-
ticles (including dust particles)ddust∼.3 g.cm−3 (Patterson
and Gillette, 1977). The mean characteristics ofρM (r) and
the correspondingρ′

N (r) are given in Table 3.
The first mode (rN2′∼0.13±0.05µm) of this number dis-

tribution derived fromρM (r) agrees relatively well with the
second mode (rN2∼0.09±0.02µm) of ρN (r). This mode,
containing mainly soluble components, contributes the most
to the hygroscopic properties of the aerosols. According to
Mie theory calculations, it is also the most optically efficient,
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Fig. 5. Mass size distributions of(a) water soluble fraction ob-
tained by chromatography analysis and(b) elementary compounds
obtained by X-ray fluorescence analysis, retrieved from the filters
sampled in Paris (between 18 and 21 July 2000).

with about 77% of the total aerosol scattering efficiency (Ta-
ble 3). Organic content may also have an effect on the hy-
droscopic properties of aerosols. The OC content for the two
modes is not so different (∼2µg m−3 for the accumulation
mode and∼1µg m−3 for the coarse mode). If the OC is
hydrophilic, the coarse mode may influence the aerosol scat-
tering cross section againstRH .

The discrepancy observed in Table 3 betweenrN3 and
rN3′ is likely due to the inherent difficulty in measuring the
particle number size distribution in the coarse mode which
is better characterized using mass measurements. We can
thus suppose that the correct modal radius of the third mode
is closer to 2.5µm rather than 0.45µm. Furthermore, this
mode has been found to contain mainly insoluble species. In
the next sections, we will thus focus our study on the accu-
mulation mode (rN2∼0.09µm).

Fig. 6. Time evolution of BC, POM, WS<1µm, and residuals (in-
cluding dusts) concentrations measured at Saclay between 18 and
24 July 2000. Horizontal coloured bars identify the sampling filters
(see Sect. 4.1). The grey areas highlight the 5 time periods (P1, P2,
P3, P4, and P5).

4 Temporal evolution of the aerosol chemical composi-
tion

4.1 Aerosol sampling

Ten aerosol samplings were realized at Saclay, for carbona-
ceous and water-soluble analysis, with a night and daytime
alternation when possible. The length of sampling times
ranged from 6 to 18 h. Results show that on the average
the aerosol is composed of 35% of WS, 15% of POM, 3%
of BC, and 47% of residual components including the dust
fraction. Given the size cut of the filters, the WS fraction can
be divided into two categories: particles with radius<1µm
(WS<1µm) and particles with radius>1µm (WS<1µm). The
coarse mode contains∼30% of WS, which must especially
found in the form of calcium nitrate. We will hereafter focus
on WS<1µm which includes the accumulation mode. Ac-
cording to these ten aerosol samples from Saclay, the prepon-
derant components in WS<1µm are ion sulphate SO2−

4 with a
mean relative proportion of∼68%, followed by ammonium
NH+

4 with ∼21% and nitrate NO−3 with ∼8%. This reparti-
tion of WS<1µm species is quite similar to the one obtained
from Paris measurements (see Fig. 5).

The time series of WS<1µm, BC and POM mass con-
centrations are shown in Fig. 6 and the the relative reparti-
tion of the five main components of WS<1µm from Saclay
(SO2−

4 , NH+

4 , NO−

3 , Na+, and Cl−) is displayed in Fig. 7.
In the latter, a noticeable diurnal cycle of NO−

3 is observed
with a higher relative concentration at night than during the
day. This process results from the destruction of NO−

3 by
photo-dissociation during the day, whereas it is produced
during the night from ozone and nitrogen dioxide molecules.
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Fig. 7. Time evolution of the relative mass concentration of the
main WS<1µm ionic compounds.

Nonetheless it still remains to be seen whether this has an
impact on the aerosol hygroscopic character.

Among the five time periods, the strongest WS<1µm con-
centrations are observed during P1 and P4. Their aerosol
hygroscopic behaviours are nevertheless very different with
a clear high hygroscopicity for P4. We note that P1 has a
slightly greater POM organic fraction than P4 and it is possi-
ble that POM inhibited the aerosol hygroscopicity during P1
as mentioned by various authors (e.g. Cruz and Pandis, 1998;
Kleindienst et al., 1999). However, the latter assumption
must be tempered by the lack of data during daytime of 19
July. As for P3 and P5, quasi-similar concentrations of WS
are observed, although the mean concentration of POM is
twice as important for P3. Considering the high hygroscopic
properties of P5, this may also support the interpretation that
POM inhibits the aerosol hygroscopic properties. However,
in our case, this interpretation is not fully satisfactory. P2 in-
deed presents the most significant quantity of POM but the
aerosol seem to preserve a pronounced hygroscopic char-
acter, despite a weaker WS<1µm concentration when com-
pared to P1. These contradictory observations, concerning
the presence of organic compounds, echo the works of differ-
ent authors previously cited and demonstrate the difficulty to
draw conclusions on the aerosol hygroscopic character solely
based on the chemical data analysis as presented here.

An analysis of the air masses origins has been conducted
for the 5 time periods (Fig. 8), using the NOAA HYSPLIT4
Model (Draxler and Hess, 1998), with the aim of better com-
prehending the obtained data. The air masses come from
northwest for P1 and P3, with a larger spreading for the lat-
ter. The weak hygroscopic character of the aerosols for both
cases, observed in Figs. 2a and c are similar. The air masses
passed through the industrialized regions of Leeds, Sheffield
and London (England) and are, upon arrival over Paris, cer-

Fig. 8. Retro-trajectories of air masses arriving over the Paris area
for the period between 18 and 23 July 2000. The color scale repre-
sents the temporal evolution with the five time periods.

tainly already loaded with aged hydrophobic pollution parti-
cles. An aerosol optical properties study from airborne lidar
measurements (Chazette et al., 2005) confirms the weak hy-
groscopicity of the aerosols present in the Paris area during
daytime of 19 July 2000 (period P1). For P2, the incoming
air mass is a mix between northwest (at the beginning of the
period) and west (at the end) airflows which are probably al-
ready polluted, but with a more urban pollution component
(London).

The situation of P4 contrasts totally with the previous
cases. The air masses come from the Northeast, after trav-
elling over the Northerly part of the Great Britain, the North
Sea and the Benelux. We may thus expect a different aerosol
hygroscopic behaviour given the difference of sources and
the fact that the particles arriving over the Paris area are
certainly less aged. For P5, the air masses arrive from
east and northeast. They originate from the North Sea and
have passed over the Benelux and western Germany. A hy-
groscopic behaviour similar to the one observed during P4
should thus be expected, as confirmed by the Figs. 2d and e.

4.2 Modeling approach

We have used ISORROPIA, a thermodynamic model which
predicts the phase state (gas, liquid, solid) of inorganic atmo-
spheric aerosol components in equilibrium with gas phase
precursors (Nenes et al., 1998). It models the sodium-
ammonium-chloride-sulphate-nitrate-water aerosol system.
On one hand, it proposes the possible chemical forms of
the salts within the aerosol solid phase in accordance with
RH values. On the other hand, it calculates the aerosol wa-
ter mass content mH2O as a function of increasingRH and
assesses the correspondingMDRH values. The main goal
of this section is to comparemH2O(RH ) to the measured
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Fig. 9. Time evolution of RSO4 and RNa. The colours identify the
sampling filters (see Sect. 4.1). Circle, diamond and star symbols
respectively indicate the Type 1, Type 2, and Type 3 pattern of the
salt mixture (see Sect. 4.2.2).

σscatt(RH ) andrN2(RH ), even if this is only possible for the
increasingRH part of the cycle.

In ISORROPIA, the aerosol particles are assumed to be
internally mixed. The model solves a “reverse” problem in
which the known quantities are the temperature,RH and
the aerosol ionic concentrations of SO2−

4 , NH+

4 , NO−

3 , Na+,
and Cl−. The number of viable species is determined by
the relative amount of each species and the ambientRH .
Possible species in solid phase are: (NH4)2SO4, NH4HSO4,
(NH4)3H(SO4)2, NH4NO3, NH4Cl, NaCl, NaNO3, NaHSO4
and Na2SO4 (Nenes et al., 1998).

4.2.1 Identification of salts

Depending on the amount of NH+4 and Na+, the SO2−

4 can
either be completely or partially neutralized. The possible
salt mixture present inside the aerosol is thus characterized
using two ionic ratios defined by:

RSO4=
[Na+

] + [NH+

4 ]

[SO2−

4 ]
(7)

RNa=
[Na+

]

[SO2−

4 ]
(8)

RSO4 is known as the sulphate ratio, while RNa is known as
the sodium ratio. The concentrations are defined in molar
units. Different cases may occur, according to the RSO4 and
RNa values:

1. if RSO4<1, the particle aerosols belong to the “Sulphate
rich with free acid” case where there is a high quantity
of SO2−

4 , part of which is in a free sulphuric acid H2SO4
form.
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Fig. 10. Time evolution of the relative composition of the formed
salts. Coloured horizontal bars identify the sampling filters (see
Sect. 4.1).

2. if 1<RSO4<2, the particle aerosols belong to the
“Sulphate rich but no free acid” case where there is
enough NH+4 and Na+ to partially neutralize SO2−

4 .
In addition of Na2SO4, a mixture of (NH4)2SO4 and
(NH4)3H(SO4)2 exists, the ratio of which is determined
by the thermodynamic equilibrium.

3. if RSO4≥2 and RNa≤2, the particle aerosols belong to
the “Sulphate poor and Sodium poor” case where there
is enough NH+4 and Na+ to fully neutralize SO2−

4 , but
Na+ concentration is not sufficient to neutralize SO2−

4
by itself. The excess of NH+4 can react with other
species like NO−3 and Cl− to form other salts.

4. if RSO4≥2 and RNa≥2, the particle aerosols belong to
the “Sulphate poor and Sodium rich” case where there
is enough Na+ to fully neutralize SO2−

4 . The NH+

4 and
the excess of Na+ can react with other gaseous species
to form salts, while no NH4HSO4 nor (NH4)3H(SO4)2
are formed.

The measurement of SO2−

4 , NH+

4 , NO−

3 , Na+, and Cl−

mass concentrations from the ten aerosol samples leads to the
RSO4 and RNa values displayed in Fig. 9. The corresponding
modelled salt proportions are shown in Fig. 10. The only
sample belonging to the “Sulphate poor and Sodium poor”
case is the one close to day 22.3 (green star symbol) which
corresponds to the increasingRH part of the P4 cycle and
is composed of (NH4)2SO4, Na2SO4, and NH4NO3. The
nine other samples recorded during P1, P2, P3, and P5 corre-
spond to the case “Sulphate rich but no free acid” and contain
(NH4)2SO4, Na2SO4, and (NH4)3H(SO4)2. No NH4HSO4
was formed in these cases because RSO4 has to be lower
than 1.5 to form such a component. (NH4)2SO4is present
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Fig. 11. The three patterns of aerosol water content evolution with
RH from the ten filter samples: circles for Type 1, diamonds for
Type 2, and stars for Type 3.

during the entire observation period with a proportion rang-
ing from 18 to 97% of the total WS<1µm mass, while the
(NH4)3H(SO4)2 proportion varies between 0 and 75%. The
formation of NH4NO3 during P4 comes from an excess, even
weak, of NH+

4 which combines with other ions than SO2−

4 ,
such as NO−3 .

From this chemical composition approach, it thus seems
that the various behaviours of the measured aerosol optical
properties with increasingRH could be divided into at least
two classes.

4.2.2 Aerosol mass water content

The aerosol water mass contentmH2O, as a function of in-
creasingRH , has been calculated from ISORROPIA accord-
ing to the chemical composition of the ten filter samplings.
The retrieved behaviours ofmH2O(RH ) can be grouped in
three different patterns, hereafter referenced as Type 1, Type
2, and Type 3, as displayed in Fig. 11 (respectively iden-
tified with circle, diamond and star symbols). Each period
(P1 to P5) includes up to 3 filters and thus different patterns
could be encountered. It is obvious that the aerosol chemical
composition given by each sampling filter is a mean value of
the aerosol chemistry during the sampling time. However,
the aerosol chemical composition should not change instan-
taneously.

The Type 1 pattern concerns the whole P1 period and the
parts of P3 and P5 for increasingRH>60%. The Type 3 pat-
tern concerns the filter sampled during the part of P4 for in-
creasingRH>60% and the beginning of the decreasing leg,
the modelled species of which are (NH4)2SO4, NH4NO3 and
Na2SO4 with no (NH4)3H(SO4)2. Type 2 applies to P2 and
all the remaining filters of P3, P4 and P5. In fact, the only
meaningfulmH2O(RH ) behaviours of the particles are those

for RH values where the particles do react withRH , i.e.
for the increasingRH part of the cycle beyond the deliques-
cence point. According to the model, the deliquescence for
Type 1 and Type 2 should occur close toMDRH∼60% and
for the Type 3 close toMDRH∼50%. We thus consider that
mH2O(RH ) follows a behaviour of Type 1 for P1, P3, and P5,
of Type 2 for P2 and of Type 3 for P4.

As shown previously, the salts which compose the
Type 1 and Type 2 aerosols are the same ((NH4)2SO4,
(NH4)3H(SO4)2, and Na2SO4). The main difference is in the
growth withRH which is more continuous up toRH∼80%
for Type 2 than for Type 1. Such a difference could be due
to the (NH4)3H(SO4)2fraction which is weaker in Type 1
(<13%) than in Type 2 (>36%). The difference between
the latter patterns and Type 3 is certainly due to the presence
of NH4NO3 and the absence of (NH4)3H(SO4)2.

Coming back to theσscatt(RH ) characteristics of the
Fig. 2, we note that the observedMDRH of P5, close to 50–
60%, and that of P4, close to 40–50% and less pronounced,
seem to be in good agreement respectively with the charac-
teristics of Type 1 and Type 3.

5 Parameterisation

Using a parameterisation approach based on Hänel (1976)
model, we will check, in the following sections, the coher-
ence betweenmH20(RH ), σscatt(RH ) and rN2(RH ). Since
this model is suitable only for continuously increasingRH ,
we will hereafter mainly focus on the increasingRH part of
the time cycle. At that stage of the discussion, the hystere-
sis effect still remains questionable and we shall use these
parameterisations to determine if this phenomenon really ex-
ists on our data.

5.1 Growth factors

5.1.1 Aerosol scattering growth factorfscatt(RH )

The growth of aerosol light scattering as a function of in-
creasing RH, notedfscatt(RH ), is defined as the ratio be-
tween wet and dry scattering cross sections:

fscatt(RH) = σscatt(RH)/σscatt,dry (9)

whereσscatt,dry is the scattering cross-section atRH<30%.
For the present study, we have usedσscatt,ref instead of
σscatt,dry, which corresponds to a referenceRH valueRHref
since values ofRH≤30% were not available. We chose to
useRHref∼50–60%, given the available data. TheseRHref
values are very close to theMDRH values predicted by
ISORROPIA, where the aerosols are considered to be in dry
state. Moreover, up to the time whenRH reaches these val-
ues, one remains generally with the same sampling filter.

Figure 12 showsfscatt(RH ) for P1, P3, P4 and P5. The
fscatt value atRH=80% is frequently used in the current
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Table 4. Measured scattering growthfscatt(80%) and scattering growth coefficientγ for the present work and from other authors (* the
given range corresponds to different sensitivity tests on the size, the chemical form of the aerosol, and the hysteresis presence).

Authors Location Characteristics fscatt(80%) γ

Covert et al. (1972) Laboratory tests Sea-salt
(NH4)2SO4

3.4
2.2

–

Boucher and Anderson (1995) Model (NH4)2SO4
NH4HSO4

2.4–4(∗)

2.52
–

Ross et al. (1998) Cuiabà, Pantanal, Jamari (Brasil) Biomass burning 1.1–1.4 –
Kotchenruther et al. (1999) East coast of U.S. Marine and Anthropogenic

influences
2.3 –

Gasso et al. (2000) Sagres (Portugal) Polluted marine
Clean marine

1.4
1.8

0.27
0.6

This work Saclay (France) P1
P4
P5

1.2
2.0
4.5

0.47
1.04
1.35

literature (e.g. Covert et al., 1974; Boucher and Ander-
son, 1995; Ross et al., 1998; Kotchenruther et al., 1999
and Gasso et al., 2000) to appreciate the degree of hygro-
scopicity of the aerosols. These values are summarized in
Table 4 together with those given by other authors. The
P2 period has been discarded due to the lack of increas-
ing RH data up toRH∼80%. The values offscatt(80%)
are very sparse and clearly dependant on both the aerosol
origin and the particle chemical composition. For P1 and
P3, fscatt(80%) ∼1.1–1.2 are close to the values found by
Ross et al. (1998) and Gasso et al. (2000) for biomass
burning and polluted marine aerosols, respectively. For
P4, fscatt(80%)∼2.7 is similar to the value determined by
Kotchenruther et al. (1999) for aerosols from both anthro-
pogenic and marine influences, in agreement with the air
mass origin. Thefscatt(80%)∼4.7 retrieved for P5 is partic-
ularly high. Similar values have nonetheless been previously
assessed by Covert et al. (1972) for sea-salt or by Boucher
and Anderson (1995) for (NH4)2SO4. We note that the latter
is the dominant salt (82%) present in the aerosol studied here
(Fig. 10).

Hänel (1976) proposed a parameterisation offscatt(RH )
which has been used by many investigators (Covert et al.,
1972; Boucher and Anderson, 1995; Ross and Hobbs, 1998;
Kotchenruther et al., 1999; Gasso et al., 2000). This parame-
terisation, which assumes that the growth of the aerosol size
with RH is steady with no abrupt change and which is gen-
erally applied to the increasingRH part of the cycle, is given
by:

fscatt(RH) = (1 − RH)−γ (10)

whereγ is the Ḧanel scattering growth coefficient. If we
use a different reference valueσscatt,ref corresponding to
RH=RHref , instead of the dry value, then (10) becomes:

fscatt(RH) = ((1 − RH)/(1 − RHref))
−γ (11)
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Fig. 12. Growth in aerosol scattering cross section as a function
of increasingRH for the four time periods P1, P3, P4, and P5.
Solid lines represent the Hänel (1976) parameterisation fit of the
measurements. Colours identify the sampling filters (see Sect. 4.1).
The circle and star symbols indicate a salt mixture of Type 1 and
Type 3 (see Sect. 4.2.2).

The values ofγ for P1, P4 and P5 are thus assessed and are
given in the last column of Table 4. For P3, it was difficult
to obtain a meaningful fit of the measuredfscatt(RH ) values
due to their weak evolution, even at highRH values. These
scattering growth coefficients are generally larger than the
ones found in the literature. The correspondingfscattfits are
drawn in solid lines in Fig. 12. Due to the Hänel model hy-
pothesis of continuous growth, the more the aerosol presents
a pronounced deliquescence (as for P5), the more the Hänel
parameterisation over-estimatesfscatt in the deliquescence
and dry stateRH range.
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Fig. 13. Growth in aerosol size as a function of increasingRH for
the P4. Colours identify the sampling filters (see Sect. 4.1). The
star symbol indicates a salt mixture of Type 3 (see Sect. 4.2.2). The
solid lines represent the Hänel (1976) parameterisation fit of the
measurements.

5.1.2 Aerosol size growth factorfr (RH )

The aerosol size growth factor,fr (RH ), is similarly defined
as the ratio between the wet and the quasi-dry modal radius:

fr(RH) =
r

rref
(12)

whererref is the radius inRHref condition. Since only the
second mode has been shown to be hygroscopic, the radius
used isrN2. P4 is the only case which presents enoughrN2
values for a wide enough range ofRH . The correspond-
ing fr (RH ) and fr (90%) values are respectively given in
Fig. 13 and Table 5.fr (90%)∼1.42 for P4 lies in between
thefr (90%) values for “less hygroscopic” and “more hygro-
scopic” aerosols of Swietlicki et al. (2000). It is also close
the value retrieved by Weingartner et al. (2002) in the free
troposphere.

Hänel (1976) also proposed a parameterisation offr (RH )
given by:

fr(RH) = (1 − RH)−ε (13)

whereε is the Ḧanel size growth coefficient. As above, if an-
other reference value atRHref is used instead of a dry value,
(13) becomes:

fr(RH) = ((1 − RH)/(1 − RHref))
−ε (14)

The best fit of the P4 measurements leads toε=0.26 with a
standard deviation close to 0.02. The correspondingfr (RH )
is plotted as a solid line in Fig. 13. Thisε value for P4 is co-
herent with the one retrieved by Chazette and Liousse (2001)
for Thessaloniki (Table 5), where the aerosols are from ma-
rine and anthropogenic sources, and remains comparable to
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Fig. 14. σscatt(RH ) values retrieved from nephelometer measure-
ments and those calculated from Mie theory by using the Hänel
growth factorε.

the results of Weingartner et al. (2002) for aerosols in the free
troposphere.

5.1.3 Coherence betweenfscatt(RH ) andfr (RH ) parame-
terisations

σscatt(RH ) can also be estimated usingrN2(RH ) and Mie
theory in order to check the coherence of the two above pa-
rameterisations;σscatt values measured by the nephelometer
can thus be compared to those calculated from the retrieved
size distributionρN (r). Such a closure approach requires the
characteristics of the three modes ofρN (r) and the corre-
sponding aerosol complex refractive indexes, given that the
second mode is supposed to be hygroscopic. Similar studies
were performed by Wex et al. (2002) and, Quinn and Coff-
man (1998) in ambient RH. The second mode is thus depen-
dent onRH via the aerosol size growth coefficientε. For
this second hygroscopic mode, a wet refractive indexn2,wet ,
function ofε and RH, is given by (Ḧanel, 1976):

n2,wet = nH2O +
(
n2,dry − nH2O

)
(1 − RH)−3ε (15)

wheren2,dry=1.53–0.005i andnH2O=1.33–10−8 i are the dry
WS (Voltz, 1973) and the water refractive indexes, respec-
tively. For the first mode, supposed to be composed of POM,
the refractive index is taken asn1=1.55–0.005i (Chazette
and Liousse, 2001) and for the third mode, assumed to con-
tain mineral components, we chosen3=1.5–0.01i (Chazette
and Liousse, 2001).

Figure 14 shows the particular case of P4 for whichε

could be assessed. The good agreement between theσscatt
nephelometer measurements and the Mie theory results (with
ε∼0.26) proves the coherence ofσscatt(RH ) and rN2(RH )
for most of the ambientRH range and thus the predominance
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Table 5. Measured size growth factorfr (90%) and size growth coefficientε for the present work and from other authors.

Authors Location Radius
(µm)

Characteristics fr (90%) ε

Weingartner et al. (2002) Jungfrauroch (Germany) 0.050
0.100
0.250

In free troposphere 1.44
1.49
1.53

0.191
0.210
0.223

Baltensperger et al. (2002) Bresso (Italy) 0.025
0.1

During smog events 1.02
1.24

–

Berg et al. (1998) Pacific ocean 0.035
0.05
0.075
0.165

Marine aerosols for
non-sea-salt sulphate

1.56
1.59
1.61
1.63

–

Swietlicki et al. (2000) Punte del Hidalgo,
(Tenerife)

0.073 Marine aerosols +
anthropogenic
More hygroscopic
Less hygroscopic
Hydrophobic

1.65
1.32
1.11

–
–
–

Chazette and Liousse
(2001)

Thessaloniki (Greece) Anthropogenic
Traffic and industries
with marine influence

2.2 0.25

This work Saclay (France) 0.080 P4 1.42 0.26

of the accumulation mode on the hygroscopic behaviour of
the aerosol optical properties.

5.2 Coherence with the ISORROPIA model

5.2.1 Aerosol water content factorfH2O(RH )

As for fscatt(RH ) andfr (RH ), the increase of the aerosol
water mass content withRH can be characterized by the
ratio fH2O(RH )=mH2O(RH )/ Mdry, whereMdry is the dry
aerosol mass concentration andmH2O(RH ) is the water mass
concentration of the wet aerosol. ThefH2O(80%) values, de-
termined from the increasingRH part of mH2O(RH ), are
summarized in Table 6 for the five time periods. These val-
ues are twice as large as those retrieved by Hänel (1967) for
aerosols emitted by an industrial area.

According to Ḧanel (1967),fH2O is a function ofRH fol-
lowing the relation:

fH2O(RH) = µ
RH

(1 − RH)
(16)

whereµ is the aerosol mass increase coefficient. Theµ val-
ues for the five cases, obtained by fitting themH2O/Mdry val-
ues, are given in the last column of the Table 6. The best fits
are obtained with correlation coefficients greater than 0.98.
Theseµ values lie in between the results of Hänel (1967)
(∼0.14) and those of Chazette and Liousse (2001) (∼0.48)
for the city of Thessaloniki, where aerosols from both indus-
tries and traffic are mixed with sea salt. The standard devi-
ation of the retrievedµ has been assessed, through a Monte
Carlo approach, to be close to 0.07.

5.2.2 Coherence betweenε andµ retrievals

This last Ḧanel parameterisation provides a means for check-
ing the overall coherence betweenmH2O(RH ), σscatt(RH ),
and rN2(RH ). Another expression offr (RH ) in terms of
the aerosol mass increase coefficientµ (Hänel, 1979) is:

fr(RH) =

(
1 +

ddry

dH2O
µ

RH

(1 − RH)

)1/3

(17)

whereddry is the density of the dry particle anddH2O the
water vapour density (1 g cm−3). If a reference valueRHref
is considered, (17) becomes:

fr(RH) = (1 +
ddry

dH2O
µ

RH

(1 − RH)
)1/3/(1 +

ddry

dH2O
µ

RHref

(1 − RHref)
)1/3

(18)

The aim is to comparefr (RH ) given by (14) in terms of the
size growth coefficientε with fr (RH ) given by (18) in terms
of the mass increase coefficientµ. Considering the case of
P4, where the widest range ofrN2 data againstRH is avail-
able,fr (RH ) has been calculated using the two approaches.
This is shown in Fig. 15 forµ∼0.23 andε∼0.26. An excel-
lent agreement is found between the results of the two meth-
ods, even if thefr (RH ) from µ is slightly over-estimated
belowRH∼60%, due to the existence of the deliquescence
process. The coherence betweenmH2O(RH ) andrN2(RH )
behaviours shows that the aerosol water uptake results from
ISORROPIA modelling, which uses chemical analysis data
as input, are in good agreement with the evolution of the
measured modal radius of the accumulation mode with in-
creasingRH .
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Table 6. Water mass content factorfH2O(80%) and mass increase coefficientµ for the present work and from other authors.

Authors Location Radius (µm) Characteristics fH2O(80%) µ

Hänel (1967) Mainz, Germany 0.15–0.5 Industrial 0.524 0.14

Chazette and Liousse (2001) Thessaloniki POM
WS

– 0.47
0.49

This work Saclay, France 0.08 P1
P2
P3
P4
P5

1.1
1.25
1.1
1.2
1.1

0.23
0.37
0.23
0.23
0.23
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Fig. 15. Comparison betweenfr (RH ) from number size distri-
butions withε=0.26 andfr (RH ) from aerosol water content with
µ=0.23.

5.2.3 Evidence of the hysteresis cycle

The experimental data ofσscatt(RH ) for the time periods P4
and P5 (Figs. 2d, e) follow a pattern very similar to a hystere-
sis cycle. However, such sensitivity toRH may result from
modifications of various structural or chemical properties of
the aerosol or from external parameters. One must thus ver-
ify that either the latter did not change significantly or that
any other significant modification between the rising and the
falling RH parts of the cycle is not responsible for such a
pattern. The use of the scattering cross-section (Sect. 3.1)
discards any influence of the total number concentration vari-
ability. We have seen that neither the deliquescence process
sensitivity to the ambient temperature variability (Sect. 3.3),
nor the number size distribution characteristics, other than
the modal radius of the accumulation moder2 (Sect. 3.4),
have enough influence on theRH dependency to explain
such a pattern. The last possible cause may come from a
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Fig. 16.Evidence of the hysteresis phenomenon for the P4 time pe-
riod. The shaded area corresponds toσscatt(RH ) retrieved from the
chemical composition of the aerosols sampled during the decreas-
ing RH σscatt(RH ) measurements (open symbols).

time evolution of the chemical composition of the aerosol.
In that respect, the time period P4 is a particularly interesting
case, with a noticeable difference in chemical composition
(see Fig. 6, 9, 10 and Sect. 4) between the beginning and the
end of the time period.

We thus use the chemical composition of the decreas-
ing RH part of the P4 cycle as ISORROPIA input to re-
trieve the correspondingRH evolution of the water mass
contentmH2O(RH ). The parameterisations of the previ-
ous section, whose coherence has been checked, lead to a
value ofµ=0.32±0.07 formH2O(RH ) and, through Eq. (14)
and (18), to a valueε=0.27±0.02 for the size growth fac-
tor fr (RH ). The correspondingσscatt(RH ) have been re-
trieved (see Sect. 5.1.3) and are displayed as a shaded area in
Fig. 16, together with the measuredσscatt(RH ) values during
the decreasingRH part of the time period. It seems clear
that whatever the aerosol chemical composition is, its impact
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on theRH aerosol size growth dependency is not sufficient
enough to explain the high values ofσscatt(RH ) during the
falling RH part of the diurnal cycle. Thus, this branch of the
RH cycle can be identified to the super-saturated state of the
hysteresis cycle.

6 Conclusions

In this paper, we have studied the effect ofRH on various
aerosol parameters. We worked with independent optical,
size distribution and chemical data measured in ambient at-
mosphere at Saclay during the ESQUIF program. The hy-
groscopic behaviour of the accumulation mode of the aerosol
produced in the Paris area has been established. However, the
overall aerosol hygroscopicity is found to be clearly depen-
dent on both air mass origin and history. Based on the Hänel
model, independent parameterisations withRH of the scat-
tering cross section, the modal radius of the accumulation
mode and the water uptake of the aerosol have been estab-
lished. For the first time, a crosscheck of these parameteri-
sations has been performed and shows that the hygroscopic
behaviour of the accumulation mode can be coherently char-
acterized by combined optical, size distribution and chemi-
cal measurements. Moreover, the existence of a hysteresis
phenomenon in the hygroscopic growth cycle has been es-
tablished unambiguously.

This work demonstrates the importance of a wide instru-
mental synergy for pollution aerosol survey, even at the sur-
face level. The number of samples available to conduct this
study does not permit to sample all possible air mass situa-
tions nor all different aerosol chemical compositions around
Paris. Complementary studies are necessary and will be con-
ducted over the next years in Paris and its suburbs. Neverthe-
less, the first approach presented here will permit to use such
parameterisations in chemistry and transport mesoscale mod-
els, and to ameliorate, in the near future, pollution forecast-
ing in the Paris area (Vautard et al., 2003a, 2003b). More-
over, it will contribute to a better interpretation of optical
measurements from space borne instruments and it confirms
the importance of taking into account the relative humidity
effect on aerosol, together with its history, in the estimation
of the radiative budget.
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Atomique. Part of this work was granted by PSA Peugeot Citroën.
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